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ABSTRACT

Universal domain adaptation (UniDA) imposes no constraints on the label sets of
the source and target domains, aiming to transfer knowledge from source to tar-
get domain. Existing works typically target either single-source or multi-source
UniDA, rarely both. Naively merging multi-source data into a single source do-
main may lead to negative transfer and performance degradation. Moreover, since
multi-source models are often equipped with modules tailored for multi-source
data, they are usually not directly applicable to single-source tasks. These chal-
lenges hinder the development of a unified framework. In this paper, we pro-
pose a unified model based on multi-modal and uncertainty estimation, termed
MUEUDA, to address this issue. First, we incorporate multi-modal information,
enabling class-level feature alignment between source and target domains using
fine-tuning and prompt learning techniques. Second, we extract class-level image
feature prototype from the source domain and progressively update them during
training. Finally, we introduce a novel uncertainty estimation method that deter-
mines whether an image in the target domain belongs to a known or unknown
class through a learnable threshold. Extensive experiments are conducted on
both single-source and multi-source benchmarks, and our model achieved state-
of-the-art performance. The method demonstrates strong performance across
both scenarios, balancing effectiveness and generality. The code is available at
https://github.com/jstree365/MUEUDA.

1 INTRODUCE

Domain adaptation (DA) aims to generalize knowledge learned from the source domain to the target
domain. Many scholars have researched DA techniques, with applications including image classifi-
cation(Long et al., 2015), object detection(Hsu et al., 2020; Inoue et al., 2018), and image segmen-
tation(Zhang et al., 2017; Li et al., 2019). In real-world, the labels in the target domain are often
unavailable, which is referred to as unsupervised domain adaptation (UDA) (Ganin & Lempitsky,
2015; Long et al., 2016). Although most studies assume that the source and target domains share
the same label set, in practice, the label set in the target domain are inaccessible. This implies that,
in addition to shared classes, both source and target domains may also contain private classes. This
phenomenon has led scholars to investigate universal domain adaptation (UniDA).

Fortunately, some scholars have conducted in-depth research on UniDA. You et al. (2019) have
provided a clear definition of UniDA. DANCE (Saito et al., 2020) and DCC (Li et al., 2021) use self-
supervised learning based on clustering to distinguish common and private classes. These works are
based on single source setting. In this paper, we refer to universal single-source domain adaptation as
UniSDA. Some researchers have also studied universal multi-source domain adaptation (UniMDA),
such as HyMOS (Bucci et al., 2022) and UMAN (Yin et al., 2022), which align source domains with
each other and source and target domains. However, it is important to note that these tasks assume
the number of source domains is predetermined.

Different DA are illustrated in Figure 1. Typically, DA can be categorized based on the number of
source domains into single-source and multi-source DA. Additionally, DA can be classified based
on whether they are UniDA methods into non-universal and universal types. Among these, non-
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Figure 1: Different DA categories

universal DA also includes closed-set (Long et al., 2015), partial (Zhang et al., 2018; Cao et al.,
2018), and open-set (Saito et al., 2018; Luo et al., 2020) scenarios. In this paper, our model addresses
both UniSDA and UniMDA to meet practical needs.

When multiple source domains exist, simply merging them into a single source domain ignores
inter-source domain discrepancies, leading to potential negative transfer when generalizing to the
target domain(Yin et al., 2022). Moreover, UniMDA models are not directly applicable to UniSDA
due to their specialized multi-source training designs. These issues motivate us to develop a unified
model capable of handling both UniSDA and UniMDA scenarios effectively.

Based on the reasons mentioned above, this paper designs the model based on the following charac-
teristics and requirements: (1) The number of source domains is uncertain; (2) Target domain labels
are unavailable; (3) In addition to the shared common labels, both the source domains and the target
domain may have private labels; (4) It is necessary to identify the private classes in the target domain.
Additionally, current methods are primarily based on image features. Since the source domain data
are labeled, these labels are typically used in these methods only to provide supervision information,
while the textual information associated with these labels is often ignored. Our model is inspired
by this and makes full use of the multi-modal information provided by both text and image, helping
align the source and target domains in the class-level feature space.

The contributions of this paper are as follows: (1) We propose the MUEUDA model to address the
issue of an uncertain number of source domains in UniDA. To the best of our knowledge, this is the
first unified framework designed to handle both single-source and multi-source UniDA, with SOTA
results. (2) We introduce multi-modal information into MUEUDA, utilizing the available label
information from the source domain. This guides the alignment of the source and target domains
in the feature space. (3) We innovatively design an uncertainty estimation method based on class
prediction and prototype match similarity to measure the class uncertainty of images, effectively
identifying private class samples. This method provides new ideas for open class classification.

