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Abstract

Visual Question Answering (VQA) enables targeted and context-dependent analysis
of medical images, such as chest X-rays (CXRs). However, existing VQA datasets
for CXRs are typically constrained by simplistic and brief answer formats, lacking
localization annotations (e.g., bounding boxes) and little metadata (e.g., region
or radiological finding/disease tags). To address these limitations, we introduce
MIMIC-Ext-CXR-QBA (abbr. CXR-QBA), a large-scale CXR VQA dataset derived
from MIMIC-CXR, comprising 42 million QA-pairs with multi-granular, multi-part
answers, detailed bounding boxes, and structured tags. We automatically generated
our VQA dataset from scene graphs (also made available), which we constructed
using LL.M-based information extraction from radiology reports. After automatic
quality assessment, we identified 31M pre-training and 7.5M fine-tuning grade
QA-pairs, providing the largest and most sophisticated VQA dataset for CXRs
to date. Tools for using our dataset and the construction pipeline are available at
https://anonymous.4open.science/r/mimic-ext-cxr-qba/l

1 Introduction

With the emergence of Large Language Models (LLMs) and Large Multimodal Models (LMMs),
interactive and conversational tasks have gained popularity in medical image analysis, particularly in
the context of chest X-ray (CXR) interpretation [[1]]-[7]. A prominent example of such interactive tasks
is Visual Question Answering (VQA), where a model is presented with an image and a corresponding
textual question, and is tasked with generating an answer. Unlike conventional medical imaging
approaches, which always produce the same output (such as classification labels, bounding boxes, or
textual reports) for a given image, VQA enables users to interactively explore and interpret images
in a context-dependent manner. Training robust VQA models for medical applications requires
high-quality, large-scale training datasets. Existing CXR VQA datasets [[1], [8]—[13] suffer from
several limitations: (i) they often contain only short and simplistic answers, (ii) they lack localization
information (such as bounding boxes), and (iii) they provide little structured metadata (e.g., region
and finding/disease annotations, or uncertainty estimates). Additionally, their relatively small size
constrains their utility for pretraining.

To address these challenges, we propose a pipeline for automatic VQA dataset creation and apply it
to construct a new large-scale CXR VQA dataset. Unlike prior datasets, each question-answer (QA)
pair includes multi-granular, multi-part answers composed of full sentences in the style of radiology
reports. Furthermore, our dataset provides detailed bounding boxes and additional structured tags
(e.g., findings and regions), enhancing interpretability and facilitating the development of more
advanced and transparent medical VQA models. Fig.[T|shows examples of our generated QA-pairs.
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Q: Status post intubation; the endotracheal tube should be evaluated. Q: Describe all abnormal findings in the given study.

The endotracheal tube is currently 6 cm from the carina and could be advanced 1-2 There is severe cardiomegaly, predominantly right ventricular.

cm for optimal placement.
-
Emom
o
Aagr
s v
(a) Indication question. (b) Study abnormality question.
Q: Are there any abnormal findings in the left lung base? Q: Where is the rib fracture located?
No, there are no abnormal findings in the left lung base. The rib fracture is located in the anterior 6th rib left.
Categories:
Req ons: Subcategories:
Findings:
Regions:
(c) Region abnormality question. (d) Finding question.

Figure 1: Examples of question-answer (QA) pairs for each of our four different types of questions.
For each question (for a given chest X-ray), a detailed answer with sentences in the style of free-text
radiology reports is given, supplemented by bounding boxes (for both positive and negative answers),
and a set of tags (e.g. regions, findings, certainty, etc.). For more examples, we refer to Appendix@

Our contributions are as follows:

* We propose an automatic scene graph construction method as an intermediate step for VQA
dataset creation, utilizing LLMs, semantic entity mapping, and localization models.

* We propose a question-answer generation strategy based on the extracted scene graphs.

* Building on this approach, we introduce MIMIC-Ext-CXR-QBA (abbr. CXR-QBA), a 42M
QA-pair VQA dataset derived from MIMIC-CXR [14]], to be published on Physionet [15]).

* We automatically evaluate the quality of the generated QA-pairs, identifying 31.2M pairs as
pre-training grade and 7.5M of these as fine-tuning grade.

* We provide a detailed analysis of our dataset and demonstrate its utility on the newly
proposed structured VQA task.

2 Related Work

VQA Datasets for Chest X-Rays VQA datasets

(shown in Tab. [T) are scarce in the medical imaging Taple 1: Comparison of medical VQA
domain, with most notable examples being VQA-RAD  datasets. We present the currently largest

[8] and SLAKE [9]], which are hand-labeled but limited  dataset, additionally providing boxes and
in size (3.5K and 14K QA-pairs, respectively). Onthe (305 for the answers.

other hand, VQA-Med at ImageCLEF 2019 I]E[] was
automatically constructed using QA templates based on Dataset #QA Boxes Tags Answers
image annotations, which may limit its answer qual-

ity. To improve the quality, PMC-VQA used an Cxtgiifgl 432 5211;4 '; '; de::::d
LLM to generated QA-pairs based on provided captions. SLAKE [9) 4K X X bref
VQA datasets for chest X-rays include MIMIC-Ext- ImageCLEF [10] 15K X X  brief
MIMIC-CXR-VQA [12], and Medical-CXR-VQA PMC-VQA [L1] 227K X X brief
(13]], [13], [16]], which contain hundreds of thousands =~ MIMIC-CXR-VQA [12] 377K X X  brief
of QA-pairs (in these cases derived from MIMIC-CXR). ~ Medical-CXR-VQA [13] 780K X X brief
These datasets rely on templates but use radiology re- CheXinstruct [} 85M X X brief

ports as their original information source, where MIMIC-
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Figure 2: Overview of our dataset construction pipeline. First, we construct scene graphs based
on information extracted from the radiology reports and regions localized in the images. Next, we
generate question-answer pairs based on templates and the scene graphs. Finally, we automatically
assess the quality of generated QA-pairs.

Ext-MIMIC-CXR-VQA leverages Chest ImaGenome’s [17] scene graphs and Medical-CXR-VQA
employs an LLM-based extraction strategy similar to ours but without semantic entity mapping,
localization, and extraction of textual descriptions. The largest chest X-ray VQA dataset to date,
CheXinstruct [1]], contains 8.5M QA-pairs with images from multiple data sources. However, com-
pared to our dataset, its questions and answers are less diverse, being purely template-based and
derived from dataset annotations instead of being directly conditioned on the reports. Additionally,
none of the described datasets provide the level of detail and annotation richness found in our dataset,
which includes bounding boxes, tags, and more detailed, multi-part answers that mirror radiology
report sentences.

Grounded Report Generation While localization is not yet common for medical VQA tasks,
grounded report generation, i.e. predicting radiology reports with bounding boxes is gaining popularity.
Notable examples include MAIRA-2 [18]], trained on reports manually annotated with bounding
boxes and MedTrinity-25M [[7]], a large-scale public dataset with automatically generated reports with
bounding boxes. ChEX [2] is another model producing textual answers with bounding boxes. While
being conditioned on textual prompts, ChEX does not support VQA tasks.

Scene Graph Construction for Chest X-Rays During our VQA dataset construction, we auto-
matically derive scene graphs from radiology reports. A similar approach is employed by Chest
ImaGenome [[15], [[1 7], [19], which uses rule-based information extraction, and RadGraph [20], which
uses a relation extraction model. In contrast, our approach leverages LLM-based extraction with
semantic entity mapping, enabling more comprehensive graph construction. Notably, our method
defines a larger set of (localized) regions (257) and findings (221) compared to Chest ImaGenome
(29 regions, 53 findings), making it a more robust foundation for VQA tasks.

3 The CXR-QBA Dataset

We present our dataset CXR-QBA, a large-scale chest X-ray (CXR) VQA dataset derived from MIMIC-
CXR [ 14], [15], [21]], consisting of more than 42M QA-pairs. As shown in Fig. m each QA sample
(for a given chest X-ray) consists of a question (Q), a bounding box (B) supplemented answer (A),
and additional tags (e.g. for regions, findings, certainties, and more).

To build our dataset, we propose an automatic pipeline highlighted in Fig.[2] More specifically, we
first construct (visually grounded) scene graphs based on the MIMIC-CXR radiology reports using
LLM-based information extraction, semantic concept mapping, and localization models (Sec. [3.1).
These scene graphs provide a structured description of the study, including sentences (derived from
the report) for individual observations. They serve as a data source for our question-answer generation,
where we utilize both template-based answers and answers derived from the rewritten report sentences
(Sec.[3:2). Finally, we automatically assess the quality of question-answer pairs using LLM-based
evaluations (Sec.[3.3). Further details are provided in Appendices[D]and [E}
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3.1 Scene Graph Construction

Given a MIMIC-CXR study with a radiology report and accompanying CXRs, we construct a scene
graph (Appendix consisting of sentence nodes, observation nodes, region nodes, an indication
node, and edges between them. Sentence nodes are directly extracted from the reports, containing
the raw sentences and their identified section names. Observation nodes represent individual aspects
described in the report’s FINDINGS or IMPRESSION section, containing (i) a textual description, (ii)
bounding boxes for associated CXR images and (iii) additional tags, such as positivity, certainty,
laterality, regions, and finding classes. Region nodes are created for mentioned anatomical structures
and key regions. The indication node contains information from the INDICATION section, including a
textual description and an individual observation node, derived from the FINDINGS and IMPRESSION
sections, that can act as an answer to the indication. We construct these scene graphs in three steps:
(a) region localization, (b) information extraction and (c) building the graphs using entity mapping.
We refer to Appendix [E.T] for details.

Region Localization The bounding boxes in our scene graphs (and the derived QA-pairs) are based
on fine-grained anatomical structures, allowing us to localize associated findings very precisely. We
use the CXAS [22], [23[] model to predict segmentation masks of 158 anatomical structures on the
377 110 CXRs from MIMIC-CXR-JPG [15], [24], [25]. Additionally, we use the bounding boxes
provided by the Chest ImaGenome [/15], [[17], [19]] dataset, which are provided for 29 anatomical
structures in most frontal images of MIMIC-CXR. Next, we derive a total of 257 localized anatomical
structures based on combinations (e.g. intersections, unions, super bounding boxes, etc.) of the
available masks and bounding boxes. Finally, we discard any masks or boxes that are too small and
derive bounding boxes from the segmentation masks. Note that we define 53 further regions/structures
that are either non-localized (e.g. interstitial) or for which we do not have bounding boxes, leading to
a total of 310 structures/regions.

Information Extraction We use the 227 827 free-text radiology reports provided by MIMIC-CXR
as the main source of information for our scene graphs. Using the Llama 3.1 70B [26]] model with few-
shot prompting, we extract the relevant information (tags and textual descriptions) in three steps. First,
we extract individual sentences from the reports and detect their sections. Next, we extract information
about the INDICATION section and detect which FINDINGS or IMPRESSION sentences may provide
information related to the indication. Finally, we extract individual observations described in the
FINDING/IMPRESSION sentences.

Building Scene Graphs using Entity Mapping Given the extracted information from the reports
and the computed bounding boxes, we now construct the final scene graph. Therefore, we first map
extracted tags to pre-defined sets of values, our reference definitions. This assures high quality and
consistency of the scene graphs and enables mapping of observations to the extracted bounding
boxes. The reference definitions are based on tags used in other datasets (including PadChest [27]]
and Chest ImaGenome [[19]]) as well as SNOMED-CT [28]]) and have been verified by clinical experts.
They include synonym lists, hierarchies, and relationships. For more robust mapping, we utilize the
BioLORD [29] model as a sentence transformer and identify the closest matching concept based on
their semantic embeddings. Additionally, we try to fill in missing information where possible, such
as inferring the region from an identified finding. Finally, we build a tree of region nodes (using the
reference data) and attach the indication information extracted from the report.

3.2 Question-Answer Generation

We generate question-answer pairs (Appendix [D.2) using a template-based approach based on the
information available in the scene graphs, incorporating the textual descriptions from the observation
nodes — which have been derived directly from the report — to provide diverse and fine-grained
answers. Each answer may consist of multiple answer parts (as shown in Fig. [8]and Appendix [A),
each describing an individual aspect of the answer with its own sentence, bounding boxes, and tags.
We categorize answer parts into three types: (i) main-answers, (ii) details, and (iii) related-information,
allowing for controlled answer granularity. Answer parts are generated either from templates using
scene graph information or directly from observation nodes (Appendix [E.Z). Answer parts may also
be structured hierarchically, where we use parent-child edges from the scene graph.
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To generate the question-answer pairs, we employ different
strategies for the four types of questions (shown in Fig. [I): Q: Describe all abnormal findings in the given study.

There are mild degenerative changes in the thoracic

1. Indication: We use the paraphrased indication as | spine.
the question and create the answer based on the in-

Categories:

szl ANATOMICAL FINDING

Subcategories:

BONY STRUCTURES

Findings: Modifiers

E T
Reg

dication node in the scene graph, answering the in-
dication based on information in the FINDINGS and
IMPRESSION sections.

2. Study abnormality: We generate study-level ques-
tions using 13 different templates, with answer parts e o et
(Fig. E[) based on (filtered) observation nodes. :

Categories:

3
> ll ANATOMICAL FINDING | DISEASE

Subcategories:

LUNG FIELD | PULMONARY DISEASES

Modifiers

indings:
lung hyperexpansion Jll severity: mild
eg

Fi
Regions

3. Region abnormality: We generate questions about
individual regions using 6 different templates, consid-
ering any region mentioned and additionally randomly
sampling non-mentioned regions for balancing.

4. Finding: We generate questions about individual find-
ings using 7 different templates, considering any find- Figure 3: Answer with multiple
ing mentioned and additionally randomly sampling parts for different aspects, each
non-mentioned findings for balancing. with a sentence, tags, and boxes.

3.3 Quality Assessment

The dataset construction procedure described so far allows us to automatically generate large amounts
of QA-pairs. However, in each of the steps, errors may be introduced, affecting the overall quality of
the datasets. For example, errors during information extraction could lead to incorrect tags, therefore
leading to incorrectly filled answer templates or incorrectly selected observation nodes for answers.

In order to identify and filter such cases, we employ an automatic quality assessment strategy using
an LLM as a judge. More specifically, we use Llama 3.1 8B [26]] to rate question and answers by
the following five criteria: entailment (does the answer factually align with the original report?),
relevance (is the answer relevant to the question?), completeness (is the answer missing something?),
as well as question and answer clarity (is the question/answer clear and grammatically correct?).
Additionally, we assess the quality of the used scene graphs by identifying missing information (e.g.
missing tags or localization) or issues during the construction process. Finally, we algorithmically
combine these individual assessments to compute an overall quality rating as one of A++, A+, A,
B, C, D, or not rated (see Appendix [D.3). Based on these ratings, we propose two subsets, one for
pre-training and one for fine-tuning. We exclude all non-frontal images from these datasets, as the
localization quality on these images is comparatively low due to limitations in the localization models.
All QA-pairs with a grade of A or better are labeled as fine-tuning grade, resulting in 7.5M pairs,
while samples with grade B or better are considered pre-training grade, resulting in 31.2M pairs.

4 Evaluation and Analysis

4.1 Evaluation of the Scene Graphs

We evaluate our scene graphs by comparing their tags and bounding boxes to hand-labeled expert
annotations on MIMIC-CXR, using the scene graphs from Chest ImaGenome [17] as a baseline. First,
we evaluate the plausibility of finding tags by comparing study-level labels derived from our scene
graphs to two reference annotation sets: the radiologist annotations in MIMIC-CXR-JPG v.2.1.0 [24]
with 13 CheXpert [33]] classes and the CXR-LT 2024 [15]], [30], [34] gold-standard dataset (task
2 test set) with 12 additional rare (long-tail) classes. As shown in Tab. 2a] our approach (slightly)
outperforms Chest ImaGenome, with strong improvements (20%) on long-tail classes, demonstrating
the value of our fine-grained finding tags (221 classes) in capturing nuanced study details. To evaluate
the accuracy of finding bounding boxes, we compare them with annotations from MS-CXR [15]], [31]],
[35] (6 classes) and REFLACX [15], [32], [36] (18 classes). We compute study-level pixel masks
for each finding as the union of all bounding boxes from positive observation nodes that contain
the specific finding tag. We calculate pixel-level Intersection-over-Union (IoU), Intersection-over-
Prediction (IoP), and Intersection-over-Target (IoT) for each finding class, considering only image
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Table 2: Evaluation of our scene graphs, comparing finding tags (a) and associated bounding boxes
(b) to expert annotations on MIMIC-CXR subsets, with 95% confidence intervals (bootstrapping,
n = 1000). Compared to Chest ImaGenome’s [17]] scene graphs, we achieve competitive or superior
performance, showing that our construction process yields plausible scene graphs.

