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ABSTRACT

Neural Architecture Search (NAS) has become a focus that has been extensively
researched in recent years. Innovative achievements are yielded from the area like
convolutional neural networks (CNN), recurrent neural networks (RNN) and so
on. However, research on NAS for graph neural networks (GNN) is still in a pre-
liminary stage. Because of the special structure of graph data, some conclusions
drew from CNN cannot be directly applied to GNN. At the same time, for NAS,
the models’ ranking stability is of great importance for it reflects the reliability of
the NAS performance. Unfortunately, little research attention has been paid to it,
making it a pitfall in the development of NAS research. In this paper, we proposed
a novel NAS pipeline, ReG-NAS, which balances stability, reliability and time
cost to search the best GNN architecture. Besides, for the first time, we systemat-
ically analyzed factors that will affect models’ ranking stability in a given search
space, which can be used as a guideline for subsequent studies. Our codes are
available at https://anonymous.4open.science/r/ReG-NAS-4D21

1 INTRODUCTION

Graph neural networks (GNN) have received a lot of attention for their broad applications in social
networks (Guo & Wang, 2020; Gao et al., 2021; Zhong et al., 2020), molecule properties prediction
(Shui & Karypis, 2020; Ma et al., 2020; Yang et al., 2021), traffic prediction (Diehl et al., 2019; Bui
et al., 2021; Zhang et al., 2021) and so on. With the goal of “faster and more accurate”, people always
have a pursuit to find a better structure of GNN. However, similar to neural networks like CNN and
RNN, searching an ideal GNN architecture manually also is challenging. Neural architecture search
(NAS) for GNN is absolutely a key point to the future development of GNN.

To design a NAS architecture, an intuitive yet primitive idea is to enumerate all models in a given
search space, and evaluate each model’s performance according to the metric specified by the down-
stream task (Ying et al., 2019; Dong & Yang, 2019; You et al., 2020). However, it is extremely time-
consuming and needs a huge amount of computational resources. To make NAS more efficient,
several searching methods are proposed. Most GNN NAS architectures can be divided into five
classes. (1) Reinforcement-learning-based methods (Zhou et al., 2019; Gao et al., 2020; Zhao et al.,
2020a), where these architectures have controllers defined as a neural network that dynamically
change the parameters according to the evaluation of the performance of the generated model; (2)
Bayesian-optimization-based methods (Yoon et al., 2020; Tu et al., 2019), which builds a probability
distribution over sampled candidates and uses a surrogate function to test; (3) Evolution-learning-
based methods (Shi et al., 2022; Li & King, 2020), among which the genetic algorithm is the most
commonly used for GNN NAS frameworks (Oloulade et al., 2021). (4) Differentiable-search-based
methods (Zhao et al., 2020b; Huan et al., 2021; Ding et al., 2021; Li et al., 2021b; Cai et al., 2021),
which learns one or two blocks that are repeated in the whole neural network, and for GNN block
is generally represented as a direct acyclic graph consisting of an ordered sequence of nodes. (5)
Random-search-based methods (Gao et al., 2020; Zhao et al., 2020a; Tu et al., 2019), which gen-
erates random submodels from the search space. However, these methods are still time consuming
and can take hours to days.

To reduce the search time, a popular way in NAS is to use a proxy-task, usually much smaller than
the groundtruth task (e.g., Cifar10 is a proxy for ImageNet). The representativeness of the proxy-
task is crucial, i.e., how similar results can be obtained from proxy-task and from groundtruth task.
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One prevailing method to quantify the similarity between the two is using a “ranking correlation”,
which refers to the similarity between two rankings of all the networks’ performance in the search
space, usually uses Spearman’s ρ and Kendall’s τ as indicators (Abdelfattah et al., 2021; Liu et al.,
2020; Zela et al., 2019). The larger ρ and τ are, the more similar the two rankings are, meaning the
more representative of the proxy task is. By achieving large ρ and τ between groundtruth ranking
and prediction ranking, one can significantly improve NAS quality (Zhou et al., 2020; Chu et al.,
2021; Li & Talwalkar, 2020). A lot of zero-cost or few-shot NAS works have been proposed to
design a good proxy, so that the ranking correlation between proxy and groundtruth can be high
within only a few training steps (Mellor et al., 2021; Dey et al., 2021; Li et al., 2021a).

