

STRUCTURE AS SEARCH: UNSUPERVISED PERMUTATION LEARNING FOR COMBINATORIAL OPTIMIZATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We propose a non-autoregressive framework for the Travelling Salesman Problem
 012 where solutions emerge directly from learned permutations, without requiring ex-
 013 plicit search. By applying a similarity transformation to Hamiltonian cycles, the
 014 model learns to approximate permutation matrices via continuous relaxations. Our
 015 unsupervised approach achieves competitive performance against classical heuris-
 016 tics, demonstrating that the inherent structure of the problem can effectively guide
 017 combinatorial optimization without sequential decision-making.

1 INTRODUCTION

021 How can we solve the Travelling Salesman Problem (TSP), a classic NP-hard problem in combi-
 022 natorial optimization? Given a set of cities and pairwise distances, the goal is to find the shortest tour
 023 that visits each city exactly once and returns to the starting point. A widely held view is that to ob-
 024 tain reasonably good solutions, some form of search is almost always necessary (Applegate, 2006).
 025 Whether through greedy construction, local improvement, or other heuristics, search remains the
 026 standard approach. Exact solvers such as Concorde can solve moderate-sized instances optimally,
 027 but their exponential runtime limits scalability (Applegate et al., 2003). To handle larger instances,
 028 local search techniques such as Lin–Kernighan–Helsgaun (LKH) (Lin & Kernighan, 1973; Hels-
 029 gaun, 2000) have long been used as practical heuristics.

030 While classical methods remain highly effective, they rely on meticulously designed rules and hand-
 031 crafted techniques. In contrast, neural network-based approaches aim to learn solution strategies di-
 032 rectly from data. One of the earliest neural formulations of TSP was the Hopfield–Tank model (Hop-
 033 field & Tank, 1985), which framed the problem as energy minimization in a neural network. Al-
 034 though not data-driven, it marked an early attempt to use neural computation for combinatorial
 035 optimization. However, this approach lacked scalability. Recent data-driven methods generally fall
 036 into two categories: reinforcement learning (RL), where tours are constructed autoregressively via
 037 learned policies (Khalil et al., 2017; Deudon et al., 2018; Kool et al., 2018), and supervised learn-
 038 ing (SL), which adopts a two-stage formulation: neural networks generate local preferences, while
 039 explicit search procedures build the final solution (Joshi et al., 2019). However, RL methods often
 040 suffer from sparse rewards and high training variance, while SL approaches require ground-truth
 041 solutions during training, which is computationally expensive due to the NP-hard nature of TSP.

042 In both RL and SL approaches to the TSP, some form of search is involved, either through learned
 043 policies or explicit heuristics. Most RL methods are also autoregressive, generating tours sequen-
 044 tially in a fixed order. Why might we want to move away from this approach? Many combinatorial
 045 optimization problems exhibit strong natural structure; in the case of the TSP, this is the shortest
 046 Hamiltonian cycle, which inherently constrains the solution space. Recent work (Min et al., 2023)
 047 shows that such structure can be exploited through unsupervised, non-autoregressive (NAR) learn-
 048 ing, but their framework still requires local search heuristics to assemble final solutions. Building
 049 on this, Min & Gomes (2023) formulated TSP as permutation learning with the Gumbel–Sinkhorn
 050 operator, though again relying on refinement strategies akin to search. Importantly, Min et al. (2023)
 051 demonstrated that unsupervised learning can already reduce the search space, these developments
 052 naturally raise the question of whether it is possible to learn high-quality TSP solutions entirely
 053 without supervision, search, or autoregressive decoding.

In summary, nearly all data-driven TSP methods, whether supervised, reinforced, or unsupervised,
 still rely on search. This reliance reveals a core barrier: achieving a learning-based search-free

054 paradigm for TSP remains a major open challenge, as it would provide direct evidence of neural
 055 networks' inherent ability to solve combinatorial problems.
 056

057 Here, we propose a different perspective on learning combinatorial structures. Rather than treating
 058 structure as the output of a post-hoc search, we explore the idea that *structural inductive bias can*
 059 *replace explicit search*. Building on the unsupervised learning for TSP (UTSP) framework, we
 060 formulate the TSP as a permutation learning problem: the model directly generates a Hamiltonian
 061 cycle using a permutation matrix (Min et al., 2023; Min & Gomes, 2023). Our fully unsupervised,
 062 non-autoregressive method requires no optimal training data, search or rollouts. Instead, we train the
 063 model using a Gumbel-Sinkhorn relaxation of permutation matrices, followed by hard decoding via
 064 the Hungarian algorithm at inference time. This enables solutions to emerge directly from learned
 065 structure alone. We further introduce Hamiltonian cycle ensembles that train multiple models on
 066 distinct cyclic shift variants and select the best tour across them, thereby reducing long-tail failure.
 067

068 We demonstrate that our model consistently outperforms classical baselines, including the nearest
 069 neighbor algorithm and farthest insertion, across a range of instance sizes. The structural inductive
 070 bias encoded in our model alone generates high-quality solutions without explicit search proce-
 071 dures. Our findings suggest that in combinatorial optimization, appropriately designed structural
 072 constraints can serve as effective computational mechanisms, offering a complementary paradigm
 073 to conventional search approaches. This suggests that structure itself may be sufficient to guide
 074 optimization in certain combinatorial problems.
 075

074 2 BACKGROUND: UNSUPERVISED LEARNING FOR THE TSP

076 The TSP asks to find the shortest route that visits each city exactly once and returns to the starting
 077 point. Given n cities with coordinates $x \in \mathbb{R}^{n \times 2}$, we want to find a permutation $\sigma \in S_n$ that
 078 minimizes the total tour length:
 079

$$080 \min_{\sigma \in S_n} \sum_{i=1}^n d(x_{\sigma(i)}, x_{\sigma(i+1)}), \quad (1)$$

082 where $d(\cdot, \cdot)$ is typically the Euclidean distance $d(x_i, x_j) = \|x_i - x_j\|_2$, and we define $\sigma(n+1) :=$
 083 $\sigma(1)$ to ensure the tour returns to the starting city.
 084

085 To enable optimization over Hamiltonian cycles using neural networks, we first introduce a matrix-
 086 based representation of permutations. We begin by defining the cyclic shift matrix $\mathbb{V} \in \{0, 1\}^{n \times n}$
 087 for $n \geq 3$ as
 088

$$089 \mathbb{V}_{i,j} = \begin{cases} 1 & \text{if } j \equiv (i+1) \pmod n \\ 0 & \text{otherwise} \end{cases}, \quad (2)$$

090 for $i, j \in \{0, 1, \dots, n-1\}$. This matrix has the explicit form:
 091

$$092 \mathbb{V} = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}. \quad (3)$$

098 The matrix \mathbb{V} represents the canonical Hamiltonian cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow \dots \rightarrow n \rightarrow 1$, where
 099 each row has exactly one entry equal to unity, indicating the next city in the sequence. More gen-
 100 erally, a matrix $\mathcal{H} \in \{0, 1\}^{n \times n}$ represents a Hamiltonian cycle if it is a permutation matrix whose
 101 corresponding directed graph forms a single cycle of length n .
 102

