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ABSTRACT
In this paper, we introduce a post-processing method to minimize
the algorithmic latency in traditional blind source separation (BSS)
techniques. Our proposed approach involves the incorporation of a
minimum variance distortion response method with the spatial co-
variance matrix, which is derived from conventional BSS methods,
to effectively compute short demixing filters. The performance of
source separation can be improved either by increasing the number
of microphones or by integrating a dereverberation technique as a
pre-processing step, or even both. The experimental results confirm
the effectiveness and consistency of the proposed approaches on di-
verse speech databases.

Index Terms— Blind source separation, low-latency, indepen-
dent vector analysis, beamforming, dereverberation

1. INTRODUCTION
Over the last few decades, blind source separation (BSS) techniques
have evolved from separating instantaneous mixtures to more chal-
lenging reverberant mixtures [1–4]. Convolutional BSS aims to ex-
tract the original sources from recorded reverberant mixtures with-
out prior knowledge of the mixing channels and sources themselves.
This process poses a significant challenge, particularly when aim-
ing for low latency. Traditional BSS methods utilize the short-time
Fourier transform (STFT) technique to separate sources in the fre-
quency domain. These methods assume that the convolutive process
in the time domain can be approximated as an instantaneous mul-
tiplicative process in each frequency bin [5]. However, for this as-
sumption to hold, the window length employed in the STFT should
significantly exceed the length of the mixing filters [6], resulting in
elevated algorithmic latency. One popular approach that follows this
assumption is auxiliary independent vector analysis (AuxIVA) [7].

Pre-processing and post-processing approaches can be em-
ployed to reduce the algorithmic latency associated with traditional
BSS methods. In the pre-processing, [8] proposed the utilization
of a speech dereverberation technique known as weighted pre-
diction error (WPE) [9]. This technique alleviates the impact of
late reverberations while preserving spatial information, allowing
shorter windows during the AuxIVA process. On the other hand,
one post-processing approach utilizes the partitioned convolution
method [10]. This method involves splitting the long estimated
demixing filters into multiple shorter blocks, performing convolu-
tion in the frequency domain, and subsequently reconstructing the
recovered signals using the overlap-add technique. An alternative
post-processing approach [11, 12] involves incorporating additional
microphones to calculate shorter demixing filters based on the long
estimated ones. This helps minimize the crossband effect when
using a shorter window. However, it is important to note that both of
these approaches necessitate a high computational load.

Deep neural network methods have emerged as solutions to
BSS problems [13–17]. These approaches typically rely on a train-
ing process to achieve successful separation, and the quality of
the training dataset heavily influences the separation performance.
Among these approaches, Conv-TasNet is a prominent approach in
this field due to its low delay implementation, for instance, 2 or 4
ms. Recently, Beam-TasNet has been proposed, which combines the
DNN approach with the minimum variance distortionless response
(MVDR) method, a frequency-domain technique. This combination
aims to further improve the separation performance of Conv-TasNet,
particularly for reverberant mixtures. However, it comes with the
drawback of requiring a 512 ms window length, which significantly
increases the algorithmic latency.

In this paper, we present a novel method to reduce the algo-
rithmic latency of the BSS system. Similarly to our previous work
[11, 12], we first employ a traditional BSS technique like AuxIVA
to estimate the demixing filters using a long window during the
STFT processing. Instead of calculating the crossband filters for
obtaining the short demixing filters, we compute the spatial covari-
ance matrix (SCM) of the recovered sources. Next, we utilize the
MVDR approach on the SCM to obtain short demixing filters for
each source. These short demixing filters can then be directly uti-
lized in the short window STFT domain, which is more computa-
tionally efficient compared to the partitioned convolution approach.
Unlike Conv-TasNet or Beam-TasNet, the proposed technique does
not require any pre-training or fine-tuning before separation. Ad-
ditionally, the separation performance of our method can further be
improved by employing the WPE approach as a pre-processing step
to perform speech dereverberation.

The structure of the paper is as follows: In Section 2, we in-
troduce our formulation of the BSS problem, which operates in the
short STFT domain. In Section 3, we discuss the proposed method
aimed at reducing the algorithmic delay of the BSS system. Moving
on to Section 4, we present the experimental results of our proposed
approach and compare them with other methods. Finally, in Section
5, we draw our conclusions.

