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Abstract001

Pruning techniques have been studied to con-002
struct small models for efficiency, yet the ef-003
fect of cross-lingual, which shows language004
performance transferability, is understudied in005
this field. In this work, we investigate cross-006
lingual effects in multilingual large language007
model compression using iterative pruning and008
recovery. We employ structured layer prun-009
ing with LoRA-based recovery and knowl-010
edge distillation, testing whether calibration011
languages different from target evaluation lan-012
guages can preserve multilingual performance.013
Experiments on Qwen2.5-7B and Llama3.1-014
8B demonstrate that any recovery language015
consistently outperforms no-recovery baselines,016
with even low-resource languages like Swahili017
providing 5% improvements. In contrast to018
expectations, dominant pretraining languages019
do not always yield the best results, where In-020
donesian achieves the highest performance in021
Llama3.1-8B, while Japanese performs the best022
in Qwen2.5-7B. Our findings reveal that cross-023
lingual calibration effectively maintains multi-024
lingual capabilities in the iterative pruning.025

1 Introduction026

Multilingual Large Language Models (LLMs) have027

proliferated rapidly, creating a need to compress028

them due to deployment costs. While recent029

works (Kim et al., 2024; Ushio et al., 2023;030

Choenni and Titov, 2025) have begun examining031

multilingual compression, the language in the data032

used to do the compression process needs further033

investigation. The impact of the language selec-034

tion in aiding the process needs further investiga-035

tion. Specifically, the cross-lingual effects, how the036

language choice impacts the performance of other037

languages, remain underexplored. Investigating038

this behavior would help in reducing both com-039

putational and data complexity for compression,040

for instance, by effectively selecting a language041

calibration dataset that has better preservation in042

Figure 1: Example iterative pruning using zh (Chinese)
as the calibration and recovery dataset where we test the
crosslingual capability on different datasets

multilingual performance transfer, particularly in 043

cross-lingual transfer scenarios. 044

Recent works use an iterative approach to com- 045

press LLMs(Muralidharan et al., 2024; Zhang et al., 046

2024; Li et al., 2022). For instance, Muralidharan 047

et al. (2024) successfully reduced a 15B model to 048

smaller 8B and 4B versions while achieving com- 049

petitive results compared to other LLMs of similar 050

size. Yet the process remains data-intensive, and 051

the impact of data size is unclear. Moreover, it is 052

unexplored whether the cross-lingual setting can 053

effectively guide recovery in multilingual tasks, 054

specifically in cross-lingual effect. 055

This leads us to ask: How is the cross-lingual 056

capability preserved in iterative pruning and 057

recovery phases under resource-constrained sce- 058

narios? To investigate this, we adapt the iterative 059

compression methodology to a more practical set- 060

ting: we focus on structured pruning through layer 061

removal and employ parameter-efficient recovery 062

using LoRA (Hu et al., 2021) with knowledge dis- 063

tillation using a small data size. Specifically, we ex- 064

amine whether using a language different from the 065

target task for calibration and recovery can retain 066

performance in the tested language while inducing 067

cross-lingual performance preservation. 068
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This study finds that cross-linguality exists in069

recovery that consistently outperforms the prun-070

ing process without recovery even language that071

has different script than the tested language. For072

instance, using Swahili, a low-resource language,073

provides better results than without recovery. In-074

terestingly, we observe that language-dominant re-075

covery performs better in iterative pruning; for in-076

stance, Chinese (zh) shows superior performance077

even when the script differs significantly from the078

target language. Additionally, different multilin-079

gual models exhibit distinct cross-lingual behav-080

iors during compression. Our experiments on081

Qwen2.5-7B (Yang et al., 2024a) and Llama3.1-082

8B (Grattafiori et al., 2024) reveal varying cross-083

lingual transfer patterns. Each iteration has a differ-084

ent language that performs the best, which is differ-085

ent for each task. In approximately 25% compres-086

sion rate, we observed that Chinese and Japanese087

achieve the top-2 highest average performance088

in Qwen2.5-7B, while in Llama3.1-8B, these are089

achieved by Indonesian and Chinese, respectively.090

Surprisingly, in Llama3.1-8B, English ranks only091

sixth in our experimental results, challenging our092

assumptions about English’s dominance in multi-093

lingual compression.094

2 Background: Structured Prunning095

The increasing scale of LLMs has driven efforts to096

reduce their computational and memory footprint097

for deployment. A common approach is struc-098

tured pruning (Wang et al., 2020), where some099

components (e.g., layers, attention heads) are re-100

moved from a large model ML to derive a smaller101

model MS . However, pruning often causes perfor-102

mance degradation, making a careful selection of103

components and recovery strategies after pruning104

necessary (Sun et al., 2024; Yin et al., 2024; Ma105

et al., 2023). The following are the explanations of106

these phases:107

Pruning Phase Formally, let ML consist of N108

transformer component blocks {B1, B2, ..., BN}.109

Pruning involves ranking blocks by importance and110

retaining the top-k blocks (k < N ) to form MS .111

The importance of a block Bi is determined by a112

scoring function f(Bi), which can be defined as:113

f(Bi) = Importance(Bi;Deval)114

Here, Deval is a validation dataset (calibration115

dataset) used to compute metrics to determine the116

blocks’ importance. Blocks are then sorted by117

f(Bi), and the least important N − k are pruned 118

or dropped: 119

MS = Prune(ML, k) 120

Recovery Phase To alleviate performance degra- 121

dation due to pruning, this phase fine-tunes MS 122

on a recovery dataset Dr on the respective tasks, 123

such as Causal Language Modeling. The recovery 124

process is useful to adapt to its new structure and 125

reallocate its internal knowledge to its remaining 126

capacity. 127

The recovery process optimizes: 128

θ∗S = argmin
θS

L(MS(θS ;Dr), y) 129

where θS , y denotes the parameters of MS and 130

ground truth, respectively.1 Different from most 131

works, in this paper we emphasize on recovery as 132

an important aspect of model compression. 133

3 Methodology 134

We do an iterative compression framework for 135

large language models that alternates between prun- 136

ing and recovery phases until a target model size, 137

which is the number of layers, is reached. This pro- 138

cess continues until the desired number of layers in 139

Ms. Although iterative compression has been ex- 140

plored previously (Muralidharan et al., 2024), the 141

approach in this paper does the simplified version: 142

(1) Pruning Phase: a direct layer-wise pruning 143

strategy and (2) Recovery Phase: knowledge 144

distillation using LoRA . We make the iterative 145

pruning more efficient to run with lower resource 146

requirements. Our approach is illustrated in Fig- 147

ure 1. 148

3.1 Our Pruning Phase 149

We define Bi as transformer blocks, where each 150

block consists of self-attention and feed-forward 151

components. To minimize performance degrada- 152

tion during pruning, we evaluate the importance of 153

each layer Bi by measuring its contribution to the 154

model’s output quality. Specifically, we compute 155

the cosine similarity between the last hidden state 156

of the original model ML and the last hidden state 157

of the candidate pruned models M (i)
cs , where M

(i)
cs 158

is obtained by removing one layer of self-attention 159

from ML. The importance score f(Bi) for a block 160

1These variables declared in this section will be used
throughout this paper.
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Bi is defined as:161

