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Abstract

Coreset selection methods have shown promise in reducing the training data size
while maintaining model performance for data-efficient machine learning. However,
as many datasets suffer from biases that cause models to learn spurious correlations
instead of causal features, it is important to understand whether and how dataset
reduction methods may perpetuate, amplify, or mitigate these biases. In this
work, we conduct the first comprehensive analysis of the implications of data
selection on the spurious bias levels of the selected coresets and the robustness of
downstream models trained on them. We use an extensive experimental setting
spanning ten different spurious correlations benchmarks, five score metrics to
characterize sample importance/ difficulty, and five data selection policies across a
broad range of coreset sizes. Thereby, we unravel a series of nontrivial nuances
in interactions between sample difficulty and bias alignment, as well as dataset
bias and resultant model robustness. For example, we find that selecting coresets
using embedding-based sample characterization scores runs a comparatively lower
risk of inadvertently exacerbating bias than selecting using characterizations based
on learning dynamics. Most importantly, our analysis reveals that although some
coreset selection methods could achieve lower bias levels by prioritizing difficult
samples, they do not reliably guarantee downstream robustness.1

1 Introduction

The recent success of over-parameterized models is largely driven by the vast scale of available
data [1, 2]. However, as datasets grow to an unprecedented scale, reaching billions of images [3, 4],
training deep models on them demands enormous computational resources. Moreover, web-scale
datasets tend to be noisy, with many samples of low informativeness and quality [5, 6]. These
concerns have driven interest in selecting high-quality, informative subsets of data, also known as
coresets. Additionally, there is a growing interest in understanding the role of data in the model’s
generalization, characterizing sample-level learning dynamics, and identifying examples with the
highest influence on the model’s predictions [7–9]. Building on this broader goal of data-centric
machine learning, coreset selection [10–16] aims to identify a small subset of training data that
preserves the original model performance while enhancing training efficiency.

1See https://github.com/princetonvisualai/Robustness-impacts-of-coreset-selection
for results and code.
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However, real-world datasets often contain biases that cause trained models to rely on spurious
features instead of causal features [17–22]. This reliance can undermine model generalization,
especially when deploying models in environments where these spurious correlations do not hold [23,
24]. This issue could be further exacerbated if models are trained on subsets of such data, as the
subset selection process can amplify the impact of spurious features, leading to decreased robustness
and fairness in model performance. While there has been significant progress in coreset selection
methods, they are predominantly evaluated on datasets like CIFAR [25] or ImageNet [26] using
average accuracy as the metric [10, 12, 11, 13, 16, 27, 15, 14]; the downstream impacts of models
trained on coresets of data with complicated spurious features remain unexplored.
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Figure 1: Left: Performance of randomly selected core-
sets from Waterbirds [20] reveals an increasing discrep-
ancy between worst-group accuracy and average accu-
racy as coreset size decreases. Right: Distribution of
average and worst-group accuracy for current coreset se-
lection algorithms shows large variation in worst-group
accuracies even for similar average accuracies.

We begin with a quick preview of some of our
results to demonstrate these potential concerns.
Here we consider the Waterbirds [20] dataset,
where labels (waterbirds vs landbirds) co-occur
with the backgrounds (land or water), form-
ing four distinct subgroups. In the training set,
95% of the waterbirds appear on water back-
grounds, and 95% of landbirds appear on land
backgrounds, making the backgrounds a spuri-
ous feature. This association can lead the model
to predict based on the background rather than
on the bird, incurring disproportionately high
errors for waterbirds on land, and landbirds on
water [17, 28].

In Figure 1 Left, we demonstrate this dispropor-
tionate effect as the size of the coreset changes.
We compare the worst-group accuracy (the
lowest accuracy among the four subgroups [20])
and the average test accuracy of a model trained
on coresets of different selection ratios. The coresets are selected using uniform random sampling
(or random coreset selection), which is considered a strong baseline [11, 10]. Although classifiers
continue to achieve high average accuracy with very small coresets, their robustness as measured by
worst-group accuracy declines substantially. Hence, we highlight the importance of understanding
how different coreset sizes impact the group robustness of resulting models.

In Figure 1 Right we conside more complex coreset selection methods and plot the distribution of
average and worst-group accuracies for models trained on 10% coresets. Each point corresponds to
the combination of one sample characterization score [27, 15, 14, 13, 12] and a selection policy [11–
13]. We show that different coresets with comparable downstream average accuracies can result in
drastically different levels of group-robustness. Hence, we emphasize the crucial need for a deeper
evaluation to understand how different strategies for coreset selection impact model robustness and
how to select coresets in the presence of spurious correlations.

We conduct the first systematic, large-scale empirical study of how coreset selection impacts dataset
bias and downstream group-robustness. In our analysis, we evaluate five different sample characteriza-
tion scores spanning two families (learning-based and embedding-based methods) [27, 15, 14, 13, 12]
and five different selection policies from the coreset selection literature [13, 11, 12], across ten
diverse datasets with spurious correlations spanning both visual and natural language classification
tasks [29, 20, 30–35]. We show that coreset selection on datasets with spurious correlations is
highly nuanced, where the induced bias of the coreset and downstream group-robustness are strongly
influenced by the scoring method, selection policy, and coreset size. For example, we show that
sample characterizations scores based on feature embeddings [13, 12] run a lower risk of
inadvertently exacerbating bias when used for selecting coresets compared to scores based on
learning dynamics [27, 15, 14], and that lower bias levels of coresets does not reliably guarantee
downstream robustness. Most importantly, we show that special considerations need to be made
when the coreset size is very small, since there is a unique risk of highly prototypical coresets
reaching high average performance while obscuring their low group-robustness.
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2 Related Work

Data selection. Within the broader goal of data-efficient learning, multiple research threads diverge
in nuanced ways. A line of research synonymously referred to as data pruning seeks to remove
uninformative samples from a larger dataset [13, 11, 16]), whereas coreset selection methods try to find
a small subset of data that is representative of the whole dataset [10]. Data selection methods stemming
from data attribution searches for the most important samples using influence functions [36, 37],
shapley contribution of each sample to the model performance [38], or the ability of the training data
to predict the model behavior [39]. In the coreset selection literature, less difficult (easy) samples
are often synonymous with redundant and less informative, and the prescribed selection policy is to
retain the hardest samples.

Recent work uncovered that the optimal policy for selecting coresets depends on the dataset size and
the coreset size: selecting the hardest samples can be suboptimal for learning an accurate classifier,
especially when the coreset size is very small [13]. Furthermore, there seem to be many sources of
hardness/difficulty for samples [40], and not all of them convey important information for training
generalizable classifiers. Given that many sample characterization scores are strongly correlated [41],
we investigate whether the concept of difficulty used in data selection is tied to spurious correlations.

Some methods, in contrast, avoid explicit importance scores and instead leverage distributional
properties of the dataset [42, 43]. Active learning and dynamic pruning methods share similar flavors
to data selection but are out of the scope of our consideration.

Spurious correlations and group robustness. Mitigating spurious correlations is approached
broadly in two ways: model interventions [20, 44] and data interventions [45–47]. When group labels
are available, simple data balancing has been shown to achieve competitive group-robustness [45]. A
notable limitation of these methods is the frequent unavailability, ambiguity, or high cost of obtaining
sample-level group labels in real-world settings. Therefore, the bulk of our analysis focuses on
addressing spurious correlation in the absence of group labels.

Concurrently, there is research focused on identifying minority subpopulations within a dataset by
quantifying their influence on the training process and reweighting them to mitigate downstream
bias [48, 7, 49, 50]. These methods use loss and error signals, much like certain coreset selection
strategies, to identify minority groups. Bias discovery aims to discover consistent patterns in the data
to expose previously unknown biases and corresponding error patterns [51, 32, 52]. However, data
interventions geared toward group robustness also run the risk of compromising the model’s natural
accuracy on skewed datasets [53].