In our work, we propose a proxy-task based GNN architecture search, aiming to reduce the GNN
architecture search time. Similar to previous works in DNN architecture search Zhou et al. (2020);
Chu et al. (2021); Li & Talwalkar (2020); Mellor et al. (2021); Dey et al. (2021); Li et al. (2021a),
we also use ranking correlation to evaluate the performance of our proposed proxy-based NAS.
In addition, ranking correlation can be used to quantify the ranking stability of the networks by
computing ρ and τ between different repetitions of the same training pipeline. Large ρ and τ imply
that the variation of the model’s relative ranking is small, i.e., the ranking is stable. We clarify two
metrics that will be used hereafter:

• Ranking Correlation: Correlation of two network rankings on two different tasks, e.g., ground
truth task and proxy task, or proxy task one and proxy task two; quantified by ρ and τ .

• Ranking Stability: Correlation of two rankings on the same task but of two repetitions, either the
same or different initialization and training hyperparameters. Also quantified by ρ and τ .

Observing the two metrics, we found an interesting phenomenon: in a GNN search space, the rank-
ing stability for classification tasks can be much lower than for regression tasks. For classification
groundtruth tasks, the ranking correlation between two repetitions of all GNN architectures in the
same search space can be as low as 0.57, while for regression tasks, the ranking correlation between
two repetitions can be up to 0.99. Inspired by this observation, together with a recent regression-
based proxy task in CNN, GenNAS (Li et al., 2021c), we propose a self-supervised regression-
based proxy task for GNN NAS. We observe that using our proposed regression-based proxy task,
both the ranking stability and ranking correlation are higher. In addition, regression-based proxy
task converges faster than classification groundtruth task, thus reducing the search time. However,
generate a representative proxy task is non-trivial. There is a rich study for proxy task generation
or selection for DNN NAS but no related research on GNN NAS. The only regression-based DNN
NAS work, GenNAS, can automatically search for a good proxy task, but requires knowing 20 ar-
chitectures with groundtruth ranking (Li et al., 2021c). This is a strong premise and still can be
time consuming when targeting a new search space or dataset, i.e., at least 20 architectures must be
well-trained and then ranked.

To address the above challenges, we proposed a novel NAS method, using Reression-based proxy
task for Graph Neural Architecture Search, ReG-NAS. We summarize our contributions as follows:

• ReG-NAS is the first GNN NAS using regression-based proxy task. We propose a GNN NAS
pipeline that can transform a groundtruth classification task to a regression proxy task, which
leads to much higher ranking stability and faster convergence.

• We systematically study the ranking stability and ranking correlation under various training en-
vironments, and uncover the fact that directly searching on classification groundtruth task is un-
reliable because of the low ranking stability. This observation challenges one common practice
in NAS that, as long as the ranking correlation between proxy and groundtruth task is high, it is
regarded as an effective proxy.

• We propose a simple yet effective proxy task to guide GNN NAS, which does not require
groundtruth labels but only one well-trained GNN model as proxy task generator. The gener-
ator is not necessarily the best GNN but can be any GNN within the search space. Using the
proposed proxy task, we turn the groundtruth classification problem into regression, leading to
much higher ranking stability and faster search.
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2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph is a kind of data structure that defines a set of nodes and their relationships (Waikhom &
Patgiri, 2021). A graph is a set of V nodes and a set of E edges, with optional labels y or features
x attached to nodes, links, or the whole graph. Therefore, a graph can be represented as G =
(V,E). Graph Neural Networks (GNN) is a type of Deep Neural Networks (DNN) that is suitable
for analyzing graph-structured data. If we use xv and xuv to represent node v’s and link (u, v)’s
feature vectors, use hv and huv to represent node v’s and link (u, v)’s hidden representations in
GNN, the GNN’s message passing and update process can be described as:

h′
v = fnode

hv,
∑

u∈N (v)

huv,xv

 (1)

h′
uv = fedge (hu,hv,xuv) (2)

Where N (v) denotes the number of in-neighbor nodes of node v, and fnode and fedge are message
passing functions that gather information from node’s neighborhood and previous layers.

