
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURE AS SEARCH: UNSUPERVISED PERMUTA-
TION LEARNING FOR COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a non-autoregressive framework for the Travelling Salesman Problem
where solutions emerge directly from learned permutations, without requiring ex-
plicit search. By applying a similarity transformation to Hamiltonian cycles, the
model learns to approximate permutation matrices via continuous relaxations. Our
unsupervised approach achieves competitive performance against classical heuris-
tics, demonstrating that the inherent structure of the problem can effectively guide
combinatorial optimization without sequential decision-making.

1 INTRODUCTION

How can we solve the Travelling Salesman Problem (TSP), a classic NP-hard problem in combina-
torial optimization? Given a set of cities and pairwise distances, the goal is to find the shortest tour
that visits each city exactly once and returns to the starting point. A widely held view is that to ob-
tain reasonably good solutions, some form of search is almost always necessary (Applegate, 2006).
Whether through greedy construction, local improvement, or other heuristics, search remains the
standard approach. Exact solvers such as Concorde can solve moderate-sized instances optimally,
but their exponential runtime limits scalability (Applegate et al., 2003). To handle larger instances,
local search techniques such as Lin–Kernighan–Helsgaun (LKH) (Lin & Kernighan, 1973; Hels-
gaun, 2000) have long been used as practical heuristics.

While classical methods remain highly effective, they rely on meticulously designed rules and hand-
crafted techniques. In contrast, neural network-based approaches aim to learn solution strategies di-
rectly from data. One of the earliest neural formulations of TSP was the Hopfield–Tank model (Hop-
field & Tank, 1985), which framed the problem as energy minimization in a neural network. Al-
though not data-driven, it marked an early attempt to use neural computation for combinatorial
optimization. However, this approach lacked scalability. Recent data-driven methods generally fall
into two categories: reinforcement learning (RL), where tours are constructed autoregressively via
learned policies (Khalil et al., 2017; Deudon et al., 2018; Kool et al., 2018), and supervised learn-
ing (SL), which adopts a two-stage formulation: neural networks generate local preferences, while
explicit search procedures build the final solution (Joshi et al., 2019). However, RL methods often
suffer from sparse rewards and high training variance, while SL approaches require ground-truth
solutions during training, which is computationally expensive due to the NP-hard nature of TSP.

In both RL and SL approaches to the TSP, some form of search is involved, either through learned
policies or explicit heuristics. Most RL methods are also autoregressive, generating tours sequen-
tially in a fixed order. Why might we want to move away from this approach? Many combinatorial
optimization problems exhibit strong natural structure; in the case of the TSP, this is the shortest
Hamiltonian cycle, which inherently constrains the solution space. Recent work (Min et al., 2023)
shows that such structure can be exploited through unsupervised, non-autoregressive (NAR) learn-
ing, but their framework still requires local search heuristics to assemble final solutions. Building
on this, Min & Gomes (2023) formulated TSP as permutation learning with the Gumbel-Sinkhorn
operator, though again relying on refinement strategies akin to search. Importantly, Min et al. (2023)
demonstrated that unsupervised learning can already reduce the search space, these developments
naturally raise the question of whether it is possible to learn high-quality TSP solutions entirely
without supervision, search, or autoregressive decoding.

In summary, nearly all data-driven TSP methods, whether supervised, reinforced, or unsupervised,
still rely on search. This reliance reveals a core barrier: achieving a learning-based search-free

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

paradigm for TSP remains a major open challenge, as it would provide direct evidence of neural
networks’ inherent ability to solve combinatorial problems.

Here, we propose a different perspective on learning combinatorial structures. Rather than treating
structure as the output of a post-hoc search, we explore the idea that structural inductive bias can
replace explicit search. Building on the unsupervised learning for TSP (UTSP) framework, we
formulate the TSP as a permutation learning problem: the model directly generates a Hamiltonian
cycle using a permutation matrix (Min et al., 2023; Min & Gomes, 2023). Our fully unsupervised,
non-autoregressive method requires no optimal training data, search or rollouts. Instead, we train the
model using a Gumbel-Sinkhorn relaxation of permutation matrices, followed by hard decoding via
the Hungarian algorithm at inference time. This enables solutions to emerge directly from learned
structure alone. We further introduce Hamiltonian cycle ensembles that train multiple models on
distinct cyclic shift variants and select the best tour across them, thereby reducing long-tail failure.

We demonstrate that our model consistently outperforms classical baselines, including the nearest
neighbor algorithm and farthest insertion, across a range of instance sizes. The structural inductive
bias encoded in our model alone generates high-quality solutions without explicit search proce-
dures. Our findings suggest that in combinatorial optimization, appropriately designed structural
constraints can serve as effective computational mechanisms, offering a complementary paradigm
to conventional search approaches. This suggests that structure itself may be sufficient to guide
optimization in certain combinatorial problems.