Data selection meets group-robustness. Pruning out instances of certain groups or classes when
datasets are imbalanced, also coined "subsampling," aims to reduce bias and improve robustness of
the downstream classifiers [54]. This is in line with previous work on data interventions for spurious
correlation mitigation. A recent study [55] hints that data pruning may mitigate distributional bias
in trained models- however it was limited to one data selection method: EL2N [27]. A concurrent
work [56] has explored how to prune out certain training samples to mitigate spurious correlations,
in a setting where the spurious signal is relatively weaker. Distributionally robust data pruning
(DRoP) [57] emulates this behavior at the class-level, retaining more samples from the more difficult
classes. However, we reiterate the difficulty of our setting compared to this, since group labels are
often unavailable, and there could be unknown spurious correlations.

In this work, we seek to bridge this knowledge gap by conducting an extensive study of how coreset
selection methods can impact spurious biases of datasets and classifiers. We place this work within
a broader effort to systematically analyze existing techniques and datasets, aiming to extract key
insights that advance understanding and inform future research [58–60].

3 Experimental setup

In this section, we formally define spurious correlations, formulate the coreset selection problem
(including the sample scoring methods and selection policies we consider in our analysis), and
elaborate on our experimental setup.
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Quantifying the strength of spurious correlations. Spurious correlation is a type of bias that occurs
when the dataset contains a spurious feature that is predictive of the target label on the training set, but
not necessarily so on the test set. We assume that each sample xi ∈ X is associated with a spurious
feature ai ∈ A. In our analysis, we quantify bias, B as a statistical relationship between the target
label (class) y and a particular spurious feature a. Bias in a dataset is considered present between the
class y and the spurious feature a if B(y, a) > 1. To characterize the overall bias in the dataset, we
define the bias level as follows:

Bias level = max
y,a

B(y, a) where B(y, a) =
P (a|y)
P (a)

(1)

This represents the highest degree of dependency between any class y and spurious feature a within
the dataset. For example, in the Waterbirds dataset [20], there are two classes: landbirds and
waterbirds, as well as two spurious features: land-backgrounds and water-backgrounds. Using the
dependency measure that we defined above, we can categorize samples into two distinct categories:

• Bias-aligning: Pairs (y, a) for which B(y, a) > 1, i.e., the spurious feature a is positively
associated with the class y are Bias-aligning groups. The Waterbirds dataset [20] has two
bias-aligning groups: waterbirds on water backgrounds and landbirds on land backgrounds.
Corresponding individual samples from either of these two groups are bias-aligning samples.

• Bias-conflicting: Pairs (y, a) for which B(y, a) < 1 are Bias-conflicting groups. The
spurious feature a appears less frequently in class y, suggesting a negative association
and potentially a harder recognition challenge. The Waterbirds dataset [20] has two bias-
conflicting groups: waterbirds on land backgrounds and landbirds on water backgrounds.
Corresponding individual samples from either of these two groups are bias-conflicting
samples.

Coreset selection. Given a large training set T = {(xi, yi)}|T |
i=1, coreset selection aims to find

a subset S ⊂ T with a desired |S|, so that the model θS trained on S has close generalization
performance to the model θT trained on the whole training set T . We formalize this process into two
stages: sample characterization, in which individual scores are assigned to each sample to quantify
its importance or difficulty , and sample selection, where a particular policy defines how these scores
guide the construction of the final coreset. The scoring function f(ϕ, xi) that assigns sample-level
scores is parameterized by ϕ, and can be characterized into two groups:

• Learning-based scores train a surrogate model ϕT on the entire train set T and use it to
parameterize the score assignment [61]. We investigate three such scores in our analysis:
EL2N score [27] is calculated as A(ϕT , xi) = ∥σ[ϕT (xi)] − ŷi∥2 where σ denotes the
softmax function on output logits and ŷ is the groundtruth label in one-hot. Uncertainty
score [14] is the entropy of class prediction probabilities ϕT (xi). Forgetting score [15]
is defined as the number of times (xi, yi) is correctly learned and subsequently forgotten
during the training of the surrogate model ϕT .

• Embedding-based scores use a pretrained feature extractor ϕ∗ to derive feature embeddings
Z for T , and a distance function is used to estimate the informativeness/uniqueness of
a sample in the embedding space. We use the following embedding-based scores in our
analysis: Self-supervised (SelfSup) score [13] runs k-means clustering on the latent space
and scores each sample with the distance to its nearest centroid. Supervised prototypes
(SupProto) score [12] calculates the center of each class in the latent space and uses the
distance of each sample to its corresponding class center as its score.

We consider several sample selection policies including: the Difficult policy, which selects the
highest scoring samples for the coreset, the Easy policy, which selects the lowest scoring samples
[13], the Median policy, which selects samples closest to the median of the score distribution [12],
and the Stratified policy [11], which construct 50 bins ranking from lowest to highest scores and
sample randomly from each bin based on the data budget allocated for each bin. We implement
the Random selection policy as a baseline. Additionally, we implement an oracle selection policy
Random-Groupbalanced which picks an equal number of random samples from each group to
create a group-balanced coreset. (The extent of group-balancing is limited by the number of total
samples present from each group, since we do not oversample.) R-Gbal acts as an upper bound since
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it utilizes both class labels and spurious feature labels to identify the groups, whereas we assume that
only class labels are available in our setting.

Existing data selection methods can introduce class imbalance [57, 13], leading to challenges with
model training, especially for small dataset sizes (e.g., some of the classes could be completely
excluded). To disentangle potential class imbalances from the effects of spurious correlations, we
perform class balancing by selecting equal proportions of samples from each class when constructing
the coreset (up to the limits posed by the original dataset; see Appendix for more details).

Datasets. We run our analysis on 10 different datasets containing known spurious correlations.
All datasets are designed for classification tasks, and contain different types of spurious features:
backgrounds with Waterbirds [20], Metashift [31], Nico-spurious [32, 62], Urbancars-B [30], co-
occuring objects with Urbancars-C [30], Civilcomments [34], MultiNLI [20, 35], visual features with
cMNIST [29], Celeb-A hair [33], and a mixture of multiple spurious features with Urbancars-A [30].
(See Appendix A for full dataset descriptions and their Bias-levels.)

Analysis pipeline. The pipeline of our analysis for a dataset with known spurious correlations is as
follows. First, we assign sample-level scores to the dataset using a sample characterization score.
Next, we select coresets of a desired size by applying a sample selection policy on the samples as
characterized by the scores calculated in the first step. We use the bias level metric as introduced in
Equation 1 to quantify the strength of the spurious correlations of the resulting coreset. Finally, we
train a downstream classifier on the selected coresets.

We keep the number of training iterations fixed across our experiments by setting the number of
training epochs to N/s where N is the number of training epochs on the full dataset, and s is the
coreset size as a fraction of the full dataset. We use models initialized with Imagenet-1K [26]
pretrained weights for the visual datasets: ResNet18 [63] for cMNIST, and ResNet50 for others. NLP
datasets were classified using BERT [64] model pretrained on Book Corpus and English Wikipedia
data. The same models and initializations were used as surrogate models to calculate characterization
scores. (Please refer to Appendix B for complete training details.)

We evaluate the average performance of the downstream classifier using Average accuracy, which
assumes the test set has a similar group distribution as the original training set. This is done by
computing group accuracies and re-weighting them according to their proportions in the original train
dataset [20, 46]. Lastly and most importantly, we measure the group-robustness of the downstream
classifier using worst-group accuracy, which is the minimum of the individual group accuracies. A
high worst-group accuracy reflects that the model has learnt a solution that is robust to the known
spurious correlation of the dataset.

