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Abstract

Passage retrieval is a crucial component of mod-001
ern open-domain question answering (QA) sys-002
tems, providing information for downstream003
QA components to generate accurate and trans-004
parent answers. In this study we focus on pas-005
sage re-ranking, proposing a simple yet effec-006
tive method, Joint Passage Re-ranking (JPR),007
that optimizes the mutual information between008
query and passage distributions, integrating009
both cross-encoders and generative models in010
the re-ranking process. Experimental results011
demonstrate that JPR outperforms conventional012
re-rankers and language model scorers in both013
open-domain QA retrieval settings and diverse014
retrieval benchmarks under zero-shot settings.1015

1 Introduction016

Passage retrieval is a crucial component in open-017

domain question answering (QA) (Chen and Yih,018

2020), a task that requires answering questions019

from a wide range of domains and could be ap-020

plied in systems that fulfill user’s information021

needs (Voorhees et al., 1999). Retrieval offers022

downstream QA systems grounding information,023

which not only improves accuracy in a lot of cases024

but also provides transparency to how systems gen-025

erate answers, similar to how articles provide refer-026

ences and citations, such that model hallucinations027

can be checked with ease. Furthermore, the set of028

documents to be retrieved from, or knowledge base,029

can be quickly updated with new documents and030

knowledge such that models can adapt to tempo-031

ral changes, and do not need to be continuously032

re-trained nor require online training paradigms for033

continual learning.034

Early retrieval methods are typically based on035

term-matching, such as BM25 (Robertson et al.,036

2009) or TF-IDF (Salton et al., 1975). Such meth-037

ods, called sparse retrievers, perform keyword038

1Source code is available. See Appx. A.

matching efficiently with an inverted index to find 039

relevant contexts. Sparse retrievers often achieve 040

reasonable performance while being computation- 041

ally efficient and does not require training, but 042

are shown to have limited abilities beyond lexical 043

matching. 044

Recently, dense retrievers that encode text with 045

continuous embeddings have been heavily stud- 046

ied and utilized in contemporary QA systems, of- 047

ten outperforming their sparse counterparts on 048

high resource evaluation settings (Karpukhin et al., 049

2020). There are a few drawbacks however, such 050

as higher computational demands during both train- 051

ing and inference, inability to handle large con- 052

texts (Luan et al., 2021), and difficulty in gener- 053

alizing to new domains especially those with lim- 054

ited data (Reddy et al., 2021). Hybrid methods 055

have been explored to get the best of both worlds, 056

generally utilizing an efficient sparse method to re- 057

trieve a larger number of possibly relevant contexts, 058

and then perform passage re-ranking with a more 059

computationally-intensive dense model for refined 060

scoring (Nogueira and Cho, 2019). 061

In this work, we focus on passage re-ranking 062

and explore the use of generative models along- 063

side conventional re-rankers. Previous work have 064

explored pre-trained language models (LM) as the 065

re-ranking scorer (Sachan et al., 2022), however we 066

find that it underperforms conventional re-rankers 067

for both supervised and zero-shot settings. Starting 068

from maximizing mutual information for inference, 069

which had been explored in several other tasks such 070

as dialogue generation (Li et al., 2016), machine 071

translation (Li and Jurafsky, 2016), and QA (Tang 072

et al., 2017; Luo et al., 2022), we show how a small 073

generative model can be effectively used with con- 074

ventional cross-encoding re-rankers for improved 075

performance. Experiments on a supervised setting 076

for open-domain QA retrieval and a zero-shot set- 077

ting across a suite of diverse retrieval benchmarks 078

validate our approach. Our contributions can be 079
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summarized as follows:080