(a) Evaluation of finding tags against 13 CheXpert (CXP) classes from the MIMIC-CXR-JPG test set and 25
classes, 13 CXP and 12 long-tail (LT) classes, from the CXR-LT 2024 gold standard dataset (Appendix [C.2).
We report the Matthews Correlation Coefficient (MCC) macro-averaged over different finding subsets (CXP-5,
CXP-7, CXP-13, LT) and micro-averaged. Compared to Chest ImaGenome, we produce slightly more accurate
tags, performing especially well on long-tail classes, highlighting the importance of our fine-grained tags.

MIMIC-CXR-JPG [24] Test [MCC] CXR-LT 2024 [30] Gold [MCC]

Classes CXP-5 CXP-7 CXP-13 Micro CXP-7 CXP-13  LT-only CXR-LT Micro

Ours (scene graphs) 0.8 0.81 0.69 0.71 0.65 0.57 0.71 0.64 0.67
[0.77.0.82] [0.79,0.84] [0.67,0.71] [0.69,0.73] [0.61,0.69] [0.54,0.6] [0.67.0.74] [0.61,0.66] [0.65,0.69]

Chest ImaGenome 0.78 0.8 0.66 0.67 0.65 0.56 0.59 0.58 0.64

[0.75,0.81] [0.78,0.83] [0.64,0.69] [0.65,0.68] [0.61,0.68] [0.54,0.59] [0.55,0.63] [0.55,0.6] [0.62,0.66]

(b) Evaluation of finding bounding boxes against 6 finding classes from MS-CXR and 18 classes from REFLACX
(Appendix [C.3). We report the pixel-level Intersection-over-Union (IoU), Intersection-over-Prediction (IoP), and
Intersection-over-Target (IoT), each thresholded at 30%, and micro-averaged. Compared to Chest ImaGenome,
our bounding boxes are better matching the hand-labeled boxes, especially leading to smaller and more precise
boxes (larger IoP), which we assume is due to our more fine-grained region annotations.

MS-CXR [31]] REFLACX [32]

[IoU@30] [IoP@30] [IoT@30] [IoU@30] [IoP@30] [IoT@30]

Ours (scene graphs) 0.51 0.56 0.94 0.45 0.54 0.87
[0.47,0.54] [0.52,0.6] [0.92,0.96] [0.44,0.47] [0.53,0.56] [0.86,0.88]
Chest ImaGenome 0.45 0.48 0.98 0.42 0.46 0.95
[0.42,0.49] [0.45,0.52] [0.97,0.99] [0.4,0.43] [0.44,0.47] [0.94,0.96]

pairs with positive predictions and targets. Thresholding at 30% IoU/IoP/IoT, we micro-average
the results, reporting the percentage of accurately localized finding-boxes in Tab.[2b] On the IoU
metric, our scene graphs perform slightly better than the ones from Chest ImaGenome. The low
IoP values indicate that bounding boxes are often too large, but high IoT values suggest that they
generally cover the finding boxes well. This discrepancy arises because bounding boxes are derived
from anatomical regions mentioned in reports, whereas hand-labeled annotations are more precise.
Notably, our approach produces more precise boxes (higher IoP) than Chest ImaGenome, likely due
to our large number of fine-grained region annotations (257 region classes).

Our analysis confirms that our scene graphs contain plausible finding tags and bounding boxes, with
competitive or better quality than Chest ImaGenome. The bounding box quality, in turn, validates the
plausibility of our region tags. Overall, our construction process yields high-quality scene graphs,
making them a reliable foundation for generating QA samples.

4.2 Quality of the QA-Samples

We assessed the quality of our 42.2M QA-pairs using an LLM-as-a-judge approach (Sec. [3.3).
Results are shown in Fig. We found that 18.6% were fine-tuning grade, 58.8% were pre-training
grade, and 22.6% were marked for exclusion. Notably, 85% of individual main answers were rated
A or higher. We also analyzed the main causes of ratings (Fig. [4b) and found that A+ samples
were limited by minor incompleteness (minor details missing), A samples by minor entailment
aspects (facts not explicitly mentioned in the report), while B samples were restricted by issues with
region/finding/localization extraction, completeness, and text clarity. Ratings C were caused by major
incompleteness or extraction issues, ratings D by contradicting entailments, while non-rated samples
where due to the LLM-judge not producing parsable outputs. Using a larger LLM judge (Llama 3.1
70B), tested on a subset, reduced exclusions by 20%, but we opted for the smaller model (Llama
3.1 8B) to reduce computational requirements (we refer to Appendix for further details). Our
analysis shows that even pre-training grade samples provide factually accurate answers with minor
flaws, making them suitable for pre-training purposes.
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Figure 4: Results of quality assessment (Sec. [3.3). We identified a significant amount of fine-tuning
grade samples, while even pre-training grade samples provide factually accurate answers, especially
having high quality main answers.
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Figure 5: Distribution of tags (finding subcategories, regions, findings) mentioned in answers of
different question types (indication, study abnormality, region abnormality, finding). We show their
positive ratios, i.e. how often they are mentioned in positive versus in negative answers (left) and plot
the number of positive and negative mentions of the most frequent tags (right). These fine-grained
tags enable filtering and balancing the dataset or can be used as additional supervision.

4.3 Finding- and Region-Distribution in QA-Samples

Our answers include additional tags for findings (and their categories), regions, and answer positivity
(positive or negative finding), enabling filtering and balancing for specific applications. For instance,
undersampling negative answers can help mitigate model biases towards negative predictions. In
Fig.[5| we analyze the distribution of these tags. We observe that indication questions tend to have
more positive mentions (Fig. [5a) — as there is a specific indication to check for — while study
abnormality questions have more negative ones (Fig. [5b) — as many samples are negative overall. In
region abnormality questions, most regions are mentioned slightly more often with positive than with
negative findings (Fig. [5c), while for finding questions mentions are mostly balanced (Fig. [5d). This
shows the success of our balanced region/finding sampling used for these two question types.
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4.4 Answer Characteristics

Our QA-samples provide detailed free-text answers
consisting of one or even multiple sentences (i.e. an-
swer parts). In Fig.[6] we analyze the distribution
of lengths of these answers and study differences be-
tween types of answers or questions. The median
answer length is 14 words, with similar lengths for
most question types except for indication questions,
where answers are much longer (46 words). We also
observe that related information answers are much
longer (22 words) than main answers (9 words) or
details answers (7 words), which is expected as they
can provide a lot additional context to the answers.
Answers describing positive findings are typically ——
very long (18 words), considerably longer than nega- Namber o words per anser

tive finding answers (10 words). This highlights that

our dataset provides nuanced finding description in Figure 6: Distribution of answer lengths. We
their answers, following the level of detail typically provide nuanced answers with detailed free-
present in radiology reports. text finding descriptions.
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5 Structured VQA Task

To demonstrate the utility of our dataset, we introduce a structured Visual Question Answering (VQA)
task. This task requires models to generate free-text answers accompanied by bounding boxes and
tags (e.g., findings, regions). Given a chest X-ray and a free-text question, the model must output
such structured answers to respond to the query. We refer to Appendix [ for further details.

Sequence Formatting for Structured VQA We

implement.a proof—of—congept model based on the Taple 3: Results on the structured VQA task,
Llava architecture [37], using Rad-DINO ([38] for ith 95% confidence intervals (bootstrapping,
image encoding and the Llama 3.2 3B [26] language 1, — 1000). Left: Our model trained on this
model connected via an MLP projection layer. Our a5k, Right: MAIRA-2 with adapted prompt.
CXR-QBA dataset provides the necessary targets, Qur dataset enables training vision-language
which we format into sequences using XML-style models to predict logically correct, visually
structures and special tokens to represent tags and grounded answers, supplemented by tags that
bounding boxes (converted to relative coordinates  facjlitate thorough analysis of the model’s pre-
following [18]]). We then fine-tune the model for one  {jctions.

epoch on 1M QA-pairs (MIMIC-CXR train split).

Ours MAIRA-2

RadStrucVQA Metric  For evaluation, we intro- Logical Prec. 076 025

duce the RadStrucVQA metric, which closely follows i 075, 0.76]1 1025, 0.26]
.. h 2 Logical Rec. 0.75 0.64

the RadFact [18]] metric introduced for radiology re- £ 1074, 0.76] 0.63. 0.65]

port generation but is generalized to structured VQA.

Like RadFact, we identify whether individual pre- Grounding Rec.

dicted answer parts are entailed with target answer

& Grounding Prec. 087 0,69
[0.87, 0.88] [0.67,0.71]

0.89 0.12
[0.88, 0.89] [0.11,0.12]

. . . . Finding Prec. 0.68 -

parts and vice-versa, in our casing using Llama 3.1 % [0.67. 0.69]
8B. For entailed pairs, we compute whether they are g Finding Rec. - 066~ -
visually grounded, i.e. whether their bounding boxes & Finding-pos Prec. 0 Ja P
are precise enough considering their references, and § Finding-pos Rec. 10> 70{’20‘57'7J _
wh.ether finding and region tags are corrpctly 'reported. 2 Region Prec. o067 B

This is conducted bi-directionally, using either the & 10.66. 0.68]
P . Region Rec. 0.66 -

targets as references for the predictions or vice-versa, [0.65, 0.67]

resulting in precision or recall scores, respectively. *Our RadStrucVQA implementation.
More details can be found in Appendix[F2]

Results We evaluate our model on our fine-tuning grade dataset (MIMIC-CXR test split) and
compare it to MAIRA-2 [18]], a model for grounded report generation trained partially on MIMIC-
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CXR, i.e. on the same images as our model. We use the frozen MAIRA-2 model, but adapt its prompt
to answer specific questions instead of generating full reports. Results are shown in Tab.[3] Our model
achieves high scores in both textual content (logical) and grounding metrics, demonstrating effective
training on our dataset. As expected, MAIRA-2 performed lower on all metrics, but achieved 85%
of our models logical recall, suggesting it captured most relevant information while also including
extraneous details (lower precision). This aligns with its training objective of comprehensive reporting
but also indicates that our dataset’s answers do not contradict with MAIRA-2’s predictions, further
confirming the quality of our dataset. MAIRA-2’s grounding precision significantly exceeded its recall,
because it was trained to predict bounding boxes only for positive findings. Our model successfully
predicts finding and region tags in most cases. However, performance drops when focusing solely on
positive findings (finding-pos), indicating potential underprediction possibly due to our training
procedure or limitations in the pre-trained components. While further analysis would be required,
this may indicate problems that could also lead to flaws in textual answers. Importantly, our datasets
detailed tags enable fine-grained analysis of such issues while also enabling potential solutions like
data filtering or balancing, making it well-suited for complex training scenarios.

6 Discussion and Conclusion

6.1 Use Cases and Impact

Our dataset is particularly well-suited for structured VQA on CXRs (Sec. 5). Additionally, its
versatility also supports classical VQA tasks or grounded VQA without structure, while its large
size and detailed answers make it a valuable resource for pre-training vision-language models. The
accompanying tags further enable filtering and balancing of the dataset to suite specific needs.

Use cases are, however, not limited to VQA tasks. Our fine-grained scene graphs with bounding
boxes, textual descriptions, and tags can serve as a versatile data source for various purposes. For
instance, they can be leveraged to create customized datasets for grounded report generation or VQA,
or even as a direct training source for graph generation models to predict scene graphs on unseen
chest X-rays, enabling the creation of even larger datasets. Furthermore, the bounding boxes and
tags provided with the scene graphs can be used for longitudinal analysis, including region-level
examination. Finally, they can be used to train models for pathology localization or classification,
providing fine-grained and long-tail diagnosis targets that are often lacking in existing datasets.

6.2 Limitations

Our dataset was automatically constructed, relying on models and templates instead of human
annotations. While this enables the generation of a large number of QA-pairs, it may also introduce
potential errors and biases. We apply (automatic) quality assessments to mitigate these risks, but
users should still be aware that the dataset may contain inaccuracies and should exercise caution,
especially when using it for critical applications. Most importantly, we strictly advise against
using this dataset as the sole source for fine-tuning or evaluating models used in clinical practice.
Furthermore, our template-based approach may limit the diversity of the dataset and may potentially
introduce grammatical errors. However, we partially mitigate these issues by incorporating answers
derived from actual report sentences and through our quality assessment measures. Additionally, our
approach focuses on individual chest X-ray studies, excluding longitudinal, differential questions, and
other (imaging) modalities. Future extensions could build upon this work, generalizing our approach
to broader question types and modalities. Finally, our work relies on LLMs for information extraction
and quality assessment. While we only use medium to small models, these still require substantial
computational resources for dataset creation, particularly compared to template-based methods.

6.3 Conclusion

We proposed a novel approach to constructing a large-scale CXR VQA dataset using automatic
scene graph construction and question-answer generation, resulting in CXR-QBA, a dataset of 42 M
QA-pairs. We hope that our dataset will serve as a valuable resource for researchers and practitioners,
driving advancements in medical imaging and vision-language understanding.
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s A Example QA-Pairs from our Dataset

Q: Patient with bleach ingestion should be assessed for I Q: Male, post attempted subclavian placement; Q: Follow-up after biopsy. Q: Male with shortness of breath; should be evaluated for
free air under the diaphragm. pneumothorax should be ruled out. an acute process.

‘The follow-up after biopsy shows a small parenchymal

There is no evidence of free air under the diaphragm. Pneumothorax is ruled out: there is aclip in the left lower lobe, There is evidence of an acute process: a new small left
. pneumothorax. indicating a possible postbiopsy change. pleural effusion is present.
NeaTve
[roome [ o
‘

PULMONARY DISEASES

(a) Negative. (b) Positive.

Figure 7: Examples of indication questions. Questions are based on the paraphrased INDICATION
section while each main answer is generated based on the indication node from the scene graph (using
information from the FINDINGS and IMPRESION sections).

Q: Describe all abnormal findings in the given study. Q: Describe all abnormal findings in the given study. Q: Evaluate the mediastinum. Q: Describe any abnormal findings in the lung fields.

This study does not show any abnormal findings. There is mild opacmunon in the right mid lung. The mediastinumal contours are normal. The lungs are relatively hyperinflated.

T romcat o | oisers: N
PuLvOuARY DisEASES

This is probably atelectasis.

(a) Abnormality descriptions (study-level or category-level).

Q: Are the cardiac structures normal? e N ST s Q: Check for the presence of implants.
below it?

Yes, the cardiac structures are normal.

Aleft pmoml pacemaker is in place. There

extensive postoperative changes in the

No, there are abnormalities related to the diaphragm: thoracic spine, with hardware in place.
:

The heart is at the upper limits of normal size.

The hemidiaphragms are flattened.

D CZ0 e
ngm atrium and right ventricle.

Catogori

(b) Abnormality assessment (category-level). (c) Device descriptions.

Figure 8: Examples of study abnormality questions. Questions are based on one of 13 templates.
Answers may consist of several answer parts, where each describes an individual aspect (about the
overall study or a finding category). Individual answer parts are constructed based on observation
nodes, filtered based on finding categories relevant to the question, where individual answer parts
may be organized hierarchically (indicated by indentations) based on parent-child edges in the scene
graph. Additionally assessment answers (b) start with a template-based yes/no answer.
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Q: Describe the right hemidiaphragm. Q: Describe the ribs. Q: Describe all abnormal findings in the left lung. Q: Describe the left lower lobe.

0 free air below the right hemidiaphragm. The sueaky left basilar opacities. There is consolidation/atelectasis in the left lower lobe.

The hemidiaphragms are intact and in normal position.

AGtiorakS e el urthenfircings see oesetved In
the left pleu

(a) Region description.

Q: Is the heart normal? Q: I the pulmonary artery normal? Q: Check the right chest for implants. Q: Are there any implants in or near the right ventricle?

Yes,the heart s normal, ther are no abnorma findings | | Noy the pulmonary atery | = associated with the. Atight pectoral pacemaker is seen. v" visible in or near the ngm ventricle:

associated witl ing abnormal finding == =
- 0 D €
-

A pulse generator is present in the left chest wall.
is pulmonary vascular redistribution. Categories:

Pacing leads are terminating in the right atrium and
right ventricle.

(b) Region assessment. (c) Region devices.

Figure 9: Examples of region abnormality questions. Questions are based on one of 6 templates.
Answers may consist of several answer parts, where each describes an individual aspect (about
the region). Individual answer parts are constructed based on observation nodes relevant to the
region, where individual answer parts may be organized hierarchically (indicated by indentations)
based on parent-child edges in the scene graph. Additionally assessment answers (b) start with a
template-based yes/no answer. Some templates also ask specifically about devices in the region (c).
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Q: s there any indication of pneumothorax? Q: Is there any indication of pneumonia? Q: How severe is the atelectasis? Q: How severe is the pleural effusion?

nia is uncertain but possible.