4 Empirical analysis

4.1 Embedding-based characterization scores run a lower risk of inadvertently
exacerbating bias compared to learning-based scores

We begin by investigating whether sample characterization scores used by coreset selection algorithms
are predictive of bias-conflicting samples since coreset selection methods may inadvertently amplify
bias in the subsampled dataset. We do this by (1) determining whether sample characterization
scores can be used directly to classify a dataset into bias-aligning versus bias-conflicting samples
and (2) examining the level of bias in coresets that are selected under different sample selection
policies. Later in section 4.2, we will examine the effect that this selected data has on the downstream
group-robustness of the resulting classifier.

Identifying bias-conflicting samples using characterization scores. We utilize coreset selection
scores as predictive signals for bias-conflicting samples using average precision (AP). Figure 2
reveals that while most learning-based scores are informative for detecting bias-conflicting samples,
embedding-based scores do not appear to be.

In more detail, two learning-based scoring methods, EL2N [27] and Uncertainty [14] are substantially
better than the random baseline at classifying bias-conflicting vs bias-aligning samples across all 5
datasets, suggesting that coresets selected using these scores run the risk of systematically excluding
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certain groups, inadvertently exacerbating bias levels. The third learning-based scoring method,
Forgetting [15], is more nuanced, appearing to contain bias information on Waterbirds (23.9% AP vs
4.7% AP for the random baseline) and Urbancars-C (13.8% vs 5.0%) but comparatively little on the
other datasets (e.g., on MetaShift 35.9% AP vs 30.4% AP for the random baseline).

Most striking though, embedding-based scoring methods provide very little information towards
identifying bias-conflicting samples on real-world datasets. Concretely, both SelfSup [13] and
SupProto [12] achieve near-random AP on Urbancars-C, Metashift, and Civilcomments datasets. We
further finetune these embeddings on each of these datasets for 20 epochs and the pattern persists:
SupProto achieves on 5.2% AP (6.8% with finetuning) vs 5.0% AP for the random baseline on
Urbancars, 35.0% AP (34.5% with finetuning) vs 30.4% on Metashift and 37.3% AP (45.8%) vs
38.2% on Civilcomments. Only on the very simple cMNIST and to a lesser extent on Waterbirds,
where the discriminative features are simple, do these methods provide a substantial signal. As we
will further see below, this suggests that embedding-based coreset selection methods (even after
finetuning) pose lower risk of bias exacerbation in real-world datasets, compared to learning-based
methods.

Coreset bias levels under different selection policies. We directly evaluate the bias levels using
Equation 1 of the coresets selected using different sample characterization scores and policies. As
expected, embedding-based scoring methods produce coresets with similar bias levels regardless of
the selection policy: for example, selecting 10% of the data using the Difficult, Easy, Median and
Stratified policies on SelfSup scores results in bias levels between 1.89-2.00 on the Waterbirds dataset
(1.87 is the bias on a random coreset of similar size), and 1.92-1.93 on Urbancars-c (1.92 is the bias
on a random coreset of similar size).

Learning-based scores, on the other hand, unsurprisingly provide stronger indicators for bias, and
in return, the bias levels of the resultant coresets vary largely with the executed selection policy.
This can be seen in the left column of Figure 3 (which we will discuss in more detail in the next
section); for example, selecting 10% of the Urbancars-C data with learning-based EL2N scores varies
between bias level of 1.5 using Difficult, and 2.0 using Easy compared to the bias level of 1.9 on
the random coreset. Therefore, care needs to be given when using learning-based coreset selection
scores, especially in the presence of unknown spurious biases in the data. Hence, we focus more on
the inadvertent risks of learning based selections in the subsequent sections.
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Figure 2: Classifying bias-conflicting samples using characterization scores. We measure the Average
Precision of three learning-based methods (EL2N [27], Uncertainty [14] and Forgetting [15]) and two embedding-
based methods (SelfSup [13] and SupProto [12]) at classifying bias-conflicting vs bias-aligning samples across
5 datasets. On the more challenging real-world datasets (Urbancars-C [30], Metashift [31], and Civilcom-
ments [34]), embedding-based methods do not appear to order the samples according to their bias levels (i.e.,
have near-random AP); even finetuning these embeddings (depicted by the shaded bars) does not change these
findings. (Please refer Appendix C.1 for more results on other datasets)

4.2 Coreset bias level is not a consistent indicator of downstream robustness

Our findings in Section 4.1 demonstrate that different coreset selection methods can lead to coresets
with different bias levels compared to the corresponding full datasets. Inspired by the extensive litera-
ture that suggests that constructing group-balanced training sets can improve group-robustness [45–
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Figure 3: Data bias and classifier accuracies for Difficult (highest-scoring) and Easy (lowest-scoring)
scoring samples using EL2N scores. Selecting the Difficult samples typically results in less biased coresets and
corresponding more robust (highest worst-group accuracy) classifiers than Easy samples. The Difficult samples
also tend to be more robust than those with Random selection. However, for small coreset sizes, we see a drop in
average and worst-group accuracies for Difficult samples, which we examine further in Section 4.3. (Please refer
Appendix C.2 for more results on other datasets.)

47, 65] of models, we examine whether coreset selection methods can correspondingly help (or hurt!)
classifier group-robustness.

In Figure 3, we show the coreset bias-level (left column) and worst-group and average accuracy of
a classifier trained on those coresets (middle and right columns) across five datasets (rows) with
different selection policies (colors) using the EL2N [55] scores. Selection rate (x-axes) indicates
the size of the coreset as a percentage of the full dataset. In the leftmost column, we observe that
coresets selected using the Difficult policies consistently have a lower bias level compared to those
selected using the Easy or Random policies. Based on many prior works [45–47, 65], one would
expect Difficult coresets to result in classifiers with higher group-robustness (lower worst-group
accuracy). However, this is only partially true. In the middle column of Figure 3, we see that the
Difficult coresets lead to more robust classifiers (classifiers with higher worst-group accuracy)
but only when the coreset size is “sufficiently large.” (What constitutes “sufficiently large” appears
to vary empirically between datasets: e.g., greater than about 10% of the data size for Waterbirds and
Urbancars, and greater than 40% for Metashift and Civilcomments.)

In Table 1, we report the worst-group accuracy for 40% coresets selected using EL2N [27] as well as
SelfSup [13] across all 10 datasets. The best-performing configurations (bolded values) in terms of
worst-group accuracy predominantly correspond to Difficult selections using EL2N, implying that at
40% selection rate, lower bias levels can help models achieve higher-group robustness.
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Baselines EL2N [55] scores SelfSup [13] scores
Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
cMNIST [29] 62.0 84.4 87.2 74.0 0.0 0.0 83.0 83.5 44.0 0.0
Waterbirds [20] 58.2 83.3 74.6 73.1 50.5 30.2 50.9 51.0 69.2 37.1
Urbancars-C [30] 52.0 61.6 54.0 51.2 46.4 49.6 42.0 48.4 54.4 44.0
Metashift [31] 73.8 78.5 78.5 63.1 66.5 58.6 73.3 69.2 74.3 56.9
Civilcomments [34] 77.4 72.0 63.0 51.7 63.9 43.2 77.8 78.4 70.3 79.3
Nico-spurious [32, 62] 44.0 40.0 44.0 44.0 34.0 32.0 44.0 16.0 34.0 36.0
Urbancars-B [30] 44.8 64.0 52.0 44.8 26.4 15.6 43.2 48.0 41.6 26.4
Urbancars-A [30] 16.8 50.4 23.2 19.2 6.4 7.2 11.2 17.6 20.8 9.6
MultiNLI [20, 35] 60.5 57.6 46.0 65.6 61.8 46.0 55.2 60.8 55.7 58.3
Celeb-A hair [33] 58.9 71.1 38.3 47.8 68.9 79.0 41.7 66.1 63.3 78.9

Table 1: Worst-group accuracies for different selection policies at 40% selection rate. The small values
correspond to models with a catastrophic drop in average accuracy (10.0 worse than the corresponding random
baseline). In general, Difficult selection policies with EL2N scores yield robust classifiers. Across the results for
SelfSup scores, no one policy stands out consistently. (Please refer Appendix C.2 for more results)

On the flip side, as shown in the middle columns of Figure 3, when the coreset sizes get smaller, the
robustness of models for Difficult coresets becomes unintuitively low, despite the bias levels being
the lowest out of all policies. This behaviour could be partially explained by the corresponding drop
in average accuracy (third column of Figure 1). Many state-of-the-art coreset selection methods
are known to result in a catastrophic drop in average accuracy for small coreset sizes [11, 66].
Recent works have attributed this phenomenon to low data coverage due to selecting only the most
difficult samples [11], or the models overfitting on very specific hard examples [13], leading to poor
generalization. However, the reality is more nuanced, and we examine this further in the following
section.