• We propose Joint Passage Re-ranking (JPR),081

a method utilizing both a cross-encoder and082

a generative model in the retrieval re-ranking083

process, optimizing the mutual information084

between query and document distributions.085

• We demonstrate that JPR outperforms con-086

ventional re-rankers and generative scorers087

in open-domain QA retrieval evaluation and088

diverse zero-shot retrieval datasets.089

2 Joint Passage Re-ranking (JPR)090

Consider the two distributions p(x) and p(z) over091

all queries x ∈ X and all passages z ∈ Z .092

The conditional distributions p(z|x) and p(x|z)093

can be used to infer one domain based on the094

other. The joint distribution p(x, z) characterizes095

the combined structure of both domains, where096

p(x, z) = p(x)p(z|x) = p(z)p(x|z).097

Here pϕ(z|x) defines a passage retrieval model,098

which we parametrize by ϕ, generally trained099

with maximum likelihood estimation (MLE):100

Lretrieval(ϕ) ≜ −Ex,z∼p(x,z) [log pϕ(z|x)]. During101

inference, finding the most probable relevant pas-102

sage can be written as:103

ẑ = argmax
z

log pϕ(z|x). (1)104

Since we focus on passage re-ranking, we treat105

pϕ(z|x) in Eq. 1 as re-ranking scores.106

2.1 Inference with Maximum Mutual107

Information108

In our work, we approach inference by finding pas-109

sage that maximizes the (pairwise) mutual informa-110

tion (MMI) between both domains instead:111

ẑ = argmax
z

(
log p(z|x)− log p(z)

)
. (2)112

We see that maximizing MI adds a penalizing term113

compared to MLE in Eq. 1, which avoids favoring114

passages that unconditionally have a higher proba-115

bility, and biases the model towards those that are116

specific to the given query. A hyperparameter λ117

is used to control the regularization term. Using118

Bayes’ theorem, we can rewrite Eq. 2 as:119

ẑ = argmax
z

(
log p(z|x)− λ log p(z)

)
(3)120

= argmax
z

(
(1− λ) log p(z|x) + λ log p(x|z)

)
.121

The MMI objective is equivalent to the convex122

combination of the terms log p(z|x) and log p(x|z).123

Notice that the latter term can be viewed as a condi-124

tional generation model that gives the probability of 125

generating a query given a passage. We denote the 126

generative model by pθ(x|z) with parameters θ. 127

This term was previously explored as the sole infer- 128

ence objective in Sachan et al. (2022), in which an 129

LM was used as a question generator for rescoring. 130

Instead of using either the retrieval model or the 131

generative model only, as explored in prior work, 132

Eq. 3 provides a simple way to use both models 133

jointly for inference, which we refer to as Joint 134

Passage Re-ranking (JPR). 135

2.2 Joint Fine-tuning 136

A straighforward way to obtain the two models that 137

can be used for the aforementioned MMI-based 138

inference is to train both models using MLE seper- 139

ately. The retrieval model can be trained with 140

Lretrieval(ϕ), while the generative model can be a 141

trained with a simple LM loss Lgeneration(θ). 142

However, the terms in Eq. 3 are derived when 143

the distributions are matched, that is, when 144

p(x)pϕ(z|x) = p(z)pθ(x|z). When the two 145

models are optimized independently, we cannot 146

ensure that this holds. We therefore attempt to 147

enforce this constraint during fine-tuning. Sim- 148

ilar to previous work on dual supervised learn- 149

ing, we approach this by adding a regularization 150

term, defined as the symmetric KL divergence 151

between the two distributions: Lmatch(ϕ,θ) ≜ 152

Dsym-KL
(
pϕ(x, z)||pθ(x, z)

)
. The joint training 153

objective is obtained by combining all three losses: 154

L(ϕ,θ) ≜ Lretrieval + Lgeneration + αLmatch, where 155

α is a regularization hyperparameter. 156

3 Experiments 157

3.1 Open-Domain QA Retrieval 158

3.1.1 Data 159

First, we evaluate on two standard open-domain 160

QA retrieval benchmark datasets: Natural Ques- 161

tions (NQ; Kwiatkowski et al., 2019) and Trivi- 162

aQA (Joshi et al., 2017). Wikipedia passages used 163

in DPR (Karpukhin et al., 2020) were used in these 164

experiments, which consists of 21M 100-word pas- 165

sages from the English Wikipedia dump of Dec. 166

20, 2018 (Lee et al., 2019). Additional dataset 167

information can be found in Appx. B. 168

3.1.2 Setup and Baselines 169

We adopt the setting from prior work using standard 170

dataset splits, retrieving the top 100 passages for 171

re-ranking. We use Pyserini (Lin et al., 2021) for 172
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Re-ranking
Method