2 RELATED WORK

2.1 UNIVERSAL SINGLE SOURCE DOMAIN ADAPTATION

UniDA is a more generalized form of UDA, which imposes looser restrictions on the label sets of
the source and target domain. You et al. (2019) provided a clear definition of UniDA. They employ a
domain adversarial training strategy to achieve domain alignment and utilizes uncertainty scores to
determine whether an image belongs to an unknown class. Similarly, Fu et al. (2020) leveraged the
complementary effects of entropy, consistency, and confidence to more clearly distinguish varying
degrees of uncertainty. Chen et al. (2022) designed a cross-domain multi-sample contrastive loss
based on mutual nearest neighbors to achieve common class matching and private class separation.
However, Saito et al. (2020) argued that such methods ignore the inherent structure of the target
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domain. Therefore, DANCE adopted a self-supervised learning approach based on neighborhood
clustering to learn the features of known and unknown classes. Similarly, Li et al. (2021) proposed
a domain consensus clustering method to mine domain-shared knowledge at both the semantic and
sample levels. Zhu et al. (2023) argued that models relying on sample features for judgment overly
emphasize global information while neglecting critical local objects in images. They implicitly
explored object information in images by sparsely reconstructing attention to achieve better common
feature alignment and target class separation. LEAD (Qu et al., 2024) and GLC (Qu et al., 2023)
achieved source-free UniDA.

2.2 UNIVERSAL MULTI-SOURCE DOMAIN ADAPTATION

UniMDA task must account for domain shifts both between source and target domains and among
multiple source domains. HyMOS (Bucci et al., 2022) performs class-balanced alignment between
different source domains, and then employs a progressive self-training process to further enhance
the alignment between source and target domain clusters. UMAN (Yin et al., 2022) estimates the
reliability of each known class belonging to the shared label set by introducing a pseudo boundary
vector and its weighted form. These methods are based on visual feature mining and alignment,
and they often ignore the textual information provided by source domain labels. SAP-CLIP (Yang
et al., 2024a) introduces textual information into UniMDA. It aligns source and target domains at
the instance level through image-text alignment. An energy-based uncertainty modeling strategy is
proposed to enlarge the margin between known and unknown samples. However, this method relies
on a fixed threshold. APNE-CLIP (Yang et al., 2024b) further improves upon this by using a thresh-
old determined by the mean and standard deviation of energy scores to classify whether a sample
belongs to an unknown class. To the best of our knowledge, these models are not simultaneously
well-suited for both UniSDA and UniMDA. Our method introduces multi-modal information and
a novel uncertainty estimation strategy, enabling the model to perform effectively on both single-
source and multi-source UniDA, achieving outstanding performance.

3 METHODOLOGY

3.1 PRELIMINARY

We are given access to N labeled source domains and 1 unlabeled target domain. Let the input space
be X ⊆ Rd and the label space be Y = {1, 2, . . . ,K}. Each source domain is denoted as D(i)

s =

{(x(i)
j , y

(i)
j )}ni

j=1, where x
(i)
j ∈ X is the j-th sample from the i-th source domain, y(i)j ∈ Yi ⊆ Y

is the corresponding label, ni and Yi are the number of labeled samples and label set in i-th source
domain. The unlabeled target domain is represented as Dt = {xt

k}
nt

k=1, where xt
k ∈ X and nt is

the number of target domain samples. The corresponding label set of the target domain is denoted
by YT ⊆ Y . We define the following sets to characterize label distribution across domains. YCS =⋂M

i=1 Yi, which YCS is the common label set shared across all source domains. YS =
⋃N

i=1 Yi

is the total source label set, YT\S = YT \ YS is the target-private label set, YS\T = YS \ YT is
the source-private label set. YC = YS ∩ YT is the shared common label set between source and
target domains. We assume each source domain is drawn from a joint distribution (x, y) ∼ pi(x, y),
and the target domain from (x, y) ∼ q(x, y), with different marginals pi(x) and q(x) reflecting
domain shifts. The objective of UniDA is to learn a classifier h : X → Y using labeled source
data {D(i)

s }Ni=1 and unlabeled target data Dt, such that h generalizes well to the target domain,
especially on the common label set YC and avoids misclassifying target-private samples from YT\S
as known classes. This paper proposes a model based on multi-modal information and uncertainty
estimation (MUEUDA) to achieve alignment between the source domains and target domain, as
well as classification of common and private classes in the target domain. The model is applicable
to both UniSDA and UniMDA scenarios, and it delivers strong performance without the need for
any modifications. The architecture of the proposed network is illustrated in Figure 2.

3.2 MULTIMODAL INFORMATION BASED ON TEXT-IMAGE FEATURES

CLIP (Radford et al., 2021), as a large-scale vision-language pre-trained model, possesses strong
cross-domain generalization capabilities. However, UniDA tasks require the model to recognize
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Figure 2: Overview of the proposed MUEUDA approach. Multi-modal information based on image-
text is used in the model. Feature prototypes are continuously updated. Pseudo-labeling is used to
provide supervision for the target domain samples. We propose a novel uncertainty estimation based
on both the feature-prototype similarity and the class prediction confidence to determine whether an
image belongs to the common or private classes.

unknown classes, which cannot be accomplished by directly using CLIP alone. There are three core
challenges in directly applying CLIP to UniDA: (1) The image encoder, without fine-tuning, may
not effectively adapt to the target domain. (2) The static text prompts cannot dynamically adjust
to suit the data distribution. (3) CLIP itself lacks the capability to classify unknown classes. To
address these challenges, we employ LoRA-based (Hu et al., 2022) fine-tuning to adapt the image
encoder, enabling the model to generalize better in target domain. We use instance-based prompt
learning to dynamically adjust the text input. Additionally, we construct feature prototypes of YS

to assist the model in identifying YT\S . In the training process, assume there is a set of learnable
vectors [v1, v2, . . . , vk]. The source domain image x(i)

j is input into the image encoder to obtain ISi .
Following the approach of CoCoOp (Zhou et al., 2022), we input ISi into a Meta-Net to obtain π
for the image, where π = hθ(I

S
i ). Then the learnable vector vk(x) is obtained by vk(x) = vk + π.