There is perihmm:hi-l opacification at the base of the

rlQMI

Howover note that the lollowlng findings are observed:

=3

It could be due to

There is pulmonary edema.

(a) Finding assessment. (b) Finding description.

Q: Where is the rib fracture located? Q: Where is the lung opacity located? Q: s a tube visible in the study? Q: Is a prosthetic heart valve visible in the study?

The rib fracture. Is located in the anterior 6th rib left. ‘The lung opacity is located in the left lung base. Yes, there i a tube. Yes, there is a prosthetic heart valve.

Pos

There is an angular appearance to the anterolateral There is patchy opacity within the left lung base.
margin of the left sixth rib, suggesting a non-displaced =

The replaced mitral valve appears intact.

It may reflect atelectasis.

—_

n sldcn not in the stomach.
l
l._
(c) Finding location. (d) Device.

Figure 10: Examples of finding questions. Questions are based on one of 7 templates. Answers start
with a template-based answer part to identify the finding presence (a), provide a severity summary
(b), describe the location (c), or presence of a device (d). Additional details may be provided in
answer parts based on observation nodes relevant to the finding, where individual answer parts may be
organized hierarchically (indicated by indentations) based on parent-child edges in the scene graph.

15



ss7 B Finding- and Region-Distribution in QA-Samples
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ANATOMICAL  DISEASE DEVICE ~ ACQUISITION  OTHER Subcategories (with at least one mention)
(a) Finding (main-)categories for different question (b) Finding sub-categories (all samples).
types (indication, study abnormality, region abnormal-
ity, finding).

— positive
40m negative
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Findings (most 30 frequent out of 231)
(c) Regions (all samples). (d) Findings (all samples).

Figure 11: Tags (finding main- and sub-categories, regions, findings) mentioned in answers. We show
their positive ratios (top/left), i.e. how often they are mentioned in positive versus in negative answer
parts and plot the number of positive and negative mentions of the most frequent tags (bottom/right).
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459

460

C Evaluation Details

C.1 QA Evaluation: Comparison of LLM-Raters

Llama3.1 8b
(default)

Llama3.1 70b

Figure 12: Confusion matrix comparing the assigned quality ratings between using Llama3.1 8b
(default) and Llama3.1 70b as an LLM-judge (see Secs. [3.3|and[4.2). In most cases, ratings differ
only slightly. Most importantly, low-quality samples (as rated by Llama3.1 70b) are almost never
assigned to fine-tuning grades (A or higher) by Llama3.1 8b. We thus decided to use Llama3.1 8b as
our default rater, as it is much more computationally efficient.

C.2 Scene Graph Evaluation: Finding Tags

Table 4: Evaluation of finding tags against the 13 CheXpert (CXP) classes from the MIMIC-CXR-JPG
test set (Sec. f.I). We show finding-level scores, macro-averages over subsets and the micro-average,
with 95% confidence intervals (bootstrapping, n = 1000).

MIMIC-CXR-JPG [24] Test

[Precision] [Recall] [F1] [MCC]

Ours  ChestImaG. Ours  ChestImaG. Ours ChestImaG. Ours  Chest ImaG.

Findings in CXP-5, CXP-7, and CXP-13

Atelectasis 0.82 0.78 0.99 0.99 0.9 0.88 0.84 0.81
[0.78,0.87] [0.73.0.83] [0.97.1.0] [0.98,1.0] [0.87.0.93] [0.84,09]  [0.8.0.88] [0.77,0.85]

Cardiomegaly 0.64 0.67 0.85 0.82 0.73 0.74 0.61 0.63
[0.58,0.7] [0.61,0.74] [0.78,0.9] [0.75,0.87] [0.67,0.78] [0.68,0.79] [0.54,0.68] [0.56,0.69]
Consolidation 0.83 0.77 0.87 0.93 0.85 0.84 0.83 0.83
[0.73,0.91] [0.68,0.86] [0.79,0.94] [0.86,0.99] [0.78,0.91] [0.78,0.9] [0.75,0.9] [0.76, 0.89]
Edema

0.94 0.9 0.8 0.8 0.86 0.85 0.83 0.8
[0.9.0.98] [0.85,0.95] [0.73,0.86] [0.74.0.86]  [0.82,0.9]  [0.8.0.89] [0.77,0.87] [0.74,0.85]

Pleural Effusion 0.9 0.86 0.98 0.97 0.94 0.91 0.89 0.85
[0.86,0.93] [0.82,0.9]  [0.96,1.0] [0.94,0.99] [0.92,0.96] [0.89,0.94] [0.85.0.92] [0.8,0.89]

Findings in CXP-7 and CXP-13
Pneumonia

0.92 0.89 0.94 0.95 0.93 0.92 0.91 0.9
[0.87,0.96] [0.84,0.94] [0.89,0.97] [0.91,0.98] [0.89,0.96] [0.89,0.95] [0.87.0.95] [0.86,0.94]
Pneumothorax 0.78 0.79 0.84 0.89 0.8 0.84 0.79 0.83
[0.64,0.89]  [0.66.0.91] [0.71,0.95] [0.78,0.98] [0.69,0.89] [0.74,0.92] [0.68,0.88] [0.72,0.91]

Findings in CXP-13
Enlarged Cardiom. 0.51 0.61 0.39 0.23 0.44 0.33 0.39 0.33
[0.37, 0.65] [0.41,0.8] [0.29,0.51] [0.13,0.33] [0.34,0.55] [0.2,0.45] [0.28,0.51] [0.19,0.45]

Lung Lesion 0.17 0.68 0.81 0.87 0.28 0.76 0.25 0.74
[0.12,0.22]  [0.56,0.79] [0.69,0.91] [0.76,0.95] [0.21.0.35] [0.66,0.84] [0.17,0.32] [0.64,0.83]

Lung Opacity 0.62 0.28 0.83 1.0 0.71 0.43 0.61 0.2
[0.56,0.69] [0.24,0.31] [0.77,0.89] [1.0,1.0]  [0.65,0.76] [0.39,0.48] [0.54,0.68] [0.17,0.23]
Pleural Other 0.54 0.3 0.87 0.92 0.67 0.45 0.67 0.5
[0.36,0.71]  [0.19, 0.42] [0.7, 1.0] [0.76, 1.0] [0.49,0.8] [0.31,0.58] [0.51,0.79] [0.37,0.6]
Fracture 0.67 0.6 0.92 0.82 0.77 0.69 0.77 0.68
[0.54,0.79] [0.47,0.73] [0.82,1.0] [0.68,0.93] [0.67,0.86] [0.58,0.79] [0.67.0.85] [0.56,0.78]
Support Devices

0.61 0.62 0.98 0.83 0.75 0.71 0.63 0.54
[0.56,0.66] [0.56,0.67]  [0.96, 1.0]  [0.77,0.88] [0.71,0.79] [0.66,0.75] [0.59,0.68] [0.48,0.61]

Macro-averages
CheXpert-5 (CXP-5)

CheXpert-7 (CXP-7)
CheXpert-13 (CXP-13)

0.83 0.8 0.9 0.9 0.85 0.84 0.8 0.78
[0.79,0.85]  [0.77.0.83] [0.87,0.92] [0.88,0.92] [0.83,0.87] [0.82,0.86] [0.77.0.82] [0.75,0.81]
0.83 0.81 0.89 0.91 0.86 0.85 0.81 0.8
[0.8.0.86]  [0.78,0.84] [0.87,0.92] [0.88,0.93] [0.83,0.88] [0.83,0.87] [0.79,0.84] [0.78,0.83]

0.69 0.67 0.85 0.85 0.74 0.72 0.69 0.66
[0.66,0.71]  [0.65,0.7] [0.83.0.87] [0.82.0.87] [0.72,0.76] [0.7.0.74]  [0.67.0.71] [0.64,0.69]

Micro 0.68 0.63 0.89 0.88 0.77 0.73 0.71 0.67
[0.66,0.7]  [0.61,0.65] [0.87,0.9] [0.86,0.89] [0.75,0.79] [0.72,0.75] [0.69,0.73] [0.65,0.68]
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Table 5: Evaluation of finding tags against the 13 CXP and 12 long-tail (LT) classes from the CXR-LT
2024 gold standard dataset (Sec.[d.I)). We show finding-level scores, macro-averages over different
subsets and the micro-average, with 95% confidence intervals (bootstrapping, n = 1000).

CXR-LT 2024 [30] Gold

[Precision] [Recall] [F1] [MCC]

Ours  ChestImaG. Ours  ChestImaG. Ours  Chest ImaG. Ours  Chest ImaG.

Findings in CXP-5, CXP-7, CXP-13, and CXR-LT
Atelectasis 0.55 0.56 0.82 0.99 0.66 0.71 0.48 0.59
[0.47,0.62] [0.49,0.61] [0.75,0.88] [0.97,1.0] [0.59,0.71] [0.65,0.76]  [0.4,0.57]  [0.54,0.65]

Cardiomegaly 0.82 0.85 0.85 0.8 0.84 0.82 0.73 0.72
[0.76,0.88] [0.79,0.91] [0.79,0.91] [0.73,0.86] [0.79,0.88] [0.77,0.87] [0.66,0.79]  [0.65,0.79]
Consolidation 0.82 0.74 0.86 0.89 0.84 0.8 0.8 0.76
[0.73,091] [0.63,0.83] [0.76,0.93] [0.8.0.95] [0.77.0.9] [0.73,0.87] [0.72.0.87] [0.67.0.83]
Edema 0.73 0.69 0.64 0.71 0.68 0.7 0.59 0.6
[0.63,0.83] [0.6,0.79] [0.55,0.74] [0.61,0.8]  [0.6,0.76] [0.62,0.77]  [0.5.0.69]  [0.5,0.69]

Pleural Effusion 0.82 0.78 0.93 0.97 0.87 0.87 0.77 0.76
[0.76,0.87]  [0.73,0.84]  [0.9,0.97] [0.94,0.99] [0.83,0.91] [0.83,0.9] [0.7,0.82] [0.7,0.82]
Findings in CXP-7, CXP-13, and CXR-LT

Pneumonia 0.38 0.13 0.45 0.76 0.41 0.23 0.38 0.24
[0.19.0.58] [0.07.0.21] [0.25,0.67] [0.55,0.94] [0.22,0.58] [0.13.0.33] [0.19.0.55] [0.13.0.34]

Pneumothorax

0.85 0.8 0.85 0.96 0.85 . 0.83 0.86
[0.73,0.95] [0.7,0.9] [0.72,0.94]  [0.89,1.0] [0.75,0.92] [0.8,0.94] [0.72,0.91] [0.78,0.93]

Findings in CXP-13 and CXR-LT

Enlarged Cardiom. 0.78 1.0 0.13 0.1 0.22 0.18 0.24 0.27
[0.57,095] [1.0,1.0]  [0.07,0.2] [0.05,0.17] [0.13.0.32] [0.1,0.29]  [0.13.0.35] [0.19.0.36]
Lung Lesion 0.01 0.05 0.5 0.75 0.02 0.1 0.0 0.18
[0.0, 0.03] [0.0,0.12] [0.0, 1.0] [0.0, 1.0] [0.0, 0.06] [0.0,0.22] [-0.09, 0.1] [-0.02,0.3]
Lung Opacity 0.92 0.54 0.77 1.0 0.84 0.7 0.73 0.35
[0.87,0.96] [0.49,0.59] [0.72,0.84]  [1.0,1.0]  [0.8,0.88] [0.66,0.74] [0.66,0.79]  [0.29,0.4]
Pleural Other

0.11 0.23 0.19 1.0 0.14 0.38 0.1 0.45
[0.0.024] [0.13.0.34] [0.0,043]  [1.0,1.0]  [0.0.029] [0.23,0.51] [-0.05.0.26] [0.34,0.55]
Fracture 0.89 0.84 0.91 0.82 0.9 0.83 0.89 0.81
[0.78,0.98] [0.72.0.94] [0.81,0.98] [0.69,0.93] [0.82,0.95] [0.73,09]  [0.8.0.95]  [0.69.0.89]

Support Devices 0.92 0.93 0.93 0.83 0.92 0.88 0.83 0.75
[0.88,0.96] [0.9,0.97] [0.89,0.96] [0.77,0.88] [0.9,0.95] [0.84,0.91] [0.77,0.88] [0.68, 0.82]
Findings in LT-only, and CXR-LT

Calcification of the Aorta 0.95 0.95 0.43 0.93 0.6 0.94 0.61 0.94
[0.83.1.0] [0.88,1.0] [0.28.058] [0.85,1.0] [0.43.0.73] [0.89,0.99] [0.48.0.73] [0.87.0.99]

Emphysema 0.58 0.54 0.81 0.81 0.68 0.65 0.66 0.63
[0.41,0.74] [0.38,0.69] [0.63,0.95] [0.63,0.95] [0.52,0.8] [0.49,0.77] [0.5,0.79] [0.47,0.75]
Fibrosis 0.27 0.0 0.52 0.0 0.36 0.0 0.33 0.0
[0.15,043]  [0.0,0.0] [0.31,0.74] [0.0,0.0] [0.21,0.52]  [0.0,0.0] [0.17,0.5] [0.0, 0.0]
Hernia 1.0 0.86 0.9 0.9 0.95 0.88 0.95 0.87
[1.0, 1.0]  [0.68,1.0] [0.73,1.0] [0.73,1.0] [0.85,1.0] [0.74,0.97] [0.85,1.0] [0.73,0.97]
Infiltration 0.15 0.38 0.33 0.55 0.21 0.44 0.19 0.44
[0.03,0.3] [0.16,0.67] [0.08,0.7] [0.21,0.88] [0.05,0.39] [0.18,0.69] [0.01,0.39] [0.17,0.69]
Mass 0.54 0.28 0.78 0.89 0.64 0.42 0.63 0.46
[0.34,0.74]  [0.17,0.4]  [0.56,0.94] [0.71,1.0] [0.44,0.78] [0.28,0.56] [0.45,0.77]  [0.32,0.58]
Nodule 0.92 0.5 0.74 0.91 0.82 0.64 0.81 0.64
[0.79,1.0] [0.36,0.63] [0.57,0.88] [0.78,1.0] [0.68,0.91] [0.51,0.75] [0.68,0.91] [0.51,0.74]
Pleural Thickening 0.78 0.33 1.0 1.0 0.88 0.5 0.88 0.54
[0.62,0.92] [0.22,0.45]  [1.0, 1.0] [1.0,1.0]  [0.77,0.96] [0.36,0.62] [0.78,0.96]  [0.43.0.64]
Pneumomediastinum 0.94 0.88 0.84 0.84 0.89 0.86 0.88 0.85
[0.83,1.0] [0.73,0.97] [0.7,0.96] [0.7,0.96] [0.78,0.96] [0.73,0.94] [0.77,0.95] [0.72,0.93]
Pneumoperitoneum

0.88 0.82 0.96 1.0 0.92 0.9 0.91 0.9
[0.72,1.0]  [0.65,0.96]  [0.85,1.0] [1.0, 1.0] [0.81,1.0]  [0.79, 0.98] [0.8, 1.0] [0.8,0.98]
Subcutaneous Emphysema ~ 0.97 0.0 0.8 0.0 0.88 0.0 0.87 0.0

[0.9, 1.0] [0.0,0.0]  [0.68,0.92] [0.0,0.0] [0.79,0.95] [0.0,0.0]  [0.78,0.94]  [0.0,0.0]
Tortuous Aorta 0.83 0.79 0.88 0.94 0.85 0.86 0.84 0.85
[0.69,0.95] [0.64,091] [0.75,097] [0.84,1.0] [0.75.0.93] [0.75,0.94] [0.73,0.93] [0.74,0.93]

Macro-averages

CheXpert-5 (CXP-5) 0.75 0.72 0.82 0.87 0.78 0.78 0.67 0.69
[0.71,0.78] [0.69,0.76] [0.79,0.85] [0.84,0.9] [0.75.0.8] [0.75.0.81] [0.64,0.71] [0.65.0.72]
CheXpert-7 (CXP-7) 0.71 0.65 0.77 0.87 0.73 0.71 0.65 0.65
[0.66.0.75] [0.62,0.68] [0.73,0.81] [0.83.0.9] [0.7.0.77] [0.69.0.74] [0.61,0.69] [0.61,0.68]
CheXpert-13 (CXP-13) 0.66 0.63 0.68 0.81 0.63 0.62

. . X 0.57 0.56
[0.63.0.69] [0.61,0.65] [0.63,0.73] [0.75,0.85] [0.6,0.65] [0.6,0.64]  [0.54,0.6] [0.54.0.59]

LT-only 0.73 0.53 0.75 0.73 0.72 0.59 0.71 0.59
[0.69,0.77]  [0.48,0.57] [0.7,0.8] [0.69,0.77] [0.68,0.75] [0.55,0.62] [0.67,0.74] [0.55,0.63]
CXR-LT 0.7 0.58 0.71 0.77 0.67 0.61 0.64 0.58
[0.67,0.72]  [0.56,0.6] [0.68,0.75] [0.74,0.8] [0.65,0.69] [0.58,0.62] [0.61,0.66]  [0.55,0.6]
Micro

0.69 0.62 0.76 0.8 0.72 0.7 0.67 0.64
[0.67,0.71]  [0.6,0.64] [0.74,0.78] [0.78,0.82] [0.71,0.74] [0.68,0.72] [0.65,0.69]  [0.62, 0.66]
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461 C.3 Scene Graph Evaluation: Finding Boxes

Table 6: Evaluation of finding bounding boxes against 6 finding classes from MS-CXR (see Sec. .
We show finding-level scores, macro-averages over different subsets and the micro-average, with 95%
confidence intervals (bootstrapping, n = 1000). We excluded 2 of the 8 finding classes, because there
are no samples that have positive annotations from MS-CXR, Chest ImaGenome and our dataset.