GNN can be classified according to variants of graphs, downstream tasks, learning methods and so
on. Main types of graphs includes undirected/directed graph, heterogeneous graph, dynamic graph,
attributed graph and so on. Downstream tasks usually include classification task and regression task,
each of which can be subdivided into graph-level, link-level and node-level problems. In our work,
we mainly focus on undirected graphs with graph-level tasks.

2.2 GRAPH NEURAL ARCHITECTURE SEARCH AND GRAPHGYM

Graph Neural Architecture Search (GNN NAS) means automatically find the best GNN models for
targeted tasks (Oloulade et al., 2021). Like NAS for other neural networks, GNN NAS samples an
architecture from a predefined search space, then the NAS network will evaluate the performance of
sampled architecture as a feedback returned to the search algorithm.
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Figure 1: Structure of and Design Space of GNN

GNN NAS can be categorized ac-
cording to search space, search al-
gorithm (see Section 1) and perfor-
mance evaluation (Oloulade et al.,
2021). Recent studies for GNN NAS
(Zhou et al., 2019; Gao et al., 2020;
Tu et al., 2019; Shi et al., 2022; Huan
et al., 2021; Li et al., 2021b; You
et al., 2020) have not only achieved
promising performance for many ap-
plications of GNNs but also showed
potential as a unanimous approach to
constructing GNN models.

Among all GNN NAS frameworks,
we want to introduce GraphGym
(You et al., 2020) in detail. In Graph-
Gym, a GNN design space consists of
12 design dimensions for intra-layer
design, inter-layer design and learn-
ing configuration. A single GNN layer has a sequence of modules:(1) Linear layer W(k)h

(k)
u +b(k);

(2) batch normalization BN(·) (Ioffe & Szegedy, 2015);(3) dropout operation DROPOUT(·) (Sri-
vastava et al., 2014); (4) nonlinear activation function ACT(·); (5) aggregation function AGG(·).
Therefore, the k-th GNN layer can be defined as:

h(k+1)
v = AGG

({
ACT

(
DROPOUT

(
BN

(
W(k)h(k)

u + b(k)
)))

, u ∈ N (v)
})

(3)
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where h
(k)
v is the k-th layer embeddings of node v, W(k),b(k) are trainable weights. For inter-

layer design, Graphgym gives three ways to connect GNN layers: STACK (directly stack multiple
GNN layers) (Welling & Kipf, 2016; Velickovic et al., 2017); SKIP-SUM (residual connections)
(He et al., 2016) and SKIP-CAT (concatenate embeddings in all previous layers) (Huang et al.,
2017). GraphGym also adds Multilayer Perceptron (MLP) layers before/after GNN message pass-
ing. Training Configurations includes batch size, learning rate, optimizer type and training epochs.
The overview of GraphGym’s design space and structure is shown in Fig 1. In our works, we utilize
GraphGym as a basic framework and propose our new NAS architecture by modifying it.

2.3 GENERIC NEURAL ARCHITECTURE SEARCH VIA REGRESSION (GENNAS)

Generic Neural Architecture Search (GenNAS) is the a CNN and RNN based NAS framework that
uses self-supervised regression proxy task instead of classification for NAS (Li et al., 2021c). Com-
pared to other NAS frameworks, it has several advantages: (1) By using regression as the self-
supervised proxy task, it is downstream-agnostic to the specific downstream tasks. (2) It has near-
zero training cost, which is highly efficient for neural architecture search.

Here we mainly focus on CNN regression architectures of GenNAS, as shown in Fig 2(a). GenNAS
constructs a Fully Convolutional Network (FCN) (Long et al., 2015) by removing the final classifier
of a CNN, and then extract the FCN’s intermediate feature maps from multiple stages. The number
of stages is denoted as N . If the input tensor is I , each stage’s feature map tensor is Fi, the synthetic
signal is F∗

i , the regression pipeline will reshape Fi into F̂i = Mi(Fi), and compute MSE loss
defined as L =

∑N
i=1 E[(F∗

i − F̂i)
2] during training process. GenNAS will rank models’ perfor-

mance according to final MSE values, and select the model with the lowest MSE value as the best.
GenNAS uses Ranking Correlation (See Section 1) for NAS evaluation.