The prompt input corresponding to this image is tm(x) = {v1(x), v2(x), . . . , vk(x), cm}, where
m ∈ {1, 2, ..., |YS |} and cm is the vector corresponding to the label. The text encoder processes the
input to obtain Tm. Tm and ISi are then used to compute the predicted source domain label yspred
using a softmax over the cosine similarity as follows:

p(y = m|x) = exp(cos(ISi , Tm)/τ)∑
|YS | exp(cos(I

S
i , Tm)/τ)

(1)

The loss LS is calculated using the predicted labels and the true labels of the image:

LS = −
M∑
i=1

yStrue log(y
S
pred) (2)

To enhance the CLIP image encoder’s generalization performance to the target domain, we employ
the low-rank adaptation (LoRA) (Hu et al., 2022) to replace its linear layers. Given an input x ∈ Rd,
the output h ∈ Rα after adding LoRA is expressed using W0 and ∆W , W0 represents the pre-
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trained weight and ∆W is the low-rank approximation of two smaller matrices B ∈ Rd×r and
A ∈ Rr×d:

h = (W0 +
α

r
∆W )x = W0x+BAx (3)

Here, α is a hyperparameter, and r is the rank of the matrix. The proposed MUEUDA method in-
troduces a teacher network to generate high-quality pseudo-labels for target domain images. During
training, the student network uses these pseudo-labels as supervision information to gradually opti-
mize its predictive capability. The teacher network consists of the CLIP image encoder fθ and the
text encoder gθ. We obtain pseudo-labels yTpesudo and predicted labels yTpred from teacher-net and
student-net respectively. The loss LT is calculated as follows:

LT = −
M∑
i=1

yTpesudo log(y
T
pred) (4)

3.3 FEATURE PROTOTYPE-BASED SIMILARITY CALCULATION

Before the training, we input the source domain images into the image encoder to obtain their fea-
tures. The feature vectors of images belonging to the same class are averaged to obtain the initialized
feature prototypes {f1, f2, f3, . . . , fM},M = |YS |. During training, the source domain image with
label j is input into fφ to obtain the image feature ISj , which are then used to update the feature
prototypes. The update process is as follows:

fj = βfj + (1− β)ISj (5)

β is a hyperparameter. We use the obtained ISj and the output of the text encoder to compute the
maximum class prediction probability:

Pk = arg max
j∈{1,2,...,M}

p(y = j|ISj , Tj) (6)

We then compute the cosine similarity between ISj and the feature prototype fk corresponding to
the class with the highest prediction probability. The result is denoted as dk, calculated as follows:

dk = sim(ISj , fk)

sim(ISj , fk) =
ISj · fk

∥ISj ∥∥fk∥
(7)

3.4 UNCERTAINTY ESTIMATION

A target sample may fall into one of the following four cases: (1) high Pk and high dk (ideal
known class); (2) high Pk and low Pk (high confidence but semantic shift); (3) low Pk and high dk
(semantically close but low confidence); (4) low Pk and low dk (typical unknown class). For cases
(1) and (2), we argue that high prediction confidence Pk should dominate the decision, meaning
that the sample should be considered as belonging to a known class even if its dk is relatively low.
In case (3), high dk indicates semantic closeness to known classes, so the sample should not be
immediately classified as unknown solely due to its low Pk. Our goal is to design an uncertainty
estimation method that can effectively learn the decision boundary between cases (3) and (4). The
proposed formula (8) achieves this by setting the score ranking as (1) ≈ (2) > (3) > (4):

ePk−dk + dk < τ (8)

Here, τ is a learnable parameter. In summary, for cases (1) and (2), we use an exponential term
to amplify the effect of Pk. However, this amplification may cause dk to be neglected, leading to
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samples in case (3) being easily classified as unknown. To address this, we add −dk as a penalty
term to balance the impact of the exponential term. For cases (3) and (4), since the exponential term
is close to 1, we linearly add dk to increase its influence, so that samples with high dk are more
likely to be correctly classified as known classes.