MS-CXR

[ToU@30] [IoP@30] [IoT@30]

Ours  ChestImaG.  Ours  ChestImaG. Ours  Chest ImaG.

Atelectasis 0.28 0.1 0.5 0.14 0.83 0.85
[0.12,0.42]  [0.02,0.2] [0.34,0.66] [0.05,0.28] [0.71,0.93] [0.74,0.94]
Cardiomegaly 0.96 0.97 1.0 1.0 0.96 0.99
[0.93,0.98] [0.95,0.99] [1.0, 1.0] [1.0,1.0]  [0.93,0.98] [0.98,1.0]
Consolidation

0.31 0.2 0.41 0.24 0.91 0.98
[0.19,0.45]  [0.1,0.31] [0.29,0.54] [0.12,0.35] [0.81,0.98] [0.93,1.0]
Edema 0.52 0.52 0.52 0.52 1.0 1.0
[0.32,0.71] [0.32,0.71] [0.32,0.71] [0.32,0.71] [1.0,1.0] [1.0, 1.0]

Pneumonia 0.48 0.28 0.58 0.34 0.93 1.0
[0.41,0.57] [0.21,0.35] [0.5, 0.66] [0.26,0.42] [0.88,0.97] [1.0, 1.0]
Pneumothorax ~ 0.14 0.15 0.14 0.15 0.96 0.98
[0.1,0.18]  [0.1,02]  [0.1,0.19]  [0.11,0.2] [0.93,0.98] [0.96, 1.0]
Macro 0.45 0.37 0.53 0.4 0.93 0.97
[0.4,0.5] [0.33,0.41] [0.48,0.58] [0.36,0.44] [0.9,0.95] [0.95,0.98]
Micro

0.51 0.45 0.56 0.48 0.94 0.98
[0.47,0.54] [0.42,049] [052,0.6] [0.45,0.52] [0.92,0.96] [0.97.0.99]

Table 7: Evaluation of finding bounding boxes against 18 finding classes from REFLACX (see
Sec.[4.I). We show finding-level scores, macro-averages over different subsets and the micro-average,
with 95% confidence intervals (bootstrapping, n = 1000). Note that we excluded 11 of the 29
finding classes, because there are no samples that have positive annotations from REFLACX, Chest
ImaGenome and our dataset.

REFLACX [32] all phases

[ToU@30] [ToP@30] [IoT@30]

Ours  ChestImaG.  Ours  ChestImaG. Ours  Chest ImaG.

Abnormal mediastinal contour 0.08 0.25 0.08 0.25 1.0 1.0
[0.0, 0.31] [0.0, 0.57] [0.0,0.31] [0.0,0.57] [1.0, 1.0] [1.0, 1.0]
Acute fracture 0.0 0.0 0.0 0.0 1.0 0.0
[0.0, 0.0] [0.0, 0.0] [0.0. 0.0] [0.0, 0.0] [1.0, 1.0] [0.0,0.0]
Atelectasis 0.29 0.15 0.47 0.2 0.76 0.93
[0.26,0.33] [0.12.0.17] [0.44,0.51] [0.17,0.23] [0.73,0.78] [0.91,0.94]
Consolidation 0.39 0.27 0.51 0.34 0.8 0.95
[0.33,0.45] [0.22,0.32] [0.45,0.57] [0.28,0.4] [0.74,0.85] [0.92,0.97]
Emphysema 1.0 1.0 1.0 1.0 1.0 1.0
[1.0, 1.0] [1.0, 1.0] [1.0,1.0] [1.0, 1.0] [1.0, 1.0] [1.0, 1.0]
Enlarged cardiac silhouette 0.96 0.96 1.0 0.99 0.96 0.98
[0.94,0.97] [0.95,0.97] [0.99,1.0] [0.99,1.0] [0.95, 0.97] [0.97.0.99]
Enlarged hilum 0.5 0.5 0.5 0.8 0.5 0.5
[0.0, 1.0] [0.0.1.0] [00.1.0]  [023.1.0]  [0.0,1.0] [0.0.1.0]
Fracture 0.0 0.0 0.0 0.0 0.0 0.0
[0.0, 0.0] [0.0, 0.0] [0.0, 0.0] [0.0, 0.0] [0.0, 0.0] [0.0, 0.0]
Groundglass opacity 0.28 0.31 0.48 0.38 0.77 0.96
[0.22,0.34] [0.25,0.38] [0.4,0.54] [0.32,0.45] [0.71,0.83] [0.93,0.99]
Hiatal hernia 0.19 0.4 0.27 0.4 0.94 1.0
[0.0,043]  [0.17,0.67] [0.06,0.5] [0.17,0.67] [0.78,1.0]  [1.0,1.0]
High lung volume / emphysema  0.48 0.58 0.58 0.58 0.9 1.0
[0.25,0.7] [0.35,0.79] [0.35,0.79] [0.35,0.79] [0.75,1.0]  [L.0,1.0]
Interstitial lung disease 0.5 0.8 0.8 0.8 0.8 1.0
[0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.12, 1.0] [1.0, 1.0]
Lung nodule or mass 0.18 0.09 0.21 0.09 0.89 0.91
[0.08,0.31] [0.02,02] [0.1,0.35] [0.02,02] [0.77.0.97] [0.8,0.98]
Pleural abnormality 0.16 0.14 0.2 0.17 0.91 0.92
[0.13,0.19] [0.1T,0.17] [0.17,023] [0.14,02] [0.88,0.93] [0.9,0.94]
1.0

Pleural effusion 0.42 0.37 0.53 0.53 . 0.95
[02.0.65] [0.17,0.6] [0.3,0.75] [031.0.75] [1.0,1.0]  [0.82.1.0]

Pleural thickening 0.0 0.0 0.0 0.0 1.0 1.0
[0.0, 0.0] [0.0, 0.0] [0.0, 0.0] [0.0, 0.0] [1.0, 1.0] [1.0, 1.0]

Pneumothorax 0.04 0.13 0.04 0.13 0.9 0.96
[0.01,0.08] [0.07,0.21] [0.01,0.08] [0.07,0.21] [0.84,0.96] [0.92,0.99]
Pulmonary edema 0.51 0.58 0.55 0.58 0.95 1.0
[0.45,0.56] [0.53,0.63] [05,0.6] [0.53,0.63] [0.93,0.97] [1.0,1.0]
Macro 0.34 0.37

. . 0.41 0.41 0.84 0.87
[0.27,0.42]  [0.3,0.45] [0.34,0.49] [0.33,0.49] [0.78,0.91] [0.8,0.95]

Micro 0.45 0.42 0.54 0.46 0.87 0.95
[0.44,047]  [0.4,043] [0.53,0.56] [0.44,0.47] [0.86,0.88] [0.94,0.96]
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D Dataset Structure

D.1 Scene Graph Structure

Region  |[«0..n-| ReportGraph [=0..1»{ Indication
region_region
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relation_type 0.n o.n top]level
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\ A /

located_at-| Observation

obs_relation
.. { child_type

Sentence

Figure 13: Scene graph structure overview.

Sentence Nodes Sentence nodes are directly associated with raw sentences in the report, i.e. there
is exactly one sentence node per identified report sentence. They contain the following attributes:

* sent_id: Identifier, unique per study.
Example: SO1.

* section: Name of the section that the sentence belongs to, as specified in the
report. If the sentence is not part of a section, FINAL_REPORT_NO_SECTION or
PRE_FINAL_REPORT_NO_SECTION are used.

Examples: FINDINGS, IMPRESSION, REASON_FOR_EXAM.

* section_type: The identified type of section used for classifying the type of content of
the sentence. IGNORE is used for irrelevant sections.
Examples: FINDINGS, IMPRESSION, INDICATION.

* sentence: The raw sentence as written in the report.

Observation Nodes Observation nodes are created for each individually described aspect (i.e.
observation) in the report’s FINDINGS or IMPRESSION section. Hereby, a single sentence may be
related to several observation nodes and a single observation may be derived from several sentences
(if they describe related aspects). Observation nodes are structured hierarchically, i.e. they may have
other observation nodes as parents. An observation node contains the following attributes:

* obs_id: Identifier, unique per study.
Example: 001.
For child nodes this also contains the parent id, e.g. 001.02.

* summary_sentence: Textual description of the observation, directly derived from the
associated report sentences. In some cases, this may be an exact copy of the report sentences
but it may also paraphrase parts of it.

* name: Abbreviated version of the summary_sentence.
* child_level: Hierarchy level, O for top-level, larger numbers for deeper hierarchy levels.

* child_type: Type of parent-child relation.
Possible options: regional_distinction, related_region, associated_with,
device_part, recommendation, comparison_only.

* regions: List of associated regions, each paired with an optional list of distance annotations.
Example: [("heart", ["1 cm above"])]

* non_resolved_regions: Similar to regions but with regions that could not be semanti-
cally mapped to reference definitions.
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* laterality: Laterality of the region.
Possible options: 1eft, right, 1ikely bilateral, bilateral, unknown.

* default_regions: List of regions that have been added because they are defaults for the
identified findings (obs_entities).

* obs_entities: List of (directly) associated findings.
Example: ["pleural effusion"].

* obs_entities_parents: List of findings that are considered parents of findings in
obs_entities.

* non_resolved_obs_entities: Similar to obs_entities but with findings that could
not be semantically mapped to reference definitions.

* obs_categories: List of associated finding super-categories.
Example: ["ANATOMICAL_FINDING"].

* obs_subcategories: List of associated finding sub-categories.
Example: ["LUNG_FIELD"].

* probability: Likelihood of the observation being positive. Short term, derived from what
is mentioned in the report.

* certainty: How certain is the observation. Derived from probability.
Possible options: certain, 1ikely, uncertain, comparison_only, recommendation.

* positiveness: Whether the observation is positive or negative. Derived from
probability.
Possible options: pos, neg, comparison_only, recommendation.

* modifiers: Modifiers of the finding. Dictionary with keys for each type of modifier and
lists of the individual modifier values.
Possible modifier type: severity, texture, spread, temporal.
Example: {"severity": ["mild"], "spread": ["focal"]}.

* change_sentence: Optional textual description of any changes to the prior study of the
same patient, if it was mentioned in the report.

* changes: List of change types mentioned in the change_sentence.
Example: worsening.

» from_report: Whether this observation was explicitly mentioned in the report (true) or
automatically added (false).

* obs_quality: Extraction quality of the observation, consisting of several individual aspects.
See Tab.

* localization: Bounding boxes for this observation, for each associated image. Dictionary
with keys equaling image ids (each study may correspond to several images). Values contain:
— image_id
— bboxes: List of bounding boxes in the (z1, y1, T2, y2) format in original image-pixel
coordinates.

— localization_reference_ids: List of region names from which the bounding
boxes are derived.

— missing_localization: List of associated region names for which no localization
is available for this image.

— is_fallback: Whether this localization is a fallback, i.e. the original region localiza-
tion was not available but a more coarse localization was used instead.

- localization_quality: Quality of the localization. See Tab. ]

Region Nodes Region nodes are created for each anatomical structure mentioned in any observation
and for key regions. They contain the following attributes:

* region: Name of the region and unique identifier within each study.
Example: left lung.

* laterality: Laterality of the region.
Possible options: 1eft, right, bilateral, unknown (i.e. not clearly definable).
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548 * localization: Bounding boxes for this region, for each associated image. Same format
549 as for observation nodes.

550 * region_localization_quality: Quality of the localization attribute. See Tab.

s51  Indication Node Each study contains an optional indication node with information extracted from
ss2  the INDICATION section. If present, it contains the following attributes:

553 * indication_summary: Summary of the indication, directly derived from the INDICATION
554 section of the report, but typically paraphrased.

555 * patient_info: Any information about the patient, if mentioned in the INDICATION section.
556 A subset of the content in indication_summary.

557 * indication: Indication for the study, if mentioned in the INDICATION section. A subset
558 of the content in indication_summary.

559 * evaluation: Any required evaluation of the patient (i.e. what should be evaluated
560 with this study), if mentioned in the INDICATION section. A subset of the content in
561 indication_summary.

562 e associated_sentence_ids: List of sent_ids from sentence nodes that are related to
563 the indication.

564 e associated_obs_ids: List of obs_ids from observation nodes that are related to the
565 indication.

566 * answer_for_indication: A single observation node containing the answer to the ques-
567 tion (implicitly) asked by the provided indication. This is a special observation node
568 with obs_id = OIND. Its textual description is directly derived from the FINDINGS and
569 IMPRESSION sections but conditioned on the INDICATION section.

570 Root Node and Relations Each study contains a single root node called the ReportGraph. It
571 contains general metadata about the study and its scene graphs:

572 » patient_id: Unique patient ID, the subject_id from MIMIC-CXR.

573 * study_id: Unique study ID, from MIMIC-CXR. Each patient may have several studies.
574 * study_quality: The overall extraction quality of the scene graph for this study, consisting
575 of several individual aspects. See Tab. [§]

576 * study_img_localization_quality: Dictionary of localization qualities for each image
577 with keys corresponding to image IDs. See Tab.[§]

s78  Additionally, it is connected to all other nodes and links to the top-level (root) observations. Thus, it
579 contains the following:

580 e sentences: List of all sentence nodes.

581 * observations: Dictionary of all observation nodes, indexed by their obs_id.

582 * top_level_obs_ids: List of all top-level (root) observation node IDs, i.e. their obs_ids.
583 * regions: Dictionary of all region nodes, indexed by their region attribute.

584 e indication: The indication node, if it exists.

s85  Nodes can also be connected by the following relations:

586 * located_at_relations (observation«sregion): Specifies where an observation is
587 located with the following additional attributes:

588 — distances: List of distance annotations, e.g. ["3cm above"].

589 — where_specified: How this relation was derived.

590 Possible options: direct, bilateral, sub_region.

591 * obs_relations (observation<robservation): Specifies a parent-child relation be-
592 tween two observations, with the following additional attribute:
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— child_type: Type of parent-child relation.
Possible options: regional_distinction, related_region, associated_with,
device_part, recommendation, comparison_only.

* obs_sent_relations (observation<>sentence): Specifies from which sentences an
observation was derived.

* region_region_relations (region¢«>region): Specifies a relation between two re-
gions with the following additional attribute:

— relation_type: Type of relation.
Possible options: sub_region, bilateral (the bilateral version of a region), left
(the left version of a region), right (the right version of a region).

D.2 Question-Answer Structure

QA-Pair Each question-answer pair consists of a free-text question (attribute question), an answer
consisting of structured answer parts (attribute answers). Additionally, it contains the following
metadata:

* question_id: Identifier, unique within the associated study.
* question_type: The QA-template used to generate this QA-pair.
* question_strategy: The strategy used to generate QA-pair. See Sec. and Ap-

pendix[E2.2]
* variables: Key-value pairs of variables (and their values) used during generation, e.g. to
fill the template. See Appendix [E.2.1]

* obs_ids: List of obs_idss of observation nodes (in the scene graph) from which the
answer is derived.

* contains_report_answers: Whether any of the answer parts was derived from the report,
i.e. from observation nodes.

* contains_template_answers: Whether any of the answer parts was generated based on
a template.