3 PROPOSED REG-NAS

3.1 THE BARRIERS TO GENERATE PROXY TASK

As mentioned in Section 1, ReG-NAS uses a regression based proxy task to search for GNN struc-
tures. However, different from grid-data like images, which can use the combination of signals with
different frequency but the same shape (i.e., data dimension) as proxy task, generate proxy task for
GNN is much harder.

First, even in the same dataset, different graphs usually have different topology structures. Therefore,
for graph datasets, we should generate proxy task for each graph individually, and there is no so-
called “global” signal (Li et al., 2021c) in the process of generating proxy task.

Second, although according to spectral graph theory (Shuman et al., 2013), any graph signal can be
projected on the eigenvectors of the Laplacian Matrix L and the “frequency” of each eigenvector
is the corresponding eigenvalue, we cannot simply use these vectors as our proxy task. For graphs,
Laplacian Matrix only contains a graph’s structural information, while many graphs also have other
non-structural information such as node features and edge features. Direct linear combination of
Laplacian Matrix’s eigenvectors will lose graphs’ original information and weaken NAS perfor-
mance. Therefore, in our generating process, we should aggregate both structural and non-structural
information into proxy task.

3.2 PROPOSED REG-NAS PIPELINE

In ReG-NAS, we propose a simple, yet effective proxy task generator for graph datasets, as shown in
Fig 2(b). In a given search space with number of post-process layers equals to 2, we first randomly
select a GNN architecture, then use this architecture to train the dataset for k epochs. In the end
we use this well-trained model for inference, and extract model’s hidden node feature from the first
Post-process layer as our proxy task Fp. The reason why we set the number of Post-process layers
into 2 is to make sure that all graphs’ proxy tasks are in the same shape. For example, if the input
graph G’s original node feature is I ∈ Rn×d0 (n is the number of nodes), and in the message passing
layer i, node feature is Fi ∈ Rn×d1 , the first post-process layer will reshape Fi into Fp ∈ R1×dp ,
and Fp is the proxy task for graph. The first post-process layer uniformly converts node feature’s
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(b) Overview of ReG-NAS structure

Figure 2: Overview of GenNAS structure (a) and ReG-NAS structure (b). For ReG-NAS, this figure
only shows the cases when groundtruth task is classification. In fact, ReG-NAS is also applicable
for regression-based groundtruth task, which is almost the same as classification-based groundtruth
task architecture searching pipeline.

shape into 1 × dp despite the variance of d0 and d1, which facilitates the proxy training process in
the next.

The way we generate proxy task does not need to know model’s performance ranking, even
a subset of the search space. As the final goal of NAS is to rank GNN’s relative performance,
the generator’s performance wouldn’t affect the final result as long as the generated proxy task is
informative (See Section 4.1.2). In fact, from the experiments discussed later, we will find that the
selection of model has little effect on the final results. This is different from the way that GenNAS
did (Li et al., 2021c): In GenNAS, before generating proxy task, we need to know the relative
performance ranking of a subset (e.g 20) of the neural architectures in NAS search space, which is a
strong assumption and thus is not practical when being applied to new datasets or tasks.

After the proxy task is generated, we will attach it to the graph dataset. In the regression training
process, ReG-NAS will extract node feature Fi from each Message Passing layer, and reshape it
into F̂i ∈ R1×dp in order to match the shape of Fp. We use pooling method (SUM,MEAN,MAX)
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to reshape Fi. The evaluation metric is the final MSE loss between F̂i and Fp. In the end we will
compute Ranking Coefficient (Spearman’s ρ and Kendall’s τ ) between proxy (regression-based)
ranking and groundtruth (classification-based or regression-based) ranking.