Under mild assumptions, the statistic Se(P, d) = eP−d+d can be interpreted via a Neyman–Pearson
(Lehmann & Romano, 2005) likelihood ratio test, offering some theoretical insight. See Ap-
pendix A.1 for details. If the number of samples in a batch that satisfy (8) is greater than or equal to
num = batchsize/4, we update τ using binary cross-entropy loss. First, we compute the prediction
logits:

y′k = τ − (ePk−dk + dk) (9)

The true label is set to yunknown = 1, and the BCE loss is calculated as:

lk = BCELoss(yunknown, y
′
k) (10)

The losses lk for the batch are stored as follows:

L = {lk|ePk−dk + dk < τ} (11)

If the number of samples in the batch that meet the condition is |L|, then LU is computed as:

LU =

{
1
|L|

∑
lk∈L lk, if |L| ≥ num

0, otherwise
(12)

During testing, the test image is input into the image encoderfφ.Pk and dk with the corresponding
class are then computed. The uncertainty measure ePk−dk+dk is compared with τ . If ePk−dk+dk <
τ , the test image is predicted as unknown, otherwise, the label is assigned as k:

label =

{
unknown, if ePk−dk + dk < τ

k, otherwise
(13)

3.5 OPTIMIZATION OBJECTIVE FUNCTION

The overall optimization objective function in this work consists of LS , LT , and LU , expressed as:

Loverall = LS + LT + LU (14)

During the training phase, We utilize LS and LT to update the model parameters, LU is employed
to learn the dynamic threshold τ . In the testing phase, only the student network’s image encoder fφ,
text encoder gθ, and the updated feature prototypes {f1, f2, . . . , fM} are retained.

3.6 THEORETICAL ANALYSIS

Here, We explain why MUEUDA performs so well on UniDA based on Theorem 1, the derived
Corollary 1 and Corollary 2.

Theorem 1. Assume there exists a fixed feature representation function ZS for the source domain
and ZT for the target domain, such that ZS ,ZT ∈ Z . Let Θ be the hypothesis space and H ∈ Θ is
a hypothesis subspace. ϵS and ϵT denote the classification errors on the source and target domains,
respectively. We define:ϵS =

∑N
i=1 ϵSi

. M is the number of source domains. For any classifier
h ∈ H and an ideal classifier h′ ∈ H, we have:

ϵS(h)− ϵT (h, h
′) ≤ 1

2
dH∆H(ZS ,ZT ) (15)
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dH∆H denotes the H∆H− distance. See Appendix A.2 for the proof process

Corollary 1: For ϵT (h), based on Theorem 1, there exists a hypothesis space H with dimension d,
and m labeled samples drawn from ZS . Let η′ = ϵS(h

′) + ϵT (h
′), ϵ̂s(h) is the empirical estimate

for source domain, then with probability at least 1− δ, for every h ∈ H:

ϵT (h) ≤ ϵ̂S(h) + 4

√
2em

d
log

2em

d
+

4

δ
+

1

2
dH∆H(ZS , ZT ) + η′ (16)

Corollary 2: Let A(x) = 1(ePk(x)−dk(x) + dk(x) > τ) denote that the target sample x passes the
uncertainty filtering, with the probability mass σ = Prx∼ZT

[A(x) = 1]. Define the filtered target
distribution as Z̃T . Then we have

ϵT (h) ≤ ϵ̂S(h) + 4

√
2em

d
log

2em

d
+

4

δ
+ η′ +

1

2
dH∆H(ZS , Z̃T ) + (1− σ) (17)

See Appendix A.2 for the proof process of Corollary 1 and Corollary 2. We observe that η′ represents
the classification error of the ideal classifier on the target and source domains. The main influencing
factors on ϵT (h) are the first term ϵ̂S(h), which is the empirical training error, the H∆H-distance
and (1−σ). Specifically, the source domain supervision (LS) is used to minimize ϵ̂S(h), multimodal
feature alignment techniques are employed to align the source and target domain subsets, thereby
reducing dH∆H . In addition, with σ = Prx∼ZT

[A(x) = 1|(ePk(x)−dk(x) + dk(x) > τ)], this paper
leverages effective uncertainty estimation methods to increase σ, enabling the model to accept more
correct known-class samples, which further tightens the upper bound.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOLS

Datasets Our method is validated on 3 popular domain adaptation datasets. Office-31 (Saenko et al.,
2010) contains 31 classes with 4,110 images across 3 domains: Amazon (A), Dslr (D), and Webcam
(W). Office-Home (Venkateswara et al., 2017) comprises 65 classes and 15,588 images across 4
domains: Art (A), Clipart (C), Product (P), and Real-World (R). DomainNet (Peng et al., 2019)
is the largest domain adaptation dataset, 345 classes across 6 domains with approximately 600,000
images total. Following Fu et al. (2020), we select 3 domains (Painting (P), Real (R), and Sketch (S))
from DomainNet for our experiments. We conduct experiments on two UniDA scenarios: UniSDA
and UniMDA. Both the source and target domains have private class. For UniSDA, following Chang
et al. (2022), we divide the label sets of Office-Home and DomainNet to ensure the fairness of
experiments. For UniMDA, we conduct experiments on the Office-31 and Office-Home datasets.
We follow the method of Yin et al. (2022); Yang et al. (2024b) to divide the label sets. The specific
dataset division methods are described in Appendix A.3.

Evaluation Protocols We employ the H-score to evaluate the experimental results, which com-
prehensively assesses the model’s classification performance for both common classes and private
classes. The H-score is calculated as:

H-score =
2×AccYC

×AccYT\S

AccYC
+AccYT\S

(18)

where AccYC
represents the classification accuracy for common classes YC , AccYT\S denotes the

classification accuracy for private classes YT\S .