103 The key insight is that any Hamiltonian cycle can be generated from the canonical cycle \mathbb{V} through
 104 a similarity transformation (Min & Gomes, 2023). Specifically, if $\mathbf{P} \in S_n$ is any permutation
 105 matrix, then $\mathbf{P}\mathbb{V}\mathbf{P}^\top$ represents a Hamiltonian cycle obtained by reordering the nodes according to
 106 permutation \mathbf{P} . Given a distance matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ where \mathbf{D}_{ij} represents the distance between
 107 cities i and j , the TSP objective becomes finding the optimal permutation matrix that minimizes:
 108

$$109 \min_{\mathbf{P} \in S_n} \langle \mathbf{D}, \mathbf{P}\mathbb{V}\mathbf{P}^\top \rangle, \quad (4)$$

108 where $\langle \mathbf{A}, \mathbf{B} \rangle = \text{tr}(\mathbf{A}^\top \mathbf{B})$ denotes the matrix inner product. The inner product $\langle \mathbf{D}, \mathbf{P} \mathbf{V} \mathbf{P}^\top \rangle$ is the
 109 distance of the Hamiltonian cycle represented by $\mathbf{P} \mathbf{V} \mathbf{P}^\top$.
 110

111 Since finding the optimal discrete permutation matrix is NP-hard and backpropagating through discrete
 112 variables is non-differentiable, we relax the problem by replacing the hard permutation matrix
 113 \mathbf{P} with a soft permutation matrix $\mathbb{T} \in \mathbb{R}^{n \times n}$. Following (Min et al., 2023; Min & Gomes, 2023), we use a Graph Neural Network (GNN) to construct \mathbb{T} and optimize the loss function:
 114

$$\mathcal{L}_{\text{TSP}} = \langle \mathbf{D}, \mathbb{T} \mathbf{V} \mathbb{T}^\top \rangle. \quad (5)$$

115 The soft permutation matrix \mathbb{T} approximates a hard permutation matrix. Here, the Hamiltonian
 116 cycle constraint is implicitly enforced through the structure $\mathbb{T} \mathbf{V} \mathbb{T}^\top$. This enables gradient-based
 117 optimization to find good approximate solutions, while naturally incorporating both the shortest
 118 path objective and the Hamiltonian cycle constraint. The GNN learns to generate a soft permutation
 119 matrix \mathbb{T} that, when used in the transformation $\mathbb{T} \mathbf{V} \mathbb{T}^\top$, yields a soft adjacency matrix representing
 120 a Hamiltonian cycle. This approach provides a non-autoregressive, unsupervised learning (UL)
 121 framework without sequential decision-making or ground truth supervision, enabling efficient end-
 122 to-end training directly from the combinatorial optimization objective.
 123

125 3 FROM SOFT PERMUTATION \mathbb{T} TO HARD PERMUTATION \mathbf{P}

126 To obtain a hard permutation matrix \mathbf{P} from the GNN output, we follow the method proposed in
 127 (Min & Gomes, 2025). We use the Gumbel-Sinkhorn operator (Mena et al., 2018), which provides a
 128 differentiable approximation to permutation matrices during training. At inference time, we extract
 129 a discrete permutation via the Hungarian algorithm. Following the UTSP model (Min et al., 2023),
 130 the GNN processes geometric node features $f_0 \in \mathbb{R}^{n \times 2}$ (city coordinates) along with an adjacency
 131 matrix $A \in \mathbb{R}^{n \times n}$ defined by:
 132

$$A = e^{-\mathbf{D}/s}, \quad (6)$$

133 where \mathbf{D} is the Euclidean distance matrix and s is a scaling parameter. The GNN generates logits
 134 $\mathcal{F} \in \mathbb{R}^{n \times n}$ that are passed through a scaled hyperbolic tangent activation:
 135

$$\mathcal{F} = \alpha \tanh(f_{\text{GNN}}(f_0, A)), \quad (7)$$

136 where α is a scaling parameter, and $f_{\text{GNN}} : \mathbb{R}^{n \times 2} \times \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is a GNN that operates on node
 137 features f_0 and the adjacency matrix A .
 138

139 The scaled logits are passed through the Gumbel-Sinkhorn operator to produce a differentiable ap-
 140 proximation of a permutation matrix:
 141

$$\mathbb{T} = \text{GS} \left(\frac{\mathcal{F} + \gamma \epsilon}{\tau}, l \right), \quad (8)$$

142 where ϵ is i.i.d. Gumbel noise, γ is the noise magnitude, τ is the temperature parameter which
 143 controls relaxation sharpness, and l is the number of Sinkhorn iterations. Lower values of τ yield
 144 sharper, near-permutation matrices. At inference, we derive a hard permutation using the Hungarian
 145 algorithm:
 146

$$\mathbf{P} = \text{Hungarian} \left(-\frac{\mathcal{F} + \gamma \epsilon}{\tau} \right). \quad (9)$$

147 The final Hamiltonian cycle is reconstructed as $\mathbf{P} \mathbf{V} \mathbf{P}^\top$, yielding a discrete tour that solves the TSP
 148 instance.
 149

150 4 TRAINING AND INFERENCE

151 Our training objective minimizes the loss function in Equation 5, incorporating a structural inductive
 152 bias: the structure $\mathbb{T} \mathbf{V} \mathbb{T}^\top$ implicitly encodes the Hamiltonian cycle constraint, guiding the model
 153 toward effective solutions.
 154

155 During inference, we decode the hard permutation matrix \mathbf{P} using the Hungarian algorithm as pre-
 156 viously described in Equation 9. The final tour is obtained directly through $\mathbf{P} \mathbf{V} \mathbf{P}^\top$, which always
 157 generates a valid Hamiltonian cycle by construction. Unlike conventional TSP heuristics requiring
 158

162 local search, our solutions naturally emerge from the learned permutation matrices. The key ad-
 163 vantage of this framework lies in its structural guarantee: regardless of the quality of the learned
 164 permutation matrix \mathbf{P} , the transformation $\mathbf{P}\mathbf{V}\mathbf{P}^\top$ will always yield a feasible TSP solution. The
 165 optimization process thus focuses entirely on finding the permutation that minimizes tour length,
 166 while the constraint is automatically satisfied.¹

168 4.1 EXPERIMENTAL SETUP

170 Our experiments span three distinct problem sizes: 20-node, 50-node, and 100-node TSP instances.
 171 For each problem size, we perform hyperparameter sweeps to identify the optimal configurations.
 172 Training data consist of uniformly distributed TSP instances generated for each problem size,
 173 with 100,000 training instances for 20-node, 500,000 training instances on 50-node instances, and
 174 1,500,000 training instances for 100-node instances. All problem sizes use 1,000 instances each for
 175 validation and test.

176 4.2 HYPERPARAMETER CONFIGURATION

178 We conduct parameter exploration through grid search to evaluate our approach. The 20-node
 179 instances are trained across all combinations of temperature $\tau \in \{2.0, 3.0, 4.0, 5.0\}$ and noise
 180 scale $\gamma \in \{0.005, 0.01, 0.05, 0.1, 0.2, 0.3\}$, resulting in 24 configurations for each size; the 50-
 181 node instances are trained across all combinations of temperature $\tau = 5.0$ and noise scale
 182 $\gamma \in \{0.005, 0.01, 0.05, 0.1, 0.2, 0.3\}$, while the 100-node instances use only one temperature value
 183 $\tau = 5.0$ with an expanded noise scale $\gamma \in \{0.1, 0.2, 0.3\}$, totaling 3 configurations. We employ
 184 $\ell = 60$ Sinkhorn iterations for 20-node instances and $\ell = 80$ for 50- and 100-node instances, with
 185 training conducted over 300 epochs for 20-node instances and extended to 600 epochs for 50- and
 186 100-node instances to ensure sufficient convergence. For evaluation, tour distances are computed
 187 using hard permutations \mathbf{P} obtained via the Hungarian algorithm as described in Equation 9, in
 188 contrast to the soft permutation \mathbb{T} used during training.