* extraction_quality: The overall extraction quality of the associated observations in the
scene graph, consisting of several individual aspects. See Tab.|[§]

* question_img_localization_quality: Quality of the localizations per image. See
Tab. 8l

* question_quality: The overall question-answer text quality, consisting of several indi-
vidual aspects. See Tab.[J]

* rating: The overall rating of the QA-pair. See Appendix [D.J|

Answers are structured hierarchically, consisting of a list of answer parts (attribute answers) and
sub-answers (children) of these answers, where there can be several hierarchy levels. The hierar-
chy levels are derived from the parent-child structure of associated observation nodes (based on
obs_relations, Appendix [D.I). Additionally, there are different types of answer parts:

* main_answer: Required to answer the question. There is always at least one main-answer
per question.

* details: Providing additional details for the main answer, which are however not manda-
tory to answer the question.

* related_information: Not directly answering the question, but may be related and
provides context.

Each individual answer part contains the following attributes:

* answer_id: Identifier, unique within each study. Contains the question_id.

* text: The answer text. Either generated from a template or based on summary_sentence
in the observation node (Appendix [D.T).
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* answer_level: Hierarchy level, O for top-level answer part, larger numbers for deeper
hierarchy levels (sub-answers).

* answer_type: Type of answer part.
Possible options: main_answer, details, related_information.

* name_tag: Abbreviated version of the text. Either generated from a template or based on
name in the observation node (Appendix [D.T)).

* laterality: Laterality of the region. See observation node (Appendix D.T).
Possible options: 1left, right, 1ikely bilateral, bilateral, unknown.

* regions: List of associated regions. See observation node (Appendix [D.T). Distances are
not provided here.
Example: ["heart"]

* obs_entities: List of (directly) associated findings. See observation node (Ap-

pendix [D.T).

Example: ["pleural effusion"].

* obs_entities_parents: List of findings that are considered parents of findings in
obs_entities. See observation node (Appendix [D.T).

* obs_categories: List of associated finding super-categories. See observation node (Ap-

pendix D.I).
Example: ["ANATOMICAL_FINDING"].

* obs_subcategories: List of associated finding sub-categories. See observation node
(Appendix D.T).
Example: ["LUNG_FIELD"].

* certainty: How certain is the observation. See observation node (Appendix [D.T).
Possible options: certain, likely, uncertain, comparison_only, recommendation.

* positiveness: Whether the observation is positive or negative. See observation node

(Appendix [D.T).

Possible options: pos, neg, comparison_only, recommendation.

* modifiers: Modifiers of the finding. List of pairs of modifier type and value. See
observation node (Appendix [D.I)).
Possible modifier type: severity, texture, spread, temporal.
Example: [("severity", "mild"), ("spread", "focal")].

* localization: Bounding boxes for this answer part, for each associated image. Dictionary
with keys equaling image ids (each study may correspond to several images). See observation
node (Appendix [D.T).

* sub_answers: List of child answers (deeper in the hierarchy). Each sub-answer is another
answer-part with all attributes and potentially further sub-answers.

» from_report: Whether this answer part is derived from the report, i.e. an observation node
(true), or from a template (false).

* extraction_quality: The overall extraction quality of the associated observations in the
scene graph, consisting of several individual aspects. See Tab. 8]

* answer_quality: The overall answer text quality, consisting of several individual aspects.
See Tab.

D.3 Quality

Ratings We distinguish between the following overall ratings for each QA-pair:

* A++: Perfect and complete content; all information in the answer is explicitly mentioned in
the report.

* A+: Perfect and mostly complete content; all information in the answer is explicitly men-
tioned in the report, but some minor details may be missing or irrelevant.

* A: Very good content with minor issues not affecting the overall quality; some tags or boxes
may be inferred or minor issues (e.g. grammatical) may be present in the text.
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* B: Good content; factually correct answers, which may however be not fully complete or
slightly unclear.

* C: Poor content; answers may be misleading or contain completely unclear information.
* D: Incorrect content; answers may be contradicting the report and are not usable.

* not rated: Quality could not be assessed, e.g. due to invalid LLM-rater outputs.

These ratings are derived based on individual aspects that will be described in the following paragraphs.
Possible quality levels for each aspects and the resulting rating are presented in Tabs. [8]and[0] The
final rating is computed as the minimum (worst) rating over all individual aspects.

Scene Graph Extraction Quality For each scene graph, we provide a quality rating based on how
well it could be constructed/extracted. Tab.[8|shows the considered aspects with their potential quality
levels and resulting ratings.

Table 8: Quality levels for the 6 scene graph quality aspects, with their resulting ratings.

Quality level Value  Resulting rating

How well are region tags identified? (attribute regions)

NO_REGIONS 0 B
= §  DEFAULT_REGIONS_ONLY 1 B
éﬂ g CONTAINS_DEFAULT_REGIONS 2 A
“3 CONTAINS_NON_RESOLVED_REGIONS 3 A
RESOLVED_REGIONS_ONLY 4 A++

How well are finding tags identified? (attribute obs_entities)

& g NO_ENTITIES 0 B
"é § CONTAINS_NON_RESOLVED_ENTITIES 1 A
g £

8 RESOLVED_ENTITIES_ONLY 2 A++

How well are textual descriptions extracted? (attributes summary_sentence and name)
CHANGE_IN_SENTENCE_OR_NAME 0 B
UNDERSCORES_IN_SENTENCE_OR_NAME 1 A

NO_ISSUES 2 A++

Description
extraction

How well are mentions of change extracted? (attributes change_sentence and change)

- CHANGE_SENTENCE_REMOVED 0 B

E‘D ‘% UNDERSCORES_IN_CHANGE_SENTENCE 1 A

5 % CONTAINS_NON_RESOLVED_CHANGES 2 A
NO_ISSUES 3 A++

Have there been any issues in the extraction and scene graph construction pipeline?

DISCARDED 1 D
; NON_INTERPRETABLE 0 C
§§ MOSTLY_INTERPRETABLE 1 B
Eé IGNORABLE 2 A
FIXABLE 3 A+
NO_ISSUES 4 At+

How well could observations/regions be localized? (attribute localization))

NO_LOCALIZATION 0 B

é FALLBACK_LOCALIZATION 1 B

g INCOMPLETE_LOCALIZATION 2 A

E BBOX_LOCALIZATION 3 A++
BBOX_AND_MASK_LOCALIZATION 4 A++

Finding extraction is also referred to as entity extraction, description extraction as sentence/name quality.
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703 QA Text Quality For each QA-pair, we provide quality rating for its text, i.e. the question text and
704  the textual descriptions in its answer parts. Tab.[9]shows the considered aspects with their potential
705 quality levels and resulting ratings.

Table 9: Quality levels for the 5 QA-pair text quality aspects, with their resulting ratings.

Quality level Value  Resulting rating

Does the answer factually align with the original report?

(rated per answer-part, given the question and the report)

NON_ALIGNED_CONTRADICTING -3 D
NON_ALIGNED_MISLEADING -2 C

E NON_ALIGNED_NON_INFERABLE -1 B

-g ALIGNED_GENERAL_STATEMENT 0 A

Lﬁ ALIGNED_NEGATIVE_NOT_MENTIONED 1 A+
ALIGNED_INFERABLE 2 A++
ALIGNED_MENTIONED 3 A++

Is the answer relevant for the given question?

(rated per answer-part, given the question but independent of the report)

° IRRELEVANT_INFO -2 A

§ REDUNDANT_INFO -1 A

iﬂ RELATED_INFO 0 A+ (A++ for related_information answer)
RELEVANT_MAIN_ANSWER 1 A++ (A for related_information answer)

Does the answer cover all aspects in the report that are relevant to the question?

(rated for the full answer, given the question and the report)

706 . INCOMPLETE_MISLEADING 2 C
g INCOMPLETE_NON_MISLEADING -1 B
& NOT_ANSWERED 0 B
§ DETAILS_MISSING 1 A+
FULLY_COMPLETE 2 A++

Is the generated question clear and grammatically correct?

(rated for the question, given nothing else)

UNANSWERABLE -3 C

-‘g UNRELATED_TO_CHEST_XRAY 2 B

E’ UNCLEAR_QUESTION -1 B

'% GRAMMATICAL_ERRORS 0 A

5 UNUSUAL_SENTENCE_STRUCTURE 1 A
OPTIMAL 2 A++

Is the answer clear and grammatically correct?

(rated per answer-part, given nothing else)

o NOT_UNDERSTANDABLE 2 C

g UNCLEAR_ANSWER -1 B

é GRAMMATICAL_ERRORS 0 A

ﬁ UNUSUAL_SENTENCE_STRUCTURE 1 A
OPTIMAL 2 A++
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E Dataset Construction Details

E.1 Scene Graph Construction
E.1.1 Region Localization

We use the CXAS [22]], [23]] model to predict segmentation masks of 158 anatomical structures on
the 377,110 CXRs from MIMIC-CXR-JPG [15]], [24], [25]. Additionally, we use the bounding boxes
provided by the Chest ImaGenome [15], [17]], [[19]] dataset, which are provided for 29 anatomical
structures in most frontal images of MIMIC-CXR. The masks predicted by CXAS are post-processed
with morphological operations to filter out outlier pixels.

We specify 257 localized regions in our reference definitions. For each of these regions, we define
how the bounding boxes are derived. We consider the following options:

* CXAS masks: Some regions are directly associated with one of the 158 anatomical struc-
tures for which the CXAS model predicts segmentation masks. In these cases, we compute
the bounding box around the predicted segmentation mask.

* Chest ImaGenome boxes: Some regions are directly associated with one of the 29 anatom-
ical structures for which Chest ImaGenome provides bounding boxes. In such cases, we use
these provided bounding boxes if no CXAS masks are associated.

* Bilateral regions: Some regions refer to a pair of bilateral regions (e.g. lungs refers to left
lung and right lung). In these cases, we simply use the two bounding boxes of the left and
right versions, but do not fuse them.

* Parent regions: For some regions we do not have exact correspondences to available masks
or boxes but we have available sub-regions. In these cases, we compute the super bounding
box, a single box, around all specified child regions.

* Fusions: In some rare cases, we combine multiple individual masks or bounding boxes. We
compute intersections or unions of boxes or masks, before inferring the final bounding box.

After computing all regions, we filter out regions with a too small bounding box area. For images
where a specific region is not available, we try to use alternative regions as fallbacks instead, e.g.
using a more coarse parent regions as an alternative. Note that this is often the case for lateral images
as there no Chest ImaGenome boxes are available.

E.1.2 Information Extraction

Extracting the Sentences First, we extract individual sentences from the reports, detect their
sections (e.g. FINDINGS, IMPRESSION, INDICATION, ...), discard sentences without relevant
information, and merge sentences containing similar information (e.g. if findings are described in
both the FINDINGS and IMPRESSION section). Therefore, each full report is passed in a single
step to the LLM, which predicts the individually separated sentences as well as their sections and
related sentences. We use the prompt shown in Listing [I] (with few-shot examples similar to Listing
[2) and apply it to the full radiology report. After parsing the LLM outputs, we apply the Stanza [39]
tokenizer to each identified sentence and try to further split it. The LLM also identified potentially
related sentences. We use this information to identify sentence clusters containing related information.
Such sentence clusters are the basis for the next step, i.e. observation extraction. We successfully
extracted sentence from 227 626 studies (reports) while having parse errors for 209 studies.
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Listing 1: LLM prompt used for sentence extraction.

Extract all sentences from the given textual report.
You will be given a (free-text) medical radiology report describing
< one or more chest X-rays of a single patient.

Rules:
- Split the report into sentences and extract all sentences in the
< report.
- Do not rewrite the sentences!
- For each sentences, identify the its section name (written in the
< report).
If a sentence is not part of a section but is part of the "FINAL
<> REPORT", then use "FINAL\_REPORT\_NO\_SECTION". If a sentence
<~ is not part of a section but the sentence is before the "FINAL
<> REPORT", use the section name "PRE\_FINAL\_REPORT\_NO\_SECTION"
=
- For each sentence, classify the content written therein into one of
<> the following types: [EXAM\_TECHNIQUE, INDICATION, FINDINGS,
<> IMPRESSION, PRE\_FINAL\_REPORT, IGNORE]. This is typically
<> inferred from the section name but may also be influenced by
<> the content of the sentence. Some example sections names for
> each type are given below:
EXAM\ _TECHNIQUE: EXAMINATION, EXAM, TECHNIQUE
INDICATION: INDICATION, INDICATIONS, HISTORY, CLINICAL HISTORY,
< CLINICAL, REASON, REASON FOR EXAM
FINDINGS: FINDING, FINDINGS
IMPRESSION: IMPRESSION, IMPRESSIONS, RECOMMENDATION
PRE\ _FINAL\ _REPORT: WET\_READ, WET\_READ\_VERSION\_#1, PRE\_FINAL\
—» _REPORT\_NO\_SECTION
IGNORE: COMPARISON, COMPARISONS, REFERENCE EXAM, NOTIFICATION
- Split the report into individual sentences and report each sentence
<~ in its own line, removing any newlines present in the sentence.
- For enumerations: each point is considered an independent sentence!
<> Remove the numbering.
- Specify sentence IDs of similar, previous sentences that each
<~ sentence could be merged with. A sentence should be merged with
all previous sentences that either describe the same aspect or
that refer to each other (e.g. if a sentence provides further
details to a previous one). A bullet point may also be
associated with a sentence, even if the other sentence has a
<+ different bullet number or none at all.
- Follow the examples given below!

N
(Y
N
(Y

# Examples:
<FEWSHOT>

# Input Report (extract data from this report):
--- START OF REPORT ---

<REPORT>

--- END OF REPORT ---

# Hints:

- Infer the output format from the examples!

- Do not add any explanations or text BEFORE or AFTER the extracted
> sentences, i.e. start with the first sentence!

# Proceed:
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Listing 2: Few-shot example for sentence extraction.

*x*xExample: Report**xx*
--- START OF REPORT ---

FINAL REPORT
PORTABLE CHEST OF \_\_\_

COMPARISON: \_\_\_ radiograph.

FINDINGS: No pleural effusion or pneumothorax.
--- END OF REPORT ---

*x*Example 5: Output*x**

[S01] FINAL\ _REPORT\_NO\_SECTION(EXAM\_TECHNIQUE) - merge with []:
<5 PORTABLE CHEST OF \_\_\_

[S02] COMPARISON (IGNORE) - merge with []: \_\_\_ radiograph.

[S03] FINDINGS(FINDINGS) - merge with []: No pleural effusion or
<> pneumothorax.

Extracting the Observations In this step, we consider each sentence cluster (as identified during
sentence extraction), in the FINDINGS and IMPRESSION sections. A sentence cluster contains one
or more sentences that describe related aspects and may stretch over one of both of these sections.
From each of these clusters, we now extract mentioned observations using the prompt shown in
Listing [3| with few-shot examples similar to Listing[4, We apply this prompt to each sentence cluster
individually and extract zero, one, or multiple observations each. The output is provided in the
json-format and follows a similar structure as the final observation node, but we optimized it to be
easy to fill by the LLM. The LLM is allowed to freely assign values to each of the json-fields. For
name and summary_sentence, we prompt the model to stay close to the original sentence, but it
must remove any mentions of change and only keep the part relevant to the individual observation (if
several observations are mentioned in one sentence). We successfully extracted observations from
227 266 studies (reports) while having parse errors for 360 studies.

Listing 3: LLM prompt used for observation extraction.

Extract structured information from the given textual report.
You will be given sentences from a (free-text) medical radiology
<> report describing one or more chest X-rays of a single patient.

# Guidelines:
<GUIDE>

# Rules:
- Follow the examples given below!

# Examples:
<FEWSHOT>

# Hints:
Check for any "change" modifiers (see guidelines).
If there is a "change" modifier, rewrite the "summary\_sentence"
<~ such that it describes only what is visible in the current
<> image, without any mentions of change or comparisons! Describe
— the change in the "change\_sentence". Do this for all top-level
<> AND child observations.
- Make sure to include all children of observations, even if they
< repeat information from the parent!

# Proceed with the Input Sentence:
Sentence (s): <SENT>
Output JSON-List:
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Listing 4: Few-shot example for observation extraction.

Sentence(s): Left more than right basilar atelectasis.
Output JSON-List:

[
{

"name": "bibasilar atelectasis", "entity": "atelectasis",

"probability": "positive", "change": null,

"summary\_sentence": "Bibasilar atelectasis.",

"change\_sentence": null,

"regions": ["bibasilar"],

"children": [

{
"child\ _type": "regional\_distinction", "name": "left
<~ basilar atelectasis", "entity": "atelectasis",
"probability": "positive", "change": null,
"summary\_sentence": "Left more than right basilar
<> atelectasis.",
"change\_sentence": null,
"regions": ["left basilar"]
}
1
}
]

Extracting the Indication Next, we extract information about the INDICATION section and detect
which FINDINGS or IMPRESSION sentences may provide information related to the indication.
Therefore, the extracted INDICATION sentences and a list of all FINDINGS and IMPRESSION
sentences are passed to the LLM using the prompt shown in Listing [5| with few-shot examples similar
to Listing[] The LLM predicts a json-structure containing several text fields for summaries of aspects
in the indication, an answer_for_indication derived from the FINDINGS and IMPRESSION
section, as well as relevant sentence IDs. We successfully extracted indictions from 227 596 studies
(reports) while having parse errors for 30 studies.