Cross-Encoder?
log pϕ(z|x)

Generative?
log pθ(x|z)

Natural Questions TriviaQA

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

BM25 ✗ ✗ 22.1 43.8 54.5 46.3 66.3 71.7

BERT-FT ✓ ✗ 49.4 66.4 71.4 66.7 77.6 80.2
T5-FT ✗ ✓ 34.3 59.6 66.7 56.8 74.1 78.0
UPR (T0-3B) ✗ ✓ 36.8 61.6 68.2 57.7 75.4 78.5

JPR ✓ ✓ 51.0 68.0 72.3 68.3 78.3 80.5
JPR-FT ✓ ✓ 51.4 67.5 71.9 69.2 78.5 80.5

UPR (LLaMA-33B) ✗ ✓ 35.0 61.5 69.0 57.2 76.7 79.5
JPR (LLaMA-33B) ✓ ✓ 48.2 66.9 71.5 70.1 79.3 80.8

Table 1: Top-K retrieval accuracy (%) on the Natural Questions and TriviaQA test sets. All non-BM25 methods
re-rank the top-100 passages retrieved by BM25. Best overall are in bold while best non-LLM are underlined.

BM25 as the initial retriever, with default Lucene173

parameters of k = 0.9 and b = 0.4. We report174

top-K retrieval accuracy, the standard metric.175

We compare JPR against several baselines: 1)176

cross-encoding re-ranker (BERT-FT), a fine-tuned177

BERT-based (Devlin et al., 2019) re-ranker, run-178

ning inference with Eq. 1; 2) generative re-ranker179

(T5-FT), a fine-tuned T5 conditional generation180

model (Raffel et al., 2020) with the second term of181

Eq. 3 as inference objective; and 3) UPR (Sachan182

et al., 2022), a generator-only re-ranker using the183

larger pre-trained T0-3B model (Sanh et al., 2022).184

For our approach, we report one setting with185

joint inference (JPR), and another with joint fine-186

tuning followed by the MMI-based inference (JPR-187

FT). Joint inference uses the separately fine-tuned188

retrieval re-ranker and generative re-ranker de-189

scribed above directly. For joint fine-tuning, we190

bootstrap with the two models, and further fine-191

tune with our proposed objective to match the re-192

triever and generator distributions. λ and α are193

chosen by performance on the development set.194

Additional details can be found in Appx. C.195

Furthermore, we aim to explore the effects of196

scaling generative re-rankers up. We experiment197

with a large language model (LLM), the 33B-198

parameter LLaMA (Touvron et al., 2023), as our199

generative re-ranker for both UPR and JPR.200

3.1.3 Results and Discussion201

Open-domain QA retrieval results are shown in Ta-202

ble 1. Using the conventional cross-encoder BERT-203

FT on initial BM25 results yields decent improve-204

ments. UPR, not fine-tuned but being much larger,205

significantly underperforms BERT-FT. The fine-206

tuned generator T5-FT, 15× smaller than the T0-207

3B model in UPR, nearly matches the performance208

of UPR. When using JPR, which corresponds to209

scoring with Eq. 3 using the re-ranker BERT-FT210

and the generator T5-FT, surpasses all baselines. 211

The generator, although used by itself underper- 212

forms BERT-FT, boosts performance especially 213

for the top retrieved passages. Matching distribu- 214

tions (JPR-FT) by fine-tuning for a small amount 215

of steps further improves performance, albeit more 216

modestly. For LLM generative re-ranking, despite 217

being multitudes larger, LLaMA-33B surprisingly 218

underperforms against T5-FT and T0-3B on NQ for 219

both UPR and JPR, however on TriviaQA JPR with 220

LLaMA-33B achieves best overall results. Appx. D 221

shows further results for different model pairs. 222

3.2 Zero-Shot Retrieval 223

3.2.1 Data 224

We further evaluate in a transfer learning setting 225

on BEIR (Thakur et al., 2021), a commonly used 226

benchmark consisting of a suite of information re- 227

trieval datasets that span multiple tasks and do- 228