189 4.3 NETWORK ARCHITECTURE AND TRAINING DETAILS

191 Following the UTSP model (Min et al., 2023), we employ Scattering Attention Graph Neural Net-
 192 works (SAGs) with 128 hidden dimensions and 2 layers for 20-node instances, 256 hidden dimen-
 193 sions and 6 layers for 50-node instances, and 512 hidden dimensions and 8 layers for 100-node
 194 instances (Min et al., 2022). For TSP-20, we use SAGs with 6 scattering channels and 2 low-pass
 195 channels; for TSP-50 and TSP-100, we use SAGs with 4 scattering channels and 2 low-pass chan-
 196 nels. We train the networks using the Adam optimizer (Kingma & Ba, 2014) with weight decay
 197 regularization $\lambda = 1 \times 10^{-4}$. Learning rates are set to 1×10^{-3} for 20-node instances and 2×10^{-3}
 198 for 50- and 100-node instances. To ensure training stability, we implement several regularization
 199 techniques: (i) learning rate scheduling with a 15-epoch warmup period, (ii) early stopping with
 200 patience of 50 epochs, and (iii) adaptive gradient clipping to maintain stable gradients throughout
 201 the optimization process.

202 For each problem size, we select the best performing model based on validation performance across
 203 all hyperparameter combinations of τ and noise scale γ . The model configuration that achieves the
 204 lowest validation distance is then evaluated on the corresponding test set.

205 5 EXPERIMENT

208 Our training loss with respect to the validation distance is shown in Figure 1. The training curves
 209 consistently converge across all problem sizes, with the training loss (blue) steadily decreasing and
 210 stabilizing over epochs. Notably, there is a strong correlation between training loss reduction and
 211 validation TSP distance improvement (red), indicating effective learning without overfitting. On
 212 20-node instances, the model achieves the best validation distance of 405.60 at epoch 283; on 50-
 213 node instances, our model achieves its best distance of 627.21 at epoch 550; on 100-node instances,

214 ¹While we use the Hungarian algorithm to obtain hard permutations from each model’s soft output, this
 215 step is deterministic and not part of any heuristic or tree-based search procedure. We use the term *search* in the
 sense of explicit exploration or rollout over solution candidates, as in beam search or reinforcement learning.

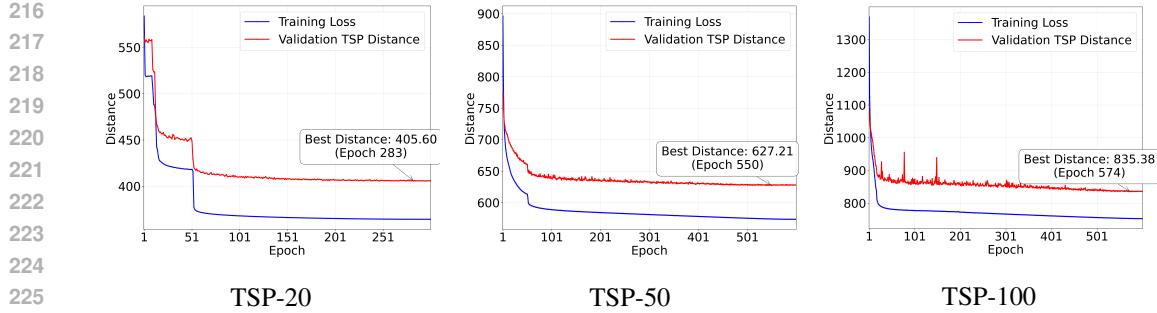


Figure 1: Training history across TSP sizes. Distances are scaled by a factor of 100.

we achieve the best validation distance of 835.38 at epoch 574. Across all scales, the validation performance closely tracks the training loss trajectory, confirming that the model generalizes well and that minimizing the objective in Equation 5 consistently leads to improved TSP solution quality.

5.1 LENGTH DISTRIBUTION

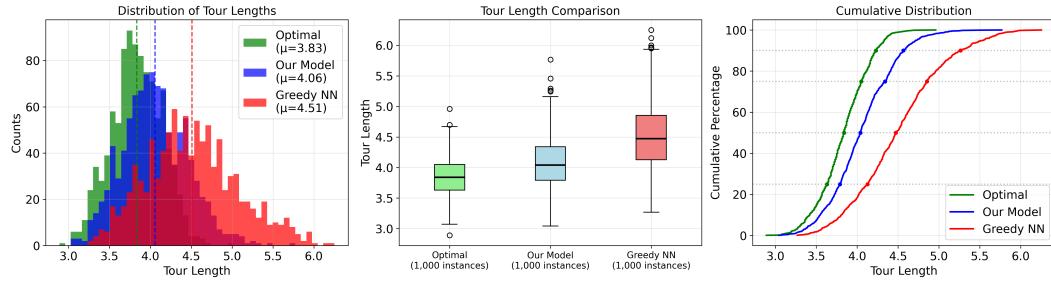


Figure 2: TSP-20 performance comparison showing our model vs. greedy nearest neighbor baseline. Our model achieves 0.45 shorter tour lengths (mean: 4.06 vs. 4.51) with reduced variability and consistently better performance across all percentiles. Results based on 1,000 test instances.

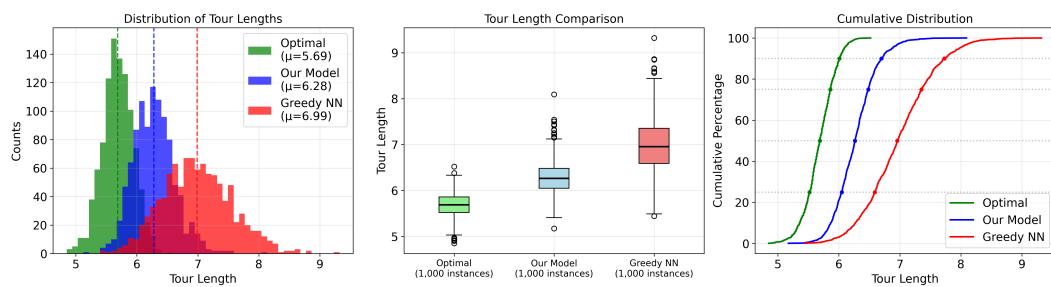
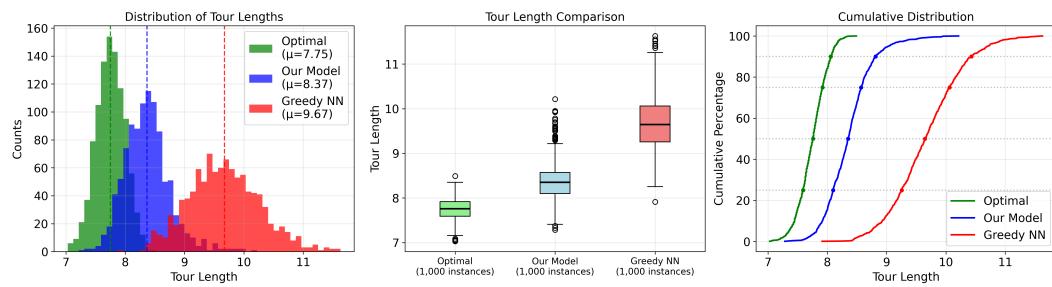


Figure 3: TSP-50 performance comparison showing our model vs. greedy nearest neighbor baseline. Our model achieves 0.71 shorter tour lengths (mean: 6.28 vs. 6.99) with reduced variability and consistently better performance across all percentiles. Results based on 1,000 test instances.