f(Bi) =
1

|Deval|

|Deval|∑
d=1

sim
(
h(ML)d, h(M

(i)
cs )d

)
162

where h(ML)d is the last hidden state of the orig-163

inal model ML with N layers for the d-th input164

sequence in Deval, h(M
(i)
cs )d is the last hidden state165

of the pruned model M (i)
cs with N−1 layers for the166

same input sequence. sim(·, ·) denotes the cosine167

similarity function.168

After computing f(Bi) for all blocks, we sort169

the blocks by their similarity scores. The highest170

similarity block will be selected for removal, as it171

indicates the least impact on model performance.172

This process yields our final pruned model Mcs173

with the selected blocks removed. Mcs, then will174

be processed in the Recovery Phase.175

For better clarity in the following sections, we176

also denote M
[j]
cs as the final pruned model chosen177

in iteration j.178

3.2 Our Recovery Phase179

To further preserve the degradation quality of the
model, we employ knowledge distillation, where
we put the original model, ML as the teacher T
and the pruned model from the previous phase in
the same iteration j as its student M [j]

cs , which we
denote here as S. We follow the TinyBERT de-
sign (Jiao et al., 2020), where we compute the mean
square error (MSE) between all hidden states, at-
tention, and output logits. We use MSE for the
output logits as it shows better performance than
KL Divergence (Kim et al., 2021). Formally, it is
defined as follows:

LKD =

L∑
l=1

(
MSE(Hmap(l)

T ,Hl
S)+

MSE(Amap(l)
T ,Al

S)
)
+

MSE(zT , zS)

Here, Hmap(l)
T and Hl

S represent the hidden states180

in layers l and map(l) for the teacher and student181

models, respectively, while A
map(l)
T and Al

S de-182

note their corresponding attention matrices. The183

output logits of the teacher and student models are184

represented by zT and zS , respectively. map(l)185

is defined as the mapping of a student’s layer to186

the teacher’s layer which aligns the student’s layer187

index l with the corresponding original index in the 188

teacher model.2 189

After this phase, we produce a recovered pruned 190

model M [j]
cs−rec as the final chosen in iteration j. 191

M
[j]
cs−rec is then processed to the next iteration j+1 192

4 Experiment Setup 193

Languages We choose 10 languages as cali- 194

bration and recovery languages: zh (Mandarin 195

Chinese), ru (Russian), id (Indonesian), en (En- 196

glish), es (Spanish), ar (Arabic), hi (Hindi), ja 197

(Japanese), vi (Vietnamese), and sw (Swahili). We 198

selected these languages as they represent diverse 199

language families and writing systems, while cov- 200

ering both high-resource and lower-resource (sw 201

and vi), allowing us to examine how linguistic sim- 202

ilarity and resource availability affect cross-lingual 203

compression performance. 204

Pruning Calibration For the pruning phase, we 205

use 10 instances as the calibration dataset for 206

each language sampled randomly uniform from 207

wikipedia3 following the Yang et al., 2024b cali- 208

bration dataset used. We tried increasing the cali- 209

bration datasets to 1,000 in §6 and found that it has 210

minimal impact on increasing performance. 211

Recovery Dataset For the recovery dataset, we 212

target the general data domain, where we used 213

wikitext-2-raw-v14 for en and we created other 214

languages’ data by following the number of rows to 215

approximately make the size close to the en dataset. 216

Models We used two widely used LLM 217

families which have multilingual capability, 218

Qwen2.5-7B (Yang et al., 2024a) and Llama3.1- 219

8B (Grattafiori et al., 2024). We use these models 220

to observe their differences in their multilingual 221

behaviors, as they are pre-trained differently, espe- 222

cially in terms of data size. 223

Evaluation We use common multilingual 224

benchmarks used widely: pawsx, xnli, xcopa, 225

xstorycloze, xwinograd, and xquad.5 To 226

evaluate our model, we use off-the-shelf 227

lm-eval-harness (Gao et al., 2024) library, 228

using their pre-defined metric for each task (F1 229

2See Appendix A for more explanation
3We sample uniformly from

https://huggingface.co/datasets/wikimedia/wikipedia/
4https://huggingface.co/datasets/Salesforce/

wikitext/
5we also denote xstorycloze and xwinograd as xstory and

xwino respectively.

3
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lang #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwino xquad avg

- 0 63.16 45.46 61.69 63.58 81.41 38.78 59.02 59.81 43.44 61.64 62.07 81.52 66.78 62.54

ar 8 52.04 40.78 55.75 55.36 68.04 6.50 46.41 46.99 38.68 55.58 55.43 68.06 11.09 45.97
en 8 50.74 40.54 55.67 55.62 71.86 10.06 47.41 48.10 37.26 55.67 54.50 68.69 5.09 44.88
es 8 51.43 41.05 55.71 55.21 70.40 8.39 47.03 47.14 39.06 55.40 54.86 68.44 12.36 46.31
hi 8 53.46 41.06 56.35 55.40 70.47 8.08 47.47 47.28 38.55 55.58 54.50 67.59 10.12 45.60
id 8 53.10 40.36 55.44 55.18 74.15 13.27 48.58 47.17 38.54 55.02 55.27 68.08 12.62 46.12
ja 8 51.63 40.82 56.15 55.48 71.12 9.43 47.44 48.78 38.62 55.33 54.57 67.77 13.36 46.40
ru 8 54.75 40.82 55.31 55.14 72.33 11.54 48.31 47.48 38.62 55.60 54.71 68.55 12.16 46.19
sw 8 51.97 41.00 55.62 55.04 70.17 8.23 47.00 47.54 38.44 55.44 54.30 66.22 6.75 44.78
vi 8 51.38 39.67 54.91 53.84 71.21 5.42 46.07 48.19 38.50 55.13 54.22 68.35 12.28 46.11
zh 8 52.50 40.67 56.55 55.66 73.01 12.95 48.56 47.24 38.73 55.85 55.48 68.98 12.07 46.39

nr 8 48.91 37.33 54.44 51.57 66.22 3.19 43.61 47.49 37.10 55.25 53.53 65.90 5.01 44.05

Table 1: Results in prunning the model using iterative pruning approach. #-L denotes number of pruned layers.
These scores for each task are the average across all available tested language in the benchmark. Bold denotes
the highest performing score or close (less than 0.05% difference) for each task and average. nr denotes iterative
pruning without recovery phase.