In summary, the whole process of ReG-NAS contains several steps below:

1. Randomly select a GNN model from the search space as proxy task generator GNNp;
2. Generate proxy task Fp ∈ R1×dp ;
3. Select a model to be evaluated GNNe from the search space;
4. Extract Message Passing layer’s node feature Fi ∈ Rn×d1 , reshape it into F̂i ∈ R1×dp , compute

MSE loss L =
∑N

i=1 E[(F̂i −Fp)
2];

5. Evaluate and rank model’s performance according to final L value.

4 EXPERIMENTS

Table 1: Basic information and hyper-parameter configurations for ogbg-molhiv and ZINC
Dataset ogbg-molhiv ZINC

# Graphs 41,127 249,456 (12,000 for subset)
# Nodes per graph 25.5 23.15
# Edges per graph 27.5 24.9

Task type Binary-classification Regression
Metric ROC-AUC MAE

Pipeline Groundtruth (classification) Proxy (Regression) Groundtruth (Regression) Proxy (Regression)
Base learning rate 0.0007 0.075 0.0006 0.0009

Batch size 128 128 128 128
Dropout 0 (False) 0 (False) 0 (False) 0 (False)

Loss function Cross entropy MSE MSE MSE
Optimizer ADAM SGD ADAM ADAM

Node encoder Atom Atom Atom Atom
Edge encoder Bond Bond None None

# Post-mp layers 2 2 2 2
Train Epochs 100 80 100 80

To fully evaluate the performance of ReG-NAS as well as analyze the factors that will affect GNN
ranking stability, we conduct 3 types of experiments: Ranking stability analysis, Effectiveness eval-
uation and Efficiency evaluation. In these experiments we use ogbg-molhiv (Hu et al., 2020)
as classification-based dataset, and use ZINC (Gómez-Bombarelli et al., 2018) as regression-based
dataset. The basic information of these datasets and hyper-parameter configurations are listed in
Table 1. Our search space contains 216 GNN models, as shown in Table 2.

Table 2: GNN Search Space for experiments
Variable Range

# Message Passing layers 2, 3
Stage STACK, SKIP-SUM, SKIP-CAT

Inner Layer Dimension 32, 64, 128, 256
Activation ReLU, SWISH, PReLU

Aggregation MEAN, MAX, SUM

All hyper-parameters (base learning
rate, optimizer, batch size etc.) are op-
timized to ensure that the model con-
verges at an optimal rate. In our ex-
periment, the learning rate is annealed
via cosine decay to 0 in order to reduce
the variance between multiple indepen-
dent training runs (Loshchilov & Hutter,
2016). And for ZINC, we use its sub-
set which contains 12,000 graphs with
10,000 train graphs, 1,000 test graphs and 1,000 validation graphs in our experiment to reduce train-
ing cost. The reason why we set proxy training epochs equals to 80 is that we find that all models’
loss converges at about 80 epochs, thus there’s no need to train extra 20 epochs.

4.1 GNN RANKING STABILITY ANALYSIS

In this section we aim to find factors that will affect GNN ranking stability and try to evaluate
the stability of our proposed NAS pipeline. Therefore, we first test GNN ranking stability on two
groundtruth task (classification task on ogbg-molhiv, regression task on ZINC), then we test
ranking stability on our NAS pipeline. At the same time, we will also discuss how proxy task will
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affect the proxy ranking stability. For a single experiment, we repeat the training and evaluation of
all architectures 3 times, then compute Ranking Stability among them. For different repetitions of
the same task, their initialization is different.
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Figure 3: Groundtruth task’s and Proxy task’s Ranking Stability analysis. (a) Classification-
based groundtruth task’s Ranking Stability on ogbg-molhiv (Use ROC-AUC as ranking metric);
(b) Regression-based task’s Ranking Stability on ZINC (Use MAE as ranking metric); (c) Proxy
task’s Ranking Stability on ogbg-molhiv (Use MSE as ranking metric); (d) Proxy task’s Ranking
Stability on ZINC (Use MSE as ranking metric); (e) Classification-based groundtruth task’s Rank-
ing Stability on ogbg-molhiv (Use Loss as ranking metric); (f) Proxy task’s Ranking Stability on
ogbg-molhiv (Use random-generated vectors as proxy task)

The Ranking Stability analysis between two repetitions of the same experiment are shown in Fig
3. The x-axis represents the ranking of ith experiment, and the y-axis represents the ranking of
jth experiment. For example, if a model ranks 3rd in the ith experiment and ranks 5th in the jth
experiment, then the model’s coordinate is (3, 5). We make Ranking Stability analysis for every
2 experiments and place all points on the same figure, represented as a heat map. The heat map
will show the density of the points and therefore reveals the pattern of task’s Ranking Stability for a
training pipeline with a given configuration. We also compute ρ and τ from the heat map.