Figures 2, 3, and 4 show the tour length distributions on the test set for 20-, 50-, and 100-node instances, using the model with the lowest validation length across all hyperparameters. Our model consistently outperforms the Greedy Nearest Neighbor (NN) baseline—which constructs tours by iteratively selecting the nearest unvisited node—achieving substantial gains across all problem sizes. The distribution histograms (left panels) reveal that our model produces more concentratedly distributed, shorter tour lengths with mean values of $\mu = 4.06, 6.28$, and 8.37 compared to Greedy NN's $\mu = 4.51, 6.99$, and 9.67 . The box plots (center panels) demonstrate reduced variance and lower median values for our approach, while the cumulative distribution functions (right panels)

270 show our model achieves better solution quality, with curves consistently shifted toward shorter tour
 271 lengths.
 272



282
 283 Figure 4: TSP-100 performance comparison showing our model vs. greedy nearest neighbor base-
 284 line. Our model achieves 1.30 shorter tour lengths (mean: 8.37 vs. 9.67) with reduced variability
 285 and consistently better performance across all percentiles. Results based on 1,000 test instances.
 286

287 5.2 INFERENCE TIME

289 We evaluate the inference efficiency of our approach by measuring the average time per instance,
 290 including the GNN forward pass and construction of the hard permutation as defined in Equation 9.
 291 On an NVIDIA H100 GPU with batch size 256, the model achieves inference times of 0.17 ms for
 292 TSP-20, 0.15 ms for TSP-50, and 0.40 ms for TSP-100 .
 293

294 5.3 OPTIMALITY GAP

296 **Optimality Gap Calculation** The optimality gap is computed as:

$$297 \text{Gap (\%)} = \left(\frac{\text{Tour Length (Method)} - \text{Tour Length (Optimal)}}{\text{Tour Length (Optimal)}} \right) \times 100, \quad (10)$$

300 This measures how far a method’s tour length deviates from the optimal solution, with smaller gaps
 301 indicating better performance.

302 Table 1: Comparison of tour quality across different heuristics on TSP instances of varying sizes.

305 Method	306 Type	TSP-20		TSP-50		TSP-100	
		Tour Len.	Gap	Tour Len.	Gap	Tour Len.	Gap
Concorde	Solver	3.83	0.00%	5.69	0.00%	7.75	0.00%
Beam search (w=1280)	Search	4.06	6.00%	6.83	20.0%	9.89	27.6%
Greedy NN	G	4.51	17.8%	6.99	22.8%	9.67	24.8%
Our method	UL, NAR	4.06	6.00%	6.28	10.4%	8.37	8.00%

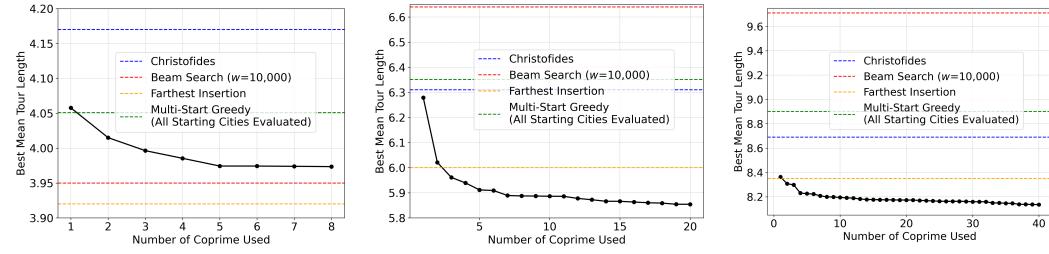
313 Our unsupervised, search-free approach demonstrates competitive performance across TSP in-
 314 stances of varying sizes, achieving optimality gaps of 6.00%, 10.4%, and 8.00% on TSP-20, TSP-
 315 50, and TSP-100 respectively (Table 1). Notably, our method matches beam search performance on
 316 TSP-20 while significantly outperforming it on larger instances (10.4% vs 20.0% gap on TSP-50,
 317 and 8.00% vs 27.6% gap on TSP-100). Our approach also consistently outperforms the Greedy NN
 318 baseline across all problem sizes, with the performance advantage becoming more pronounced on
 319 larger instances.

320 These results suggest that our model effectively captures global tour structure and long-range city
 321 dependencies, enabling better solutions compared to methods that rely primarily on local, greedy
 322 decisions or limited search strategies. The consistent performance indicates that structural inductive
 323 biases alone can enable the model to discover competitive combinatorial solutions without supervi-
 324 sion or explicit search.

324 6 HAMILTONIAN CYCLE ENSEMBLE

326 Examining the results in Figures 2, 3, and 4, we observe a long tail distribution where our model
 327 yields notably suboptimal solutions on some instances. This suggests that while the model generally
 328 performs well, it sometimes generates significantly suboptimal solutions.

329 To address this limitation, we revisit our training objective in Equation 5: $\mathcal{L}_{\text{TSP}} = \langle \mathbf{D}, \mathbf{T} \mathbf{V} \mathbf{T}^\top \rangle$,
 330 where our model learns permutations over the canonical Hamiltonian cycle \mathbb{V} . We now propose an
 331 ensemble approach utilizing powers of the cyclic shift matrix \mathbb{V}^k , where different values of k satisfying
 332 $\gcd(k, n) = 1$ generate distinct valid Hamiltonian cycles. Our ensemble strategy trains separate
 333 models for each \mathbb{V}^k and selects the minimum tour length solution across all $\varphi(n)$ cycle variants for
 334 each test instance, where $\varphi(n)$ is *Euler's totient function*. This leverages diverse Hamiltonian cycle
 335 topologies to mitigate long tail behavior, so that when one structure fails, alternatives often succeed,
 336 thereby eliminating catastrophic failures.



346 Figure 5: Best mean tour length on TSP instances of different sizes as the number of coprime
 347 shifts increases. Using more shift combinations significantly reduces tour length, outperforming the
 348 Greedy Multi-Start baseline. Both Christofides and Beam Search bounds are shown for comparison.
 349 From left to right: TSP-20, TSP-50, TSP-100.

351 6.1 MAIN THEOREM

353 **Theorem 6.1** (\mathbb{V}^k Hamiltonian Cycle Characterization). *Let \mathbb{V} be the $n \times n$ cyclic shift matrix and
 354 $k \in \mathbb{Z}^+$. Then \mathbb{V}^k represents a Hamiltonian cycle if and only if $\gcd(k, n) = 1$.*

356 *Proof.* We prove both directions of the equivalence.

358 **Necessity (\Rightarrow):** Suppose \mathbb{V}^k represents a Hamiltonian cycle. Let $d = \gcd(k, n)$. The matrix \mathbb{V}^k
 359 corresponds to the mapping $\sigma^k : i \mapsto (i + k) \bmod n$ on the vertex set $\{0, 1, \dots, n - 1\}$.

360 Consider the orbit of vertex 0 under this mapping:

$$\mathcal{O}_0 = \{0, k \bmod n, 2k \bmod n, \dots, (m - 1)k \bmod n\}, \quad (11)$$

362 where m is the smallest positive integer such that $mk \equiv 0 \pmod n$.