2 BACKGROUND: UNSUPERVISED LEARNING FOR THE TSP

The TSP asks to find the shortest route that visits each city exactly once and returns to the starting
point. Given n cities with coordinates x ∈ Rn×2, we want to find a permutation σ ∈ Sn that
minimizes the total tour length:

min
σ∈Sn

n∑
i=1

d(xσ(i), xσ(i+1)), (1)

where d(·, ·) is typically the Euclidean distance d(xi, xj) = ‖xi− xj‖2, and we define σ(n+ 1) :=
σ(1) to ensure the tour returns to the starting city.

To enable optimization over Hamiltonian cycles using neural networks, we first introduce a matrix-
based representation of permutations. We begin by defining the cyclic shift matrix V ∈ {0, 1}n×n
for n ≥ 3 as

Vi,j =

{
1 if j ≡ (i+ 1) (mod n)

0 otherwise
, (2)

for i, j ∈ {0, 1, . . . , n− 1}. This matrix has the explicit form:

V =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0

 . (3)

The matrix V represents the canonical Hamiltonian cycle 1 → 2 → 3 → · · · → n → 1, where
each row has exactly one entry equal to unity, indicating the next city in the sequence. More gen-
erally, a matrix H ∈ {0, 1}n×n represents a Hamiltonian cycle if it is a permutation matrix whose
corresponding directed graph forms a single cycle of length n.

The key insight is that any Hamiltonian cycle can be generated from the canonical cycle V through
a similarity transformation (Min & Gomes, 2023). Specifically, if P ∈ Sn is any permutation
matrix, then PVP> represents a Hamiltonian cycle obtained by reordering the nodes according to
permutation P. Given a distance matrix D ∈ Rn×n where Dij represents the distance between
cities i and j, the TSP objective becomes finding the optimal permutation matrix that minimizes:

min
P∈Sn

〈D,PVP>〉, (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where 〈A,B〉 = tr(A>B) denotes the matrix inner product. The inner product 〈D,PVP>〉 is the
distance of the Hamiltonian cycle represented by PVP>.

Since finding the optimal discrete permutation matrix is NP-hard and backpropagating through dis-
crete variables is non-differentiable, we relax the problem by replacing the hard permutation matrix
P with a soft permutation matrix T ∈ Rn×n. Following (Min et al., 2023; Min & Gomes, 2023),
we use a Graph Neural Network (GNN) to construct T and optimize the loss function:

LTSP = 〈D,TVT>〉. (5)

The soft permutation matrix T approximates a hard permutation matrix. Here, the Hamiltonian
cycle constraint is implicitly enforced through the structure TVT>. This enables gradient-based
optimization to find good approximate solutions, while naturally incorporating both the shortest
path objective and the Hamiltonian cycle constraint. The GNN learns to generate a soft permutation
matrix T that, when used in the transformation TVT>, yields a soft adjacency matrix representing
a Hamiltonian cycle. This approach provides a non-autoregressive, unsupervised learning (UL)
framework without sequential decision-making or ground truth supervision, enabling efficient end-
to-end training directly from the combinatorial optimization objective.

3 FROM SOFT PERMUTATION T TO HARD PERMUTATION P

To obtain a hard permutation matrix P from the GNN output, we follow the method proposed in
(Min & Gomes, 2025). We use the Gumbel-Sinkhorn operator (Mena et al., 2018), which provides a
differentiable approximation to permutation matrices during training. At inference time, we extract
a discrete permutation via the Hungarian algorithm. Following the UTSP model (Min et al., 2023),
the GNN processes geometric node features f0 ∈ Rn×2 (city coordinates) along with an adjacency
matrix A ∈ Rn×n defined by:

A = e−D/s, (6)
where D is the Euclidean distance matrix and s is a scaling parameter. The GNN generates logits
F ∈ Rn×n that are passed through a scaled hyperbolic tangent activation:

F = α tanh(fGNN(f0, A)), (7)

where α is a scaling parameter, and fGNN : Rn×2×Rn×n → Rn×n is a GNN that operates on node
features f0 and the adjacency matrix A.

The scaled logits are passed through the Gumbel-Sinkhorn operator to produce a differentiable ap-
proximation of a permutation matrix:

T = GS

(
F + γε

τ
, l

)
, (8)

where ε is i.i.d. Gumbel noise, γ is the noise magnitude, τ is the temperature parameter which
controls relaxation sharpness, and l is the number of Sinkhorn iterations. Lower values of τ yield
sharper, near-permutation matrices. At inference, we derive a hard permutation using the Hungarian
algorithm:

P = Hungarian

(
−F + γε

τ

)
. (9)

The final Hamiltonian cycle is reconstructed as PVP>, yielding a discrete tour that solves the TSP
instance.

4 TRAINING AND INFERENCE

Our training objective minimizes the loss function in Equation 5, incorporating a structural inductive
bias: the structure TVT> implicitly encodes the Hamiltonian cycle constraint, guiding the model
toward effective solutions.