4.3 Very small coresets require special considerations

We established that Difficult selection with learning based scores yields the least biased coresets.
However, it does not translate to improved group robustness for small coreset sizes. In this section,
we perform a deeper analysis of this discrepancy to understand the nuances of the small data regime.

Coresets of Easy samples may yield better average performance but offer no robustness benefits.
One proposed solution for the catastrophic drop in average accuracy for very small coresets is
selecting the easiest samples for the coreset [13]. As shown in the rightmost column of Figure 3, for
all datasets except cMNIST, Easy selection surpasses Difficult in average accuracy for very small
selection rates. However, the corresponding worst-group accuracy for Easy policy, although higher
than that of Difficult policy, remains well below simple Random selection. This reinforces our
prior finding that easy samples are predominantly bias-aligned, resulting in a highly biased coreset,
eventually degrading group-robustness. At very small coreset sizes, Easy selection policy often yields
high average accuracy, masking the fact that it systematically excludes bias-conflicting samples and
still leads to worse group-robustness.

Group-balancing alone does not guarantee improved robustness; difficulty of the samples play
an important role. In the regime of very small coreset sizes, we observe that Difficult selection,
although yeilds the lowest bias-levels, does not guarentee group-robustness. This observation is in
direct contradiction with many prior works that established the benefits of group-balanced training
sets (equal number of samples from all individual bias-aligning and bias-conflicting groups) on
group-robustness in the presence of spurious correlations. To explain this apparent contradiction, we
hypothesize that not all group-balanced coresets have similar robustness benefits, but another factor:
the sample difficulty within each group could have a conflating impact.

To test this hypothesis, we implement a few selection policies by incorporating EL2N difficulty
scores with oracle information about which group each sample belongs to. R-Gbal baseline selects a
group-balanced coreset in which the target number of samples from within each group is selected
randomly. Additionally, we implement Diff-Gbal and Eas-Gbal selection policies, which select the
same number of samples from each group as R-Gbal selection, but apply the corresponding policies
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Difficult and Easy within the samples of each group. (The level of group-balancing is limited by
the number of samples from each group in the overall dataset and the coreset size). The resultant
worst-group accuracies of the classifiers trained on these selections are shown in Figure 4. We observe
a clear difference between R-Gbal and Diff-Gbal. Even though all policies have equal bias levels at
a given selection rate, prioritizing the most difficult samples from each group (Diff-Gbal) leads to
worse robustness compared to uniformly random (R-Gbal) or easiest (Eas-Gbal) samples.

2% 5% 10
%

20
%

40
%

80
%

20%

40%

60%

80%

W
or

st
-g

ro
up

Ac
cu

ra
cy

Waterbirds

R-Gbal
Diff-Gbal
Eas-Gbal

2% 5% 10
%

20
%

40
%

80
%

30%

40%

50%

60%
Urbancars-c

Selection Rate

Figure 4: Worst-group accuracies for Water-
birds [20] and Urbancars-C [30] using group-
balanced coresets. Although all methods have equal
bias-levels, selecting the most difficult samples from
each group results in comparable or worse group-
robustness.

An array of scoring methods that approximate
sample difficulty have been repurposed to iden-
tify bias-conflicting examples, in settings where
annotations of spurious features are absent [48,
67, 68, 44, 69, 70]. Bias-conflicting samples
thus identified are in turn used to construct more
group-balanced training sets, or incorporated
into model interventions such as weighted opti-
mization [48] to combat the models from learn-
ing spurious correlations. Our observation that
"group balancing alone doesn’t guarantee a
model’s group-robustness; the difficulty of sam-
ples within each group play an important role"
raises an interesting caveat on this line of meth-
ods for discovering bias-conflicting samples for
group-robustness.

0

1

2

W
at

er
bi

rd
s

Bias Level

0%

20%

40%

60%

Worst-group Accuracy

0%

50%

100%
Average Accuracy

0

1

2

U
rb

an
ca

rs
-C

0%

20%

40%

0%

25%

50%

75%

2% 5% 10%0.0

0.5

1.0

1.5

M
et

as
hi

ft

2% 5% 10%0%

20%

40%

60%

2% 5% 10%0%

25%

50%

75%

Difficult
Difficult*

Stratified
Median

Selection Rate

Figure 5: Effect of excluding most difficult bias-conflicting samples in the small data regime. Median and
Stratified selection policies perform better than Difficult selection on worst-group accuracy for small coreset
sizes, although the slightly modified Difficult* selection strategy discussed in Section 4.3 mitigates the difference.
(Please refer Appendix C.3 for more results on other datasets)

Trading off most difficult bias-conflicting samples to improve robustness. Learning based scores
that characterize the difficulty of samples assign high values to rare and unique instances that carry
fine-grained information about the particular class. However, they are also known to assign high
scores to mislabeled samples [27, 71, 72] or samples that are too far out-of-distribution (OOD) to be
useful for learning the target function [7, 73, 40]. To avoid the negative impact of such noisy samples
in very small coresets, excluding a small number of highest scoring (most difficult) samples [27],
selecting samples from different levels of difficulty [11], or simply selecting samples whose difficulty
is close to the dataset median [12] has been proposed. Here we investigate how such selection
strategies impact the downstream group-robustness.
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We implement Difficult* selection policy by excluding a small percentage (3%) of the highest
scoring samples as a simple heuristic. Difficult*, Stratified, and Median selection policies therefore
respectively correspond to the three aforementioned mitigation methods [27, 11, 12]. Bias-levels,
worst-group, and average accuracies for these selection policies in the small data regime are shown
in Figure 5. Although Difficult*, Stratified, and Median progressively increase the bias-level of the
coresets compared to Difficult selection, they result in improved robustness (worst-group accuracy)
in cases where Difficult policy has catastrophically low robustness. (e.g: at 2% and 5% on Waterbirds
and Urbancars-C, and 2%, 5%, 10% on Metashift) However, we argue that these strategies are still far
from being one-size-fits-all solutions; (e.g: at 10% on Waterbirds and Urbancars-C, Median policy
resulted in exacerbated bias-levels, harming the robustness compared to Difficult)

5 Conclusions

We conducted the first systematic and multidimensional empirical study of how coreset selection
impacts dataset bias and downstream group robustness. Through consistent patterns across our
extensive experimental setup, we expose interesting nuances to the common knowledge that “bias-
conflicting samples are difficult to learn” and “lower bias in datasets leads to higher robustness”, in
the context of selecting coresets and training models on coresets.

Our analysis points to a heuristic in how we can do coreset selection when access to detailed
annotations of spurious features is unavailable: select coresets prioritizing the most difficult/rare/non-
prototypical samples, and ensure that the coreset is sufficiently large to reach comparable or higher
performance than a uniform random coreset of similar size. Thereby, alleviate the risk of systemati-
cally excluding minority samples and avoid the pitfalls of the small-data regime.