364 Since $d = \gcd(k, n)$, we can write $k = dk'$ and $n = dn'$ where $\gcd(k', n') = 1$. Then:

$$mk \equiv 0 \pmod n \iff dn' \mid mdk' \quad (12)$$

$$\iff n' \mid mk' \quad (13)$$

$$\iff n' \mid m \quad (\text{since } \gcd(k', n') = 1). \quad (14)$$

369 Therefore, the smallest such m is $m = n' = \frac{n}{d}$, so $|\mathcal{O}_0| = \frac{n}{d}$.

371 If \mathbb{V}^k represents a Hamiltonian cycle, then all n vertices must lie in a single orbit, which requires
 372 $|\mathcal{O}_0| = n$. This implies $\frac{n}{d} = n$, hence $d = 1$, i.e., $\gcd(k, n) = 1$.

373 **Sufficiency (\Leftarrow):** Suppose $\gcd(k, n) = 1$. Then by the argument above, the orbit of vertex 0 has size
 374 $\frac{n}{d} = n$. This means the sequence $\{0, k, 2k, \dots, (n - 1)k\}$ modulo n contains all distinct elements
 375 of $\{0, 1, \dots, n - 1\}$.

377 Therefore, \mathbb{V}^k represents a permutation that cycles through all n vertices exactly once, forming a
 378 single Hamiltonian cycle. \square

378 **Corollary 6.2** (Euler’s Totient Function Connection). *The number of distinct Hamiltonian cycle*
 379 *matrices of the form \mathbb{V}^k is exactly $\varphi(n)$, where φ is Euler’s totient function.*
 380

381 *Proof.* By Theorem 6.1, \mathbb{V}^k represents a Hamiltonian cycle if and only if $\gcd(k, n) = 1$. The
 382 number of integers $k \in \{1, 2, \dots, n\}$ such that $\gcd(k, n) = 1$ is precisely $\varphi(n)$. \square
 383

384 **Remark 6.3** (Directed vs Undirected Cycles). Note that different values of k may yield distinct
 385 *directed* Hamiltonian cycles that correspond to the same *undirected* cycle traversed in opposite di-
 386 rections. For instance, when n is even, \mathbb{V}^1 and \mathbb{V}^{n-1} represent the same undirected cycle with
 387 opposite orientations. However, each \mathbb{V}^k with $\gcd(k, n) = 1$ defines a unique directed cycle, which
 388 is the relevant structure for our ensemble method.
 389

390 6.2 ENSEMBLE TRAINING AND INFERENCE

391 Our ensemble strategy trains separate models for each valid \mathbb{V}^k matrix. Specifically, we construct
 392 $\varphi(n)$ models, each optimizing the modified objective:
 393

$$\mathcal{L}_{\text{TSP}}(k) = \langle \mathbf{D}, \mathbb{T}_{(k)} \mathbb{V}^k \mathbb{T}_{(k)}^\top \rangle, \quad (15)$$

395 where $\gcd(k, n) = 1$ and $\mathbb{T}_{(k)}$ represents the learned soft permutation matrix corresponding to \mathbb{V}^k .
 396

397 Table 2: Detailed performance comparison of learning-based TSP solvers across different instance
 398 sizes (TSP-20/50/100). Metrics include average tour length and optimality gap (%). Results for
 399 baseline methods are taken from (Joshi et al., 2019). While all methods use uniformly generated
 400 TSP instances, test sets vary slightly across works. Note that many more recent models exist, we
 401 select a subset for comparison.
 402

403 Method	404 Type	TSP-20		TSP-50		TSP-100	
		405 Tour Len.	406 Gap	407 Tour Len.	408 Gap	409 Tour Len.	410 Gap
411 PtrNet (Vinyals et al., 2015)	412 SL, G	413 3.88	414 1.15%	415 7.66	416 34.48%	417 -	418 -
419 PtrNet (Bello et al., 2016)	420 RL, G	421 3.89	422 1.42%	423 5.95	424 4.46%	425 8.30	426 6.90%
427 S2V (Khalil et al., 2017)	428 RL, G	429 3.89	430 1.42%	431 5.99	432 5.16%	433 8.31	434 7.03%
435 GAT (Deudon et al., 2018)	436 RL, G, 2-OPT	437 3.85	438 0.42%	439 5.85	440 2.77%	441 8.17	442 5.21%
444 GAT (Kool et al., 2018)	445 RL, G	446 3.85	447 0.34%	448 5.80	449 1.76%	450 8.12	451 4.53%
454 GCN (Joshi et al., 2019)	455 SL, G	456 3.86	457 0.60%	458 5.87	459 3.10%	460 8.41	461 8.38%
465 POMO (Kwon et al., 2020)	466 RL, G	467 3.83	468 0.12%	469 5.73	470 0.64%	471 7.84	472 1.07%
477 Concorde	478 Solver	479 3.83	480 0.00%	481 5.69	482 0.00%	483 7.75	484 0.00%
487 Greedy NN (all start cities)	488 G	489 4.05	490 5.74%	491 6.35	492 11.6%	493 8.90	494 14.8%
498 Beam search (w=5,000)	500 Search	501 3.98	502 3.92%	503 6.71	504 17.9%	505 9.77	506 26.1%
511 Beam search (w=10,000)	513 Search	514 3.95	515 3.13%	516 6.64	517 17.0%	518 9.71	519 25.3%
524 Farthest insertion	526 Heuristics	527 3.92	528 2.35%	529 6.00	530 5.45%	531 8.35	532 7.74%
537 Christofides	539 Heuristics	540 4.17	541 8.88%	542 6.31	543 10.9%	544 8.69	545 12.1%
548 Hamiltonian cycle ensemble	550 UL, NAR	551 3.97	552 3.52%	553 5.85	554 2.81%	555 8.14	556 5.03%

419 For each k , we employ identical training procedures, differing only in the underlying Hamiltonian
 420 cycles \mathbb{V}^k . We select the model configuration which achieves the lowest validation loss across all
 421 hyperparameter combinations for each k -specific model. This ensures that each cycle \mathbb{V}^k is properly
 422 exploited.

424 At inference time, we evaluate all $\varphi(n)$ trained models on each test instance. For each model
 425 corresponding to Hamiltonian cycles \mathbb{V}^k , we decode the hard permutation matrix $\mathbf{P}_{(k)}$ from the
 426 learned soft permutation $\mathbb{T}_{(k)}$ using the Hungarian algorithm as previously described in Equation 9.
 427 The candidate tour for each ensemble member is obtained directly through $\mathbf{P}_{(k)} \mathbb{V}^k \mathbf{P}_{(k)}^\top$, which
 428 always generates a valid Hamiltonian cycle.
 429

430 For each individual test instance, we then select the solution with minimum tour length across all
 431 ensemble members:

$$\text{Tour}_{\text{final}} = \mathbf{P}_{(k^*)} \mathbb{V}^{k^*} \mathbf{P}_{(k^*)}^\top, \quad (16)$$

432 where $k^* = \arg \min_{k: \gcd(k, n)=1} \langle \mathbf{D}, \mathbf{P}_{(k)} \mathbb{V}^k \mathbf{P}_{(k)}^\top \rangle$ is determined instance-specifically.
 433

434 This instance-wise selection ensures that each test problem is solved using the most suitable cycle
 435 structure from the ensemble, adapting to the particular geometric characteristics of that instance.