During inference, we decode the hard permutation matrix P using the Hungarian algorithm as pre-
viously described n Equation 9. The final tour is obtained directly through PVP>, which always
generates a valid Hamiltonian cycle by construction. Unlike conventional TSP heuristics requiring

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

local search, our solutions naturally emerge from the learned permutation matrices. The key ad-
vantage of this framework lies in its structural guarantee: regardless of the quality of the learned
permutation matrix P, the transformation PVP> will always yield a feasible TSP solution. The
optimization process thus focuses entirely on finding the permutation that minimizes tour length,
while the constraint is automatically satisfied.1

4.1 EXPERIMENTAL SETUP

Our experiments span three distinct problem sizes: 20-node, 50-node, and 100-node TSP instances.
For each problem size, we perform hyperparameter sweeps to identify the optimal configurations.
Training data consist of uniformly distributed TSP instances generated for each problem size,
with 100,000 training instances for 20-node, 500,000 training instances on 50-node instances, and
1,500,000 training instances for 100-node instances. All problem sizes use 1,000 instances each for
validation and test.

4.2 HYPERPARAMETER CONFIGURATION

We conduct parameter exploration through grid search to evaluate our approach. The 20-node
instances are trained across all combinations of temperature τ ∈ {2.0, 3.0, 4.0, 5.0} and noise
scale γ ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.3}, resulting in 24 configurations for each size; the 50-
node instances are trained across all combinations of temperature τ = 5.0 and noise scale
γ ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.3}, while the 100-node instances use only one temperature value
τ = 5.0 with an expanded noise scale γ ∈ {0.1, 0.2, 0.3}, totaling 3 configurations. We employ
` = 60 Sinkhorn iterations for 20-node instances and ` = 80 for 50- and 100-node instances, with
training conducted over 300 epochs for 20-node instances and extended to 600 epochs for 50- and
100-node instances to ensure sufficient convergence. For evaluation, tour distances are computed
using hard permutations P obtained via the Hungarian algorithm as described in Equation 9, in
contrast to the soft permutation T used during training.

4.3 NETWORK ARCHITECTURE AND TRAINING DETAILS

Following the UTSP model (Min et al., 2023), we employ Scattering Attention Graph Neural Net-
works (SAGs) with 128 hidden dimensions and 2 layers for 20-node instances, 256 hidden dimen-
sions and 6 layers for 50-node instances, and 512 hidden dimensions and 8 layers for 100-node
instances (Min et al., 2022). For TSP-20, we use SAGs with 6 scattering channels and 2 low-pass
channels; for TSP-50 and TSP-100, we use SAGs with 4 scattering channels and 2 low-pass chan-
nels. We train the networks using the Adam optimizer (Kingma & Ba, 2014) with weight decay
regularization λ = 1× 10−4. Learning rates are set to 1× 10−3 for 20-node instances and 2× 10−3

for 50- and 100-node instances. To ensure training stability, we implement several regularization
techniques: (i) learning rate scheduling with a 15-epoch warmup period, (ii) early stopping with
patience of 50 epochs, and (iii) adaptive gradient clipping to maintain stable gradients throughout
the optimization process.

For each problem size, we select the best performing model based on validation performance across
all hyperparameter combinations of τ and noise scale γ. The model configuration that achieves the
lowest validation distance is then evaluated on the corresponding test set.

5 EXPERIMENT

Our training loss with respect to the validation distance is shown in Figure 1. The training curves
consistently converge across all problem sizes, with the training loss (blue) steadily decreasing and
stabilizing over epochs. Notably, there is a strong correlation between training loss reduction and
validation TSP distance improvement (red), indicating effective learning without overfitting. On
20-node instances, the model achieves the best validation distance of 405.60 at epoch 283; on 50-
node instances, our model achieves its best distance of 627.21 at epoch 550; on 100-node instances,

1While we use the Hungarian algorithm to obtain hard permutations from each model’s soft output, this
step is deterministic and not part of any heuristic or tree-based search procedure. We use the term search in the
sense of explicit exploration or rollout over solution candidates, as in beam search or reinforcement learning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

TSP-20 TSP-50 TSP-100

Figure 1: Training history across TSP sizes. Distances are scaled by a factor of 100.

we achieve the best validation distance of 835.38 at epoch 574. Across all scales, the validation
performance closely tracks the training loss trajectory, confirming that the model generalizes well
and that minimizing the objective in Equation 5 consistently leads to improved TSP solution quality.

5.1 LENGTH DISTRIBUTION

Figure 2: TSP-20 performance comparison showing our model vs. greedy nearest neighbor baseline.
Our model achieves 0.45 shorter tour lengths (mean: 4.06 vs. 4.51) with reduced variability and
consistently better performance across all percentiles. Results based on 1,000 test instances.

Figure 3: TSP-50 performance comparison showing our model vs. greedy nearest neighbor baseline.
Our model achieves 0.71 shorter tour lengths (mean: 6.28 vs. 6.99) with reduced variability and
consistently better performance across all percentiles. Results based on 1,000 test instances.