Algorithm 1 Coreset Selection ensuring Group-Robustness (Group information is unavailable)
Given: A training + validation set with class labels but no spurious annotations, and a desired coreset
size range [Nmin, Nmax] (dictated by application constraints).
Goal: Find the smallest coreset likely to yield high accuracy and group robustness on a test set with
the same target classes and unknown group labels.
Method:

Initialize: Set coreset size N = Nmin.
while N ≤ Nmax do

Select two coresets: SN,difficult using the difficult policy, SN,random using the random policy
Train models: MN,difficult on SN,difficult, MN,random on SN,random
if avg accuracy(MN,difficult) ≈ avg accuracy(MN,random) then

return SN,difficult ▷ N is “sufficiently large,” difficult coreset likely yeilds high robustness.
else

Increase N ▷ N is in the “small-data regime.” SN,difficult may not ensure robustness.
end if

end while
Fallback: If Nmax is reached, use Stratified or Median policies. ▷ These strategies, while not
one-size-fits-all, are more reliable in the small-data regime.

Broader impacts and limitations. Ensuring high model performance across different groups of the
test distribution is motivated by notions of group fairness, which is a crucial topic in the discourse
of societal implications of machine learning. We note that group robustness, as formalized in this
work, is a meaningful yet coarse and limited notion of fairness. We conducted our analysis on a set of
extensive yet finite set of datasets and coreset selection methods. We acknowledge that they do not
fully represent all types of spurious correlations present in the real world. Nevertheless, we hope that
our findings will aid future research in building more rigorous and fair data selection methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are accurate and backed by
the results and analysis extensively reported in the rest of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Mentioned and discussed in the final section, "Conclusions"

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper is an empirical work and does not include any theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details are disclosed to reproduce all results of the paper.
Analysis is conducted on publicly available datasets, code is provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Analysis is run on publicly available datasets. Any changes made to their orig-
inal settings is documented and disclosed for faithful reproduction. Documented codebase
is provided with open access.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The most important details for understanding the results are given under
Analysis setup. Very specifics for each experiment will be elaborated in Appendix and
codebase.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are reported in experiments that were run with multiple random
initializations. Otherwise, the main claims are based on overall patterns of results across
many different datasets and settings rather than individual measurements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed computer resources are included in the paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Conformed with no deviations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Adequately mentioned under Conclusions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Paper poses no such significant risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are generated except for open-source models trained on publicly
available datasets. All details are documented and disclosed.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No new data/annotations were gathered from human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Paper does not involve crowdsourcing with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Core methods and analysis in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix includes further details on the experiment setup and analysis of the paper "The Impact
of Coreset Selection on Spurious Correlations and Group Robustness".

• A - Details of all the datasets used in our extensive analysis, including their bias levels

• B - Implementation details of the analysis pipeline, model details and hyperparameters

• C.1 - Additional results corresponding to Section 4.1 of the main paper

• C.2 - Additional results corresponding to Section 4.2 of the main paper

• C.3 - Additional results corresponding to Section 4.3 of the main paper

• C.4 - Further exploration into difficult coresets in small data regime

Our results and code are publicly available here

A Datasets, Characterization scores, and Policies

cMNIST (c-Mn) [29]- A simple synthetic version of the MNIST [25] dataset where colors have been
added to the images of the numbers. Each digit is spuriously correlated with a specific color.

Waterbirds (WB) [20]- constructed by placing images from the Caltech-UCSD Birds-200-2011 [74]
dataset over backgrounds from the Places [75] dataset. The task is to classify whether a bird is a
landbird or a waterbird, where the spurious attribute is the background (water or land).

Urbancars [30]- The task is the classification of car images into urban cars and country cars. There
are 2 different spurious attributes that result in three different sub-datasets. Urbancars-C (UC-C) has
a co-occurring object from urban and country contexts as the spurious feature, whereas Urbancars-B
(UC-B) has backgrounds as the spurious feature. Urbancars-A (UC-A) has both spurious features
resulting in 8 different subgroups.

Metashift (MSh) [31] MetaShift is a general method of creating image datasets from the Visual
Genome project [76]. We use the Cat vs. Dog dataset, where the spurious attribute is the image
background. Cats and more likely to be indoors, and dogs are more likely to be outdoors. We use the
"unmixed" version according to the original implementation.

Nicospurious (Nic-S) [62, 32] NICO++ is a large-scale benchmark for domain generalization. We
only use their training dataset, which consists of 60 classes and 6 common attributes (autumn, dim,
grass, outdoor, rock, water). To transform this dataset into the spurious correlation setting, we use the
method followed by [32]

Civilcomments (CC) [34]- a text classification task where the goal is to classify a given comment as
"toxic" or "neutral". Following prior works [45] we use the coarse version of the dataset where the
presence of the spurious feature entails the comment containing mentions of any of these categories:
male, female, LGBT, black, white, Christian, Muslim, other religion. The presence of this spurious
feature is correlated with the label "toxic".

MultiNLI (MNL) [35, 20]- is also a text classification task where a pair of sentences belongs to one
of the three classes: Negation, Entailment, and Neutral. Spurious feature is the presence of negation
words such as "no" or "never" and it is spuriously correlated with the Negation class.

Celeb-A hair (Cel-A) [33]- We select to implement the binary classification on the hair-color attribute
to "Blond" and "non-Blond". The gender of the person is claimed to be the spurious feature. The
correlation is between Female gender and being blonde.
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Dataset #Classes #Attributes MaxGroup MinGroup Bias Level
cMNIST [29] 10 10 5890 (10.71%) 13 (0.02%) 10.38
Waterbirds [20] 2 2 3498 (72.95%) 56 (1.17%) 3.67
Urbancars-C [30] 2 2 3800 (47.50%) 200 (2.50%) 1.90
Metashift [31] 2 2 789 (34.67%) 196 (8.61%) 1.41
Civilcomments [34] 2 2 148186 (55.08%) 12731 (4.73%) 1.45
Nico-spurious [32, 62] 6 6 3030 (32.53%) 6 (0.06%) 11.06
Urbancars-B [30] 2 2 3800 (47.50%) 200 (2.50%) 1.90
Urbancars-A [30] 2 4 3610 (45.12%) 10 (0.12%) 1.99
MultiNLI [20, 35] 3 2 67376 (32.68%) 1521 (0.74%) 2.28
Celeb-A hair [33] 2 2 71629 (44.01%) 1387 (0.85%) 1.62

Table 2: Dataset statistics including the number of classes, attributes, the largest/smallest
subgroups, and bias levels.

B Experiment settings, models, and hyperparameters

B.1 Class balancing

Prior work has shown that sample importance scores when used directly as a coreset selection can
cause unintended class imbalances in the resulting coreset [57]. Another work [13] also perform a
form of class balancing to ensure that none of the underrepresented classes are completely excluded
from the selected subset. Since our experiments involve very small coreset sizes, and since the class
labels are readily available, we implement a uniform class balancing strategy.

However, it should be noted that the datasets originally have imbalanced class distributions. Therefore,
we calculate the ideal number of samples that each class should represent for a desired coreset size
(equal proportions from all available classes), then if a particular class does not have enough samples,
we iteratively divide the shortfall among the remaining classes until a distribution as close as possible
to uniform is obtained.

B.2 Baselines

Once the class-balancing has been applied and the number of samples to be picked from each class is
calculated, the Random (R) selection policy uses uniform random selection on separate classes.

Random-groupbalanced (R-Gbal) baseline is implemented as an oracle baseline since it utilizes the
group labels of each samples, that we assume we do not have in the current setting. First, based on
the class-balancing constraint, we calculate the number of samples that should/could be sampled
from each class. Then, within each class, we calculate the number of samples from each group that
can be sampled such that the group distribution within each class is as close to uniform as possible.
If a group does not have enough samples to create a uniform distribution, the shortfall is iteratively
divided equally among the remaining groups until they run out of samples. This way, for a given size
of coreset, the R-Gbal baseline selects the most group-balanced coreset possible without repeating
the same samples (oversampling).