mains. Datasets in the benchmark contain queries 229

and passages of a variety of styles and lengths, and 230

no training data is provided, making it consider- 231

ably difficult for models to perform well across all 232

datasets. See Appx. E for more details. 233

3.2.2 Setup and Baselines 234

We follow BEIR’s zero-shot evaluation on all tasks, 235

using MS MARCO (Nguyen et al., 2017) as train- 236

ing data. Pyserini is used for BM25 to retrieve 100 237

passages, with default parameters and indexing title 238

and passage as separate fields23. The Normalized 239

Cumulative Discount Gain (nDCG@K) (Wang 240

et al., 2013) is used for evaluation, with K = 241

10, computed by the official TREC evaluation 242

tool (Van Gysel and de Rijke, 2018). 243

We compare against the three baselines used 244

2Pyserini reproductions for BEIR can be found at https:

//castorini.github.io/pyserini/2cr/beir.html.
3We follow BEIR and retrieve 100, which is more practical.
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Dataset BM25

Re-ranking Method

BERT-
FT

T5-FT UPR JPR
UPR
(LLM)

JPR
(LLM)

TREC-DL 2019 50.8 74.9 65.6 - 75.0 - -

TREC-COVID 65.6 75.7 75.7 76.5 78.2 76.5 77.2
NFCorpus 32.6 35.0 33.2 34.8 35.3 33.5 35.7
NQ 32.9 53.3 43.8 44.5 52.1 45.3 54.0
HotpotQA 60.3 70.7 68.5 70.9 72.4 72.3 72.1
FiQA-2018 23.6 34.7 35.7 42.0 38.5 40.3 36.6
ArguAna 41.4 41.8 50.2 50.9 49.3 28.5 43.3
Touché-2020 36.7 27.1 25.0 21.0 26.8 18.5 25.7
CQADupStack 29.9 37.1 37.7 40.2 39.7 42.9 39.0
Quora 78.9 82.5 81.2 83.6 84.8 84.4 84.1
DBPedia 31.3 40.9 34.6 35.5 40.5 35.1 41.6
SCIDOCS 15.8 16.6 16.9 17.6 18.3 18.1 17.1
FEVER 75.3 81.8 75.7 61.3 82.5 62.5 79.7
Climate-FEVER 21.3 25.3 18.4 14.6 25.2 11.2 24.9
SciFact 66.5 68.8 69.3 70.4 72.7 65.7 70.3

Average 43.7 49.4 47.6 47.4 51.2 45.3 50.1

Table 2: Zero-shot results on BEIR, scores denote
nDCG@10. All methods re-rank the top-100 pas-
sages retrieved by BM25, except for TREC-DL 2019
to compare to prior work. Best overall are in bold.
Underlined indicate in-domain performance, and ital-
icized are based on Pyserini reproductions, differing
from those reported in prior work.

previously with slight differences: 1) conven-245

tional re-ranker (BERT-FT), using a BERT-246

based re-ranker pre-trained on MS MARCO with247

the same configuration (Reimers and Gurevych,248

2019); 2) generative re-ranker (T5-FT), using the249

same t5-base-lm-adapt but fine-tuned on MS250

MARCO; and 3) UPR, but re-ranked over 100 in-251

stead of 1000. For our proposed approach, we only252

evaluate the joint inference method (JPR), as the253

MS MARCO pre-trained re-ranker from SBERT4254

is already at a saddle point, and using it to bootstrap255

leads to degraded performance. Detailed training256

hyperparameters can be found in Appx. F.257

3.2.3 Results and Discussion258

Zero-shot results on BEIR are presented in Table 2.259

JPR attains roughly 2% absolute gain on average260

simply by utilizing both re-ranker and generator261

for inference, which is more prominent when com-262

pared against in-domain performances in Sec. 3.1263

and on TREC-DL 2019. JPR surpasses BERT-FT264

on 10 out of the 14 tasks and is roughly equal on265

the other 4, and eclipses T5-FT on 13 of 14. No-266

tably, for two tasks, FEVER and Climate-FEVER,267

generative re-rankers struggle and exhibit degraded268

performance, whereas JPR avoids this issue and269

outperforms BERT-FT. When using the compara-270

tively huge LLaMA, we see that UPR worsens on271
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average, mostly due to major underperformance 272