Figures 2, 3, and 4 show the tour length distributions on the test set for 20-, 50-, and 100-node
instances, using the model with the lowest validation length across all hyperparameters. Our model
consistently outperforms the Greedy Nearest Neighbor (NN) baseline—which constructs tours by
iteratively selecting the nearest unvisited node—achieving substantial gains across all problem sizes.
The distribution histograms (left panels) reveal that our model produces more concentratedly dis-
tributed, shorter tour lengths with mean values of µ = 4.06, 6.28, and 8.37 compared to Greedy
NN’s µ = 4.51, 6.99, and 9.67. The box plots (center panels) demonstrate reduced variance and
lower median values for our approach, while the cumulative distribution functions (right panels)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

show our model achieves better solution quality, with curves consistently shifted toward shorter tour
lengths.

Figure 4: TSP-100 performance comparison showing our model vs. greedy nearest neighbor base-
line. Our model achieves 1.30 shorter tour lengths (mean: 8.37 vs. 9.67) with reduced variability
and consistently better performance across all percentiles. Results based on 1,000 test instances.

5.2 INFERENCE TIME

We evaluate the inference efficiency of our approach by measuring the average time per instance,
including the GNN forward pass and construction of the hard permutation as defined in Equation 9.
On an NVIDIA H100 GPU with batch size 256, the model achieves inference times of 0.17 ms for
TSP-20, 0.15 ms for TSP-50, and 0.40 ms for TSP-100 .

5.3 OPTIMALITY GAP

Optimality Gap Calculation The optimality gap is computed as:

Gap (%) =

(
Tour Length (Method)− Tour Length (Optimal)

Tour Length (Optimal)

)
× 100, (10)

This measures how far a method’s tour length deviates from the optimal solution, with smaller gaps
indicating better performance.

Table 1: Comparison of tour quality across different heuristics on TSP instances of varying sizes.

Method Type TSP-20 TSP-50 TSP-100
Tour Len. Gap Tour Len. Gap Tour Len. Gap

Concorde Solver 3.83 0.00% 5.69 0.00% 7.75 0.00%
Beam search (w=1280) Search 4.06 6.00% 6.83 20.0% 9.89 27.6%
Greedy NN G 4.51 17.8% 6.99 22.8% 9.67 24.8%
Our method UL, NAR 4.06 6.00% 6.28 10.4% 8.37 8.00%

Our unsupervised, search-free approach demonstrates competitive performance across TSP in-
stances of varying sizes, achieving optimality gaps of 6.00%, 10.4%, and 8.00% on TSP-20, TSP-
50, and TSP-100 respectively (Table 1). Notably, our method matches beam search performance on
TSP-20 while significantly outperforming it on larger instances (10.4% vs 20.0% gap on TSP-50,
and 8.00% vs 27.6% gap on TSP-100). Our approach also consistently outperforms the Greedy NN
baseline across all problem sizes, with the performance advantage becoming more pronounced on
larger instances.

These results suggest that our model effectively captures global tour structure and long-range city
dependencies, enabling better solutions compared to methods that rely primarily on local, greedy
decisions or limited search strategies. The consistent performance indicates that structural inductive
biases alone can enable the model to discover competitive combinatorial solutions without supervi-
sion or explicit search.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 HAMILTONIAN CYCLE ENSEMBLE

Examining the results in Figures 2, 3, and 4, we observe a long tail distribution where our model
yields notably suboptimal solutions on some instances. This suggests that while the model generally
performs well, it sometimes generates significantly suboptimal solutions.

To address this limitation, we revisit our training objective in Equation 5: LTSP = 〈D,TVT>〉,
where our model learns permutations over the canonical Hamiltonian cycle V. We now propose an
ensemble approach utilizing powers of the cyclic shift matrix Vk, where different values of k satisfy-
ing gcd(k, n) = 1 generate distinct valid Hamiltonian cycles. Our ensemble strategy trains separate
models for each Vk and selects the minimum tour length solution across all ϕ(n) cycle variants for
each test instance, where ϕ(n) is Euler’s totient function. This leverages diverse Hamiltonian cycle
topologies to mitigate long tail behavior, so that when one structure fails, alternatives often succeed,
thereby eliminating catastrophic failures.

Figure 5: Best mean tour length on TSP instances of different sizes as the number of coprime
shifts increases. Using more shift combinations significantly reduces tour length, outperforming the
Greedy Multi-Start baseline. Both Christofides and Beam Search bounds are shown for comparison.
From left to right: TSP-20, TSP-50, TSP-100.

6.1 MAIN THEOREM

Theorem 6.1 (Vk Hamiltonian Cycle Characterization). Let V be the n× n cyclic shift matrix and
k ∈ Z+. Then Vk represents a Hamiltonian cycle if and only if gcd(k, n) = 1.

Proof. We prove both directions of the equivalence.

Necessity (⇒): Suppose Vk represents a Hamiltonian cycle. Let d = gcd(k, n). The matrix Vk
corresponds to the mapping σk : i 7→ (i+ k) mod n on the vertex set {0, 1, . . . , n− 1}.
Consider the orbit of vertex 0 under this mapping:

O0 = {0, k mod n, 2k mod n, . . . , (m− 1)k mod n}, (11)
where m is the smallest positive integer such that mk ≡ 0 (mod n).