Listing 5: LLM prompt used for indication extraction.

Extract structured information from the given (free-text) medical
<> report.

You will be given the indication sentence from a report and
<> additionally the sentences from the findings section.

# Rules:

- Extract / summarize the given indication information. Use only the
<> provided indication sentence.

- Additionally, identify the finding sentences associated with the
<> dindication, i.e. the sentence that answer the quesiton of the
< indication or are highly relevant to it. Based on these finding
<> sentences, provide an answer to the question asked in the
< indication.

- Follow the examples given below!

# Examples:

<FEWSHOT>

# Hints:

For each attribute, write full sentences instead of single terms or

<~ bullet points.

- In the "answer\_for\_indication", describe in YOUR OWN WORDS how the
<> question asked in the evaluation can be answered based on the
<> findings. Only include the key information.

- Use the JSON structure from the examples!

# Proceed with the Input:
**Input : *x*
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INDICATION: <IND>
FINDINGS:
<FIND>

*x0utput JSON:*x*

Listing 6: Few-shot example for indication extraction.

**Input : *x*
INDICATION: \_\_\_F with new onset ascites // eval for infection
FINDINGS:
[SO01] There is no focal consolidation, pleural effusion or
<> pneumothorax.
[S02] No acute cardiopulmonary process.

**0utput JSON:*x*
{
"patient\_info": "female",
"indication": "New onset ascites.",
"evaluation": "Evaluate for infection.",
"indication\_summary": "Female with new onset ascites; should be
> evaluated for infection.",
"associated\_findings": ["S02"],
"answer\_for\ _indication": "Evaluation for infection is negative:
<+ There is no acute cardiopulmonary process."

E.1.3 Building Scene Graphs

Entity Mapping We apply semantic entity mapping to modifiers (used to fill the attributes
probability, certainty, positiveness, and modifiers), regions (attribute regions), finding
entities (attribute obs_entities), and changes (attribute changes).

For each of these we consider the associated tags extracted by the LLM during observation extraction
and encode them into text embeddings using the BioLORD [29] model. We also encode all potential
tags and their synonyms, defined for each type of tag in our reference definitions. Then we compute
the cosine similarities of each tag with all reference tags of the same type. We pick the reference tag
with the highest cosine similarity but threshold it at 0.5. If no reference tag was identified with cosine
similarity > 0.5, then we mark the tag as non-resolved. For finding entities, we follow a slightly
more complicated matching approach. Instead of only considering the finding entity tags extracted by
the LLM, we also consider pairs of these entities and extracted region tags as well as the extracted
summary sentences and names for matching. We then try to match each of those with the reference
finding tags and pick the ones with the highest cosine similarities.

The matched reference finding tags are stored in the obs_entities attribute (non-resolved ones
are kept in non_resolved_obs_entities), matched reference regions are stored in the regions
attribute, where we also store the distance as identified by the LLM (non-resolved regions are kept in
non_resolved_regions). The matched changes are store in the changes attribute (non-resolved
changes are discarded). For all modifiers, we use the modifier type defined for the matched reference
tag. We matched all modifiers against all types of modifiers, which means that the modifier type
identified by the LLM can be overwritten during matching. Finally, we extract the probability from
the modifiers (this is a special modifier type), store it in the probability attribute and infer the
certainty and positiveness attributes from it (using the reference definitions). The remaining
modifiers are stored in the modifiers attribute (non-matched ones are discarded).

We additionally try to identify the laterality of the observations. Here, we do not use semantic entity
mapping but rely on keywords instead. We consider the raw finding entities, regions, as well as the
summary sentences, and search for any laterality-related mentions such as left, right, bilateral, and
related terms. From this we infer the laterality and store it into the laterality attribute.
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Reference Data and Standardization Using the reference definitions, we infer all
obs_entities_parents, obs_categories, obs_subcategories, and default_regions from
the matched obs_entities.

Next, we inspect the summary_sentence and name attributes (extracted by the LLM) for underscores
or mentions of changes. We track such issues (which are used for quality assessment) but do not
apply any cleanup. Similarly, we check the change_sentence for underscores and assert that it
contains mentions of changes.

We further inspect the structure of observations and their children. If an observation mentions multiple
different findings and has one child for each of these findings, then we lift these children to the
top-level and discard the parent. Similarly, we merge multiple duplicate observations into one.

Finally, we try to resolve missing regions or improve their precision. If no regions could be extracted,
we rely on the default_regions derived from the obs_entities instead, but consider the identi-
fied laterality. We also check whether these default_regions are more precise than extracted ones.
Then we check whether any identified region contradicts the identified laterality and remove them.
‘We then either split or merge bilateral versions of the same region.

Graph Construction Based on the matched regions, we associate bounding boxes with the observa-
tions if available. Additionally, we build a tree of all mentioned regions and fill missing intermediate
regions based on the reference data. This allows us to build a graph of region nodes relevant to the
study.

We construct region_region_relations based on the reference data alone.
located_at_relations are constructed based on the regions attribute of observations
(direct specified). Additionally, we infer located_at_relations relations for sub regions
(sub_region) and bilateral versions of regions (bilateral). obs_relations are constructed
based on the parent-child structure of observations and their child type, as predicted by the LLM.
obs_sent_relations are constructed based on the sentences each observation was derived from.

Finally, we attach the indication information extracted from the report. Therefore, we build an
additional observation node based on the LLM-extracted answer_for_indication and the LLM-
extracted associated sentences, from which we can infer the associated observations and can infer all
relevant tags.

E.2 Question-Answer Generation
E.2.1 Template Engine

To construct QA-pairs, we develop a template-engine that considers the information in the scene
graphs to construct the answers. The template engine generates a QA-pair by running the following
steps:

1. Filter observations and studies based on the template configuration, e.g. only keeping
observations of specific sub-categories.

2. Run a QA-strategy (indication, study abnormality, region abnormality, or finding) on the
remaining scene graph. The strategy provides multiple named subsets of observations,
variables to fill the template, as well as an overall state consisting of multiple tags (e.g. is
the study positive, are there any devices, ...).

3. Construct the template-based main answer by selecting and filling the answer-template based
on the state returned by the QA-strategy and the returned variables. Tags and bounding
boxes can be inferred from defined observation subsets. (Not all templates provide such
main answers)

4. Pick observation subsets identified by the QA-strategy and convert the observations into
answer parts. The template configuration defines which subsets are picked and how they are
ordered. Additionally, template-based prefix- or fallback-answers can be defined for each
subset. Some subsets can also be excluded based on the QA-strategy state. These answers
can be main-answers, details, or related information as defined in the configuration.

Additionally, the template engine supports variables, i.e. each template can be used to generate
multiple QA-pairs. Variables can either be defined as lists (configured in the template) or can be
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provided by the QA-strategy (which might infer variables from the current scene graph, e.g. all
mentioned regions). The question may then also contain such template variables.

E.2.2 Strategies and Templates

Indication In this strategy, we use the extracted indication (if available) as the question. More
precisely, we use the indication_summary attribute from the indication node as the question text.
The main-answer is constructed from the indication observation (i.e. the answer to the indication
based on the finding sentences), while detail answer parts are constructed based on all associated
finding observations. We include this question, if an indication observation is present in the scene
graph.

Study abnormality In this strategy, we generate questions about abnormalities. This includes
descriptions of the full study or specific categories of observations (e.g. devices), description of only
abnormal findings, and yes/no questions of whether there are positive findings (overall or of specific
categories) present in the study. We use the templates defined in Tab. [T0}

The strategy identifies five types of observations: (i) finding (positive), (ii) finding (negative), (iii)
device (positive), (iv) device (negative), (v) acquisition. Based on the specific template, these are
selected as main-answers, details, or related information. Additionally, a template answer can be
included, which is selected based on whether the study is abnormal or not. Some templates use
different subcategories as variables, i.e. one question is generated for each of the defined subcategories,
where observations are filtered based on this subcategory.

Table 10: Study abnormality templates.

Template (ID) Question Example Variables Main answer Details Related Inf.
finding (positive)
. device (positive)
describe_all Describe the given study. - device (negative) — -

BO1_d ib 11 i i
_describe_a finding (negative)

acquisition

describe_abnormal

BO2_describe_abnormal Describe all abnormal find- — finding (positive) — device (positive)

ings in the given study.

is_abnormal template . . device (positive)

BO3_is_abnormal i/?]rgesshere any abnormal find- — finding (positive) finding (negative) finding (negative)

is_normal finding (positive) finding (negative)
? _

BO4_is_normal Is the study normal? template finding (negative) device (positive)

describe_subcat finding (positive)

Evaluate the cardiac struc- subcategory - -

B08_describe_subcat finding (negative)
tures.

describe_abnormal_subcat

BO9_describe_abnormal_subcat Describe any pulmonary dis- subcategory finding (positive) — -

eases and disorders suggested
by the study.

is_abnormal_subcat
B10_is_abnormal_subcat

template

Are there any fractures or subcategory finding (positive)

bone diseases apparent from
the study?

finding (negative) finding (negative)

is_normal_subcat
B11_is_normal_subcat

template

Are the mediastinal and hilar subcategory finding (positive)

contours normal?

finding (negative) finding (negative)

describe_device
B12_describe_device

Check the presence and posi- subcategory device (positive) -

tion of devices, tubes, lines, device (negative)
and other foreign objects.

has_devices
B13_has_devices

template

Are there any signs of prior subcategory device (positive)

surgical procedures?

device (negative) device (negative)

describe_acquisition

B14_describe_acquisition Assess the image quality and — acquisition _ _

describe aspects related to im-
age acquisition.

describe_imaging_artifacts

B15_describe_imaging_artifacts Describe any apparent imag- — acquisition - _

ing artifacts and imaging-
related shadows.

has_imaging_artifacts
B16_has_imaging_artifacts

. . . template
Are there any imaging arti- — P - -

. . acquisition
facts or imaging-related shad- q
ows?

33



1050
1051
1052

1053
1054
10565
1056
1057

1058
1059
1060
1061
1062
1063
1064
1065
1066

1067

1068
1069
1070

1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086
1087

Region abnormality In this strategy, we generate question about anatomical regions. This includes
describing regions, answering yes/no questions about the abnormality of regions, or describing
specific aspects of regions (e.g. devices). We use the templates defined in Tab. [T}

For a given region, the strategy first identifies observations associated with that region and classifies
them into the five types defined in the study abnormality strategy. Additionally, it identifies observa-
tions in related regions. This includes positive findings in parent regions or the opposite laterality.
Additionally, a template answer can be included, which is selected based on whether the region is
abnormal or not.

Before generating QA-pairs, the strategy first identifies a set of regions. For each of these regions
an individual QA-pair is generated. The set of regions is computed as follows: We always include
a set of pre-defined default regions (the lungs, the heart, ...) and include all regions explicitly
mentioned in observations, as well as their parent regions. Additionally, we randomly sample regions.
Their sampling probabilities are computed based on how often they are associated with positive vs.
negative findings, i.e. the more often a region is associated with positive findings and the less often
it is associated with negative findings, the more often we sample it as a question. This assures that
we generate additional negative questions for regions that are only/mostly mentioned with positive
findings.

Table 11: Region templates.

Template (ID) Question Example Variables Main answer Details Related Inf.

finding (positive)

describe_region device (positive)

C01_describe_region Describe the left lung. region finding (negative) related regions
device (negative)
describe_abnormal_region Describe all abnormal find- region finding (positive) — device (positive)

C02_describe_abnormal_region related regions

ings in the lung bases.

is_abnormal_region
C03_is_abnormal_region

template device (positive)

Are there any abnormal find- region finding (positive) finding (negative)

ings in the mediastinum?

related regions

is_normal_region . . template . . finding (negative)
. . Is the heart normal? region | L region (positive) ;
C04_is_normal_region finding (positive) related regions
describe_region_device . . region device (positive .
—fegion.. Check the right chest for im- s P ) related regions

CO7_describe_region_device subcategory device (negative)

plants.

has_region_device
C08_has_region_device

region template
subcategory device (positive)

device (negative)

Are there any tubes, lines, or >
related regions

ports in or near the left lung?

device (negative)

Finding In this strategy, we generate question about specific findings (radiological findings, diseaes,
devices, ...). This includes descriptions of findings, yes/no questions about the presence of findings,
location of findings, and severity of findings. We use the templates defined in Tab.[T2]

For a given finding/device entity, the strategy first identifies observations associated with it and
classifies them into the five types defined in the study abnormality strategy. Additionally, it identifies
observations that contain related finding/device entities. This includes parent findings (i.e. findings
that are parents of the current one), same subcat findings (i.e. findings having the same sub-category),
correlated findings (based on statistics computed over the whole scene graph dataset), indications of
the current finding, and findings that are indicative of the current finding. The observation subset can
be selected based on the template configuration. Additionally, a template answer can be included,
which is selected based on whether the finding is present or not and based on severity levels. This
template may also be filled with information about the localization of the finding.

Before generating QA-pairs, the strategy first identifies a set of finding/device entities. For each
of these entities an individual QA-pair is generated. The set of entities is computed as follows:
We always include a set of pre-defined default entities and include all entities explicitly mentioned
in observations, as well as their parent entities. Additionally, we randomly sample entities. Their
sampling probabilities are computed based on how often they are mentioned positively vs. negatively
(over all scene graphs), i.e. the more often a finding is mentioned positively and the less often it
is mentioned negatively, the more often we sample it as a question. This assures that we generate
additional negative questions for findings that are only/mostly mentioned positively.
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Table 12: Finding templates.

Template (ID) Question Example Variables Main answer Details Related Inf.

parent findings
. . . finding (positive) }nd¥cat¥ons
Describe the pleural effusion. finding finding (negative) indicative of
i same subcat

correlated

describe_finding
DO1_describe_finding

parent findings
finding (positive) indications
finding (negative) same subcat

correlated

has_finding

DO2_has_finding Is there any indication of pneu- finding  template

monia?

where_is_finding
DO3_where_is_finding

finding (positive) parent findings

Where is the lung nodule lo- finding  template finding (negative) indications

cated?

how_severe_is_finding
D04 _how_severe_is_finding

finding (positive) parent findings

How severe is the car- finding template finding (negative) indications

diomegaly?

describe_device
DO5_describe_device

Describe the endotracheal device dev1ce (posmye) - parent findings
tbe. device (negative) same subcat

has_device
D06_has_device

device (positive)

. . same subcat
device (negative)

Is a pacemaker visible in the device  template
study?

where_is_device
DO7_where_is_device

device (positive)

. N same subcat
device (negative)

‘Where are the surgical clips device template
located?

E.3 Quality Assessment

Scene Graph Quality The scene graph quality aspects are computed by simply inspecting the
observations nodes and checking which fields are set or empty. Additionally, we track issues during
the graph construction procedure and derive quality aspects from them.

QA Quality We automatically assess the quality of the textual content of QA-pairs using Llama 3.1
8B [26] as a judge for the five criteria presented in Tab.[9]

For rating entailment (Listing[7)), we condition the model on the report, the question, as well as the
answer parts and we rate each answer part individually.

Listing 7: LLM prompt used for entailment evaluation of generated answers.

You will be given a Report (medical report of a chest X-ray study), a
< Question (about the study), and an Answer (to the question)
<> consiting of several (numbered) sentences.

Your task is to assess/rate whether each of the answer sentences is
<~ true or not, given a the reference report about the chest X-ray
<~ . This task is known as entailment verification.

Assess the quality of each answer sentence independently and use one
<~ of the rating options provided below to assess how well the
<~ facts in each sentences align with the report.

# Guidelines:

- Rate each sentence in the Answer individually; do NOT use any prior
> answer sentences as context or source

- Provide the rating for each answer sentences in its own line
<> starting with the sentence number followed by your rating

- For each sentence, use ONE of the rating options provided below, do
<~ NOT use any other options

- An example format will be provided

- DO NOT REPEAT the question or answer sentences in your response!