B.3 Training surrogate model

For datasets Waterbirds, Urbancars, Metashift, Nicospurious, Celeb-A hair, we trained a
ResNet50 [63] initialized with pretrained weights from Imagenet to calculate the sample-level scores
for the learning-based selection methods. Following the setting proposed by [46], we trained the
models with SGD with a constant learning rate of 0.001, momentum of 0.9, batch size 32 and a
weight decay of 0.01. Following the previous work [27], for EL2N and Uncertainty, we trained the
model for 20 epochs, and for Forgetting, we trained for 200 epochs

For cMNIST, we trained a ResNet18 [63] initialized with pretrained weights from Imagenet to
calculate the sample-level scores for the learning-based selection methods. We trained the models
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with SGD with a constant learning rate of 0.001, momentum of 0.9, batch size 32 and a weight decay
of 0.01. For EL2N and Uncertainty, we trained the model for 20 epochs, and for Forgetting, we
trained for 200 epochs

For Civilcomments, MultiNLI, we trained a pretrained Bert [64] model with Adam with learning
rate 1e-5 and momentum 0.9 to calculate the sample-level scores for the learning-based selection
methods. For EL2N and Uncertainty, we trained the model for 5 epochs, and for Forgetting, we
trained for 20 epochs

For embedding-based methods: SelfSup and SupProto, we used the same model and pretrained
weights as above, but did not train the feature extractor on the specific dataset; instead we extract the
features for each sample from the penultimate layer. For the fine-tuned versions of the embedding-
based scores: SelfSup (finetuned) and SupProto (finetuned) were first fine-tuned with supervision
using the same training setting as EL2N, and the features are then extracted from the penultimate
layer.

B.4 Training downstream model

The same training recipe and models as the surrogate model were used here, except for the number of
epochs trained. Since we compare models trained on a variety of coreset sizes, we keep the number
of training iterations for each model constant. We train each model for a specific number of epochs
such that the total number of iterations is equal to the number of iterations had the model been trained
on the complete dataset for n epochs. (Eg: for a coreset of size 2%, and n is 100, the scaled number
of training epochs would be 100/0.02 ≃ 5000). We set n for each dataset as follows: n =100 for
cMNIST, Waterbirds, Urbancars, Metashift, Nicospurious, n =50 for Celeb-A h, and n =10 for
Civilcomments, MultiNLI.

All models were trained with standard ERM with Stochastic Gradient Descent. All individual
trainings were done on RTX-3090 GPUs with 24GB of VRAM. Total estimated compute for all
experiments of this work is around 7,500 GPU hours.

C Extended results

C.1 Embedding-based characterization scores run a lower risk of inadver-
tently exacerbating bias compared to learning-based characterizations

Here we present the extended results corresponding to Section 4.1 from the main paper. Figure 6
contains the average precision evaluation of each characterization score on each dataset, when
evaluated as a predictor for detecting bias conflicting samples. The random baseline is calculated
by randomly ordering all the samples and then thresholding them at each level to calculate average
precision, whereas the error bars represent the standard deviation. Therefore the average precision
on random selection represents the overall proportion of bias-conflicting samples in the dataset.
We see that across all datasets, leaning-based characterizations capture a much stronger signal that
distinguishes bias conflicting samples from bias-aligning samples. We stipulate that this strong
correlation between the characterization score and the bias-alignment of the samples can in turn cause
inadvertent bias exacerbation when used as a metric for data selection. On the more challenging
real-world datasets (Urbancars [30], Metashift [31], and Civilcomments [34], and Nico-spurious [32]),
embedding-based methods do not appear to order the samples according to their bias levels (i.e.,
have near-random AP); even finetuning these embeddings (depicted by the shaded bars) does not
significantly change these findings. It is also noteworthy that for datasets with more natural and
complex spurious features (Urbancars-all [32], CelebAhair [33], and MultiNLI [35, 20], learning-
based and embedding-based characterizations seem to capture signals of comparable strength.
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Figure 6: Classifying bias-conflicting samples using characterization scores. We measure the Average
Precision of three learning-based methods (EL2N [27], Uncertainty [14] and Forgetting [15]) and two embedding-
based methods (SelfSup [13] and SupProto [12]) at classifying bias-conflicting vs bias-aligning samples.
The shaded bars on the embedding-based methods represent the results for scores generated from fine-tuned
embeddings.
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C.2 Coreset bias level is not a consistent indicator of downstream robustness

In this section we include the extended results corresponding to Section 4.2 of the main paper.
Figure 7 shows bias-levels, worst-group accuracy, and average accuracy for Difficult and Easy
selection policies using EL2N [55] scores along with the baselines. The observations we outlined in
the main paper consistently appear across all the datasets of the analysis. Coresets selected using
the Difficult policies consistently have lower level of bias compared to those selected using the Easy
policy. However, in the middle column we see that it does not always lead to improved robustness: the
Difficult coresets lead to more robust classifiers only when the coreset size is “sufficiently large.”
What constitutes “sufficiently large” appears to further vary empirically between the 10 datasets used
in this analysis. Furthermore, in the small data regime, the robustness of models for Difficult coresets
becomes unintuitively low, despite the bias levels being the lowest out of all policies.

Corresponding numerical results (along with Median and Stratified selection policies) are shown
in Table 3 and Table 4 respectively for moderate coreset sizes and very small coreset sizes. In the
moderately sized coresets (40% and 60%), Difficult selections of EL2N scores yield high robustness,
however this pattern is not consistent in the small coresets of 10% and 5%.

Extended results for all scoring methods and all selection policies for 40% selection rate is shown in
Table 5

Baselines EL2N [55] scores SelfSup [13] scores
Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 58.2 (96.6) 83.3 (97.7) 74.6 (98.0) 73.1 (97.3) 50.5 (96.4) 30.2 (95.2) 50.9 (96.1) 51.0 (96.4) 69.2 (97.1) 37.1 (90.2)
c-Mn 62.0 (99.8) 84.4 (99.9) 87.2 (99.9) 74.0 (99.9) 0.0 (99.0) 0.0 (98.4) 83.0 (99.7) 83.5 (99.8) 44.0 (99.7) 0.0 (98.7)
CC 77.4 (88.8) 72.0 (89.6) 63.0 (84.3) 51.7 (91.8) 63.9 (80.5) 43.2 (68.1) 77.8 (87.7) 78.4 (88.3) 70.3 (90.4) 79.3 (86.0)
MSh 73.8 (88.3) 78.5 (87.2) 78.5 (90.6) 63.1 (89.3) 66.5 (88.5) 58.6 (86.4) 73.3 (88.3) 69.2 (90.3) 74.3 (89.1) 56.9 (87.5)
Nic-S 44.0 (93.9) 40.0 (94.9) 44.0 (95.8) 44.0 (95.3) 34.0 (95.1) 32.0 (93.7) 44.0 (95.0) 16.0 (93.3) 34.0 (93.4) 36.0 (94.3)
UC-C 52.0 (86.8) 61.6 (83.7) 54.0 (89.2) 51.2 (87.6) 46.4 (70.3) 49.6 (63.7) 42.0 (86.7) 48.4 (88.4) 54.4 (85.0) 44.0 (81.7)
UC-B 44.8 (90.2) 64.0 (87.6) 52.0 (90.1) 44.8 (89.5) 26.4 (90.4) 15.6 (91.8) 43.2 (87.9) 48.0 (88.8) 41.6 (90.6) 26.4 (89.4)
UC-C 16.8 (96.4) 50.4 (96.4) 23.2 (97.2) 19.2 (97.0) 6.4 (94.9) 7.2 (94.4) 11.2 (96.5) 17.6 (97.0) 20.8 (96.6) 9.6 (96.5)
MNL 60.5 (78.8) 57.6 (78.6) 46.0 (61.5) 65.6 (74.7) 61.8 (79.0) 46.0 (78.1) 55.2 (79.4) 60.8 (79.6) 55.7 (78.2) 58.3 (78.8)
Cel-A 58.9 (93.4) 71.1 (92.6) 38.3 (94.9) 47.8 (95.1) 68.9 (93.2) 79.0 (88.0) 41.7 (94.4) 66.1 (92.6) 63.3 (94.4) 78.9 (88.8)