Since d = gcd(k, n), we can write k = dk′ and n = dn′ where gcd(k′, n′) = 1. Then:
mk ≡ 0 (mod n) ⇐⇒ dn′ | mdk′ (12)

⇐⇒ n′ | mk′ (13)

⇐⇒ n′ | m (since gcd(k′, n′) = 1). (14)

Therefore, the smallest such m is m = n′ = n
d , so |O0| = n

d .

If Vk represents a Hamiltonian cycle, then all n vertices must lie in a single orbit, which requires
|O0| = n. This implies n

d = n, hence d = 1, i.e., gcd(k, n) = 1.

Sufficiency (⇐): Suppose gcd(k, n) = 1. Then by the argument above, the orbit of vertex 0 has size
n
1 = n. This means the sequence {0, k, 2k, . . . , (n − 1)k} modulo n contains all distinct elements
of {0, 1, . . . , n− 1}.
Therefore, Vk represents a permutation that cycles through all n vertices exactly once, forming a
single Hamiltonian cycle.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Corollary 6.2 (Euler’s Totient Function Connection). The number of distinct Hamiltonian cycle
matrices of the form Vk is exactly ϕ(n), where ϕ is Euler’s totient function.

Proof. By Theorem 6.1, Vk represents a Hamiltonian cycle if and only if gcd(k, n) = 1. The
number of integers k ∈ {1, 2, . . . , n} such that gcd(k, n) = 1 is precisely ϕ(n).

Remark 6.3 (Directed vs Undirected Cycles). Note that different values of k may yield distinct
directed Hamiltonian cycles that correspond to the same undirected cycle traversed in opposite di-
rections. For instance, when n is even, V1 and Vn−1 represent the same undirected cycle with
opposite orientations. However, each Vk with gcd(k, n) = 1 defines a unique directed cycle, which
is the relevant structure for our ensemble method.

6.2 ENSEMBLE TRAINING AND INFERENCE

Our ensemble strategy trains separate models for each valid Vk matrix. Specifically, we construct
ϕ(n) models, each optimizing the modified objective:

LTSP(k) = 〈D,T(k)VkT>(k)〉, (15)

where gcd(k, n) = 1 and T(k) represents the learned soft permutation matrix corresponding to Vk.

Table 2: Detailed performance comparison of learning-based TSP solvers across different instance
sizes (TSP-20/50/100). Metrics include average tour length and optimality gap (%). Results for
baseline methods are taken from (Joshi et al., 2019). While all methods use uniformly generated
TSP instances, test sets vary slightly across works. Note that many more recent models exist, we
select a subset for comparison.

TSP-20 TSP-50 TSP-100
Method Type Tour Len. Gap Tour Len. Gap Tour Len. Gap

PtrNet (Vinyals et al., 2015) SL, G 3.88 1.15% 7.66 34.48% - -
PtrNet (Bello et al., 2016) RL, G 3.89 1.42% 5.95 4.46% 8.30 6.90%
S2V (Khalil et al., 2017) RL, G 3.89 1.42% 5.99 5.16% 8.31 7.03%
GAT (Deudon et al., 2018) RL, G, 2-OPT 3.85 0.42% 5.85 2.77% 8.17 5.21%
GAT (Kool et al., 2018) RL, G 3.85 0.34% 5.80 1.76% 8.12 4.53%
GCN (Joshi et al., 2019) SL, G 3.86 0.60% 5.87 3.10% 8.41 8.38%
POMO (Kwon et al., 2020) RL,G 3.83 0.12% 5.73 0.64% 7.84 1.07%
Concorde Solver 3.83 0.00% 5.69 0.00% 7.75 0.00%
Greedy NN (all start cities) G 4.05 5.74% 6.35 11.6% 8.90 14.8%
Beam search (w=5,000) Search 3.98 3.92% 6.71 17.9% 9.77 26.1%
Beam search (w=10,000) Search 3.95 3.13% 6.64 17.0% 9.71 25.3%
Farthest insertion Heuristics 3.92 2.35% 6.00 5.45% 8.35 7.74%
Christofides Heuristics 4.17 8.88% 6.31 10.9% 8.69 12.1%
Hamiltonian cycle ensemble UL, NAR 3.97 3.52% 5.85 2.81% 8.14 5.03%

For each k, we employ identical training procedures, differing only in the underlying Hamiltonian
cycles Vk. We select the model configuration which achieves the lowest validation loss across all
hyperparameter combinations for each k-specific model. This ensures that each cycle Vk is properly
exploited.

At inference time, we evaluate all ϕ(n) trained models on each test instance. For each model
corresponding to Hamiltonian cycles Vk, we decode the hard permutation matrix P(k) from the
learned soft permutation T(k) using the Hungarian algorithm as previously described in Equation 9.
The candidate tour for each ensemble member is obtained directly through P(k)VkP>(k), which
always generates a valid Hamiltonian cycle.