on tasks such as ArguAna, Touché-2020, FEVER, 273

and Climate-FEVER. On most other tasks it outper- 274

forms UPR, suggesting that larger models’ effects 275

may scale both ways, positively on familiar tasks, 276

such as CQADupStack which LLaMA had expo- 277

sure during LM training, and negatively on a few 278

out-of-domain ones. JPR (LLM) can mitigate the 279

worst cases, however it mostly does not outperform 280

JPR that uses the considerably smaller generator. 281

4 Related Work 282

Passage re-ranking seeks to combine the advan- 283

tages of sparse retrieval methods, such as effi- 284

ciency, precise matching, and low-resource gener- 285

alizability (Sciavolino et al., 2021; Reddy et al., 286

2021), with the superior performance of dense 287

methods in the presence of extensive annotated 288

data (Karpukhin et al., 2020; Guu et al., 2020). 289

Early work by Nogueira and Cho (2019) exam- 290

ined BERT-based supervised re-rankers, while 291

later research proposed reader prediction-based re- 292

ranking (Mao et al., 2021) and attempted to use 293

LMs as re-rankers (Sachan et al., 2022), although 294

with limitations. Concurrent to our study, Sun 295

et al. (2023) explored using the exceptionally larger 296

ChatGPT models for re-ranking5. 297

MMI-based objectives, originally introduced in 298

speech recognition to measure input-output depen- 299

dence (Bahl et al., 1986; Woodland and Povey, 300

2002), have been applied to different tasks such 301

as dialogue (Li et al., 2016), machine transla- 302

tion (Li and Jurafsky, 2016), and QA (Luo et al., 303

2022). MMI-based joint inference and learning 304

have been explored in question answering and gen- 305

eration (Tang et al., 2017), language understanding 306

and generation (Su et al., 2020), and various vision 307

and language tasks (Xia et al., 2017). 308

5 Conclusion 309

In this study, we introduce a simple and effec- 310

tive approach to enhance re-ranking for passage 311

retrieval. By jointly utilizing a conventional cross- 312

encoding re-ranker and a conditional query gen- 313

erator for inference, we optimize the mutual in- 314

formation between the query and passage distri- 315

butions, achieving improvements in open-domain 316

QA retrieval, and more significantly in zero-shot 317

information retrieval tasks. 318

5Sun et al. (2023) reported results only on a subset of BEIR
and uses BM25 “flat” (cf. “multifield”).
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Limitations319

First, improvements under the supervised setting320

for open-domain QA retrieval are diminished as321

K increases, and roughly equals out with using322

conventional re-rankers at K = 20; however, there323

are still many use cases especially for large models324

with limited context that can benefit from the im-325

provements of our approach. Additionally, in this326

work we tackle passage re-ranking for retrieval, fo-327

cusing on the second stage re-ranking scores using328

dense cross encoders and generative models. We329

have not explored approaching the retrieval process330

without passage re-ranking, that is, directly apply-331

ing the MMI objective to train a dense retrieval332

model, which could potentially lead to larger im-333

provements but comes with much higher computa-334

tional costs. We leave this for future work.335

Ethics Statement336

In this work, we used publicly available models and337

datasets for training and evaluation, and did not col-338

lect data or any personal information. The trained339

models could however potentially be misused and340

pose ethical risks typical of large language models341

when deployed in real-world applications, if not342

thoroughly audited.343
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A Source Code663

We provide anonymized source code at https:664

//www.dropbox.com/s/n6zzvs01yutliwp/jpr.665

zip. More details can be found in README.md.666

B Open-Domain QA Retrieval Datasets667

We show the number of train/dev/test examples668

in NQ and TriviaQA in Table 3. Please refer to669

Kwiatkowski et al. (2019) and Joshi et al. (2017)670

for more details. Note that NQ is licensed under671

Apache License 2.0, which we follow, and Trivi-672

aQA does not provide dataset licenses.673

Dataset Train Dev Test

Natural Questions 58,880 8,757 3,610
TriviaQA 60,413 8,837 11,313

Table 3: Dataset splits for NQ and TriviaQA.