Figure 2: Best performance in each iteration heatmap in Llama3.1-8B (left) and Qwen2.5-7B across iterations.
The language code in each box represents the language that achieves the highest score while below them show the
performance score.

or accuracy score). We use the context length of230

2,048 tokens and employ the zero-shot setting to231

obtain the output.232

Pruning Setup We do the recovery by doing233

Knowledge Distillation (Hinton et al., 2015) fol-234

lowing the TinyBERT approach (Jiao et al., 2020).235

To accommodate our computational constraints, we236

implement LoRA (Hu et al., 2021) with a rank of237

32. Our training configuration includes a batch238

size of 4 with gradient accumulation of 8 (effec-239

tive batch size of 32), learning rate of 1 × 10−4.240

For efficient recovery training, we conduct a sin-241

gle epoch on the recovery dataset. The trainings242

were performed on 1xH200. In §5, we show the243

8th pruned iteration as it is approximately 25% the244

size of Llama layer size, following other works in245

structure pruning commonly presents (Yang et al., 246

2024b; Men et al., 2024; Ashkboos et al., 2024; 247

Lin et al., 2024) . 248

5 Experiment Results 249

Recovery with any language consistently outper- 250

forms non-recovery across all tasks. In Table 1, 251

we observe that recovery using any language other 252

than the target language maintains better perfor- 253

mance than without recovery, even with the low- 254

resource languages (e.g., sw and vi). The perfor- 255

mance gap between the best recovery method and 256

no-recovery is moderate (2-3%) for most tasks, 257

with the most substantial improvements observed 258

in xwinograd and xquad, where recovery provides 259

8-10% gains in Llama3.1-8B. These results sug- 260

gest that recovery with any language, including 261
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Figure 3: xquad performance on xquad using zh and en calibration and recovery dataset across iterations. The
boxplot distribution is the performance across languages. x.5 and x.0 demonstrates the pruning phase and recovery
phase performance respectively in each iteration

low-resource languages like sw, yields better re-262

sults than discarding the recovery phase entirely.263

Dominant pretraining languages do not guar-264

antee optimal recovery performance. Contrary265

to our initial guess that dominant pretraining lan-266

guages (en for Llama3.1-8B and zh for Qwen2.5-267

8B) would achieve superior cross-lingual recov-268

ery, Table 1 reveals an intriguing patterns. While269

Qwen2.5-8B shows zh achieving closely (~0.01)270

to the best average score as predicted, surprisingly,271

id achieves the best results in Llama3.1-8B, with272

English ranking only sixth. Notably, zh performs273

second-best in Llama3.1-8B despite its different274

script from en. Task-specific patterns further vary275

between models: ru performs best on pawsx in276

Llama3.1-8B, while ja excels in Qwen2.5-7B, sug-277

gesting model-dependent sensitivity to language-278

task combinations during pruning.279

The best recovery languages vary across prun-280

ing iterations. Analysis of performance across281

the 8-layer pruning process reveals that the best-282

performing recovery language changes between283

iterations. Figure 2 illustrates this behavior. For284

pawsx in Llama, id consistently outperforms other 285

languages in early iterations, while ru performs the 286

best in later stages. Qwen exhibits even more varia- 287

tion, alternating between en, vi, ru, and ja across 288

iterations. Interestingly, xquad shows more stable 289

patterns: en dominates middle iterations (3-7) in 290

Llama, while zh maintains superiority in Qwen, 291

though this consistency does not extend to other 292

tasks. 293

Language-specific performance patterns emerge 294

across pruning iterations. Having examined ag- 295

gregated results across languages, we now analyze 296

individual language performance within a single 297

dataset. We focus on xquad as it exhibits the high- 298

est variance across languages in both Llama3.1-8B 299

and Qwen2.5-7B models. 300

In Figure 3, the observation of the performance 301

across iterations for en and zh on xquad in both 302

models shows consistent performance degradation 303

during the pruning phase. The recovery phase 304

demonstrates clear improvements, as shown by up- 305

ward shifts in the box plot distributions after the 306

pruning phase, indicating that recovery benefits 307

most languages, though performance still declines 308
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Figure 4: Results in xquad on different language using each of language as pruning and recovery dataset tested in
language available in xquad for Llama3.1-8B and Qwen2.5-7B. nr denotes pruning without recovery. Red border
cells depict performance that has less performance than non-recovery. ’-’ denotes performance of the unpruned
models.

Recovery
#tokens #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwino xquad avg

2.5M 4 59.51 43.33 58.71 59.85 78.98 33.80 55.70 52.00 41.38 59.05 58.78 77.55 31.11 53.31
8M 4 59.63 43.30 59.02 59.85 78.89 33.68 55.73 49.94 41.96 58.93 58.87 77.39 31.99 53.18
23.8M 4 59.32 43.43 58.87 59.79 78.92 33.54 55.65 50.31 41.73 59.15 58.75 77.55 29.83 52.88

2.5M 8 50.74 40.54 55.67 55.62 71.86 10.06 47.41 48.10 37.26 55.67 54.50 68.69 5.09 44.88
8M 8 50.21 40.43 55.56 55.53 71.79 9.90 47.24 46.86 37.62 55.44 54.28 68.35 5.86 44.73
23.8M 8 50.33 40.44 55.67 55.44 71.54 9.90 47.22 47.10 37.53 55.60 54.44 68.55 5.56 44.80

Table 2: Performance comparison across different recovery data sizes configurations for Llama3.1-8B and Qwen2.5-
7B models, showing accuracy scores (%). #-L denotes number of pruned layers.

with subsequent pruning iterations.309

The performance gap between languages widens310

during the pruning phase, particularly by the third311

iteration where en-zh performance differs by ap-312

proximately 20% in Llama3.1-8B and 10% in313

Qwen on xquad. This suggests that layer impor-314

tance rankings derived from calibration datasets are315

language-dependent, where the choice of calibra-316

tion language influences both task performance and317

cross-lingual results, with some languages provid-318

ing better preservation during performance degra-319

dation.320

Cross-lingual recovery benefits vary signifi-321

cantly across target languages and models. We322

extend the analysis from Table 1 by examining indi-323

vidual language performance on xquad, as shown324

in Figure 4.325

Most recovery languages outperform the non-326

recovery baseline, with several exceptions: in327

Llama, ar, ro, and th underperform when recover-328

ing vi performance, and ar fails when recovering329

Arabic performance. In Qwen, seven languages330

(de, el, en, es, ru, th, and tr) perform worse331

than non-recovery when recovering English perfor- 332

mance. The fact that en recovery is detrimental 333

for English tasks in Qwen presents an interesting 334

pattern. We observe that optimal recovery lan- 335

guages do not correspond to the target evalua- 336

tion language. For instance, id achieves the best 337

results for xquad_ar rather than using ar for recov- 338

ery. Additionally, zh effectively maintains English 339

performance despite having a different script sys- 340

tem. Consistent with Table 1, id and ja exhibit top 341

performers across multiple target language bench- 342

marks in the cross-lingual recovery setting. 343

6 Analysis in Calibration and Recovery 344

Dataset Setup 345

To ascertain our experiment setup, we check the 346

impact of the sizes of calibration and recovery 347

datasets, with the addition of using all languages 348

instead of a language in pruning and recovering the 349

model in the general domain. 350

Calibration and recovery dataset size shows 351

minimal impact on performance. We examine 352

whether dataset size affects model performance dur- 353
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#Calibration
Rows #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwino xquad avg

10 4 59.04 43.32 58.75 59.85 78.92 33.34 55.53 49.83 41.98 59.13 58.88 77.55 32.45 53.30
100 4 59.60 43.35 58.82 59.82 78.89 33.80 55.71 50.09 41.98 59.05 58.89 77.61 32.45 53.35
1000 4 59.50 43.37 58.69 59.81 78.92 33.81 55.68 50.83 40.27 58.96 58.97 78.58 30.43 53.01

10 8 50.51 40.47 55.75 55.47 71.63 10.18 47.34 50.00 37.42 55.60 53.35 68.33 5.29 45.00
100 8 50.34 40.40 55.82 55.48 71.99 9.81 47.31 50.55 37.40 55.69 53.38 67.88 4.70 44.93
1000 8 50.36 40.46 55.75 55.58 71.63 9.98 47.29 47.29 37.44 55.98 54.37 67.81 2.88 44.30

Table 3: Performance comparison across different calibration pruning data sizes and number of layer pruning
configurations for each model, showing the respective scores. Results are shown for pruning sizes of 10, 100, and
1000 with both 4 and 8 pruned layers. #-L denotes number of pruned layers.