4.1.1 GROUNDTRUTH RANKING AND PROXY RANKING STABILITY ANALYSIS

In the situation when we don’t modify ranking metrics on groundtruth ranking and proxy ranking,
and use proposed method to generate proxy task, as shown in Fig 3(a)-3(d), from the result we can
clearly see that regression-based ranking are more stable than classification-based ranking, despite
using groundtruth training pipeline or proxy training pipeline. This phenomenon may due to the
choice of downstream task as well as ranking metric. For classification task, in the training process,
the variable being directly optimized is loss value, while the final ranking metric is ROC-AUC
(for ogbg-molhiv); At the same time, for regression task, in the training process the variable
being directly optimized is still loss value, but the final ranking metric is MAE (for ZINC). An
intuitive explanation is that, network performance for regression-based task is evaluated directly
on the regression loss; the network performance for classification based task, on the other hand, is
evaluated on ROC-AUC, which is an indirect metric. To further validate our hypothesis, based on
ogbg-molhiv, we rank models according to their final loss value, and analyze Ranking Stability,
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as shown in Fig 3(e). From the result we can find that compared to “ROC-AUC-based” ranking,
“loss-based” ranking’s ρ and τ are much better, which affirms our hypothesis.

4.1.2 THE RELATIONSHIP BETWEEN THE CHOICE OF PROXY TASK AND PROXY TASK’S
RANKING STABILITY

Although all the experiments mentioned above illustrate regression-based rankings are more stable,
this may not be applicable to all cases. For example, if we use randomly generated vectors as our
proxy task and use it to rank models, we will find it’s ρ is only 0.424, even it is a regression-based
ranking, as Fig 3(f) shows. From the results we can find many points fall in the upper left and lower
right corners of the figure, which means that the relative rankings of these models differ a lot in the
two repeated experiments. This is an anomaly even for classification cases.

To explain this phenomenon, we should know the way how the Deep Learning optimization works.
Deep Learning optimization is trying to globally optimize a function by using local gradient infor-
mation (Bottou & Bousquet, 2007), which means if a learning problem is characterized by non-
informative gradients, then no deep learning architecture will be able to learn it. Back to the topic,
clearly random-generated vectors cannot provide informative gradients, due to which it is not sur-
prising that a model’s ranking changes drastically in different repetitions. Therefore, before we draw
a conclusion that regression-based rankings are more stable, it should based on a premise that the
learning problem should be informative or reasonable.

4.2 REG-NAS PERFORMANCE EVALUATION

4.2.1 EFFECTIVENESS OF REG-NAS

MP

MP

MP

ℱ1 ∈ ℝ
𝑛×𝑑1
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1×𝑑𝑝
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𝑛×𝑑1

Others
LE

ℱ2 ∈ ℝ
1×𝑑𝑝

ℱ2 ∈ ℝ
𝑛×1

Others
LE

Figure 4: Comparison between LE
pooling and other pooling process

We compute Ranking Correlation between groundtruth
rankings and proxy rankings to show the effectiveness
of ReG-NAS. To shed light on how the variance of
groundtruth tasks and proxy tasks affect the effectiveness
of ReG-NAS, we conduct 8 types of experiments. For
ogbg-molhiv, we conduct 5 types of experiments, the
difference among them is the way how proxy task is gen-
erated: (1) Use Random-selected Model as proxy task
generator (RM); (2) Use model with the best groundtruth
performance in the search space (“Golden” Model) as
proxy task generator (GM); (3) Use model with the worst
groundtruth performance in the search space (“Poorest”
Model) as proxy task generator (PM); (4) Use Random-
generated Vectors as proxy task (RV); (5) Use Laplacian
Matrix’s eigenvectors as proxy task (LE). For LE-based
pipeline, as the shape of Laplacian Matrix’s eigenvectors
(n × 1) are not equal to 1 × dp, so the reshape process
is different from other proxy training pipeline, as Fig 4
shows. For ZINC, we conduct 3 types of experiments: (1) RM-based pipeline; (2) GM-based
pipeline; (3) PM-based pipeline. For each groundtruth task and proxy task, we repeat the exper-
iment three times, and compute the average value of Spearman’s ρ and Kendall’s τ among them as
final results, as shown in Table 3.