(a) 40 percent
Baselines EL2N [55] scores SelfSup [13] scores

Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 67.3 (97.3) 77.6 (98.0) 73.2 (97.9) 75.6 (97.4) 28.6 (95.3) 26.5 (94.9) 73.7 (97.6) 64.5 (97.1) 75.9 (97.5) 58.4 (94.8)
c-Mn 78.9 (99.5) 79.8 (99.5) 63.1 (99.5) 57.3 (99.6) 1.0 (99.1) 0.0 (99.0) 78.0 (99.7) 81.3 (99.8) 65.0 (99.7) 0.8 (99.4)
CC 72.4 (90.1) 70.8 (89.7) 55.4 (92.1) 53.7 (92.0) 55.5 (75.7) 57.3 (76.8) 69.4 (90.0) 71.2 (90.0) 69.7 (90.5) 61.6 (91.1)
MSh 75.4 (90.7) 75.4 (90.0) 70.8 (90.7) 70.8 (90.2) 70.7 (89.1) 67.5 (88.5) 75.9 (90.7) 75.4 (90.8) 76.4 (89.7) 61.5 (89.1)
Nic-S 42.0 (94.7) 40.0 (95.2) 40.0 (96.2) 38.0 (95.3) 34.0 (95.6) 32.0 (94.9) 40.0 (96.3) 34.0 (95.4) 34.0 (95.0) 44.0 (94.9)
UC-C 49.2 (87.5) 56.4 (85.2) 54.4 (89.3) 53.2 (89.3) 49.6 (74.9) 49.2 (73.7) 48.4 (87.7) 52.4 (90.1) 52.8 (88.6) 50.8 (85.4)
UC-B 48.8 (88.7) 58.0 (88.0) 53.6 (90.7) 49.6 (89.7) 26.0 (90.9) 24.4 (91.0) 47.6 (89.9) 49.2 (89.4) 49.6 (90.4) 39.2 (90.9)
UC-A 22.4 (97.2) 32.8 (97.5) 23.2 (97.3) 21.6 (97.5) 10.4 (96.0) 9.6 (95.9) 16.8 (97.1) 20.8 (96.9) 20.8 (97.2) 18.4 (97.3)
MNL 58.0 (80.1) 65.5 (80.5) 65.3 (73.9) 65.0 (79.6) 55.2 (80.4) 54.5 (80.4) 67.2 (79.6) 63.7 (80.7) 65.9 (79.4) 66.0 (79.5)
Cel-A 73.3 (93.9) 56.7 (95.3) 61.1 (95.2) 46.1 (95.2) 68.9 (94.3) 71.7 (93.0) 63.3 (94.1) 37.2 (95.8) 55.6 (95.4) 58.9 (94.5)

(b) 60 percent

Table 3: Worst-group accuracies and (Average accuracies) for different selection policies. For moderate
coreset sizes: 40% and 60%. The highest values of worst-group-accuracies are bolded, with second highest
values underlined. The least robust, indicated by the least value for worst-group accuracy is shaded in brown. In
general, Difficult selection policies with EL2N scores yield robust classifiers.
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Baselines EL2N [55] scores SelfSup [13] scores
Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 44.7 (95.3) 89.0 (92.2) 31.9 (85.2) 51.1 (95.5) 42.7 (95.3) 24.8 (94.8) 35.1 (94.9) 26.3 (94.2) 41.3 (95.0) 29.1 (93.9)
c-Mn 0.0 (99.2) 95.3 (99.2) 88.6 (99.9) 8.0 (99.4) 0.0 (97.1) 0.0 (96.9) 36.9 (99.5) 24.7 (99.4) 0.0 (98.2) 0.0 (96.5)
CC 66.6 (77.3) 75.0 (81.2) 7.2 (11.1) 15.9 (19.1) 58.0 (91.0) 29.6 (56.0) 42.4 (62.6) 62.5 (75.9) 68.3 (78.9) 70.7 (80.8)
MSh 55.4 (85.4) 75.4 (87.5) 6.2 (33.0) 21.2 (51.2) 56.9 (85.4) 50.3 (83.0) 55.0 (85.1) 46.2 (84.8) 52.3 (86.4) 38.5 (83.5)
Nic-S 34.0 (90.6) 60.0 (88.8) 34.0 (90.2) 38.0 (89.9) 28.0 (93.1) 8.0 (88.7) 26.0 (92.3) 32.0 (93.0) 30.0 (90.0) 16.0 (82.2)
UC-C 44.4 (75.5) 52.8 (60.5) 27.2 (59.7) 44.8 (76.0) 47.6 (66.8) 46.0 (58.7) 21.2 (67.3) 40.8 (75.8) 48.0 (70.7) 38.8 (74.6)
UC-B 21.6 (89.3) 72.0 (78.1) 14.0 (70.3) 28.4 (85.1) 17.2 (90.0) 9.2 (90.4) 9.2 (75.2) 34.4 (84.6) 20.4 (89.9) 15.6 (86.0)
UC-A 6.4 (95.1) 62.4 (88.8) 11.2 (76.3) 15.2 (93.2) 6.4 (94.5) 3.2 (92.5) 0.8 (82.3) 8.8 (93.2) 9.6 (95.5) 4.8 (95.2)
MNL 32.5 (69.4) 62.3 (69.4) 3.2 (17.5) 22.2 (30.7) 41.7 (74.9) 37.7 (64.4) 25.1 (60.1) 34.3 (68.4) 51.2 (71.1) 29.7 (70.5)
Cel-A 47.2 (94.8) 83.3 (92.0) 40.0 (82.1) 51.1 (89.2) 41.1 (93.6) 80.6 (88.0) 81.4 (86.7) 64.4 (94.0) 62.2 (93.2) 80.9 (85.3)