Training
Data Type #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwinogr xquad avg

Mixed 4 59.26 44.06 59.78 60.44 77.64 20.94 53.68 52.27 41.33 58.60 58.55 77.55 27.51 52.63
En 4 59.51 43.33 58.71 59.85 78.98 33.80 55.70 52.00 41.38 59.05 58.78 77.55 31.11 53.31

Mixed 8 53.48 41.16 55.93 55.95 71.59 6.59 47.45 47.21 38.82 55.64 54.70 68.96 9.83 45.86
En 8 50.74 40.54 55.67 55.62 71.86 10.06 47.41 49.83 39.23 56.47 55.82 72.51 16.42 48.38

Table 4: Performance comparison across different training data types that mixes all language (mixed) and english
only (en). Results are shown for both 4 and 8 pruned layers with different training data compositions. #-L denotes
number of pruned layers.

ing compression. Table 2 shows that on average,354

different data sizes yield similar results across iter-355

ations, indicating that dataset size does not impact356

much under our experimental setups.357

We also investigate calibration dataset size for358

the pruning phase, given models’ sensitivity to359

layer removal decisions. Table 3 demonstrates min-360

imal differences across dataset sizes, with the ex-361

ception of xquad tasks in both Llama and Qwen at362

the 8th iteration, where slight performance degra-363

dation occurs. To conclude, larger pruning datasets364

do not consistently correspond to improved perfor-365

mance.366

Mixed-language data shows model-dependent367

results but generally underperforms monolin-368

gual English on some xquad and xwinograd.369

Previous experiments used single languages for370

recovery and pruning. We investigate whether com-371

bining all languages into mixed datasets affects372

performance, maintaining dataset sizes comparable373

to the English monolingual condition. Results are374

presented in Table 4.375

For Llama, mixed-language data shows slightly376

better average results than English on pawsx, xnli,377

and xcopa tasks. Qwen exhibits the opposite pat-378

tern on these same tasks. For xwinograd and379

xquad, both models show that English outperforms380

mixed-language data on average. Overall, results381

indicate that monolingual English is either com-382

parable to or better than mixed-language datasets 383

across most experimental setups. 384

7 Comparison to Non-Iterative 385

Approaches 386

So far, we have shown the multilingual capability. 387

However, to ascertain the iterative pruning method 388

effectiveness, we need to compare it to other non- 389

iterative methods. To do so, we compare it with 390

two baseline layer pruning methods: LaCO (Yang 391

et al., 2024b) and ShortGPT (Men et al., 2024). We 392

check the performance only in English tasks using 393

English calibration and recovery dataset. 394

While our approach adopts LaCO’s layer impor- 395

tance assessment methodology, ShortGPT employs 396

Block Influence (BI). Our method extends these 397

approaches by incorporating recovery and itera- 398

tive pruning. For ShortGPT, we implemented the 399

method ourselves to obtain results, while for LaCO, 400

we utilized their publicly available code. Since 401

LaCO’s compression rate varies with hyperparame- 402

ters, we conducted a grid search and selected the 403

model with the closest compression rate and high- 404

est perplexity score on wikitext-v2-raw-v1. We 405

then used the experiment setup as defined in §4. 406

To have a better assessment, we categorize the 407

benchmark dataset into three categories: reasoning 408

(arc-challenge,arc-easy (Clark et al., 2018), 409

hellaswag (Zellers et al., 2019), COPA (Roemmele 410
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Model Approach #L Wiki↓ Reasoning Language Comprehension Knowledge

ARC-C ARC-E HellaSwag COPA PIQA BLiMP RACE Winogrande BoolQ MMLU

Llama3.1 8B

Not Pruned 32 8.65 51.28 81.48 60.03 87.0 80.14 81.93 39.14 73.56 82.08 63.59
LaCO 24 23.55 30.29 63.01 43.22 81.0 71.76 79.34 30.91 55.72 61.99 23.96
ShortGPT 24 6636.72 27.47 42.68 28.28 63.0 60.55 66.84 25.07 53.91 37.58 32.21
Ours 24 16.89 33.02 67.85 47.49 80.0 74.27 84.10 35.69 60.93 62.26 23.80

Qwen2.5-7B

Not Pruned 28 10.35 47.78 80.39 60.03 91.0 78.67 82.24 41.63 72.93 84.65 71.91
LaCO 22* 48.38 29.52 50.80 39.32 71.0 67.14 75.60 27.18 55.88 47.19 31.83
ShortGPT 21 18.57 33.79 70.88 44.32 76.0 74.27 81.93 33.01 53.51 45.84 26.52
Ours 21 16.40 35.58 71.13 45.59 77.0 74.32 83.48 36.08 57.70 53.73 30.94

Table 5: Performance comparison across model scales and tasks, showing perplexity (Wiki↓, where lower is better)
and accuracy scores (%). Bold indicates the best performance among other approaches (LaCO, ShortGPT, ours) for
each metric. *: Due to the dependency on hyperparameter in LaCO, some of its results may have incomparable
compression with others. #L denotes number of layers.