Table 3: Proxy-Groundtruth Ranking Correlation analysis
Datasets ogbg-molhiv ZINC

Groundtruth task type Classification Regression
Proxy task RM GM PM RV LE RM GM PM

Proxy task’s shape 1× dp 1× dp 1× dp 1× dp n× 1 1× dp 1× dp 1× dp
Spearman’s ρ 0.362 0.367 0.356 -0.064 -0.038 0.421 0.435 0.443
Kendall’s τ 0.260 0.259 0.227 -0.041 -0.026 0.303 0.314 0.324

From the results we can draw three conclusions: (1) Random-generated vectors and Laplacian
Matrix’s eigenvectors are not suitable for proxy task. As mentioned before, for proxy training
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pipeline, the learning problem should be informative and reasonable (Section 4.1.2). Therefore,
Random-generated vectors cannot be used as proxy task. Meanwhile, from Section 3.1 we know
that Laplacian Matrix’s eigenvectors doesn’t contain graph’s non-structural information, which is
the key reason to the poor performance of LE pipeline. (2) RM/GM/PM-based pipeline reached
an ideal Spearman’s ρ and Kendall’s τ , which can be used to approximate the performance of
GNN structure. (3) The choice of models as proxy task generator has little effects on the final
results, regardless the type of groundtruth task. For ogbg-molhiv, the difference between
the ρ of GM-based pipeline and PM-based pipeline is 0.011, which is in the fluctuation range of ρ
(See Section 4.2.2); For ZINC, the PM-based pipeline’s ρ is even higher than GM-based pipeline’s,
which further proves that we don’t have to select “Golden” model as task generator.

4.2.2 EFFICIENCY OF REG-NAS
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Figure 5: ReG-NAS convergence speed analysis. (a) Spearman’s ρ convergence curve, ρ is the
Ranking Correlation between proxy ranking at epoch n and final groundtruth ranking at epoch 100.
(b) ReG-NAS speedup compared to Groundtruth training time.

Here we compute Spearman’s ρ between proxy ranking at epoch n and final groundtruth ranking
at epoch 100 (constant), and draw the relationship between ρ and epoch. Since we repeat each ex-
periment 3 times, we use Filled Area Graph to show the fluctuation range of rho at each epoch, as
shown in Fig 5(a). According to the figure we can find that compared to ZINC, ogbg-molhiv’s
ρ fluctuates more drastically, which possibly due to the instability of groundtruth ranking. Mean-
while, for ogbg-molhiv, ρ converges at about 20 epochs, and for ZINC, ρ converges at about 40
epochs. Fig 5(b) illustrates the speedup of ReG-NAS during the search of best GNN architecture
by testing the average single-epoch training time of groundtruth pipeline and proxy pipeline. For
ogbg-molhiv, ReG-NAS can save up to 76.2% training time; For ZINC, ReG-NAS can save
56.5% training time.

To sum up, ReG-NAS is downstream-agnostic (applicable on both classification task and regression
task), stable, effective and efficient GNN NAS architecture. By using ReG-NAS, we can approxi-
mate GNN’s relative performance in a short time, which is especially useful for searching GNN in a
large search space.

5 CONCLUSION

In this work, we proposed ReG-NAS, a GNN NAS architecture which uses regression proxy task. It
has several advantages: (1) Stable. The Ranking Stability (Spearman’s ρ) between two repetitions
can reach up to 0.99; (2) Downstream-agnostic. It is applicable to both classification task and
regression task; (3) Effective. It has high proxy-groundtruth ranking similarity which can be work
as a reference of GNN’s relative performance; (4) Efficient. Compared to traditional NAS searching
method, it can save up to 76.2% of training time. At the same time, for the first time, we analyzed
the factors that will affect GNN ranking stability, which provides a new insight of designing a stable
GNN.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight nas. arXiv preprint arXiv:2101.08134, 2021.
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