4.2 EXPERIMENTS DETAILS

Our framework initializes the text and image encoders using a pre-trained CLIP model with ViT-
B/16 architecture. Fine-tuning based LoRA method with hyperparameters r = 8 and α = 4, which
are determined based on preliminary experiments. The value of β is set to 0.999. We employ

7
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Table 1: Performance Comparison of H-score on Office-31 and Office-Home Datasets for UniMDA

Protocols Method
Office-31 Office-Home

2A 2D 2W Avg 2A 2C 2P 2R Avg

Source-Combine

CLIP (Radford et al., 2021) 51.2 46.9 57.0 51.7 46.2 42.3 47.7 44.0 45.1
UniOT (Chang et al., 2022) 45.6 38.7 36.2 40.2 34.6 42.2 41.6 37.5 39.0

NCAL (Su et al., 2023) 52.0 48.5 57.1 52.5 45.4 40.7 28.8 39.5 38.6
CMU (Fu et al., 2020) 72.4 74.7 71.8 73.0 77.7 61.0 64.8 71.9 68.9

Multi-source

MOSDANET (Rakshit et al., 2020) 69.2 58.8 65.4 64.5 67.1 52.1 53.7 61.5 58.6
TFFN (Li et al., 2023) 68.6 71.6 73.4 71.2 68.9 57.4 58.7 64.1 62.3

HyMOS (Bucci et al., 2022) 62.3 74.9 75.3 70.8 75.7 65.8 66.3 70.8 69.7
UMAN (Yin et al., 2022) 80.2 72.8 74.2 75.7 84.6 68.8 71.0 74.4 74.7

APNE-CLIP (Yang et al., 2024b) 84.2 76.5 76.1 78.9 87.2 69.5 83.2 86.4 81.6
MUEUDA 82.8 83.2 83.0 83.0 86.3 78.7 88.9 90.4 86.1

Table 2: Performance Comparison of H-score on Office-Home for UniSDA
A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

DANN (Ganin et al., 2016) 42.4 48.0 48.9 45.5 46.5 48.4 45.8 42.6 48.7 47.6 42.7 47.4 46.2
OSBP (Saito et al., 2018) 39.6 45.1 46.2 45.7 45.2 46.8 45.3 40.5 45.8 45.1 41.6 46.9 44.5
UAN (You et al., 2019) 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU (Fu et al., 2020) 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6

DANCE (Saito et al., 2020) 26.7 11.3 18.0 33.2 12.5 14.3 41.6 39.9 33.3 16.3 27.1 25.9 25.0
DCC (Li et al., 2021) 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 75.0 81.0 75.1 80.4 70.1

TNT (Chen et al., 2022) 61.9 74.6 80.2 73.5 71.4 79.6 74.2 69.5 82.7 77.3 70.1 81.2 74.7
UniOT (Chang et al., 2022) 67.3 80.5 86.0 73.5 77.3 84.3 75.5 63.3 86.0 77.8 65.4 81.9 76.6

OVANet (Saito & Saenko, 2021) 62.8 75.5 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.7
GLC (Qu et al., 2023) 64.3 78.2 89.8 63.1 81.7 89.1 77.6 54.2 88.9 80.7 54.2 85.9 75.7

SAN (Zang et al., 2023) 68.2 80.6 86.7 73.4 73.0 79.8 76.5 64.9 83.3 80.1 67.1 80.1 76.1
MLNet (Lu et al., 2024) 68.2 83.8 85.0 73.6 78.2 82.2 75.2 64.7 85.1 78.8 69.9 83.9 77.4

UniAM (Zhu et al., 2023) 72.0 87.1 90.7 80.3 82.4 79.8 85.0 68.4 89.0 85.4 72.1 86.1 81.7
MUEUDA 79.0 89.2 89.7 86.2 88.5 89.8 86.8 79.0 90.5 86.9 79.3 89.9 86.2

stochastic gradient descent (SGD) optimization with an initial learning rate of 2 × 10−3, incorpo-
rating a warmup phase (1 epoch, learning rate 2× 10−5) followed by cosine decay scheduling. For
prompt tuning, we implement CoCoOp (Zhou et al., 2022) with Nctx = 4 learnable context tokens
initialized with the template a photo of a. The batch sizes is 8. The initial value of τ is set to 2.1. We
conducted our experiments using the PyTorch framework, and all experiments were run on a single
GeForce RTX 4090 GPU with 24GB memory.