et al., 2011), PIQA (Bisk et al., 2020)), language411

comprehension (BLiMP (Warstadt et al., 2020),412

RACE (Lai et al., 2017), and Winogrande (Sak-413

aguchi et al., 2021)), and knowledge ( BoolQ (Clark414

et al., 2019) and MMLU (Hendrycks et al., 2021)).415

Iterative approach Outperforms Other Base-416

lines Overall Table 5 presents the experimental417

results. The iterative pruning outperforms other418

methods (LaCO and ShortGPT) across all model419

scales. Specifically, it maintains a lower perplexity420

on Wikitext compared to the baselines, avoiding421

the sharp increases observed with ShortGPT on422

Llama3.1-8B (6636.72) and LaCO on Qwen2.5-7B423

(48.38). The iterative pruning also achieves the424

highest performance in the reasoning domain.425

In the language category, our approach main-426

tains performance better than the other methods,427

particularly on BLIMP, where these models even428

outperform their non-pruned counterparts. We at-429

tribute this to the recovery phase, where training430

on wikitext helps preserve linguistic capabilities.431

On the other hand, RACE and Winogrande show432

moderate performance gaps (2-5%). These results433

suggest that our method offers particular advan-434

tages for language comprehension in large models.435

In the knowledge domain, iterative prunning436

achieves strong BoolQ performance. The improved437

accuracy for this model is likely due to the use of438

wikitext as a recovery training dataset. However,439

MMLU results lag behind the other methods by ap-440

proximately 9% compared to the highest performer441

on Llama3.1-8B, and by 1-2% for the others.442

8 Related Works443

Model pruning has gained significant attention re-444

cently due to the emergence of Large Language445

Models (LLMs). One of the approaches is to446

do unit size reduction, where several approaches 447

leverage dimensionality reduction techniques (Lin 448

et al., 2024; Ashkboos et al., 2024) to compress 449

weight matrices, thereby reducing hidden unit di- 450

mensions. Various metrics have been explored to 451

identify prunable weights, including Hessian in- 452

formation (Frantar and Alistarh, 2023; Ling et al., 453

2024), Kronecker-factored curvature (van der Oud- 454

eraa et al., 2024), and magnitude information (Sun 455

et al., 2024; Guo et al., 2024). 456

On the other hand, block pruning is done by 457

employing some metrics, such as Hessian infor- 458

mation (Ma et al., 2023), output similarity (Yang 459

et al., 2024b; Men et al., 2024), and learnable pa- 460

rameters to determine block significance (Liu et al., 461

2024; Xia et al., 2024). Some approaches opt to 462

merge blocks instead of removing them (Yang et al., 463

2024b; Chen et al., 2024). Muralidharan et al., 464

2024 combines iterative pruning with Neural Archi- 465

tecture Search (Elsken et al., 2019), utilizing multi- 466

ple metrics for model compression. Many of these 467

techniques incorporate a recovery phase (Ling et al., 468

2024; Sun et al., 2024; Yin et al., 2024; Ma et al., 469

2023; Muralidharan et al., 2024). In our work, we 470

adopt an iterative approach based on output simi- 471

larity, followed by recovery, critical to our work, 472

to study whether multilingual capabilities can be 473

retained or not. 474

9 Conclusion 475

This work analyzes the cross-lingual performance 476

in iterative pruning in a multilingual model. We 477

found that iterative pruning induces cross-linguality 478

even using a different language than the original 479

compared to without recovery. Additionally, each 480

iteration has different language that performs the 481

best. Our findings demonstrate an intriguing aspect 482

related to cross-linguality in iterative pruning. 483
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Limitations484

We acknowledge the limitations in our experimen-485

tal setups that we only tested ten languages. More486

languages may have enriched the analysis per-487

formed in this research. Additionally, we only488

observe the Qwen2.5 and Llama3 models, where489

other models may exhibit different patterns, as we490

have pointed out in our results that each model491

exhibits different behavior. Finally, we only test492

the data in general data for each language. Hav-493

ing specific task-oriented data or language, while494

also additional sampling techniques, may be worth495

pursuing for future works.496

Ethics Statement497

This work has no ethical issues, as we propose to498

perform a compression technique. The data used do499

not contain personally identifiable information or500

offensive content. The artifacts we utilize are con-501

sistent with intended use and adhere to the license502

usage (research purpose). We use AI Assistants503

(LLMs, Grammarly, and Overleaf’s AI) to assist504

our writing in correcting grammatical errors.505
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A Layer Mapping in Recovery Phase699

To define the mapping function map(l) in itera-700

tion j, we aim to align the student’s layer index l701

with the corresponding original index in the teacher702

model. However, if any layers in the teacher model703

with indices lower than l were dropped before itera-704

tion j, the mapping must account for these dropped705

layers. Specifically, map(l) is adjusted by increas-706

ing it by the number of dropped layers with indices707

less than map(l). For example, if the dropped layer708

indices are [3, 4] and l = 10, then map(10) = 12,709

as the two dropped layers shift the mapping while710

map(1) = 1. Formally, let D be the set of dropped711

layer indices in the teacher model before iteration712

j, sorted in ascending order. The function map(l)713

maps the student’s layer index l to the teacher’s714

original index m, where m is the unique solution715

to the equation m = l + |{d ∈ D | d < m}|.716

B Additional Monolingual Performance717

Analysis718

Iterative Prunning’s recovery phase boosts per-719

formance, notably for larger models on reason-720

ing and language tasks. We investigated the im-721

pact of each phase of Iterative Prunning. The re-722

sults are shown in Figure 15. In summary, the itera-723

tive recovery phase helps preserve performance on724

reasoning and language tasks, particularly in later725

iterations. For example, with Llama3.1-8B, the726

performance difference between the first and third727

iterations is approximately 1-3%, while it widens728

to 5-10% between the fourth and sixth iterations.729

This pattern is also observed on Winogrande. For730

BLIMP, the performance gap similarly increases731

in later iterations (6th-10th). QWEN exhibits the732

same trend, albeit with smaller gaps.733

For knowledge tasks, MMLU shows a clear per-734

formance difference in both the 7B and 8B mod-735

els. However, BoolQ exhibits an irregular trend736

with Qwen2.5-7B, with fluctuating performance737

(sometimes higher, sometimes lower) and ~1% dif-738

ferences in the Llama3 model. This behavior is739

also observed in smaller models (0.5B and 3B) for740

both tasks. Overall, the recovery phase provides741

a considerable performance improvement, except742

in the knowledge domain, especially for smaller743

models.744

Language #Tokens

ar 8.5m
en 2.5m
es 6.0m
hi 9.0m
id 6.2m
ja 8.3m
ru 7.2m
sw 3.3m
vi 6.2m
zh 7.6m

Table 6: Recovery dataset size in token size computed
using Llama3.1 tokenizer.

C Iterative Prunning Preservation 745

Analysis 746

Iterative Prunning effectively preserves lan- 747

guage and reasoning abilities across iterations, 748

though knowledge retention presents a chal- 749

lenge. Figure 17 shows the average performance 750

trend across iterations for each task category. While 751

Qwen2.5-7B exhibits a slight, steady decrease (av- 752

eraging ~1% per iteration) in reasoning and lan- 753

guage task performance, Llama3.1-8B plateaus in 754

language but shows a steady decline in reasoning. 755

Both models experience sharp performance drops 756

in specific iterations (e.g., M [2]
cs for Llama and M

[3]
cs 757

for Qwen). This affirms Iterative Pruning’s effec- 758

tiveness in preserving language and reasoning abil- 759

ities, though it suggests challenges in maintaining 760

knowledge-based performance across iterations. 761

D Recovery Data Token Size 762

The number of tokens used in our experiments can 763

be seen in Table 6. 764

E Performance Trend for Each Iteration 765

The fine-grained performance trend on monolin- 766

gual performance can be seen in Figure 5. 767

The recovery phase generally improves perfor- 768

mance, though its impact is task and model de- 769

pendent. The recovery phase generally improves 770

performance by approximately 1% for both mod- 771

els (Figure 17). However, its impact varies; for 772

example, M [5]
cs−rec on Llama3.1-8B shows a slight 773

decrease in reasoning performance after recovery, 774

while language task performance increases. This 775

indicates that the recovery process’s effectiveness 776

depends on the model family and the specific task. 777

11



1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Reasoning

arc_challenge
arc_easy
hellaswag
copa
piqa

1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Language

blimp
race
winogrande

1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Knowledge

boolq
mmlu

1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

8

10

12

14

16

18

20

P
er

pl
ex

ity

Wikitext

wikitext

Llama-3.1-8B

1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Reasoning

arc_challenge
arc_easy
hellaswag
copa
piqa

1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Language

blimp
race
winogrande

1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Knowledge

boolq
mmlu

1 1+ 2 2+ 3 3+ 4 4+ 5 5+ 6 6+ 7 7+ 8 8+ 9 9+

Num Dropped Layers

12

14

16

18

20

22

24

P
er

pl
ex

ity

Wikitext

wikitext

Qwen2.5-7B

Figure 5: The performance across pruning and recovery phase for 10 iterations in Qwen2.5-7B and Llama3.1-8B.
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Iterative Prunning Preserves and May Improves778