For each individual test instance, we then select the solution with minimum tour length across all
ensemble members:

Tourfinal = P(k∗)Vk
∗
P>(k∗), (16)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

where k∗ = arg mink:gcd(k,n)=1〈D,P(k)VkP>(k)〉 is determined instance-specifically.

This instance-wise selection ensures that each test problem is solved using the most suitable cycle
structure from the ensemble, adapting to the particular geometric characteristics of that instance.

Figure 5 demonstrates the effectiveness of this ensemble approach across 20, 50, and 100-node
problems respectively. As the number of coprime shifts increases, the mean tour length decreases
substantially, with dramatic improvements observed initially that gradually plateau. For TSP-20,
using all ϕ(20) = 8 coprime shifts reduces mean tour length from 4.06 to 3.97, surpassing both
multi-start greedy and beam search performance. Similar trends are observed for TSP-50 and TSP-
100, where the ensemble approach achieves mean tour lengths of 5.85 and 8.14 respectively when
using all available coprime shifts. This demonstrates that leveraging multiple Hamiltonian cycle
structures effectively mitigates the long tail problem while consistently improving solution quality.
Here, each permutation learner in our framework is trained with respect to a fixed initial Hamiltonian
cycle Vk, which serves as a structural prior guiding solution formation. This initialization anchors
the training process, focusing learning on the permutation of the initial Hamiltonian cycle Vk, ef-
fectively biasing the model. Since different initial cycles encode distinct structural priors, using an
ensemble of models with Vk promotes diversity and improves overall solution quality.

Despite not using supervision or autoregressive decoding, our method achieves competitive results
across all TSP sizes. Our Hamiltonian cycle ensemble approach significantly outperforms classical
baselines, achieving optimality gaps of 3.52%, 2.81%, and 5.03% on TSP-20, TSP-50, and TSP-100
respectively, compared to greedy NN (all start cities) search’s 5.74%, 11.6%, and 14.8%. We also
improve upon beam search variants as the problem size grows, with beam search achieving gaps of
3.13–3.92% on TSP-20, 17.0–17.9% on TSP-50, and 25.3–26.1% on TSP-100.

Among learning-based methods, our approach demonstrates competitive performance. We achieve
comparable results to Pointer Networks and S2V. Our method also performs competitively with
supervised method (Joshi et al., 2019), achieving 5.03% optimality gap versus 8.38% on TSP-100.
Our performance is comparable to the RL-based approaches. Notably, we are competitive with the
GAT model of (Deudon et al., 2018) even when it is augmented with 2-OPT local search, a strong
post-hoc refinement step. While models such as the attention-based approach by (Kool et al., 2018)
leverage RL and autoregressive decoding, our unsupervised, non-autoregressive framework attains
similar optimality gaps without requiring either RL training or explicit search procedures.

However, we do not yet match the RL model such as (Kwon et al., 2020), which benefits from
exploiting multiple equivalent solutions through parallel rollouts. Our results are also competitive
with classical heuristics such as farthest insertion, while offering a fundamentally different approach
grounded in structural inductive bias. Overall, our results highlight that non-autoregressive, unsu-
pervised methods can effectively tackle combinatorial optimization problems without sequential
decoding. Detailed comparisons are provided in Table 2.

In our experiments, we observe that it is not necessary to employ the full set of ϕ(n) Hamiltonian
cycles for effective ensembling. Instead, using a small subset can already yield strong approxima-
tions. For example, on TSP-100, selecting the shifts k ∈ {1, 9, 81, 87, 91} achieves an average
tour length of 8.18, corresponding to an optimality gap of approximately 5.5%. Furthermore, the
inference cost remains practical: whereas a single model requires about 0.40 ms per instance, this
five-model subset ensemble takes only 2 ms in total, while still delivering significant improvements
in robustness and solution quality.

7 CONCLUSION

We present a fully unsupervised, non-autoregressive framework for solving the TSP without rely-
ing on explicit search or supervision. By framing the problem as learning permutation matrices
that satisfy Hamiltonian cycle constraints via similarity transformations, our approach incorporates
structural constraints as inductive biases into the learning process. This formulation enables the
model to generate valid tours without sequential decision-making. Our method achieves competi-
tive results and we further demonstrate that ensembles over different Hamiltonian cycles enhance
robustness and improve average solution quality, especially on larger problem instances. These re-
sults suggest that learned structural biases provide a promising alternative to traditional heuristic
search methods by integrating problem structure as an inductive bias in combinatorial optimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Applegate, Robert Bixby, Vasek Chvátal, and William Cook. Concorde tsp solver. http:
//www.math.uwaterloo.ca/tsp/concorde.html, 2003.

David L Applegate. The traveling salesman problem: a computational study, volume 17. Princeton
university press, 2006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 15th International Conference,
CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15, pp. 170–181. Springer,
2018.

Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000.

John J Hopfield and David W Tank. “neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman prob-
lem. Operations research, 21(2):498–516, 1973.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018.

Yimeng Min and Carla Gomes. Unsupervised learning permutations for tsp using gumbel-sinkhorn
operator. In NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023.