4.3 EXPERIMENTS RESULTS

Comparison with state-of-the-arts: To evaluate the performance of our model under the UniSDA
and UniMDA settings, we compare it with current SOTA methods. Under the UniMDA setting on
the Office-Home dataset, 2A denotes the experiment where Art is used as the target domain. Under
the UniSDA setting, A2C denotes the experiment where Art is the source domain and Clipart is the
target domain. The best results are shown in bold, and the second-best results are underlined. The
results for UniMDA is reported in Table 1. MUEUDA achieves SOTA results on Office-31 and
Office-Home. Specifically, MUEUDA outperforms the previous best method, APNE-CLIP (Yang
et al., 2024b), which also a CLIP-based method, by 4.1% on Office-31 and 4.5% on Office-Home.
For UniSDA, as shown in Table 2 and Table 3, our model achieves the best results. Specifically,
it surpasses the second-best UniAM (Zhu et al., 2023) by 4.5% and 7.8% on the OfficeHome and
DomainNet datasets, respectively. Taking the OfficeHome dataset as an example, our model does
not exhibit as large a performance gap between the UniMDA and UniSDA settings as UniOT (Chang
et al., 2022) and CMU (Fu et al., 2020), achieving balanced and superior performance under both
settings. Overall, these results confirm that MUEUDA is highly effective for both UniMDA and
UniSDA, delivering superior performance across various benchmarks and settings.

Analysis of CLIP: We further investigate whether the superior performance of MUEUDA under
UniSDA and UniMDA is solely attributed to CLIP. Based on these two settings, we replace the
backbone networks of some methods with the CLIP model for validation on OfficeHome. The
experimental results are presented in Table 4. We observe that employing CLIP generally leads to

8
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Table 3: Performance Comparison of H-score on DomainNet
for UniSDA

P2R R2P P2S S2P R2S S2R Avg

DANN (Ganin et al., 2016) 31.2 29.3 27.8 27.8 27.8 30.8 29.1
OSBP (Saito et al., 2018) 33.6 33.0 30.6 30.5 30.6 33.7 32.0
UAN (You et al., 2019) 41.9 43.6 39.1 39.0 38.7 43.7 41.0
CMU (Fu et al., 2020) 50.8 52.2 45.1 44.8 45.6 51.0 48.3
DCC (Li et al., 2021) 56.9 50.3 43.7 44.9 43.3 56.2 49.2

OVANet (Saito & Saenko, 2021) 56.0 51.7 47.1 47.4 44.9 57.2 50.7
SAN (Zang et al., 2023) 57.8 52.9 47.9 48.4 47.2 57.9 52.0

UniOT (Chang et al., 2022) 59.3 47.8 51.8 46.8 48.3 58.3 52.1
GLC (Qu et al., 2023) 63.3 50.5 54.9 50.9 49.6 61.3 55.1

UniAM (Zhu et al., 2023) 73.9 60.9 52.3 60.0 51.4 70.7 61.5
MUEUDA 75.9 66.5 65.6 66.3 65.4 76.3 69.3

Table 4: Analysis of CLIP on
Office-Home for UniSDA and
UniMDA settings (H-score)

UniSDA UniMDA

Method Avg Method Avg

CLIP 42.1 CLIP 45.1
UniOT 76.6 UMAN 74.7

UniOT+CLIP 78.3 UMAN+CLIP 75.6
MLNet 77.4 HyMOS 69.7

MLNet+CLIP 79.6 HyMOS+CLIP 71.2
MUEUDA 86.2 MUEUDA 86.1

Table 5: Ablation study of different components on the Office-Home dataset (H-score)

Setting UniSDA UniMDA

A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg 2A 2C 2P 2R Avg

w/o LoRA 78.7 88.9 89.4 86.0 88.2 89.6 86.5 78.9 90.3 86.7 79.3 89.9 86.0 86.3 78.5 88.4 89.8 85.8
w/o CoCoOp 73.0 83.5 85.0 82.3 83.3 84.9 82.7 73.1 85.4 83.1 72.7 84.0 81.1 82.4 72.1 83.3 84.9 80.7
w/o LU 21.9 65.8 46.1 43.5 69.4 54.6 58.4 29.2 38.1 33.3 10.3 35.1 42.1 56.0 17.0 70.5 46.0 47.4
MUEUDA 79.0 89.2 89.7 86.2 88.5 89.8 86.8 79.0 90.5 86.9 79.3 89.9 86.2 86.3 78.7 88.9 90.4 86.1

Table 6: Ablation experiments on the OfficeHome dataset (H-score)
UniMDA UniSDA

ePk−dk + dk 86.1 86.2
ePk−dk 78.7(-7.4) 77.8(-8.4)

ePk+dk 82.2(-3.9) 81.5(-4.7)
Pk + dk 81.3(-4.8) 81.0(-5.2)

Only Pk(τ = 0.8) 79.8(-6.3) 80.1(-6.1)
Only dk(τ = 0.8) 57.0(-29.1) 60.8(-25.4)

performance improvement in the models, but the enhancement is not substantial. This implies that
the outstanding performance of MUEUDA is not merely brought by CLIP.

Components ablation experiment: To evaluate the impact of LoRA, CoCoOp, and LU components
on the model, we conducted module ablation experiments on Office-Home under both UniSDA and
UniMDA settings. The experimental results are presented in Table 5. The results demonstrate that
each module contributes positively to model performance, with the best results achieved when all
components are included.

Uncertainty estimation ablation experiment: We compare against alternative uncertainty metrics,
including a simple linear form Pk + dk, two exponential variants ePk−dk and ePk+dk , as well as
thresholding-based baselines that rely solely on Pk or dk. The results is shown in Table 6. As
observed, our method achieves the best performance.