436 Figure 5 demonstrates the effectiveness of this ensemble approach across 20, 50, and 100-node
 437 problems respectively. As the number of coprime shifts increases, the mean tour length decreases
 438 substantially, with dramatic improvements observed initially that gradually plateau. For TSP-20,
 439 using all $\varphi(20) = 8$ coprime shifts reduces mean tour length from 4.06 to 3.97, surpassing both
 440 multi-start greedy and beam search performance. Similar trends are observed for TSP-50 and TSP-
 441 100, where the ensemble approach achieves mean tour lengths of 5.85 and 8.14 respectively when
 442 using all available coprime shifts. This demonstrates that leveraging multiple Hamiltonian cycle
 443 structures effectively mitigates the long tail problem while consistently improving solution quality.
 444 Here, each permutation learner in our framework is trained with respect to a fixed initial Hamiltonian
 445 cycle \mathbb{V}^k , which serves as a structural prior guiding solution formation. This initialization anchors
 446 the training process, focusing learning on the permutation of the initial Hamiltonian cycle \mathbb{V}^k , ef-
 447 fectively biasing the model. Since different initial cycles encode distinct structural priors, using an
 448 ensemble of models with \mathbb{V}^k promotes diversity and improves overall solution quality.
 449

450 Despite not using supervision or autoregressive decoding, our method achieves competitive results
 451 across all TSP sizes. Our Hamiltonian cycle ensemble approach significantly outperforms classical
 452 baselines, achieving optimality gaps of 3.52%, 2.81%, and 5.03% on TSP-20, TSP-50, and TSP-100
 453 respectively, compared to greedy NN (all start cities) search's 5.74%, 11.6%, and 14.8%. We also
 454 improve upon beam search variants as the problem size grows, with beam search achieving gaps of
 455 3.13–3.92% on TSP-20, 17.0–17.9% on TSP-50, and 25.3–26.1% on TSP-100.
 456

457 Among learning-based methods, our approach demonstrates competitive performance. We achieve
 458 comparable results to Pointer Networks and S2V. Our method also performs competitively with
 459 supervised method (Joshi et al., 2019), achieving 5.03% optimality gap versus 8.38% on TSP-100.
 460 Our performance is comparable to the RL-based approaches. Notably, we are competitive with the
 461 GAT model of (Deudon et al., 2018) even when it is augmented with 2-OPT local search, a strong
 462 post-hoc refinement step. While models such as the attention-based approach by (Kool et al., 2018)
 463 leverage RL and autoregressive decoding, our unsupervised, non-autoregressive framework attains
 464 similar optimality gaps without requiring either RL training or explicit search procedures.
 465

466 However, we do not yet match the RL model such as (Kwon et al., 2020), which benefits from
 467 exploiting multiple equivalent solutions through parallel rollouts. Our results are also competitive
 468 with classical heuristics such as farthest insertion, while offering a fundamentally different approach
 469 grounded in structural inductive bias. Overall, our results highlight that non-autoregressive, unsu-
 470 pervised methods can effectively tackle combinatorial optimization problems without sequential
 471 decoding. Detailed comparisons are provided in Table 2.
 472

473 In our experiments, we observe that it is not necessary to employ the full set of $\varphi(n)$ Hamiltonian
 474 cycles for effective ensembling. Instead, using a small subset can already yield strong approxima-
 475 tions. For example, on TSP-100, selecting the shifts $k \in \{1, 9, 81, 87, 91\}$ achieves an average
 476 tour length of 8.18, corresponding to an optimality gap of approximately 5.5%. Furthermore, the
 477 inference cost remains practical: whereas a single model requires about 0.40 ms per instance, this
 478 five-model subset ensemble takes only 2 ms in total, while still delivering significant improvements
 479 in robustness and solution quality.
 480

481 7 CONCLUSION

482 We present a fully unsupervised, non-autoregressive framework for solving the TSP without relying
 483 on explicit search or supervision. By framing the problem as learning permutation matrices
 484 that satisfy Hamiltonian cycle constraints via similarity transformations, our approach incorporates
 485 structural constraints as inductive biases into the learning process. This formulation enables the
 486 model to generate valid tours without sequential decision-making. Our method achieves competi-
 487 tive results and we further demonstrate that ensembles over different Hamiltonian cycles enhance
 488 robustness and improve average solution quality, especially on larger problem instances. These
 489 results suggest that learned structural biases provide a promising alternative to traditional heuristic
 490 search methods by integrating problem structure as an inductive bias in combinatorial optimiza-
 491 tion.
 492

486 REFERENCES
487488 David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver. <http://www.math.uwaterloo.ca/tsp/concorde.html>, 2003.
489490 David L Applegate. *The traveling salesman problem: a computational study*, volume 17. Princeton
491 university press, 2006.
492493 Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
494 optimization with reinforcement learning. *arXiv preprint arXiv:1611.09940*, 2016.
495496 Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
497 Rousseau. Learning heuristics for the tsp by policy gradient. In *Integration of Constraint
498 Programming, Artificial Intelligence, and Operations Research: 15th International Conference,
499 CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15*, pp. 170–181. Springer,
500 2018.501 Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
502 *European journal of operational research*, 126(1):106–130, 2000.
503504 John J Hopfield and David W Tank. “neural” computation of decisions in optimization problems.
505 *Biological cybernetics*, 52(3):141–152, 1985.
506507 Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
508 technique for the travelling salesman problem. *arXiv preprint arXiv:1906.01227*, 2019.
509510 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
511 mization algorithms over graphs. *Advances in neural information processing systems*, 30, 2017.
512513 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
arXiv:1412.6980*, 2014.
514515 Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! *arXiv
preprint arXiv:1803.08475*, 2018.
516517 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
518 Pomo: Policy optimization with multiple optima for reinforcement learning. *Advances in Neural
519 Information Processing Systems*, 33:21188–21198, 2020.
520521 Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman prob-
522 lem. *Operations research*, 21(2):498–516, 1973.
523524 Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
525 with gumbel-sinkhorn networks. *arXiv preprint arXiv:1802.08665*, 2018.
526527 Yimeng Min and Carla Gomes. Unsupervised learning permutations for tsp using gumbel-sinkhorn
528 operator. In *NeurIPS 2023 Workshop Optimal Transport and Machine Learning*, 2023.
529530 Yimeng Min and Carla P Gomes. Unsupervised ordering for maximum clique. *arXiv preprint
arXiv:2503.21814*, 2025.
531532 Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering
533 networks help solve the maximum clique problem? *Advances in Neural Information Processing
534 Systems*, 35:22713–22724, 2022.
535536 Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
537 salesman problem. *Advances in Neural Information Processing Systems*, 36:47264–47278, 2023.
538539 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. *Advances in neural informa-
tion processing systems*, 28, 2015.
540

540 A DISCUSSION AND FUTURE WORK

542 In this paper, we use 24 configurations of (τ, γ) pairs for TSP-20, 6 configurations for TSP-50,
 543 and 3 configurations for TSP-100. This limited yet targeted hyperparameter exploration is suffi-
 544 cient to support our central claim: that *structural inductive bias*, when coupled with a permutation-
 545 based formulation, can drive the emergence of high-quality solutions in a fully unsupervised, non-
 546 autoregressive setting. We restrict our analysis to minimal hyperparameter settings and adopt
 547 the same architecture as UTSP (Min et al., 2023), which is sufficiently expressive to illustrate
 548 our main claim. While preliminary evidence indicates that performance can be further improved
 549 through extensive hyperparameter tuning or architectural variations (e.g., alternative message pass-
 550 ing schemes), such enhancements lie outside the scope of our primary contribution and are left for
 551 future work.