Yimeng Min and Carla P Gomes. Unsupervised ordering for maximum clique. arXiv preprint
arXiv:2503.21814, 2025.

Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering
networks help solve the maximum clique problem? Advances in Neural Information Processing
Systems, 35:22713–22724, 2022.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36:47264–47278, 2023.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

10

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A DISCUSSION AND FUTURE WORK

In this paper, we use 24 configurations of (τ, γ) pairs for TSP-20, 6 configurations for TSP-50,
and 3 configurations for TSP-100. This limited yet targeted hyperparameter exploration is suffi-
cient to support our central claim: that structural inductive bias, when coupled with a permutation-
based formulation, can drive the emergence of high-quality solutions in a fully unsupervised, non-
autoregressive setting. We restrict our analysis to minimal hyperparameter settings and adopt
the same architecture as UTSP (Min et al., 2023), which is sufficiently expressive to illustrate
our main claim. While preliminary evidence indicates that performance can be further improved
through extensive hyperparameter tuning or architectural variations (e.g., alternative message pass-
ing schemes), such enhancements lie outside the scope of our primary contribution and are left for
future work.

B EFFECTIVENESS OF THE HAMILTONIAN CYCLE ENSEMBLE

Figure 6 shows the tour length distributions produced by models trained with different coprime
shifts Vk for TSP instances of size 20, 50, and 100. Each colored boxplot represents the output
distribution from a single model trained on a specific cyclic structure, while the green box on the
right shows the ensemble result obtained by selecting the shortest tour across all models for each
instance. Notably, while individual models exhibit varying performance and often display long-tail
distributions with significant outliers, the ensemble output consistently achieves shorter average tour
lengths with reduced variance. This demonstrates that the ensemble strategy effectively mitigates
the long-tail failure cases seen in individual models by leveraging structural diversity. Consequently,
the ensemble approach leads to more robust and consistent solutions across problem instances.

C QUADRATIC UPPER BOUND ON THE OPTIMALITY GAP

Theorem C.1 (Quadratic upper bound on the optimality gap). Let C(P) := 〈D, PVP>〉 for a cost
matrix D ∈ Rn×n, a cyclic shift matrix V ∈ Rn×n, and a permutation matrix P ∈ Πn. Let the set
of optimal permutations be

O := arg min
P∈Πn

C(P), C? := min
P∈Πn

C(P). (17)

Given a (soft) doubly-stochastic matrix T produced by the model and a hard permutation P̂ obtained
from T at inference, define

δ∗ := min
P∈O
‖T−P‖F , ε := ‖P̂− T‖F . (18)

If ‖V‖2 ≤ 1 and ‖T‖2 ≤ 1, then

C(P̂)− C? ≤ ‖D‖F
(
2δ∗ + δ2

∗ + 2ε+ ε2
)
. (19)

Proof. Since Πn is finite, there exists P† ∈ O such that δ∗ = ‖T −P†‖F . We decompose the gap
into a “soft” part and a “rounding” part:

C(P̂)− C? =
(
C(T)− C(P†)

)︸ ︷︷ ︸
soft approximation

+
(
C(P̂)− C(T)

)︸ ︷︷ ︸
rounding

. (20)

Soft term. Let E := T−P†. Expanding,
TVT> −P†VP†> = EVP†> + P†VE> + EVE>. (21)

Using the submultiplicative bounds
‖AXB‖F ≤ ‖A‖F ‖X‖2‖B‖2, ‖AXB‖F ≤ ‖A‖2‖X‖F ‖B‖2, (22)

together with ‖P†‖2 = 1, ‖V‖2 ≤ 1, and ‖E‖2 ≤ ‖E‖F , we obtain
‖EVP†>‖F ≤ δ∗, ‖P†VE>‖F ≤ δ∗, ‖EVE>‖F ≤ δ2

∗. (23)
Thus

‖TVT> −P†VP†>‖F ≤ 2δ∗ + δ2
∗. (24)

By Cauchy–Schwarz,
|C(T)− C(P†)| ≤ ‖D‖F (2δ∗ + δ2

∗). (25)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

TSP-20: Ensemble vs. 8 individual coprime models

TSP-50: Ensemble vs. 20 individual coprime models

TSP-100: Ensemble vs. 40 individual coprime models

Figure 6: Tour length distributions across individual models and ensemble output for various TSP
sizes. Each index corresponds to a model trained using a different coprime shift matrix Vk, where
gcd(k, n) = 1. The ensemble result (rightmost box in green) selects the minimum-length tour across
all coprime-specific models for each instance.