5 CONCLUSION

In this paper, we proposed MUEUDA, a unified model for UniDA that effectively handles both
single-source and multi-source scenarios without compromising performance. By introducing
CLIP-based multi-modal information, our method leverages fine-tuning and prompt learning to
achieve class-level feature alignment between source and target domains. Furthermore, we designed
a new uncertainty estimation method to distinguish between the common and private classes in the
target domain. This strategy is built upon a combination of model-predicted probabilities and the
similarity between features and class prototypes. We conducted extensive experiments and achieve
SOTA performance under both the multi-source setting and the single-source setting. This demon-
strates that our proposed MUEUDA is a unified UniDA framework with remarkable performance.
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A APPENDIX

A.1 A NEYMAN–PEARSON VIEW OF e(P−d) + d STATISTIC

The following conclusions are derived under idealized distributional assumptions and are intended to
help readers understand the related concepts. Let (P, d) ∈ [0, 1]2 be a sample drawn either from the
null distribution P0 or the alternative P1. Assume P0 is uniform on [0, 1]2 with density f0(P, d) = 1,
while under P1 the density is

f1(P, d) ∝ exp
(
−γ Se(P, d)

)
, Se(P, d) := eP−d + d, γ > 0.

For testing H0 : (P, d) ∼ P0 vs. H1 : (P, d) ∼ P1, the likelihood ratio satisfies

Λ(P, d) =
f1(P, d)

f0(P, d)
∝ exp

(
−γSe(P, d)

)
,

which is strictly decreasing in Se. Hence, for any fixed type-I error α, the most powerful level-α
test rejects H0 (i.e., declares “unknown”) when

Se(P, d) < tα,

for some threshold tα chosen such that
P0

(
Se(P, d) < tα

)
= α.

By the Neyman–Pearson lemma (Lehmann & Romano, 2005), for simple hypotheses H0 vs. H1 the
most powerful test at level α is the likelihood ratio test

ϕ∗(P, d) = 1{Λ(P, d) > ηα},
where ηα is chosen so that P0(Λ > ηα) = α. In the present construction,

Λ(P, d) ∝ exp
(
−γSe(P, d)

)
,

which is strictly decreasing in Se. Therefore
Λ(P, d) > ηα ⇐⇒ Se(P, d) < tα,

with tα = − 1
γ log ηα. The event {Λ > ηα} has P0-probability α iff {eP−d + d < tα} has P0-

probability α. Consequently, the test ϕ∗(P, d) = 1{eP−d + d < tα} is the most powerful level-α
test.

Under the above simplified assumptions, the statistic Se(P, d) = eP−d+d is a monotone function of
the likelihood ratio between P1 and P0. Hence, thresholding Se is equivalent to the Neyman–Pearson
likelihood ratio test, providing an intuitive statistical interpretation for using Se as a decision rule.
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A.2 PROOF OF THEOREM 1

Theorem 1. Assume there exists a fixed feature representation function ZS for the source domain
and ZT for the target domain, such that ZS ,ZT ∈ Z . Let Θ be the hypothesis space and H ∈ Θ
a hypothesis subspace. ϵS and ϵT denote the classification errors on the source and target domains,
respectively. For multiple source domains, we define:ϵS = 1

N

∑N
i=1 ϵSi

. For any classifier h ∈ H
and an ideal classifier h′ ∈ H, we have:

ϵS(h, h
′)− ϵT (h, h

′) ≤ 1

2
dH∆H(ZS ,ZT ) (19)

dH∆H denotes the H∆H− distance.

Proof: From the definition of H∆H− distance, we have:

dH∆H(ZS ,ZT ) = 2 sup
h,h′∈H

∣∣∣∣ Pr
x∼ZS

[h(x) ̸= h′(x)]− Pr
x∼ZT

[h(x) ̸= h′(x)]

∣∣∣∣
= 2 sup

h,h′∈H
|ϵS(h, h′)− ϵT (h, h

′)| ≥ 2 |ϵS(h, h′)− ϵT (h, h
′)|

(20)

Corollary 1: For ϵT (h), based on Theorem 1, there exists a hypothesis space H with dimension
d, and m labeled samples drawn from ZS . let η′ = ϵS(h

′) + ϵT (h
′), then with probability at least

1− δ, for every h ∈ H:

ϵT (h) ≤ ϵ̂S(h) + 4

√
2em

d
log

2em

d
+

4

δ
+

1

2
dH∆H(ZS , ZT ) + η′ (21)

We observe that η′ represents the classification error of the ideal classifier on the target and source
domains. The main influencing factors on ϵT (h) are the first term ϵ̂S(h), which is the empirical
training error, and the fourth term, the H∆H-distance. Therefore, a good representation should
reduce both empirical training error and domain discrepancy.