Linguistic Capabilites We evaluated the preser-779

vation of linguistic capacity across iterations using780

BLIMP, a benchmark consisting of 67 fine-grained781

linguistic problems. We tested on Llama-3.1-8B782

and Qwen2.5-7B, categorizing the BLIMP subtasks783

into 13 groups for clearer visualization (see Ap-784

pendix E for the groupings).785

Overall, both models maintain or even improve786

scores across most categories in later iterations,787

surpassing the performance of the non-compressed788

models. Furthermore, Iterative Pruning with re-789

covery consistently outperforms the pruned model790

without recovery, with the exception of the "bind-791

ing theory" category. In this category, we observe a792

slight performance decay (~2%) starting from the793

seventh iteration for Llama3.1-8B and the eighth it-794

eration for Qwen2.5-7B. The "coordinate structure"795

and "wh-that" categories exhibit differing trends be-796

tween these family models. Llama3.1-8B shows an797

opposing trend at iteration 7 and beyond, with one798

subcategory plateauing while the other increases in799

performance.800

MMLU performance is sensitive to pruning,801

with recovery offering moderate gains across802

MMLU task categories Figure 16 provides the803

MMLU performance across MMLU groupings. 6804

It shows that the pruning phase induces signifi-805

cant performance drops in some cases, notably in806

the early layer dropping of Llama3.1-8B (around807

10%) and from the third layer onward in Qwen2.5-808

7B. This suggests greater sensitivity of knowledge-809

based tasks to pruning. The subsequent recovery810

phase provides moderate improvements (about 2-811

3%) for both models. Interestingly, Llama3.1-8B812

at M2
cs−rec shows a moderate performance gain,813

sustained across the next four iterations. This sus-814

tained improvement is not exhibited in Qwen2.5-815

7B, which instead exhibits a steady performance816

decline. Performance trends across iterations are817

similar across MMLU categories within the same818

model, yet differ between models. These differ-819

ences highlight model-specific variations in knowl-820

edge retention, potentially due to the distinct pre-821

training strategies of Llama3.1-8B and Qwen2.5-822

7B.823

Our approach exhibits task-specific layer sensi-824

tivities that vary between models. We investi-825

gated which layer drops correlate with significant826

6using groupings defined in lm-eval-harness

performance declines, indicating layer importance. 827

Figure 6 shows performance differences across 828

tasks and categories for Qwen2.5-7B and Llama- 829

3.1-8B, revealing distinct drop patterns for each 830

model. Llama3.1-8B’s performance drops tend to 831

occur in the lower half of its layers, while Qwen’s 832

are concentrated in the upper half. Specifically, 833

Llama3.1-8B shows significant drops on arc-easy 834

and arc-challenge in iterations 1, 6, and 7, and 835

on winogrande in iterations 1, 6, and 8. MMLU 836

on Llama3.1-8B shows steep declines in iterations 837

10 and 11 during early iterations, followed by im- 838

provement and stagnation. Qwen2.5-7B exhibits 839

different trends, with notable (>5%) decreases on 840

MMLU in iterations 3, 4, 6, and 7. 841

F Scores across iterations 842

Table 7 and 8 to Table 21 and 22 show the per- 843

formance of multilingual iterative pruning across 844

tasks in Llama3.1-8B and Qwen2.5-7B, respec- 845

tively. Additionally, each iteration performance 846

across multilingual tasks can be seen in Fig- 847

ure 7,8,9,10,11,11,12,13, and 14. 848
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Figure 6: The performance differences between before and after two phases done for each iteration (iter) on
LLAMA 3-1-8B and Qwen 2.5-7B. idx denoted the index of the dropped layer (starts from 0).

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 61.99 45.12 60.76 62.82 80.31 39.79 58.47
en 62.19 45.13 60.95 62.72 80.53 40.35 58.64
es 62.01 45.18 60.74 62.87 80.62 38.86 58.38
hi 61.30 45.45 61.38 62.58 79.79 33.16 57.28
id 62.39 45.17 60.96 63.06 80.69 39.64 58.65
ja 62.08 45.13 60.93 62.84 80.53 40.00 58.58
ru 61.79 45.07 60.76 62.98 80.56 38.84 58.33
sw 61.85 45.03 60.80 62.87 80.56 39.36 58.41
vi 61.79 45.12 60.85 62.95 80.62 40.03 58.56
zh 62.04 45.22 60.85 62.91 80.85 40.99 58.81

Table 7: Llama-3.1-8B results at iteration 1.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 58.78 43.31 61.33 61.15 80.67 62.40 61.27
en 59.25 43.28 61.18 61.19 81.14 60.70 61.12
es 59.12 43.22 61.05 61.15 80.65 62.30 61.25
hi 58.56 43.21 61.18 61.16 80.60 62.45 61.19
id 58.03 43.52 61.40 61.46 81.43 61.06 61.15
ja 58.67 43.30 61.26 61.09 80.72 61.67 61.12
ru 58.62 43.15 61.27 61.10 80.72 61.89 61.13
sw 58.64 43.18 61.26 60.99 80.76 60.62 60.91
vi 58.73 43.24 60.91 61.03 80.81 62.62 61.22
zh 58.88 43.19 61.15 61.17 81.23 61.58 61.20

Table 8: Qwen2.5-7B results at iteration 1.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 59.82 44.63 60.73 61.64 78.24 33.88 56.49
en 61.24 44.73 61.16 61.65 80.24 36.07 57.51
es 61.20 44.78 61.15 61.77 80.17 34.89 57.33
hi 59.73 44.23 60.76 61.31 77.95 28.73 55.45
id 61.56 44.77 61.20 61.85 80.04 35.44 57.48
ja 60.27 45.15 60.55 61.84 79.14 32.08 56.50
ru 61.21 44.59 61.15 61.77 79.88 34.42 57.17
sw 60.23 44.51 61.13 61.92 80.40 35.22 57.24
vi 61.42 44.64 60.98 61.97 80.06 34.67 57.29
zh 59.78 44.79 60.80 61.66 78.49 35.85 56.89

Table 9: Llama-3.1-8B results at iteration 2.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 57.61 42.99 60.93 60.41 78.67 57.83 59.74
en 56.24 43.07 60.53 60.56 80.11 50.58 58.51
es 56.36 43.19 60.60 60.74 79.97 52.05 58.82
hi 58.14 42.38 60.76 60.57 79.61 50.52 58.66
id 57.36 43.28 60.40 60.54 80.27 57.90 59.96
ja 58.17 42.81 60.38 59.78 79.82 56.98 59.66
ru 58.03 42.01 60.74 60.38 79.79 46.82 57.96
sw 54.86 43.06 60.78 60.31 78.87 49.34 57.87
vi 58.56 43.01 60.18 60.02 80.06 57.97 59.97
zh 55.46 42.92 60.93 60.57 80.56 52.36 58.80