C Open-Domain QA Retrieval Training674

and Inference Details675

C.1 Training676

Generally, conventional cross-encoders are trained677

to minimize the negative likelihood Lretrieval(ϕ) ≜678

−Ex,z∼p(x,z) [log pϕ(z|x)] , where pϕ(z|x) is usu-679

ally calculated from the retrieval score of question-680

passage pairs, with the partition function approxi-681

mated by a noise contrastive approach trained ei-682

ther with a classification or a ranking objective (Ma683

and Collins, 2018). We choose to fine-tune our684

cross-encoder, BERT-FT, using a 6-layer trans-685

former model (Vaswani et al., 2017), which takes686

the concatenated input of a query and a passage,687

with the binary classification objective for noise688

contrastive learning (Mikolov et al., 2013). The689

6-layer SBERT model MiniLM-L-6-v2 we use was690

previously pre-trained on MS MARCO, which we691

fine-tune for 2 epochs using the top 32 passages692

from BM25 on the NQ/TriviaQA training set. We693

train with a batch size of 128, learning rate of 5e-5,694

linear warmup and decay with ratio of 0.1.695

For training of T5-FT, we fine-tune with696

Lgeneration(θ) using the t5-base-lm-adapt model,697

a 12-layer encoder-decoder configuration with698

Hyper-
parameter

NQ TriviaQA

BERT-FT T5-FT BERT-FT T5-FT

learning rate 1e-5 2e-5 1e-5 1.5e-5
batch size 96 64 64 64
α 0.0005 0.0005 0.005 0.005

Table 4: Training hyperparameters for NQ and TriviaQA
selected by performance on the dev set.

220M parameters initialized from T5-base v1.1 and 699

trained for an additional 100k steps with an LM 700

objective. It takes a ground truth passage as input 701

with its corresponding query as the decoder target. 702

Ground truth query-passage pairs from the training 703

set was used to fine-tune the model for 2 epochs. 704

We use a batch size of 64, learning rate of 5e-5, 705

and linear warmup and decay ratio of 0.1. Hyper- 706

parameters were chosen by performance on the dev 707

set. 708

UPR uses the pre-trained T0-3B directly without 709

any fine-tuning. 710

JPR uses BERT-FT and T5-FT, described ear- 711

lier, directly during inference (see Sec. C.2 below). 712

JPR-FT requires further fine-tuning, which we train 713

for another epoch. Training hyperparameters were 714

searched with the dev set, with one run for each hy- 715

perparameter setting, shown in Table 4. We report 716

results for the model with the best-performing run 717

on the dev set. 718

All models were trained with HuggingFace’s 719

Transformers library (Wolf et al., 2020), using the 720

AdamW optimizer (Loshchilov and Hutter, 2018) 721

with default parameters. The maximum sequence 722

lengths for queries and passages were set to 128 723

and 512, respectively, for generative models. For 724

the cross-encoding BERT-FT, we set the maximum 725

concatenated length to be 512. Training was done 726

with four Nvidia A6000 GPUs, with around 2.5 727

GPU hours per epoch, equating to around 250 GPU 728

hours in total. 729

C.2 Inference 730

For the conventional cross-encoding re-ranker 731

(BERT-FT), we re-rank with Eq. 1 by directly rank- 732

ing the retrieval scores. When using BERT-FT in 733

JPR, we approximate log pϕ(z|x) by taking Soft- 734

Max over the scores for the 100 retrieved passages. 735

For generative re-rankers T5-FT and UPR, we fol- 736

low Sachan et al. (2022) and estimate log pθ(x|z) 737

with length-normalized conditional likelihood fol- 738

lowed by taking SoftMax over the passages. For 739

JPR, the preceding two terms are weight-averaged 740

according to Eq. 3. 741
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Cross-encoder Generative Model #params Top-1 Top-5 Top-10