2. PROBLEM FORMULATION
Let L denotes the number of sources and M denotes the number of
microphones. When disregarding the noise, the observed signals of
the mixture in a linear time-invariant (LTI) system can be expressed
as:

xm[n] =

L−1∑
l=0

∞∑
n′=−∞

hml[n]sl[n− n′], (1)

where xm represents the signal captured by the mth microphone, sl
represents the signal emitted by the lth source and hml represents
the room impulse response (RIR) between the mth microphone and
the lth source, acting as a mixing filter.
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By performing the STFT with a short window length, we obtain
the following expression [18]:

xp,k =
∑
p′

∑
k′

Ap−p′,k,k′sp′,k′ , (2)

where xp,k ∈ CM and sp,k ∈ CL represent the vector of micro-
phones signals and source signals, respectively, at the pth block in-
dex and the kth frequency bin index in the STFT domain. The coeffi-
cient Ap−p′,k,k′ ∈ CM×L indicates the crossband filter coefficients
between frequency bands k and k′ at the (p−p′)th block index [18].

For the case where the window length is much longer than the
length of the RIR, we can simplify the convolutive transfer function
to a multiplicative transfer function [5, 6]:

xp,k ≈ Aksp,k. (3)

It is worth noting that the contribution of the crossband filter co-
efficients is significantly lower than that of the band-to-band filter
coefficients.

To recover the separated signal, we can estimate a demixing ma-
trix Wk ∈ CM×L in each frequency bin using traditional BSS ap-
proaches, such as the AuxIVA approach [7]. By applying the esti-
mated demixing matrix, the recovered sources yp,k ∈ CL can be
obtained as:

yp,k = WH
k xp,k, (4)

where {·}H denotes the Hermitian transpose operator.
In the following section, we discuss the process of calculating

the demixing operator by utilizing the demixing matrix Wk in (4).
This operator enables separation to be carried out directly within the
short window STFT domain to reduce the algorithmic latency.

3. PROPOSED METHOD

Our primary focus is to decrease the algorithmic delay of the BSS
methods, which is caused by the length of the window. If we di-
rectly use a short window for the STFT, the assumption of an in-
stantaneous multiplicative process in the frequency domain becomes
invalid. Consequently, the performance of the traditional BSS meth-
ods decreases. To address this issue, we first exploit the advantage
of the longer window to estimate the demixing filters Wk in each
frequency bin. This allows us to achieve satisfactory separation per-
formance using the traditional BSS approaches. The long demixing
filters Wk are then used to estimate parameters of an MVDR filter
corresponding to the short filters. For real-time separation, only the
short demixing filters are required. The estimation process can be
performed in the background and updated regularly with the latest
one.

Let x̃p̃,k̃ denote the mixture in the short window STFT domain.
The lth estimated source can be obtained by using the short demixing
filters of the lth source, i.e.,

ỹl
p̃,k̃ = w̃l

k̃
Hx̃p̃,k̃. (5)

The short demixing filters w̃l
k̃

can be computed using the MVDR
schema [19,20] if the steering vector and the SCM of the interfering
sources are known. In our case, both of them can be estimated using
the long demixing filters that were previously computed.

In this section, we first introduce the problem formulation using
the MVDR approach. Next, we explore the estimation of the steer-
ing vector. Lastly, we discuss the computation of the SCM of the
interfering sources.

3.1. MVDR formulation
From knowledge of the steering vector ul

k̃
∈ CM and the SCM of

the interfering sources R
\l
x,k̃

∈ CM×M , the short demixing filters

w̃l
k̃
∈ CM of the desired source in (5) can be computed by minimiz-

ing the following expression:

min
w̃l

k̃

w̃l
k̃
HR

\l
x,k̃

w̃l
k̃

s.t. w̃l
k̃
Hul

k̃ = 1.

(6)

The optimization solution can then be computed as

w̃l
k̃ =

(
R

\l
x,k̃

)−1

ul
k̃

ul
k̃
H
(
R

\l
x,k̃

)−1

ul
k̃

, (7)

which is the closed form solution for (6).