552 B EFFECTIVENESS OF THE HAMILTONIAN CYCLE ENSEMBLE

553 Figure 6 shows the tour length distributions produced by models trained with different coprime
 554 shifts \mathbb{V}^k for TSP instances of size 20, 50, and 100. Each colored boxplot represents the output
 555 distribution from a single model trained on a specific cyclic structure, while the green box on the
 556 right shows the ensemble result obtained by selecting the shortest tour across all models for each
 557 instance. Notably, while individual models exhibit varying performance and often display long-tail
 558 distributions with significant outliers, the ensemble output consistently achieves shorter average tour
 559 lengths with reduced variance. This demonstrates that the ensemble strategy effectively mitigates
 560 the long-tail failure cases seen in individual models by leveraging structural diversity. Consequently,
 561 the ensemble approach leads to more robust and consistent solutions across problem instances.

562 C QUADRATIC UPPER BOUND ON THE OPTIMALITY GAP

563 **Theorem C.1** (Quadratic upper bound on the optimality gap). *Let $C(\mathbf{P}) := \langle \mathbf{D}, \mathbf{P} \mathbb{V} \mathbf{P}^\top \rangle$ for a cost
 564 matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$, a cyclic shift matrix $\mathbb{V} \in \mathbb{R}^{n \times n}$, and a permutation matrix $\mathbf{P} \in \Pi_n$. Let the set
 565 of optimal permutations be*

$$566 \mathcal{O} := \arg \min_{\mathbf{P} \in \Pi_n} C(\mathbf{P}), \quad C^* := \min_{\mathbf{P} \in \Pi_n} C(\mathbf{P}). \quad (17)$$

567 Given a (soft) doubly-stochastic matrix \mathbb{T} produced by the model and a hard permutation $\widehat{\mathbf{P}}$ obtained
 568 from \mathbb{T} at inference, define

$$569 \delta_* := \min_{\mathbf{P} \in \mathcal{O}} \|\mathbb{T} - \mathbf{P}\|_F, \quad \varepsilon := \|\widehat{\mathbf{P}} - \mathbb{T}\|_F. \quad (18)$$

570 If $\|\mathbb{V}\|_2 \leq 1$ and $\|\mathbb{T}\|_2 \leq 1$, then

$$571 C(\widehat{\mathbf{P}}) - C^* \leq \|\mathbf{D}\|_F (2\delta_* + \delta_*^2 + 2\varepsilon + \varepsilon^2). \quad (19)$$

572 *Proof.* Since Π_n is finite, there exists $\mathbf{P}^\dagger \in \mathcal{O}$ such that $\delta_* = \|\mathbb{T} - \mathbf{P}^\dagger\|_F$. We decompose the gap
 573 into a “soft” part and a “rounding” part:

$$574 C(\widehat{\mathbf{P}}) - C^* = \underbrace{(C(\mathbb{T}) - C(\mathbf{P}^\dagger))}_{\text{soft approximation}} + \underbrace{(C(\widehat{\mathbf{P}}) - C(\mathbb{T}))}_{\text{rounding}}. \quad (20)$$

575 **Soft term.** Let $E := \mathbb{T} - \mathbf{P}^\dagger$. Expanding,

$$576 \mathbb{T} \mathbb{T}^\top - \mathbf{P}^\dagger \mathbb{V} \mathbf{P}^{\dagger \top} = E \mathbb{V} \mathbf{P}^{\dagger \top} + \mathbf{P}^\dagger \mathbb{V} E^\top + E \mathbb{V} E^\top. \quad (21)$$

577 Using the submultiplicative bounds

$$578 \|A X B\|_F \leq \|A\|_F \|X\|_2 \|B\|_2, \quad \|A X B\|_F \leq \|A\|_2 \|X\|_F \|B\|_2, \quad (22)$$

579 together with $\|\mathbf{P}^\dagger\|_2 = 1$, $\|\mathbb{V}\|_2 \leq 1$, and $\|E\|_2 \leq \|E\|_F$, we obtain

$$580 \|E \mathbb{V} \mathbf{P}^{\dagger \top}\|_F \leq \delta_*, \quad \|\mathbf{P}^\dagger \mathbb{V} E^\top\|_F \leq \delta_*, \quad \|E \mathbb{V} E^\top\|_F \leq \delta_*^2. \quad (23)$$

581 Thus

$$582 \|\mathbb{T} \mathbb{T}^\top - \mathbf{P}^\dagger \mathbb{V} \mathbf{P}^{\dagger \top}\|_F \leq 2\delta_* + \delta_*^2. \quad (24)$$

583 By Cauchy–Schwarz,

$$584 |C(\mathbb{T}) - C(\mathbf{P}^\dagger)| \leq \|\mathbf{D}\|_F (2\delta_* + \delta_*^2). \quad (25)$$

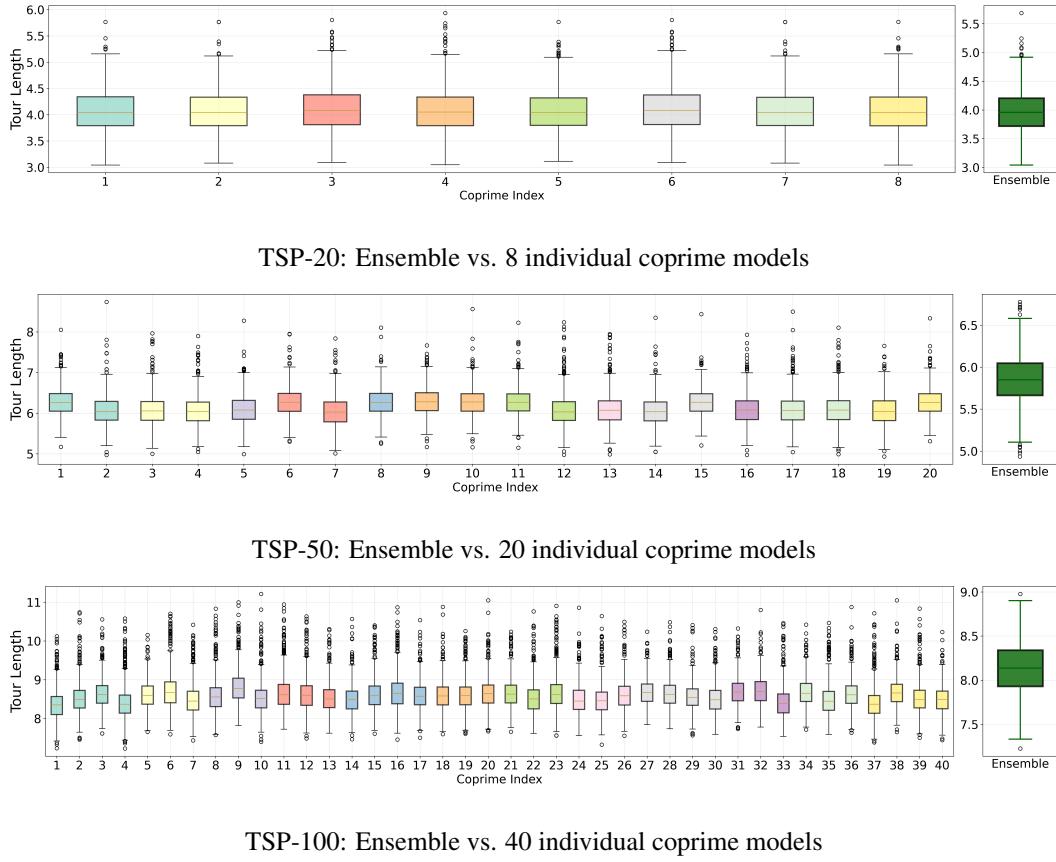


Figure 6: Tour length distributions across individual models and ensemble output for various TSP sizes. Each index corresponds to a model trained using a different coprime shift matrix \mathbb{V}^k , where $\gcd(k, n) = 1$. The ensemble result (rightmost box in green) selects the minimum-length tour across all coprime-specific models for each instance.