Table 10: Qwen2.5-7B results at iteration 2.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 58.16 44.10 59.74 60.28 76.65 24.21 53.86
en 58.98 43.94 60.20 60.92 79.21 34.89 56.35
es 59.14 43.96 60.31 61.00 78.74 33.49 56.11
hi 58.27 44.20 60.34 60.67 76.78 24.97 54.21
id 62.56 44.48 60.13 60.78 79.59 35.09 57.11
ja 57.79 44.25 59.80 60.31 77.14 24.93 54.04
ru 60.98 43.99 60.04 60.65 79.77 33.23 56.44
sw 61.04 44.45 60.00 60.91 79.86 34.72 56.83
vi 59.46 44.27 60.34 60.76 77.72 23.86 54.40
zh 57.87 44.42 59.87 60.51 76.89 24.88 54.07

Table 11: Llama-3.1-8B results at iteration 3.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 57.16 41.77 60.29 59.92 77.88 39.54 56.09
en 54.49 42.86 60.02 59.60 78.78 44.29 56.67
es 52.94 42.21 59.76 59.70 79.39 38.55 55.43
hi 56.57 41.02 59.89 59.60 78.44 41.07 56.10
id 54.82 42.25 59.66 59.73 79.43 45.09 56.83
ja 55.79 42.32 59.51 59.28 79.73 46.49 57.19
ru 57.49 41.60 59.58 59.05 78.74 41.56 56.34
sw 50.23 41.39 59.49 59.36 78.22 33.82 53.75
vi 56.79 42.23 59.45 59.23 79.48 47.27 57.41
zh 54.61 42.69 59.82 59.63 79.19 48.46 57.40

Table 12: Qwen2.5-7B results at iteration 3.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 55.57 43.87 59.64 59.44 75.25 16.61 51.73
en 59.51 43.33 58.71 59.85 78.98 33.80 55.70
es 56.59 43.50 59.78 59.65 76.67 23.30 53.25
hi 58.21 44.13 59.05 59.75 76.40 23.99 53.59
id 59.89 44.10 59.74 59.88 77.41 25.02 54.34
ja 56.35 43.33 59.09 59.53 76.98 23.48 53.13
ru 61.02 43.05 58.07 59.47 78.78 31.93 55.39
sw 58.63 43.66 59.73 59.56 77.55 24.40 53.92
vi 57.43 43.55 59.31 59.70 77.25 21.39 53.10
zh 56.64 43.68 59.11 59.92 76.26 23.21 53.14

Table 13: Llama-3.1-8B results at iteration 4.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 55.51 40.60 59.34 58.47 76.24 28.81 53.16
en 52.00 41.38 59.05 58.77 77.55 31.11 53.31
es 53.25 41.38 59.04 58.83 77.55 31.04 53.51
hi 54.94 40.74 58.78 58.72 77.14 31.87 53.70
id 54.69 41.16 58.82 58.53 78.62 35.52 54.56
ja 55.31 41.04 59.05 58.34 77.86 31.23 53.81
ru 55.69 40.71 58.82 58.28 77.64 32.07 53.87
sw 49.41 41.49 58.47 58.16 76.62 30.44 52.43
vi 55.94 40.80 58.58 58.30 77.32 31.61 53.76
zh 51.34 41.75 59.15 58.84 78.51 36.33 54.32

Table 14: Qwen2.5-7B results at iteration 4.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 55.81 43.36 58.60 58.89 74.69 16.80 51.36
en 57.06 42.83 58.29 58.79 76.49 23.91 52.90
es 55.80 42.67 58.07 58.49 75.70 22.81 52.26
hi 55.01 43.73 58.67 58.70 73.97 15.82 50.99
id 59.41 43.46 58.45 58.61 76.87 23.52 53.39
ja 56.68 42.78 58.56 58.84 76.40 23.24 52.75
ru 59.12 42.77 57.67 58.76 76.58 22.27 52.86
sw 58.16 43.09 58.93 58.62 77.12 23.13 53.18
vi 56.84 41.69 58.09 58.23 76.69 18.93 51.75
zh 57.06 43.12 58.58 58.96 75.84 23.26 52.80

Table 15: Llama-3.1-8B results at iteration 5.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 49.20 40.27 58.76 57.90 74.80 16.57 49.58
en 51.41 40.05 58.44 57.88 76.17 24.07 51.34
es 51.66 41.05 58.24 57.65 75.93 26.28 51.80
hi 49.50 40.83 58.20 57.85 75.45 26.02 51.31
id 50.51 40.90 57.95 57.72 75.77 28.11 51.83
ja 50.67 41.13 58.09 57.32 75.95 27.44 51.77
ru 54.44 41.02 57.56 57.27 75.12 33.24 53.11
sw 48.47 40.38 57.71 56.85 74.17 21.73 49.89
vi 51.36 40.71 58.27 57.34 76.02 25.95 51.61
zh 50.74 40.97 57.80 57.52 76.29 26.91 51.70

Table 16: Qwen2.5-7B results at iteration 5.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 54.16 42.30 57.36 57.20 71.66 10.80 48.91
en 55.75 41.83 57.09 57.48 75.79 23.41 51.89
es 52.48 42.46 57.66 57.56 73.68 16.19 50.00
hi 55.23 43.64 57.76 57.72 73.88 14.81 50.51
id 56.17 42.37 57.18 57.53 76.24 20.75 51.71
ja 53.16 42.01 58.04 57.90 74.85 18.61 50.76
ru 59.16 41.92 56.40 57.42 76.13 20.37 51.90
sw 56.25 41.95 57.31 57.19 74.31 13.73 50.12
vi 53.40 41.74 57.60 57.30 74.69 12.42 49.53
zh 55.77 42.37 57.67 57.76 75.12 19.73 51.40

Table 17: Llama-3.1-8B results at iteration 6.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 48.53 40.26 57.84 56.91 72.38 16.62 48.75
en 51.64 39.37 57.33 56.57 74.67 16.91 49.41
es 51.77 39.75 57.51 56.72 74.56 18.88 49.87
hi 49.16 40.59 57.02 56.68 73.05 24.98 50.25
id 49.53 40.68 57.24 57.01 73.90 27.05 50.90
ja 49.83 40.66 57.22 56.65 73.64 27.90 50.98
ru 53.02 40.22 56.13 56.11 72.33 19.50 49.55
sw 48.94 39.48 56.89 55.98 70.60 12.64 47.42
vi 50.89 40.20 56.74 56.58 73.90 24.90 50.54
zh 49.53 40.82 56.91 56.73 74.67 26.63 50.88