3.2. Estimation of the steering vector
Although (6) can be solved for any vector ul

k̃
, it is important to se-

lect an appropriate one. In conventional beamforming, the steering
vector is determined by the geometry of the microphone array and
the direction of sources [21, 22]. For a BSS problem, the source di-
rection information and the array geometry is unknown. However,
we can obtain the signal subspace that is spanned by the images of
the desired sources in the short window STFT domain by computing
the SCM of the reconstructed observation signals Rl

x,k̃
∈ CM×M

that contains only the lth source using the following expression:

Rl
x,k̃ =

∑
p̃

x̃l
p̃,k̃x̃

l
p̃,k̃

H, (8)

where
x̃l

p̃,k̃ = STFT
short

{
ISTFT

long

{
xl
p,k

}}
, (9)

and x̃l
p̃,k̃

∈ CM represents the image of the desired source cap-
tured by the microphone array in the short window STFT domain,
while xl

p,k ∈ CM represents the image in the long window STFT
domain. STFT {·} and ISTFT {·} denote the forward STFT and
inverse STFT operations, respectively. The terms “long” and “short”
refer to the use of a long window and a short window for these oper-
ations, respectively.

The image of the desired source xl
p,k in the long window STFT

domain can be estimated as:

xl
p,k = âl

ky
l
p,k, (10)

where yl
p,k is the lth estimated source, which is also the lth entry of

yp,k in (4), and âl
k ∈ CM is the lth column vector of the estimated

mixing matrix Âk in the long window STFT domain. The estimated
mixing matrix Âk ∈ CM×L can be computed by taking the pseudo-
inverse of the demixing matrix, which is Âk = W†

k.
Note that the signal subspace in the short window STFT domain

is not solely spanned by a single mixing vector of the desired source.
It is also spanned by other vectors that describe the crossband filters
of the desired source.

To obtain the vector that describes most of the signal energy de-
fined by the desired source, similarly to the method described in [20],
we perform an eigenvalue decomposition on (8) and select the eigen-
vector associated with the maximum eigenvalue as our estimation
of the steering vector ul

k̃
. Instead of computing the time-frequency

masks as done in [20], we employ the AuxIVA approach to obtain
the images of the desired sources. This ensures that the spatial infor-
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mation of the covariance matrix in (8) is well-preserved, as the same
linear operation is applied for each time block once the computation
of Wk has converged. We assume the sources remain stationary.

3.3. Estimation of the spatial covariance matrix

The SCM of the interfering sources can be computed as:

R
\l
x,k̃

=
∑
p̃

x̃
\l
p̃,k̃

x̃
\l
p̃,k̃

H, (11)

where x̃\l
p̃,k̃ is the expression of the reconstructed observation sig-

nals excluding the lth source in the short window STFT domain. It
can be obtained by

x̃\l
p̃,k̃ = STFT

short

{
ISTFT

long

{
x
\l
p,k

}}
, (12)

where x
\l
p,k is the microphone signal in the long window STFT do-

main excluding the contribution of the lth source:

x
\l
p,k = xp,k − xl

p,k. (13)

The same estimation process is repeated L times using Eqs. (6)
to (13) to obtain the demixing filters for all sources in the short win-
dow STFT domain. Finally, the short demixing filters in the sepa-
ration process are updated with the latest computed w̃l

k̃
, achieving

separation performance similar to that of the long filters but with low
algorithmic latency.

4. EXPERIMENTAL RESULTS

This section first describes the speech database and the algorithms
that we compared. Next, we report the configurations of our pro-
posed approach and the reference algorithms. Then we discuss the
metrics used to measure the separation performance. Lastly, we
present the experimental results obtained from various approaches
in different setup.

4.1. Speech Database
Our experiment utilized two speech databases: spatialized WSJ0-
2MIX [23] and LibriSpeech [24]. All speech signals were sampled
at a rate of 8 kHz.