Rounding term. Let $\Delta := \hat{\mathbf{P}} - \mathbb{T}$, so $\|\Delta\|_F = \varepsilon$. Expanding,

$$\hat{\mathbf{P}}\mathbb{V}\hat{\mathbf{P}}^\top - \mathbb{T}\mathbb{V}\mathbb{T}^\top = \Delta\mathbb{V}\mathbb{T}^\top + \mathbb{T}\mathbb{V}\Delta^\top + \Delta\mathbb{V}\Delta^\top. \quad (26)$$

Using the same bounds and $\|\mathbb{T}\|_2 \leq 1$, $\|\mathbb{V}\|_2 \leq 1$,

$$\|\Delta\mathbb{V}\mathbb{T}^\top\|_F \leq \varepsilon, \quad \|\mathbb{T}\mathbb{V}\Delta^\top\|_F \leq \varepsilon, \quad \|\Delta\mathbb{V}\Delta^\top\|_F \leq \varepsilon^2, \quad (27)$$

hence

$$\|\hat{\mathbf{P}}\mathbb{V}\hat{\mathbf{P}}^\top - \mathbb{T}\mathbb{V}\mathbb{T}^\top\|_F \leq 2\varepsilon + \varepsilon^2, \quad (28)$$

and by Cauchy–Schwarz,

$$|C(\hat{\mathbf{P}}) - C(\mathbb{T})| \leq \|\mathbf{D}\|_F(2\varepsilon + \varepsilon^2). \quad (29)$$

Combine. By the triangle inequality,

$$C(\hat{\mathbf{P}}) - C^* \leq \|\mathbf{D}\|_F(2\delta_* + \delta_*^2 + 2\varepsilon + \varepsilon^2). \quad (30)$$

□

Lemma C.2 (Spectral norm of \mathbb{V}). *Let $\mathbb{V} \in \{0, 1\}^{n \times n}$ be the cyclic shift matrix defined in Equation 3. Then*

$$\|\mathbb{V}\|_2 = 1. \quad (31)$$

648 *Proof.* The matrix \mathbb{V} is a permutation matrix corresponding to a cyclic shift. Permutation matrices
 649 are orthogonal, i.e. $\mathbb{V}^\top \mathbb{V} = I$. Hence, all eigenvalues of V have absolute value 1, and
 650

$$651 \quad \|\mathbb{V}\|_2 = \sqrt{\lambda_{\max}(\mathbb{V}^\top \mathbb{V})} = \sqrt{\lambda_{\max}(I)} = 1. \quad (32)$$

653 Equivalently, \mathbb{V} is diagonalizable by the discrete Fourier transform, with eigenvalues $\{e^{2\pi i k/n} : k = 0, \dots, n-1\}$, all lying on the unit circle. Thus the spectral norm of \mathbb{V} is exactly 1. \square
 654

655 **Lemma C.3** (Spectral norm of \mathbb{T}). *If \mathbb{T} is doubly-stochastic, then $\|\mathbb{T}\|_2 \leq 1$.*

658 *Proof.* By the Birkhoff–von Neumann theorem, any doubly-stochastic \mathbb{T} can be written as a convex
 659 combination of permutation matrices: $\mathbb{T} = \sum_k \alpha_k \mathbf{P}_k$, with $\alpha_k \geq 0$ and $\sum_k \alpha_k = 1$. The spectral
 660 norm is convex, hence

$$661 \quad \|\mathbb{T}\|_2 = \left\| \sum_k \alpha_k \mathbf{P}_k \right\|_2 \leq \sum_k \alpha_k \|\mathbf{P}_k\|_2 = \sum_k \alpha_k \cdot 1 = 1, \quad (33)$$

664 since each permutation matrix \mathbf{P}_k is orthogonal and thus has spectral norm 1. \square

665 *Remark C.4* (Interpretation). δ_* measures how close the learned soft matrix \mathbb{T} is to *some* optimal
 666 permutation in \mathcal{O} , so the bound handles non-uniqueness naturally. When there are symmetries (e.g.
 667 reversed cycles, relabelings), δ_* will be the distance to the closest such symmetry, which tightens
 668 the bound compared to fixing an arbitrary \mathbf{P}^\dagger .
 669

670 D RANDOMNESS BY HARDWARE PERTURBATION INFERENCE

673 We introduce Hardware Perturbation Inference (HPI), a simple yet effective technique that lever-
 674 ages the inherent non-determinism of low-level numerical operations to generate diverse inference
 675 outcomes without modifying the model or introducing explicit stochasticity. Even when using the
 676 same GPU architecture (e.g., NVIDIA H100), small numerical discrepancies can arise from differ-
 677 ences in fused multiply-add (FMA) kernel execution and TensorFloat-32 (TF32) rounding modes.
 678 These subtle perturbations may propagate through the computation, leading to slightly different out-
 679 puts. HPI exploits this phenomenon to produce multiple candidate solutions for the same problem
 680 instance, which can then be ensembled to improve robustness and solution quality—all without
 681 requiring changes to the model parameters or training procedure.

682 In our experiments, we apply HPI on NVIDIA H100 GPUs by toggling the use of FMA operations
 683 under TF32 precision. Specifically, we compare inference with TF32+FMA enabled versus disabled,
 684 which yields distinct perturbations in the numerical pathways and consequently different solutions
 685 for the same input instance \mathbb{V}^k . By combining these outputs in an ensemble, we observe further
 686 improvements in solution quality: on the TSP-100 benchmark, the ensemble reduces the optimality
 687 gap to 8.10.

688 While hardware-level perturbations provide a simple mechanism for generating diversity, there are
 689 many other ways to introduce randomness to further enhance ensemble performance. We leave a
 690 broader discussion of such strategies for future work.

691 E ZERO-SHOT GENERALIZATION

694 We propose a zero-shot evaluation strategy inspired by (Min & Gomes, 2025), leveraging *dummy*
 695 *nodes*. As an example, consider testing on a TSP instance with 95 cities using a model trained on
 696 TSP-100. To construct such a test case, we randomly select 5 *parent nodes* from the 95 cities and
 697 introduce 5 additional dummy nodes, each placed very close to one of the selected parents. This
 698 augmentation produces an effective 100-node instance, which we then solve using the TSP-100
 699 model.

700 If the resulting tour connects each dummy node directly to its parent node, we merge them to recover
 701 a valid tour for the original 95-city problem. If this condition is not met, we repeat the process by
 re-sampling the parent and dummy nodes.

702 Using this strategy, our model achieves a mean tour length of 8.24 across 1,000 unseen test instances,
703 compared to 9.49 for the greedy baseline. For reference, the optimal mean tour length is 7.57. These
704 results demonstrate that our dummy-node construction enables effective zero-shot transfer across
705 problem sizes while maintaining competitive performance.

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755