TinyBERT ✗ 4.4M 37.8 60.3 67.0
MiniLM-L-4 ✗ 19.2M 47.5 65.9 70.9
MiniLM-L-6 (BERT-FT) ✗ 22.7M 49.4 66.4 71.4
BERT-base ✗ 109.5M 49.2 66.0 70.8
BERT-large ✗ 335.1M 49.8 67.5 71.7

✗ T5-tiny 15.6M 25.7 51.4 62.0
✗ T5-small 77.0M 30.7 57.1 65.2
✗ T5-base (T5-FT) 247.6M 34.4 59.7 66.9

MiniLM-L-6 T5-tiny 38.3M 49.6 67.0 71.6
MiniLM-L-6 T5-small 99.7M 50.4 67.3 71.7
MiniLM-L-6 T5-base 270.3M 50.4 67.3 71.8

Table 5: Top-K retrieval accuracy (%) on NQ for different model combinations with the proposed JPR.

D Results on Open-Domain QA Retrieval742

with Different Cross-encoding and743

Generative Model Pairs744

We further show the efficacy of JPR on NQ by con-745

ducting additional evaluations on NQ with various746

model combinations. We experiment with BERT747

models of different sizes for the cross-encoders,748

and for generative models we chose T5 models of749

multiple models sizes. All cross-encoding mod-750

els were previously pre-trained on MS MARCO,751

which we fine-tune on NQ, and the T5 models were752

fine-tuned on NQ, all following training procedures753

reported in Sec. C. For inference, we use λ = 0.5754

and follow the inference steps outlined in Sec. C.2.755

The results are shown in Table 5.756

From the results, notice that when T5-small is757

paired with MiniLM-L-6 for JPR, it aligns with the758

performance of T5-base paired with MiniLM-L-6.759

This observation underscores that the additional760

parameters of T5-base may be superfluous in our761

application. When comparing JPR (MiniLM-L-6 &762

T5-small) with the standalone BERT-base, which763

is in the same parameter ballpark, and the larger764

BERT-large, it’s evident that the gains from JPR765

are not solely attributable to model size.766

E BEIR Benchmark767

The BEIR benchmark contains 18 datasets from768

a variety of text retrieval tasks and domains,769

14 of which are publicly available. In this770

work we evaluate baselines and our approach on771

the publicly available datasets in BEIR: TREC-772

COVID (Voorhees et al., 2021), NFCorpus (Boteva773

et al., 2016), NQ (Kwiatkowski et al., 2019), Hot-774

potQA (Yang et al., 2018), FiQA-2018 (Maia775

et al., 2018), ArguAna (Wachsmuth et al., 2018), 776

Touché-2020 (Bondarenko et al., 2020), CQADup- 777

Stack (Hoogeveen et al., 2015), Quora6, DB- 778

Pedia (Hasibi et al., 2017), SCIDOCS (Cohan 779

et al., 2020), FEVER (Thorne et al., 2018), 780

Climate-FEVER (Diggelmann et al., 2020), and 781

SciFact (Wadden et al., 2020). For details on 782

dataset statistics, links, and licenses please refer 783

to BEIR (Thakur et al., 2021). Note that datasets 784

in BEIR that are under copyright were not used in 785

this study, and 4 out of the 14 publicly available 786

datasets do not report dataset licenses. We follow 787

the intended uses for each dataset license. 788

F Zero-shot Retrieval Training and 789

Inference Details 790

For BEIR, since the SBERT model was already 791

pre-trained on MS MARCO, we directly use it for 792

BERT-FT. On the other hand, T5-FT stills requires 793

fine-tuning, which we train for 3 epochs on query- 794

passage pairs in the training set, with batch size of 795

16 and learning rate of 5e-5 with no warmup. The 796

inference process is the same as open-domain QA 797

retrieval, described earlier in Sec. C.2. 798

6https://quoradata.quora.com/First-Quora-Dataset-Release-Question-
Pairs
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