The spatialized WSJ0-2MIX dataset provided reverberant
sources and convolutive mixtures using a script made available
by [23]. For each trial, eight microphones and the sources were
randomly located. The aperture size of the microphone array was
randomly sampled from 15 to 25 cm. The distance between sources
and the center of the microphone array was on average 1.3 m with
0.4 m standard deviation. The room dimensions were not fixed, and
the reverberation time, T60, was randomly chosen between 0.2 and
0.6 seconds. The signal-to-noise ratio (SNR) of the source varied
between -5 and 5 dB.

As for the LibriSpeech database, reverberant sources and con-
volutive mixtures were generated during the evaluation stage. Py-
roomacoustics [25] was employed as the room impulse response
(RIR) generator. For each trial, the T60 was randomly selected
between 0.1 and 0.3 seconds. Additionally, the microphones and
sources were randomly positioned within a room of fixed dimen-
sions (5 x 3 x 3 m). The array aperture size and the source-to-array
distance were not constrained.

4.2. Configurations and Reference Algorithms
We conducted a comparison of various algorithms, including a
multi-channel version of Conv-TasNet [15], Beam-TasNet [13, 14],
two variations of AuxIVA [7], denoted as AuxIVAL and AuxIVAS.
These variations indicate the utilization of a long window and a
short window, respectively. Additionally, we examined the parti-
tioned convolution method [10], denoted as PConv, and finally our
proposed approach.

Both MC-Conv-TasNet and Beam-TasNet were implemented
using the publicly available code from the open-source repository
1 provided by [14]. Detailed network configurations can be found
in [14] under the label “Baseline”. The causal variant of Beam-
TasNet was employed, and a window length of 512 ms was used
for the beamformer. The refinement technique based on the voice
activity detection described in [13] was not utilized in this imple-
mentation. For MC-Conv-TasNet, the first output channel of the
parallel decoder was selected as the estimated source.

The implementation of AuxIVA utilized the open-source library
“libss2,” which was provided by [7]. A principal component analy-
sis was performed if the microphone number is larger than the num-
ber of source. In the case of AuxIVAL, a Hamming window with a
length of 64 ms and a hop size of 16 ms was applied. For AuxIVAS,
the window length was 16 ms, and the hop size was set to 4 ms.
As described in [10], only the causal components of the estimated
demixing filters of AuxIVAL were used for PConv to avoid the arti-
facts caused by circular convolution.

For the proposed approach, the estimated demixing filters of
AuxIVAL were employed in the long window STFT domain. In the
case of the short window, a Hamming window with a length of 16 ms
and a hop size of 4 ms was used.

The algorithmic latencies for MC-Conv-TasNet, Beam-TasNet,
AuxIVAL, AuxIVAS, PConv and our proposed approach were 2 ms,
512 ms, 64 ms, 16 ms, 16 ms, 16 ms, respectively. Moreover, we
also evaluated a variation that utilized the WPE method [26] as a
pre-processing stage to reduce the reverberation of the mixture for
all these methods. The WPE algorithm was configured with a delay
of 3, 5 iterations, 10 taps, and alpha set to 0.9999. To ensure that no
additional latency was introduced by the pre-processing stage, the
same short window setup was employed for the WPE algorithm.

4.3. Metrics
To assess the separation performance, we computed the scale-
invariant signal-to-distortion ratio improvement (SI-SDRi) [27]
between the estimated source and the original source. This metric
was widely utilized in the speech separation challenge involving the
WSJ0 database [15–17]. As our focus is on the separation perfor-
mance, the signal-to-interference ratio (SIR) [28] is primarily used.
Besides, we also reported the perceptual evaluation of subjective
quality (PESQ) [29] to indicate the quality of the separated speech.
All these metrics were computed using the Asteroid toolkit [30]

4.4. Separation Performance for Fixed Microphone Number
In this experiment, we conducted 100 trials for both spatialized
WSJ0-2MIX and LibriSpeech databases and we report the mean
values. For Beam-TasNet, the original setup designed to handle
mixtures with four channels was utilized, using four microphones.
Both MC-Conv-TasNet and Beam-TasNet were trained with the
spatialized WSJ0-2MIX dataset and the final models have achieved
the separation performance as described in [14].