(a) 5 percent
Baselines EL2N [55] scores SelfSup [13] scores

Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 40.5 (95.3) 88.6 (95.6) 68.5 (96.7) 67.4 (96.3) 47.2 (95.9) 29.1 (95.1) 40.8 (94.8) 34.7 (95.3) 55.9 (96.0) 23.9 (92.4)
c-Mn 24.8 (99.4) 95.0 (99.5) 87.9 (99.9) 47.0 (99.8) 0.0 (98.1) 0.0 (97.3) 69.4 (99.6) 73.4 (99.6) 0.0 (98.8) 0.0 (96.5)
CC 77.9 (85.3) 72.2 (80.3) 5.0 (10.0) 18.7 (21.9) 80.6 (88.4) 34.8 (58.1) 57.0 (73.4) 66.6 (79.3) 68.3 (79.8) 68.4 (79.3)
MSh 58.5 (88.4) 81.7 (88.8) 11.4 (42.9) 63.1 (82.2) 67.5 (87.3) 54.5 (84.7) 57.1 (85.4) 56.9 (87.7) 58.5 (86.8) 38.5 (84.7)
Nic-S 32.0 (94.2) 40.0 (81.2) 36.0 (95.4) 50.0 (92.3) 30.0 (94.0) 16.0 (91.2) 30.0 (94.5) 26.0 (93.5) 26.0 (91.9) 28.0 (88.3)
UC-C 48.8 (75.4) 60.0 (67.0) 53.6 (83.0) 46.0 (80.0) 46.4 (65.9) 47.6 (57.4) 27.6 (73.0) 46.4 (81.8) 48.8 (74.8) 40.4 (75.9)
UC-B 32.4 (88.8) 76.4 (82.1) 44.4 (86.4) 28.0 (88.1) 21.6 (90.6) 11.2 (90.7) 17.6 (80.6) 36.0 (88.1) 26.0 (89.9) 17.6 (88.1)
UC-A 8.8 (95.7) 64.8 (92.7) 27.2 (94.3) 13.6 (94.9) 5.6 (94.4) 4.8 (92.4) 3.2 (88.9) 11.2 (96.4) 11.2 (95.5) 6.4 (94.8)
MNL 58.4 (73.6) 63.2 (73.2) 7.7 (19.5) 12.7 (27.6) 46.5 (77.8) 45.6 (70.6) 38.6 (67.7) 48.6 (73.7) 44.9 (74.1) 43.6 (74.2)
Cel-A 75.6 (92.0) 76.1 (92.0) 41.7 (90.1) 63.3 (91.8) 72.8 (92.6) 70.2 (79.4) 77.2 (84.8) 76.7 (91.4) 48.3 (92.1) 76.6 (82.1)

(b) 10 percent

Table 4: Worst-group accuracies and (Average accuracies) for different selection policies. For very small
coreset sizes: 5% and 10%. The highest values of worst-group-accuracies are bolded, with second highest
values underlined. The least robust, indicated by the least value for worst-group accuracy is shaded in brown.
Difficult selection suffers from a large drop in both average and worst-group accuracies, especially in EL2N.
Selection policies that incorporate less difficult samples tend to yield comparatively higher robustness.

Dataset Baselines EL2N [27] Uncertainty [14] Forgetting [15] SelfSup [13] SupProto [12]
R R-gbal Diff Strat Med Eas Diff Strat Med Eas Diff Strat Med Eas Diff Strat Med Eas Diff Strat Med Eas

C-Mn 62.0 84.4 87.72 74.0 0.0 0.0 37.8 82.3 1.0 0.0 9.9 4.0 0.0 0.0 83.0 83.5 44.0 0.0 87.0 48.5 0.0 0.0
WB 58.2 83.3 74.6 73.1 50.5 30.2 72.6 71.2 51.0 28.2 75.4 79.6 53.8 52.0 50.9 51.0 69.2 37.1 66.5 58.8 59.4 30.0
UC-c 52.0 61.6 54.0 51.2 46.4 49.6 54.8 55.2 46.4 50.4 51.2 54 31.6 31.6 42.0 48.4 54.4 44.0 46.8 50.4 50.0 44.8
MSh 73.8 78.5 78.5 63.1 66.5 58.6 73.8 69.2 70.2 65.4 71.7 76.4 46.6 48.7 73.3 69.2 74.3 56.9 67.0 73.8 72.3 58.5
CC 77.4 72.0 63.0 51.7 63.9 43.2 60.2 64.2 61.0 75.2 60.9 65.3 82.0 79.5 77.8 78.4 70.3 79.3 76.2 77.1 74.1 75.2
Nic-s 44.0 40.0 44.0 44.0 34.0 32.0 44.0 42.0 36.0 30.0 44.0 40.0 46.0 40.0 44.0 16.0 34.0 36.0 38.0 42.0 42.0 38.0
UC-b 44.8 64.0 52.0 44.8 26.4 15.6 52.8 53.2 26.0 15.6 47.6 50.8 54.0 54.0 43.2 48.0 41.6 26.4 53.2 52.4 36.8 13.6
UC-a 16.8 50.4 23.2 19.2 6.4 7.2 22.4 26.4 8 7.2 20.0 23.2 16.0 16.0 11.2 17.6 20.8 9.6 20.8 19.2 17.6 5.6
MNL 60.5 57.6 46.0 65.6 61.8 46.0 61.5 64.0 53.8 49.2 59.5 57.8 52.4 52.4 55.2 60.8 55.7 58.3 - 63.9 62.6 55.4
Cel-h 58.9 71.1 38.3 47.8 68.9 79.0 42.2 42.2 62.8 78.9 27.2 42.8 64.4 64.4 41.7 66.1 63.3 78.9 50.0 59.4 63.9 82.2

Table 5: Worst-group accuracies of different selection policies within each scoring methods (learning-
based: EL2N [27], Uncertainty [14], Forgetting [15], and embedding-based: SelfSup [13], SupProto [12])
at 40% selection rate. The highest worst-group-accuracies within each scoring method for each dataset are
bolded.
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Figure 7: Data bias and classifier accuracies for different selection policies using EL2N scores. Selecting
the Difficult samples typically results in less biased coresets and corresponding more robust (highest worst-group
accuracy) classifiers than Easy samples at higher selection rates. The Difficult samples also lead to more robust
models than Random selection. However, as coreset size gets smaller, we see a significant drop in average
and worst-group accuracies for Difficult samples. In such settings, Stratified and Median policies, which are
consistently more biased than Difficult, counter-intuitively yield higher robustness.
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C.3 Trading off most difficult bias-conflicting samples to improve robustness

This section includes the extended results corresponding to Section 4.3 of the main paper. Difficult*
selection policy is a simple heuristic where a small percentage (3%) of the highest scoring samples is
removed from Difficult selection. Bias levels, worst-group accuracy, and average accuracy for this
heuristic policy along with the rest of the policies are applied on EL2N scores for all the datasets of
the analysis as shown in Figure 8. We can see that all methods: Difficult*, Stratified, and Median
make the coresets progressively more biased compared to Difficult selection. However, they result in
improved robustness (worst-group accuracy) in cases where Difficult policy has catastrophically low
robustness.
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Figure 8: Trading off most difficult minority samples to achieve higher robustness. Difficult*, Median and
Stratified selection policies often make the selected coreset slightly biased, however, they improve the robustness
of the downstream models, in settings where Difficult selection has a catastrophic drop in performance.
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C.4 Further exploration into catastrophic loss of accuracy for difficult coresets
in small data regime

We inspect train-test accuracy gaps for models trained on small-data regime coresets and observe that
all models achieve 100% training accuracy. The drop in average accuracy for difficult coresets in
the small data regime therefore suggests a high level of overfitting compared to other policies, also
consistent with claims of Sorscher et al [13] as we discussed in Section 4.2.

It has been hypothesized that the catastrophic drop in accuracy for difficult coresets could be due to
the coreset achieving low coverage on the data space. Zhen et al. [11] utilized the concept of p-partial
r-cover to quantify this phenomenon, where r is some radius around each data of the coreset and p
is the proportion of training data covered. We used their p-partial r-cover as a metric to investigate
whether this pattern persists in datasets with strong spurious correlations. Using the features of
ImageNet pre-trained ResNet-50, we selected a radius r where it would cover 95% of the training data.
Using the r, we obtained the measured p from the selected coresets shown in Table 6. Significant
decrease in p in difficult selected coresets at 5% and 2% across the datasets confirms the drop in
coverage.

Selection Random Difficult Easy
Rate (baseline)

2% 80.3 45.4 82.3
5% 85.7 58.8 86.1

20% 93.3 92.4 90.9

(a) Waterbirds [20]

Selection Random Difficult Easy
Rate (baseline)

2% 61.0 7.9 71.1
5% 74.7 25.0 77.4
20% 89.6 80.0 88.4

(b) Metashift [31]

Table 6: p-partial r-cover achieved by Difficult and Easy selection policies for Waterbirds [20] and
Metashift [31] datasets. At low selection rates, Difficult selection yeilds to significantly less coverage than
Easy of Random selections (bolded).
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