## Rating Options —— ONLY USE ONE OF THE FOLLOWING OPTIONS
- ALIGNED_MENTIONED: Answer aligns with the report (is factually
< correct) and all facts are explicitly stated in the report.
Example: The same finding is described in the answer and the
<~ report
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- ALIGNED_INFERABLE: Answer aligns with the report (is factually
< correct) but some facts are NOT explicitly stated in the report
~» , can however be derived from what is written there.
Example: The answer provides a more general description of what is
> writtem in the report.
- ALIGNED_NEGATIVE_NOT_MENTIONED: Answer does NOT contradict the
— report (may factually correct) but some facts (negative
< findings) cannot be derived from the report, are however likely
<> correct because they are negative findings and nothing
<> contradictory is mentioned in the report.
Example: The answer mentions that a finding is not present but
<~ this is not explicitly mentioned and does not contradict
<~ anything in the report.
- ALIGNED_GENERAL_STATEMENT: Answer is a more general statement or
<> summary that is not explicitly mentioned but aligns roughly
<~ with the overall report.
Example: Summaries of whether the study is positive or negative.
- NON_ALIGNED_NON_INFERABLE: Answer does NOT contradict the report but
<> the correctneaa of some facts cannot be validated using the
— report.
Example: The answer mentions that a finding is present but this is
<> mnever mentioned in the report and cannot be concluded from
— it.
- NON_ALIGNED_MISLEADING: Answer does NOT directly contradict the
<~ report but the description is highly misleading considering the
<~ report.
Example: The answer mentions that a finding is not present, which
<~ is never mentioned in the report but could likely be
<> present considering the report.
- NON_ALIGNED_CONTRADICTING: Answer contradict with the report.
Example: The answer describes that a finding is not present, which
<> 1s however mentioned as present in the report or vice
< versa.

# Example Format:
Report:
--- START OF REPORT ---

--- END OF REPORT ---
Question:

Answer (2 sentences to rate):
[01] First answer sentence.
[02] Second answer (last sentence in this example).

Rating (provide 2 ratings):
[01] ALIGNED_MENTIONED
[02] NON_ALIGNED NON_INFERABLE

# Proceed with the following Report, Question, and Answer sentences:
Report:

--- START OF REPORT ---

<REPORT>

--- END OF REPORT ---

Question: <QUEST>

Answer ( <NUMANS> sentences to rate):
<ANSWERS>

Rating (provide <NUMANS> ratings):
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For rating relevance (Listing[§), we condition the model on the question as well as the answer parts
(but not on the report) and we rate each answer part individually.

Listing 8: LLM prompt used for relevance evaluation of generated answers.

You will be given a question (about a chest X-ray study), and an
> answer (to the question) consiting of several (numbered)
<> sentences.

Your task is to assess/rate whether each of the answer sentences
<> relevant to answer the question or is redundant.

Assess the quality of each answer sentence and use one of the rating
> options provided below.

Guidelines:
- Rate each sentence in the answer individually; but check for
<> redundancy with previous sentences.
- Provide the rating for each answer sentences with the sentence
<~ number followed by your rating.
- For each sentence, use ONE of the rating options provided below, do
<> NOT use any other optiomns.
- An example format will be provided.
- DO NOT REPEAT the question or answer sentences in your response!

## Rating Options —— ONLY USE ONE OF THE FOLLOWING OPTIONS
- RELEVANT_MAIN_ANSWER: Fullfill ALL of the following
a) Are relevant to the question
b) Are needed to answer the question or provide details
c) Are not redundant to previous RELEVANT_MAIN_ANSWER sentences
- RELATED_INFO: Fullfill ALL of the following
a) Are NOT needed to answer the question
b) Provide additional context related to the question or other
< answer sentences
c) Are not redundant to any previous sentences
- REDUNDANT_INFO(...): Fullfill ALL of the following
a) Would fullfill criteria a-b) for RELEVANT_MAIN_ANSWER, or
— RELATED_INFO
b) Contains exactly the same information that was already provided
<~ in a previous sentence of the same type (ONLY consider
<> previous sentences here!)
c) Does not provide any additional details or related information
d) Could be removed without changing the content of the answer
Note: replace ... with the sentences IDs OF PREVIOUS SENTENCE with
<> which the current sentence is redundant
- IRRELEVANT_INFO: Fullfill ALL of the following
a) Does not classify as any of the above
b) No information in the sentence is relevant or related to the
> question

# Example Format:
Question:

Answer (4 sentences to rate):

[01] First answer sentence.

[02] Second answer.

[03] Third answer, containint no additional information, everything
<~ was already mentioned in 01 and 02.

[04] Fourth sentence.

Rating (provide 4 ratings):
[01] RELEVANT_MAIN_ANSWER

[02] IRRELEVANT_INFO

[03] REDUNDANT_INFO(01,02)
[04] RELATED_INFO
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# Proceed with the following Question and Answer sentences:
Question: <QUEST>

Answer ( <NUMANS> sentences to rate):
<ANSWERS>

Rating (provide <NUMANS> ratings):

For rating completeness (Listing[9), we condition the model on the report, the question, as well as the
full answer and we rate the full answer as a whole.

Listing 9: LLM prompt used for completeness evaluation of generated answers.

You will be given a Report (medical report of a chest X-ray study), a
<> Question (about the study), and an Answer (to the question)

Your task is to assess/rate whether the provided Answer contains all
<~ the necessary information to answer the Question, considering
<~ the Report as the source of truth.

**

Guidelines:

- Do not assess whether the answer is correct but whether it is
<~ contains all relevant information from the Report to answer the
<> Question.

- Use ONE of the rating options provided below, do NOT use any other
> options.

- Answer with a short explanation (a few words) followed by "->" and
<> the rating option.

- An example format will be provided.

- DO NOT REPEAT the report, question, or answer sentences in your

<~ response!

## Rating Options —— ONLY USE ONE OF THE FOLLOWING OPTIONS
- FULLY_COMPLETE: All facts from the report that are relevant to the
> question are included and the question is answered.
DETAILS_MISSING: The main facts from the report that are relevant to
<~ the question are included BUT some details are missing.
NOT_ANSWERED: While facts from the report may be contained, the
< answer does not relate to the question at all.
INCOMPLETE_NON_MISLEADING: Main facts are missing, but these should
<+ not lead to a misrepresentation of the facts (e.g. only some
< negative findings are not mentioned).
INCOMPLETE_MISLEADING: Important facts are missing, such that the
<> answer may mislead the reader.

# Example Format:
Report:

--- START OF REPORT ---
--- END OF REPORT ---
Question:

Answer (to rate):

Rating (your task):
severity is missing -> DETAILS_MISSING

# Proceed with the following Report, Question, and Answer:
Report:

--- START OF REPORT ---

<REPORT>
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--- END OF REPORT ---
Question: <QUEST>

Answer (to rate):
<ANSWERS>

Rating (your task):

For rating question clarity (Listing [I0), we condition the model on the question only and rate it.

Listing 10: LLM prompt used for question clarity evaluation of generated questions.

You will be given a medical Question about a radiological chest X-ray
— study (which is not provided).

Your task is to assess/rate the clarity of the Question, i.e. whether
<> its wording is clear and unambiguous, and whether it is easy to
<> understand and answer.

# Guidelines:

- Use ONE of the rating options provided below, do NOT use any other
<> options

- Answer with a short explanation (a few words) followed by "->" and
<~ the rating option

- An example format will be provided

- DO NOT REPEAT any part of the question or answer sentences in your
<~ response!

## Rating Options —— ONLY USE ONE OF THE FOLLOWING OPTIONS

- OPTIMAL: The question is mostly clear, unambiguous, and can be
<~ answered. It is well-structured and concise without grammatical
<~ errors.

- UNUSUAL_SENTENCE_STRUCTURE: The question is mostly clear,
<> unambiguous, and can be answered. However, the sentence
<~ structure is unusual or complex. There are no grammatical
< errors.

- GRAMMATICAL_ERRORS: The question is mostly clear, unambiguous, and
<~ can be answered. However, there are grammatical errors that may
< affect the clarity. The sentence may or may not be well-
<+ structured.

- UNRELATED_TO_CHEST_XRAY: The question is mostly clear and
<> unambiguous. However , it does not make sense to ask this
<> question about a chest X-ray study, because it does not relate
<~ to the content that can be observed in a chest X-ray. There may
<> or may not be grammatical errors or unusual sentence structure
— .

- UNCLEAR_QUESTION: The question may be misunderstood, is ambiguous,
<~ or otherwise unclear. Any answer could be misleading or
<> dncorrect, even with proper medical knowledge and context.
< There may or may not be grammatical errors or unusual sentence
<> structure.

Note that simply stating the indication/history motivating the study
— 1is considered a valid question (and should not be rated as

<> UNCLEAR_QUESTION solely for not being an explicit question)!

# Example Format:
Question (to rate):

Rating (your task):
The question is unrelated to chest X-rays -> UNRELATED_TO_CHEST_XRAY

# Proceed with the following Question:
Question (to rate): <QUEST>
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Rating (your task):

For rating answer clarity (Listing[TT), we condition the answer parts only (but not on the report or
question) and we rate each answer part individually.

Listing 11: LLM prompt used for answer clarity evaluation of generated answers.

You will be given a medical Answer to an unknown question about a
< radiological chest X-ray study (which is not provided).
Your task is to assess/rate the clarity of each sentence of the Answer
, i.e. whether its wording is clear and unambiguous, and
<~ whether it is easy to understand.

e o

Guidelines:

- Rate each sentence in the Answer individually; do NOT use any prior
<> answer sentences as context or source

- Provide the rating for each answer sentences in its own line
<~ starting with the sentence number followed by your rating

- For each sentence, use ONE of the rating options provided below, do
<> NOT use any other optionmns

- An example format will be provided

- DO NOT REPEAT the question or answer sentences in your response!

## Rating Options —— ONLY USE ONE OF THE FOLLOWING OPTIONS

- OPTIMAL: The answer sentence is mostly clear and unambiguous. It is
<+ well-structured and concise without grammatical errors.

- UNUSUAL_SENTENCE_STRUCTURE: The answer sentence is mostly clear and
<> unambiguous. However , the sentence structure is unusual or
< complex. There are no grammatical errors.

- GRAMMATICAL_ERRORS: The answer sentence is mostly clear and
> unambiguous. However , there are (severe) grammatical errors
<> that affect the clarity. The sentence may or may not be well-
— structured.

- UNCLEAR_ANSWER: The answer sentence may be misunderstood, is
<~ ambiguous, or otherwise unclear. There may or may not be
<> grammatical errors or unusual sentence structure.

- NOT_UNDERSTANDABLE: The answer sentence cannot be understood at all.
< It is completely unclear, nonsensical, gibberish, or
< contradictory in itself. There may or may not be grammatical
<> errors or unusual sentence structure.

# Example Format:

Answer (4 sentences to rate):

[01] This first sentence.

[02] This is the second answer sentence.

[03] Some text where it is unclear what is meant.
[04] This is the last answer sentence.

Rating (provide 4 ratings):
[01] GRAMMATICAL_ERRORS
[02] OPTIMAL

[03] UNCLEAR_ANSWER

[04] OPTIMAL

# Proceed with the following Answer sentences:
Answer ( <NUMANS> sentences to rate):
<ANSWERS>

Rating (provide <NUMANS> ratings):
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E.4 Resources for Dataset Construction and Evaluation
E.4.1 Source Datasets

MIMIC-CXR [14], [15], [21] We use the MIMIC-CXR dataset version 2.1.0 (https://
physionet.org/content/mimic-cxr/2.1.0/ as the source of radiology reports from which
we extract the scene graphs. It contains 227 835 radiographic (chest X-ray) studies performed at
the Beth Israel Deaconess Medical Center in Boston, MA, USA. It is licensed under the PhysioNet
Credentialed Health Data License 1.5.0.

MIMIC-CXR-JPG [15], [24], [25] We use the MIMIC-CXR-JPG dataset version 2.1.0 (https:
//physionet.org/content/mimic-cxr-jpg/2.1.0/) as the source of images for localization
(the CXAS segmntation model is applied on these images). Additionally, we use the provided
radiologist annotations (mimic-cxr-2.1.0-test-set-labeled.csv) as targets to evaluate the
quality of extracted finding tags (Tabs.[Za|and ). The dataset is derived from MIMIC-CXR and is
licensed under the PhysioNet Credentialed Health Data License 1.5.0.

Chest ImaGenome [15[, [17], [19] We use the Chest ImaGenome Dataset version 1.0.0
(https://physionet.org/content/chest-imagenome/1.0.0/) as a source of anatomical re-
gion bounding boxes for localization. Additionally, we use their provided scene graphs as a baseline
for the evaluations of our scene graphs (Tabs. [2]and ] to [7). It contains scene graphs for 242 072
frontal images from MIMIC-CXR that have been created using rule-based natural language process-
ing and CXR atlas-based bounding box detection. The dataset is derived from MIMIC-CXR and is
licensed under the PhysioNet Credentialed Health Data License 1.5.0.

CXR-LT 2024 [15], [30], [34] We use the CXR-LT 2024 dataset version 2.0.0 (https://
physionet.org/content/cxr-1t-iccv-workshop-cvamd/2.0.0/)) as targets to evaluate the
quality of extracted finding tags (Tabs.[2a]and [5). More precisely, we use the gold standard dataset
provided for Task 2 in the CXR-LT 2024 challenge tasks (406 reports, 26 classes). The dataset is
derived from a small subset of MIMIC-CXR and was hand-labeled by radiologists. It is licensed
under the PhysioNet Credentialed Health Data License 1.5.0.

MS-CXR [15], [31], [35] We use the MS-CXR dataset version 1.1.0 (https://physionet.org/
content/ms-cxr/1.1.0/) as targets to evaluate the quality of extracted finding boxes (Tabs.
and[6). The dataset contains 1162 image-sentence pairs of bounding boxes and corresponding phrases
(and their finding classes) for 8 different findings. It is derived from a small subset of MIMIC-CXR
and was hand-labeled by radiologists. It is licensed under the PhysioNet Credentialed Health Data
License 1.5.0.

REFLACX [15], [32], [36] We use the REFLACX dataset version 1.0.0 (https://physionet.
org/content/reflacx-xray-localization/1.0.0/)) as targets to evaluate the quality of ex-
tracted finding boxes (Tabs. 2bland[7). The dataset provides eye-tracking data collected for 3032
frontal chest x-rays from the MIMIC-CXR dataset. Additionally, it provides hand-labeled ellipses
localizing for several anomalies present in the images. We only use the ellipses but do not use the
eye-tracking data. It is licensed under the PhysioNet Credentialed Health Data License 1.5.0.

E.4.2 Models

Llama 3.1 70B [26] We use the AWQ-INT4 [40] quantized version of Llama 3.1 70B Instruct pro-
vided by the Huggingface hub at https://huggingface.co/hugging-quants/Meta-Llama-3.
1-70B-Instruct-AWQ-INT4. The model is derived from the https://huggingface.co/
meta-Ilama/LIlama-3.1-70B-Instruct and is licensed under the LLAMA 3.1 COMMUNITY
LICENSE AGREEMENT. We limit the maximum number of tokens to 6144.

Llama 3.1 8B [26] We use the AWQ-INT4 [40] quantized version of Llama 3.1 70B pro-
vided by the Huggingface hub at https://huggingface.co/hugging-quants/Meta-Llama-3,
1-8B-Instruct-AWQ-INT4. The model is derived from the https://huggingface.co/
meta-1lama/Llama-3.1-8B-Instruct and is licensed under the LLAMA 3.1 COMMUNITY
LICENSE AGREEMENT. We limit the maximum number of tokens to 8192.
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CXAS [22]], [23] We use the model provided by the CXAS Python library https:
//pypi.org/project/cxas/. See also https://github.com/ConstantinSeibold/
ChestXRayAnatomySegmentation. It is licensed under the Attribution-NonCommercial-
ShareAlike 4.0 International license. We run segmentation of all anatomical structures on half the
original image resolution (half original image width and height).

BioLORD [29] We use the BioLORD-2023-C variant provided by the Huggingface model hub
athttps://huggingface.co/FremyCompany/BioLORD-2023-C and licensed under the MIT li-
cense. To apply the model, we use the Sentence Transformers library (https://github.com/
UKPLab/sentence-transformers), which is licensed under the Apache-2.0 license.

Model Inference Details For all LLM-based information extraction steps, we rely on the vVLLM
library [41] (https://github.com/v1lm-project/v1lm, Apache-2.0 license) for inference. We
run all models with temperature = 0.0. All json-outputs are parsed using the Pydantic libary
(https://docs.pydantic.dev).