1Available at https://github.com/hangtingchen/Beam-Guided-TasNet
2Available at https://github.com/onolab-tmu/libss/blob/main/libss
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Table 1: Separation performance between various approaches with spatialized WSJ0-2MIX and LibriSpeech

Method Spatialized WSJ0-2MIX LibriSpeech
SI-SDRi (dB) SIR (dB) PESQ SI-SDRi (dB) SIR (dB) PESQ

Beam-TasNet 23.22 16.81 2.05 20.99 4.35 1.55
(with WPE) 24.32 19.12 2.32 22.55 6.03 1.65

MC-Conv-TasNet 22.91 14.48 1.97 21.03 2.97 1.48
(with WPE) 24.12 17.17 2.27 22.66 4.64 1.53
AuxIVAL 18.91 6.72 1.88 22.10 8.21 1.97

(with WPE) 19.84 14.64 2.35 24.13 18.37 2.53
AuxIVAS 19.78 5.0 1.86 22.11 3.99 1.75

(with WPE) 20.55 11.33 2.31 24.42 9.59 2.07
PConv 14.45 1.48 1.53 19.76 2.47 1.55

(with WPE) 15.68 3.65 1.66 20.77 4.50 1.64
Proposed 21.80 7.64 1.97 23.85 7.75 2.00

(with WPE) 23.41 15.36 2.51 26.69 17.24 2.62

(a) Without WPE (b) With WPE

Fig. 1: Comparison of the SI-SDRi metric between various ap-
proaches using different number of microphone.

(a) Without WPE (b) With WPE

Fig. 2: Comparison of the SIR metric between various approaches
using different number of microphone.

The performance of the various approaches is shown in Table
1. Beam-TasNet and MC-Conv-TasNet performed well when evalu-
ated using spatialized WSJ0-2MIX. However, the separation perfor-
mance was significantly influenced by altering the speech database,
as evidenced by the SIR metric during evaluation with LibriSpeech.

The techniques based on AuxIVA demonstrate consistent perfor-
mance in both speech databases. As anticipated, PConv performs the
poorest due to its omission of the filter coefficients, which adversely
affects the separation performance. The separation performance of
AuxIVAS is inferior to that of AuxIVAL because the assumption of
a multiplicative process is not valid when using a short window.
The proposed approach outperforms the other methods across al-
most all metrics. Furthermore, the findings show that incorporating
the WPE method as a pre-processing step enhances the separation
performance of all the methods.

4.5. Separation Performance for Different Microphone Number
In this particular experimental setup, a varying number of micro-
phones were used. Beam-TasNet and MC-Conv-TasNet were omit-

(a) Without WPE (b) With WPE

Fig. 3: Comparison of the PESQ metric between various approaches
using different number of microphone.

ted as the original configuration allows the models to work exclu-
sively with four microphones. LibriSpeech was chosen due to its
flexibility in accommodating more than eight microphones, unlike
spatialized WSJ0-2MIX, which is restricted to only eight micro-
phones. We conducted 100 trials for each microphone number setup.

Fig. 1 illustrates the SI-SDRi metric which indicates the im-
provement in performance achieved by applying separation to the
mixtures. In contrast, Fig. 2 demonstrates the separation perfor-
mance solely based on the SIR metric. Lastly, Fig 3 depicts the
PESQ metric, which assesses the quality of the separated speech.

The experimental results show that the proposed method sur-
passes all others in all metrics, even under varying circumstances.
The performance of the proposed method is further improved with
a greater number of microphones. This is due to the increased
degree-of-freedom to eliminate the disturbance caused by interfer-
ing sources. Furthermore, utilizing the WPE method leads to a
substantial enhancement in the separation performance.

5. CONCLUSION
This paper introduces an innovative technique that combines tra-
ditional BSS methods with an MVDR architecture. Our approach
solves the BSS problem effectively with minimal algorithmic de-
lay. The proposed method computes short demixing filters based
on a demixing matrix estimated in the long-window STFT domain,
where the assumption of a multiplicative process holds true. These
short demixing filters can be directly implemented in the short-
window STFT domain. The approach attains excellent separation
performance for both the spatialized WSJ0-2MIX and LibriSpeech
databases. The performance can be further enhanced by increasing
the number of microphones and integrating the WPE method.
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