Proof: We have:

ϵT (h) ≤ ϵT (h
′) + ϵT (h, h

′)

≤ ϵT (h
′) + ϵS(h, h

′) + |ϵT (h, h′)− ϵS(h, h
′)|

≤ ϵT (h
′) + ϵS(h, h

′) +
1

2
dH∆H(Zs, ZT )

≤ ϵT (h
′) + ϵS(h) + ϵS(h

′) +
1

2
dH∆H(Zs, ZT )

≤ ϵs(h) +
1

2
dH∆H(Zs, ZT ) + ϵT (h

′) + ϵs(h
′)

(22)

The theorem now follows by a standard application of Vapnik-Chervonenkis (Vapnik, 1999) theory
to bound the true error ϵs(h) by its empirical estimate ϵ̂s(h). If the source domain provides an i.i.d.
sample of size m, then with probability at least 1− δ,

ϵS(h) ≤ ϵ̂S(h) + 4

√
2em

d
log

2em

d
+

4

δ
(23)

Plugging this into the previous bound gives,

ϵT (h) ≤ ϵ̂S(h) + 4

√
2em

d
log

2em

d
+

4

δ
+

1

2
dH∆H(ZS , ZT ) + η′ (24)

Corollary 2: Let A(x) = 1(ePk(x)−dk(x) + dk(x) > τ) denote that the target sample x passes the
uncertainty filtering, with the probability mass σ = Prx∼ZT

[A(x) = 1]. Define the filtered target
distribution as Z̃T . Then we have
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ϵT (h) ≤ ϵ̂S(h) + 4

√
2em

d
log

2em

d
+

4

δ
+ η′ +

1

2
dH∆H(ZS , Z̃T ) + (1− σ) (25)

Proof: For any h, h′ ∈ H , denote the disagreement set as Sh,h′ = {x : h(x) ̸= h′(x)}. According
to the definition of H∆H , we need to bound |Prx∼ZS

[Sh,h′ ]− Prx∼ZT
[Sh,h′ ]| . Since Z̃T is the

conditional distribution on the event A(x) = 1(ePk(x)−dk(x) + dk(x) > τ), we can write the
decomposition of ZT as

Pr
ZT

[Sh,h′ ] = Pr
ZT

[Sh,h′ ∧A] + Pr
ZT

[Sh,h′ ∧ ¬A] = σ Pr
Z̃T

[Sh,h′ ] + (1− σ) Pr
ZT |¬A

[Sh,h′ ] (26)

Hence
Pr
Z̃T

[Sh,h′ ]− Pr
ZT

[Sh,h′ ] = (1− σ)
(
Pr
Z̃T

[Sh,h′ ]− Pr
ZT |¬A

[Sh,h′ ]
)

(27)

Taking absolute values, ∣∣∣∣Pr
Z̃T

[Sh,h′ ]− Pr
ZT

[Sh,h′ ]

∣∣∣∣ ≤ (1− σ) · 1 = 1− σ (28)

since the maximum possible difference in probabilities is at most 1. By the triangle inequality,∣∣∣∣PrZS

[Sh,h′ ]− Pr
ZT

[Sh,h′ ]

∣∣∣∣ ≤ ∣∣∣∣PrZS

[Sh,h′ ]− Pr
Z̃T

[Sh,h′ ]

∣∣∣∣+ ∣∣∣∣Pr
Z̃T

[Sh,h′ ]− Pr
ZT

[Sh,h′ ]

∣∣∣∣ (29)

Then we have,
dH∆H(ZS , ZT ) ≤ dH∆H(ZS , Z̃T ) + 2(1− σ) (30)

Combining Equation (23), we have:

ϵT (h) ≤ ϵ̂S(h) + 4

√
2em

d
log

2em

d
+

4

δ
+ η′ +

1

2
dH∆H(ZS , Z̃T ) + (1− σ) (31)

A.3 DATASET SPLITS

A.3.1 OFFICE-31

For UniMDA, we adopt the label split approach from Yang et al. (2024b). We select the 10 classes
shared between Office-31 and Caltech-256 as common classes, class 1-7 and 4-10 are the common
classes for the 2 source domains. The remaining 21 classes are sorted alphabetically. Specifically,
the last 10 classes are used as target domain private classes, while the remaining 5 and 6 classes are
assigned as source domain private classes for the 2 source domains, respectively.

A.3.2 OFFICE-HOME

For UniSDA, we follow the label split approach of You et al. (2019). We use the first 10 classes as
common classes, the next 5 classes as source domain private classes, and the remaining classes as
target private domain classes.

For UniMDA, we adopt the label division method from Yang et al. (2024b); Yin et al. (2022). The
last 50 classes in alphabetical order are treated as target domain private classes. We use the first 10
classes as the common classes, which are assigned alphabetically to the 3 source domains as follows:
classes 1–4, 4–7, and 7–10 for each source domain, resulting in 4 common classes per domain. The
next 5 classes are used as source domain private classes, which are also assigned alphabetically:
classes 1–2, 2–3, and 4–5 to the 3 source domains, with each domain having 2 private classes.
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A.3.3 DOMAINNET

For UniSDA, we follow the label split method of Fu et al. (2020). We use the first 150 classes as
common classes, the next 50 classes as source domain private classes, and the remaining classes as
target domain private classes. Due to the large dataset size, we select three domains (P, R, and S) for
our experiments.
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