E.4.3 Computational Costs

Each dataset construction step can run on an individual Nvidia A100 GPU, but we use multiple GPUs
in parallel, with each GPU responsible for a different subset of the dataset. Semantic segmentation of
all 158 anatomical structures using the CXAS models takes about 6 seconds per image, leading to a
total of about 628 GPU hours. Sentence extraction takes about 1 second per study (report), leading to
a total of about 65 GPU hours (for 227 835 studies). Observation extraction takes about 1.7 seconds
per study, leading to a total of about 108 GPU hours. Indication extraction takes about 0.3 seconds per
study, leading to a total of about 19 GPU hours. Scene graph construction (including entity matching)
takes about 0.6 seconds per study, leading to a tool of about 38 hours. Question-answer generation
does not require a GPU but takes about 9 seconds per study (including all question templates and
strategies), leading to a total of about 24 days. However, multiple processes can be run in parallel
on a single machine, leading to an effective time of only about a day for all 42M QA-pairs. Quality
assessment of QA texts again requires a GPU and consists of 5 individual steps that can be run in
parallel. Overall the assessment takes about 6 GPU days for all 42M QA -pairs.

E.5 Dataset Release

We release the dataset as a credentialed dataset on the Physionet [15] platform (https://physionet,
org/)) under the PhysioNet Credentialed Health Data License 1.5.0 (https://physionet.org/
about/licenses/physionet-credentialed-health-data-license-150/). This makes the
dataset openly accessible to all researches credentialed by PhysioNet, which requires a short online
training. This type of hosting is required because we derived our dataset from the MIMIC-CXR [[14]]
dataset. Additionally, this is also a responsible safeguard to protect the data that is (indirectly) derived
from patient health data. While enabling researchers access to the dataset, it limits the access for
other purposes. Additionally, it requires researchers to complete a privacy and ethics course. Code to
construct the dataset and to train on it is made openly available.

Societal Impact As a large vision-language dataset for medical imaging, this dataset has significant
potential for societal impact. However, its use as a training source for models employed in clinical
or medical applications also poses a substantial risk of misdiagnosis, highlighting the need for
caution. Therefore, we strongly advise against relying solely on this dataset for fine-tuning or
evaluating such models. On the other hand, this dataset can facilitate the development of large
and interactive VQA models, which can provide supplemental information for patients, serve as a
training tool for healthcare professionals, or optimize clinical workflows. The provided annotations,
including bounding boxes and tags, further enhance its utility by providing a level of transparency
and explainability in model predictions, allowing for more informed interpretation and analysis. By
sparking research in this direction, this dataset can contribute to the advancement of the field and
ultimately lead to positive long-term societal impacts. Nevertheless, it is essential to approach this
dataset with caution, recognizing its limitations and potential risks if used improperly. As such, we
consider this dataset a valuable research asset, but not yet suitable as a (sole) training source for
real-world medical applications, emphasizing the need for careful evaluation and validation.
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F.1 Further Structured VQA Results

Table 13: Further results of our structured VQA task (Sec.[S). We show all the metrics from Tab.
with additional sub-metrics of our RadStrucVQA metric. Besides our default VQA model and the
MAIRA-2 baseline, we also show alternative settings of our VQA model, namely training without
bounding boxes and/or tags and predicting bounding boxes and tags before or after the text. Apart
from these adaptions, the experimental setup was the same as in Sec.[5] We found that none of these
adaptions has major influences on the results (apart from being capable of predicting boxes/tags),
indicating that text, boxes, and tags in our dataset do not contradict each other. However, we observed
minor improvements in text quality by adding bounding boxes

Model Ours (ablations) Ours (default) MAIRA-2 [18]
Boxes X v v v v v
Tags X X X v v v
Text only text  after text  before text  after text before text after text

Logical Prec.. 0.75 0.76 0.76 0.76 0.76 0.25

Logical Rec.. 0.74 0.75 0.75 0.75 0.75 0.64

Logical F1. 0.74 0.74 0.75 0.75 0.75 0.27

% Grounding Prec.. - 0.88 0.87 0.88 0.87 0.69

% Grounding Rec.. - 0.88 0.90 0.88 0.89 0.12

&  Grounding F1. - 0.83 0.83 0.83 0.83 0.32

Spatial Prec.. - 0.68 0.67 0.68 0.67 0.12

Spatial Rec.. - 0.67 0.68 0.68 0.68 0.07

Spatial F1. - 0.63 0.63 0.64 0.63 0.06
Finding Prec. - - - 0.68 0.68 -
Finding Rec. - - - 0.67 0.66 -
Finding F1 - - - 0.68 0.67 -
Finding-pos Prec. - - - 0.40 0.41 -
Finding-pos Rec. - - - 0.29 0.26 -
Finding-pos F1 - - - 0.39 0.39 -
Region Prec. - - - 0.67 0.67 -
Region Rec. - - - 0.66 0.66 -
Region F1 - - - 0.66 0.67 -
Region-pos Prec. - - - 0.29 0.34 -
@; Region-pos Rec. - - - 0.21 0.21 -
€  Region-pos F1 - - - 0.29 0.32 -
< Main-category Prec. - - - 0.73 0.73 -
% Main-category Rec. - - - 0.70 0.70 -
E Main-category F1 - - - 0.72 0.72 -
ﬁ Main-category-pos Prec. - - - 0.49 0.52 -
o Main-category-pos Rec. - - - 0.36 0.34 -
Main-category-pos F1 - - - 0.47 0.49 -
Sub-category Prec. - - - 0.71 0.71 -
Sub-category Rec. - - - 0.67 0.67 -
Sub-category F1 - - - 0.69 0.69 -
Sub-category-pos Prec. - - - 0.47 0.50 -
Sub-category-pos Rec. - - - 0.34 0.32 -
Sub-category-pos F1 - - - 0.45 0.46 -
Bbox-pos-entity Prec. - - - 0.31 0.32 -
Bbox-pos-entity Rec. - - - 0.22 0.20 -
Bbox-pos-entity F1 - - - 0.26 0.26 -

*QOur RadStrucVQA implementation.
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F.2 RadStrucVQA Metric

Following the RadFact [[18]] metric, we split the predictions into individual elements. In our case, we
treat each answer part as its own element, ignoring the hierarchy level and order. For each QA-sample,
this results in a set of prediction elements ji, where }37‘ is the number of answer parts in the predicted
answer, and a set of target elements )/, where |y | is the number of answer parts in the target answer.

For each RadStrucVQ sub-metric (sub € {logical, grounding, finding, . .. }), we compute a sample-
level precision pg,1, and recall 74,1, score individually:

Psub (37 )
(

) = s (9.9) (M
>,y (¥

) = s (9.9) @)

where squ1, (H,C) € [0, 1] is a sub-metric specific scoring function considering the hypothesis set
given the context set C. For precision H = ) is the prediction set and C =} is the target set, while
forrecall H = Y and C = ).

The score sgy,1, is computed as the fraction of relevant hypothesis elements h € H that are entailed,
using a sub-metric specific entailment definition, given the context C. More precisely:

T'sub

Hh € H | entailedguy, (h, C[R]) A relevantsub(h)}‘

Ssub (ch) = ) (3)
Hh eH ‘ relevantsub(h)}’
where C[h] is the evidence from C for h defined as
Clh] = {c eC |h is logically entailed with C A ¢ provides evidence for h} . )

We compute C[h] by prompting an LLM to (i) identify entailment of / given all context elements in C,
where h can be ENTAILED or NOT_ENTAILED (neutral or contradicting); and (ii) provide the relevant
evidence for entailment, i.e. the context units ¢ € C that support h. The LLM is given only the textual
descriptions of each element (answer part), i.e. the entailment classification is purely logical and does
not consider localization or any tags. Note that C[h] = {} if h is not entailed.

Given the hypothesis h and its evidence C[h], the sub-metric entailment is computed individually by

entailedg,, (h, C[h]) € {true, false}, 5)

while the relevant subset of hypothesis elements is identified using the sub-metric specific

relevantgy, (h) € {true, false} . 6)

The definitions for each sub-metric can be found in Tab.
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Table 14: RadStrucVQA sub metric definitions. The logical, grounding, and spatial sub-metrics
follow the same principles as the corresponding sub-metrics in RadFact [|18].

Sub-metric entailedgyp (b, C[h]) relevantgy,p, (h)

C[h] is not empty
logical ie. there is positive evidence for h in C always true
and h does not contradict C
entailedogical (h7 C[h]) AToH(h,C[h]) > 0.5

grounding where IoH is the Intersection between boxes in h and boxes in C[h]
over the total box area in h,
with intersection/area computed based on box-masks (unions of boxes)

h has bounding boxes A
entailed]ogical (h, C[h])

spatial entailedgrounding (P, C[R]) h has bounding boxes

entailedlogical(h, C[h]) A
finding each of the finding tags in h is present in any of C[h], h has finding tags
only considering the subset of C[h] with the same positivity

relevantsinding (h) A

finding-pos entailedfinding (h, C[h]) h is positive

entailedlogiwl(h, C[h]) A
region each of the region tags in h is present in any of C[h], h has region tags
only considering the subset of C[h] with the same positivity

relevant,egion (h) A

region-pos entailedyegion (7, C[h]) h is positive

entailediogical (1, C[R]) A
main-category each of the finding main category tags in h is present in any of C[h],  h has finding main category tags
only considering the subset of C[h] with the same positivity

relevantmain—category (h) A

main-category-pos entailedmain—category (1, C[h]) h is positive

entailediogical (1, C[R]) A
sub-category each of the finding sub category tags in h is present in any of C[h], h has finding sub category tags
only considering the subset of C[h] with the same positivity

releVantsubfcategury (h) A

sub-category-pos entailedsub—category (h’ c [h]) h is positive

relevantsinding —pos (h) A

bbox-pos-entity entailedginding (h, C[h]) A entailedgrounding (7, C[h]) relevant T(h)
spatia

Implementation Details The final precision/recall scores are computed by averaging the sample-
level scores. F1 scores can also be computed by first taking the per-sample harmonic mean of
precision and recall before averaging the sample-level F1 scores. Invalid answers, samples with
LLM parse errors during entailment computation, as well as samples without relevant hypotheses are
ignored during averaging. We use the same entailment prompts and few-shot examples as in RadFact
[18]] but use the Llama 3.1 8B [26] model, allowing us to compute the metric locally.

F.3 Experimental Setup

Vision-Language Model Training Our vision-language model follows the Llava architecture [37],
using Rad-DINO [38]] (microsoft/rad-dino) for image encoding and the 3B Llama 3.2 language
model (https://huggingface.co/meta-1lama/Llama-3.2-3B-Instruct) connected via an
MLP projection layer. We freeze the image encoder and all existing language model parameters
but add new special tokens (with trainable embeddings) and apply LoRA [42] to the language
model. Therefore, we only train the projection layer, the LoRA parameters, and the newly added
token embeddings (keeping the existing token embeddings frozen). We train for one epoch on 1M
samples from our CXR-QBA fine-tuning grade dataset (MIMIC-CXR’s train split), where we use
autoregressive training but only apply the loss to answer tokens. For image encoding and projection,
we adopt the hyperparameters of MAIRA-2 [18]: We square-crop the images and resize them to
518 x 518, leading to 37 x 37 = 1369 image patches (i.e. image tokens), then we use the features
of the last image encoder layer, and project the image tokens using 4 projection layers with GeLU
activations. For LoRA, we use r = 64, a = 16, and dropout 0.05. The maximum number of tokens
for the language model is restricted to 2048. We use the AdamW optimizer with cosine annealing
scheduling with 500 warmup steps, maximum learning rate le — 3, no weight decay, a batch size
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of 4 with 16 accumulation steps, gradient norm clipping at 1.0, and bf 16 precision. The model is
evaluated on the test split (following MIMIC-CXR) of our CXR-QBA fine-tuning grade set.

Prompt and Special Tokens Our question prompt follows the template shown in Listing
where <boi> (begin of image), <eoi> (end of image), and <imgref1> (first image reference) are
newly added special tokens, <img> tokens are replaced by image token features, and {QUESTION? is
replaced by the specific question.

Listing 12: Question prompt.

Consider the following chest X-ray image: <boi><imgrefl><img>...<eoi>
<> {QUESTION}

The answers are formatted into sequences using XML-style structures and special tokens to represent
tags and bounding boxes. An example is given in Listing[T3]

Listing 13: Answer prompt.

<answer >
<regions ><bilateral ><lungs></regions>
<probability><certain><neg><probability>
<categories>
<ANATOMICAL_FINDING><DISEASE>
<subcat >LUNG FIELD</subcat><subcat>PULMONARY DISEASES</subcat>
</categories>
<entities><entity>pneumothorax</entity></entities>
<modifiers></modifiers>
<box><imgrefl><x51><y18><x90><y87 ><box>
<box><imgrefl><x09><y19><x52><y93></box>
No, there is no indication of pneumothorax.
</answer>

We use special start and end tokens for answer parts (<answer> / </answer>), bounding
boxes (<box> / </box>), and groups of tags (<regions> / </regions>, <probability> /
</probability>, <categories>/</categories>, <entities>/</entities>, <modifiers>
/ </modifiers>). For some tags we use individual special tokens, namely for laterality (e.g.
<bilateral>), regions (e.g. <lungs>), certainty (e.g. <certain>), positivity (e.g. <neg>), and
main categories (e.g. <ANATOMICAL_FINDING>). For others we use start/end tokens and normal text,
namely for sub-categories (<subcat> / </subcat>) and finding entities (<entity>/ </entity>).
Bounding boxes are listed after all other tags, where we use <box> / </box> tokens and refer back
to the image using <imgref1>. Inside the box-tokens we use special relative coordinate tokens
(following MAIRA-2 [18]) that represent the normalized (1, y1, 22, y2) coordinates of the bounding
box, each quantized to 100 different tokens per dimension. We use different tokens for the z- and
y-dimensions but share them for both corners (e.g. x1 and x5 share the same token set). The textual
description is the last part of each answer part and consists of plain text without special tokens. If an
answer consists of multiple answer parts, then each answer part uses an individual block as in Listing
[[3] All new token embeddings are initialized close to the existing token embeddings, where we try to
initialize them based on keywords defined for each token. More precisely, given a set of keywords for
a new token, we tokenize the keywords using the old vocabulary and compute the average embedding
of all these tokens. This is then used as the initialization for the new token.

MAIRA-2 Baseline We use the MIARA-2 [[18] checkpoint available at https://huggingface.
co/microsoft/maira-2. We freeze the full model but modify the prompt. More precisely, we
use their original prompt for grounded report generation but slightly modify it, asking the model
to answer to the question (included in the modified prompt) instead of reporting all findings in the
image. The rest of the prompt is kept unchanged. This model is then evaluated on the same test set as
our vision-language model. It is capable of generating individual answer parts, each with bounding
boxes, but does not generate bounding boxes for negative answers and cannot generate any tags.

Computation Costs We train on a single Nvidia A100 GPU (with 48GB of memory) for about 8
GPU days.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim to contribute a VQA dataset construction pipeline and a resulting
VQA dataset with a specific size and answer structure and that we showcase the utility on
an example task. These claims match the descriptions in Secs. [3|to[3]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Sec.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work does not contribute theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the construction of the dataset in Sec. [3] with further details being
provided in Appendices|D]and [E| while we describe the example VQA task in Sec. [5| with
further details in Appendix [F] Additionally, we release (and provide it to the reviewers) the
created dataset as well as the code to construct the dataset and to train on it.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the dataset through the PhysioNet platform (https://
physionet.org/). There the dataset will be openly accessible to all researches after
being credentialed by PhysioNet, which requires a short online training. This type of hosting
is required because we derived our dataset from the MIMIC-CXR dataset. Code to construct
the dataset and to train on it is made openly available. See also Appendix [E.5]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy]) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: An overview of the training procedure is provided in Sec. [5| with further details
in Appendix [F} Additional details are provided in the published code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For evaluation/results tables, we include the 95% confidence intervals over the
samples in the (test) datasets, computed using bootstrapping with n = 1000 (see Secs. 4]

and[5).

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For dataset construction, we provide details about compute resources in
Appendix [E.4.3] For training the VQA model, we describe the compute resources in

Appendix [E.3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: We briefly discuss societal impacts in Appendix [E.5|and also mention potential
use cases and limitations in Sec.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Discussed for dataset release in Appendix [E.3]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the links and URLSs of all datasets and models/code used in this
work in Appendix [E.4]

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The dataset contains a README-file describing the data structure. Addition-
ally, we provide code to load and use the dataset with additional documentation. We also
provide data construction and training code with READMEs on how to use them.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not directly involve human subjects and does not collect new
human subject data. All human subject data used (such as chest X-rays or radiology reports)
is derived from existing, public datasets, which where collected independently of and prior
to this work.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]

Justification: This work does not directly involve human subjects and does not collect new
human subject data. All human subject data used (such as chest X-rays or radiology reports)
is derived from existing, public datasets, which where collected independently of and prior
to this work.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLM usage during dataset construction and assessment is described in Secs. [3.1]
and [3.3| with further details being provided in Appendix [E] The usage as a component of the
proof-of-concept model is described in Sec. [5| with further details in Appendix [

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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