Table 18: Qwen2.5-7B results at iteration 6.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 54.39 41.68 56.47 56.19 71.00 10.22 48.32
en 52.99 41.05 56.05 56.37 74.26 15.33 49.34
es 52.50 41.83 56.74 56.35 73.19 14.94 49.26
hi 53.20 42.11 56.56 56.44 70.80 8.93 48.01
id 54.05 41.38 55.66 56.36 74.58 13.89 49.32
ja 52.22 41.27 57.07 56.43 71.79 11.44 48.37
ru 55.31 41.82 55.89 56.49 73.81 14.07 49.57
sw 51.33 42.19 56.16 55.95 70.69 8.96 47.55
vi 52.04 40.64 56.66 55.83 71.79 6.79 47.29
zh 55.28 41.49 56.82 56.42 74.56 18.46 50.50

Table 19: Llama-3.1-8B results at iteration 7.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 47.47 39.11 56.53 55.81 71.00 14.22 47.36
en 49.83 39.23 56.47 55.82 72.51 16.42 48.38
es 49.52 39.76 56.47 55.95 71.84 17.32 48.48
hi 48.76 39.54 56.45 55.91 71.54 15.52 47.95
id 48.71 39.37 56.47 56.29 72.20 17.56 48.43
ja 50.71 39.52 56.49 55.70 71.70 18.91 48.84
ru 48.86 39.39 55.98 55.50 69.59 16.86 47.70
sw 47.73 38.24 56.00 55.15 68.91 7.47 45.59
vi 49.99 39.12 55.66 55.16 72.58 15.76 48.04
zh 49.59 39.44 56.18 55.99 72.78 19.91 48.98

Table 20: Qwen2.5-7B results at iteration 7.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 52.04 40.78 55.74 55.36 68.04 6.50 46.41
en 50.74 40.54 55.67 55.62 71.86 10.06 47.41
es 51.43 41.05 55.71 55.21 70.40 8.39 47.03
hi 53.46 41.06 56.34 55.40 70.47 8.08 47.47
id 53.10 40.36 55.44 55.18 74.15 13.27 48.58
ja 51.63 40.82 56.15 55.48 71.12 9.43 47.44
ru 54.75 40.82 55.31 55.13 72.33 11.54 48.31
sw 51.97 41.00 55.62 55.04 70.17 8.23 47.00
vi 51.38 39.67 54.91 53.84 71.21 5.42 46.07
zh 52.50 40.67 56.55 55.66 73.00 12.95 48.56

Table 21: Llama-3.1-8B results at iteration 8.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 46.99 38.68 55.58 55.43 68.06 11.09 45.97
en 48.10 37.26 55.67 54.50 68.69 5.09 44.88
en-nr 47.49 37.10 55.26 53.53 65.90 5.01 44.05
es 47.74 39.06 55.40 54.86 68.44 12.36 46.31
hi 47.28 38.55 55.58 54.50 67.59 10.12 45.60
id 47.17 38.53 55.02 55.27 68.08 12.62 46.12
ja 48.78 38.62 55.33 54.57 67.77 13.36 46.40
ru 47.48 38.62 55.60 54.71 68.56 12.16 46.19
sw 47.54 38.44 55.44 54.30 66.22 6.75 44.78
vi 48.19 38.50 55.13 54.22 68.35 12.28 46.11
zh 47.24 38.73 55.85 55.48 68.98 12.07 46.39

Table 22: Qwen2.5-7B results at iteration 8.

Figure 7: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 8: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.

Group Tests
blimp_agreement

• blimp_regular_plural_subject_verb_agreement_1
• blimp_regular_plural_subject_verb_agreement_2
• blimp_irregular_plural_subject_verb_agreement_1
• blimp_irregular_plural_subject_verb_agreement_2
• blimp_determiner_noun_agreement_1
• blimp_determiner_noun_agreement_2
• blimp_determiner_noun_agreement_irregular_1
• blimp_determiner_noun_agreement_irregular_2
• blimp_determiner_noun_agreement_with_adj_2
• blimp_determiner_noun_agreement_with_adj_irregular_1
• blimp_determiner_noun_agreement_with_adj_irregular_2
• blimp_determiner_noun_agreement_with_adjective_1
• blimp_anaphor_gender_agreement
• blimp_anaphor_number_agreement

blimp_distractor_agreement

• blimp_distractor_agreement_relational_noun
• blimp_distractor_agreement_relative_clause

Table 23: BLiMP Agreement Tests
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Figure 9: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.

Group Tests
blimp_island_constraints

• blimp_wh_island
• blimp_complex_NP_island
• blimp_adjunct_island
• blimp_sentential_subject_island
• blimp_left_branch_island_echo_question
• blimp_left_branch_island_simple_question

blimp_movement_extraction

• blimp_wh_questions_object_gap
• blimp_wh_questions_subject_gap
• blimp_wh_questions_subject_gap_long_distance
• blimp_coordinate_structure_constraint_object_extraction
• blimp_existential_there_subject_raising
• blimp_existential_there_object_raising
• blimp_expletive_it_object_raising

blimp_wh_that

• blimp_wh_vs_that_no_gap
• blimp_wh_vs_that_no_gap_long_distance
• blimp_wh_vs_that_with_gap
• blimp_wh_vs_that_with_gap_long_distance

Table 24: BLiMP Syntax and Movement Tests
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Figure 10: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.

Group Tests
blimp_passive_causative

• blimp_passive_1
• blimp_passive_2
• blimp_animate_subject_passive
• blimp_causative

blimp_transitivity

• blimp_transitive
• blimp_intransitive
• blimp_inchoative
• blimp_animate_subject_trans

blimp_irregular_forms

• blimp_irregular_past_participle_adjectives
• blimp_irregular_past_participle_verbs

Table 25: BLiMP Argument Structure and Form Tests
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Figure 11: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 12: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 13: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 14: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 15: performance on six different subtasks. dotted line denoted implementing Iterative Prunning without
recovery phase while solid line denoted layer prunning and recovery phase are done in Iterative Prunning
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Figure 16: Line charts depicts MMLU groupings performance on Llama-3.1-8B and Qwen2.5-7B in 10 iterations.
"+" markers indicate the recovery phase; all other markers represent the pruning phase.
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Figure 17: The average performance across pruning and recovery phase for 10 iterations on Llama 3.1-8B and
Qwen2.5-7B on an average aggregation of reasoning, language, and knowledge tasks.
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Group Tests
blimp_negation_npi

• blimp_npi_present_1
• blimp_npi_present_2
• blimp_only_npi_licensor_present
• blimp_only_npi_scope
• blimp_sentential_negation_npi_licensor_present
• blimp_sentential_negation_npi_scope
• blimp_matrix_question_npi_licensor_present

blimp_quantifiers

• blimp_superlative_quantifiers_1
• blimp_superlative_quantifiers_2
• blimp_existential_there_quantifiers_1
• blimp_existential_there_quantifiers_2

blimp_binding_theory

• blimp_principle_A_c_command
• blimp_principle_A_case_1
• blimp_principle_A_case_2
• blimp_principle_A_domain_1
• blimp_principle_A_domain_2
• blimp_principle_A_domain_3
• blimp_principle_A_reconstruction

blimp_ellipsis_argument

• blimp_ellipsis_n_bar_1
• blimp_ellipsis_n_bar_2
• blimp_drop_argument

blimp_coordinate_structures

• blimp_coordinate_structure_constraint_complex_left_branch

Table 26: BLiMP Specialized Construction Tests
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