Rounding term. Let ∆ := P̂− T, so ‖∆‖F = ε. Expanding,

P̂VP̂> − TVT> = ∆VT> + TV∆> + ∆V∆>. (26)

Using the same bounds and ‖T‖2 ≤ 1, ‖V‖2 ≤ 1,

‖∆VT>‖F ≤ ε, ‖TV∆>‖F ≤ ε, ‖∆V∆>‖F ≤ ε2, (27)

hence
‖P̂VP̂> − TVT>‖F ≤ 2ε+ ε2, (28)

and by Cauchy–Schwarz,
|C(P̂)− C(T)| ≤ ‖D‖F (2ε+ ε2). (29)

Combine. By the triangle inequality,

C(P̂)− C? ≤ ‖D‖F
(
2δ∗ + δ2

∗ + 2ε+ ε2
)
. (30)

Lemma C.2 (Spectral norm of V). Let V ∈ {0, 1}n×n be the cyclic shift matrix defined in Equa-
tion 3. Then

‖V‖2 = 1. (31)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proof. The matrix V is a permutation matrix corresponding to a cyclic shift. Permutation matrices
are orthogonal, i.e. V>V = I . Hence, all eigenvalues of V have absolute value 1, and

‖V‖2 =
√
λmax(V>V) =

√
λmax(I) = 1. (32)

Equivalently, V is diagonalizable by the discrete Fourier transform, with eigenvalues {e2πik/n : k =
0, . . . , n− 1}, all lying on the unit circle. Thus the spectral norm of V is exactly 1.

Lemma C.3 (Spectral norm of T). If T is doubly-stochastic, then ‖T‖2 ≤ 1.

Proof. By the Birkhoff–von Neumann theorem, any doubly-stochastic T can be written as a convex
combination of permutation matrices: T =

∑
k αkPk, with αk ≥ 0 and

∑
k αk = 1. The spectral

norm is convex, hence

‖T‖2 =
∥∥∥∑

k

αkPk

∥∥∥
2
≤
∑
k

αk‖Pk‖2 =
∑
k

αk · 1 = 1, (33)

since each permutation matrix Pk is orthogonal and thus has spectral norm 1.

Remark C.4 (Interpretation). δ∗ measures how close the learned soft matrix T is to some optimal
permutation in O, so the bound handles non-uniqueness naturally. When there are symmetries (e.g.
reversed cycles, relabelings), δ∗ will be the distance to the closest such symmetry, which tightens
the bound compared to fixing an arbitrary P†.

D RANDOMNESS BY HARDWARE PERTURBATION INFERENCE

We introduce Hardware Perturbation Inference (HPI), a simple yet effective technique that lever-
ages the inherent non-determinism of low-level numerical operations to generate diverse inference
outcomes without modifying the model or introducing explicit stochasticity. Even when using the
same GPU architecture (e.g., NVIDIA H100), small numerical discrepancies can arise from differ-
ences in fused multiply–add (FMA) kernel execution and TensorFloat-32 (TF32) rounding modes.
These subtle perturbations may propagate through the computation, leading to slightly different out-
puts. HPI exploits this phenomenon to produce multiple candidate solutions for the same problem
instance, which can then be ensembled to improve robustness and solution quality—all without
requiring changes to the model parameters or training procedure.

In our experiments, we apply HPI on NVIDIA H100 GPUs by toggling the use of FMA operations
under TF32 precision. Specifically, we compare inference with TF32+FMA enabled versus disabled,
which yields distinct perturbations in the numerical pathways and consequently different solutions
for the same input instance Vk. By combining these outputs in an ensemble, we observe further
improvements in solution quality: on the TSP-100 benchmark, the ensemble reduces the optimality
gap to 8.10.

While hardware-level perturbations provide a simple mechanism for generating diversity, there are
many other ways to introduce randomness to further enhance ensemble performance. We leave a
broader discussion of such strategies for future work.

E ZERO-SHOT GENERALIZATION

We propose a zero-shot evaluation strategy inspired by (Min & Gomes, 2025), leveraging dummy
nodes. As an example, consider testing on a TSP instance with 95 cities using a model trained on
TSP-100. To construct such a test case, we randomly select 5 parent nodes from the 95 cities and
introduce 5 additional dummy nodes, each placed very close to one of the selected parents. This
augmentation produces an effective 100-node instance, which we then solve using the TSP-100
model.

If the resulting tour connects each dummy node directly to its parent node, we merge them to recover
a valid tour for the original 95-city problem. If this condition is not met, we repeat the process by
re-sampling the parent and dummy nodes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Using this strategy, our model achieves a mean tour length of 8.24 across 1,000 unseen test instances,
compared to 9.49 for the greedy baseline. For reference, the optimal mean tour length is 7.57. These
results demonstrate that our dummy-node construction enables effective zero-shot transfer across
problem sizes while maintaining competitive performance.

14

	Introduction
	Background: Unsupervised Learning for the TSP
	From Soft Permutation T to Hard Permutation P
	Training and Inference
	Experimental Setup
	Hyperparameter Configuration
	Network Architecture and Training Details

	Experiment
	Length Distribution
	Inference Time
	Optimality Gap

	Hamiltonian Cycle Ensemble
	Main Theorem
	Ensemble Training and Inference

	Conclusion
	Discussion and Future Work
	Effectiveness of the Hamiltonian Cycle Ensemble
	Quadratic upper bound on the optimality gap
	Randomness by Hardware Perturbation Inference
	Zero-Shot Generalization

