

000 001 002 003 004 005 006 007 008 009 010 011 012 A UNIFIED APPROACH TO UNIVERSAL DOMAIN ADAPTATION WITH SINGLE AND MULTIPLE SOURCE DOMAINS

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
Anonymous authors
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Universal domain adaptation (UniDA) imposes no constraints on the label sets of the source and target domains, aiming to transfer knowledge from source to target domain. Existing works typically target either single-source or multi-source UniDA, rarely both. Naively merging multi-source data into a single source domain may lead to negative transfer and performance degradation. Moreover, since multi-source models are often equipped with modules tailored for multi-source data, they are usually not directly applicable to single-source tasks. These challenges hinder the development of a unified framework. In this paper, we propose a unified model based on multi-modal and uncertainty estimation, termed MUEUDA, to address this issue. First, we incorporate multi-modal information, enabling class-level feature alignment between source and target domains using fine-tuning and prompt learning techniques. Second, we extract class-level image feature prototype from the source domain and progressively update them during training. Finally, we introduce a novel uncertainty estimation method that determines whether an image in the target domain belongs to a known or unknown class through a learnable threshold. Extensive experiments are conducted on both single-source and multi-source benchmarks, and our model achieved state-of-the-art performance. The method demonstrates strong performance across both scenarios, balancing effectiveness and generality. The code is available at <https://github.com/jstree365/MUEUDA>.

1 INTRODUCE

Domain adaptation (DA) aims to generalize knowledge learned from the source domain to the target domain. Many scholars have researched DA techniques, with applications including image classification(Long et al., 2015), object detection(Hsu et al., 2020; Inoue et al., 2018), and image segmentation(Zhang et al., 2017; Li et al., 2019). In real-world, the labels in the target domain are often unavailable, which is referred to as unsupervised domain adaptation (UDA) (Ganin & Lempitsky, 2015; Long et al., 2016). Although most studies assume that the source and target domains share the same label set, in practice, the label set in the target domain are inaccessible. This implies that, in addition to shared classes, both source and target domains may also contain private classes. This phenomenon has led scholars to investigate universal domain adaptation (UniDA).

Fortunately, some scholars have conducted in-depth research on UniDA. You et al. (2019) have provided a clear definition of UniDA. DANCE (Saito et al., 2020) and DCC (Li et al., 2021) use self-supervised learning based on clustering to distinguish common and private classes. These works are based on single source setting. In this paper, we refer to universal single-source domain adaptation as UniSDA. Some researchers have also studied universal multi-source domain adaptation (UniMDA), such as HyMOS (Bucci et al., 2022) and UMAN (Yin et al., 2022), which align source domains with each other and source and target domains. However, it is important to note that these tasks assume the number of source domains is predetermined.

Different DA are illustrated in Figure 1. Typically, DA can be categorized based on the number of source domains into single-source and multi-source DA. Additionally, DA can be classified based on whether they are UniDA methods into non-universal and universal types. Among these, non-

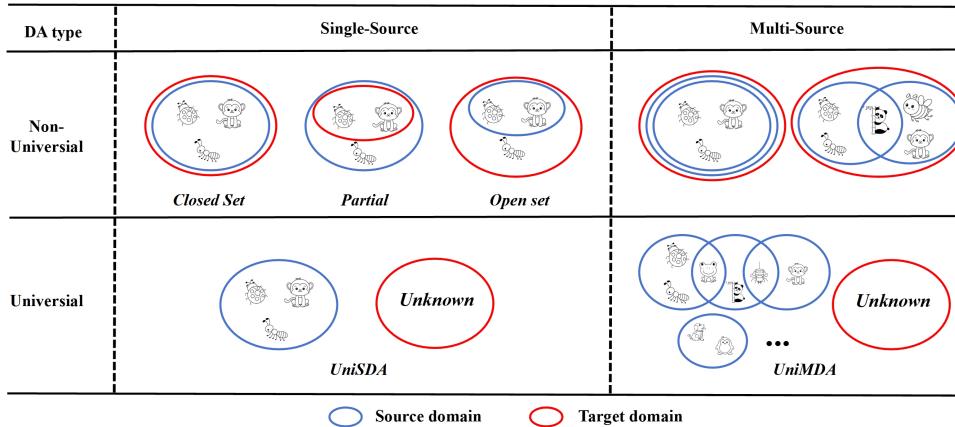


Figure 1: Different DA categories

universal DA also includes closed-set (Long et al., 2015), partial (Zhang et al., 2018; Cao et al., 2018), and open-set (Saito et al., 2018; Luo et al., 2020) scenarios. In this paper, our model addresses both UniSDA and UniMDA to meet practical needs.

When multiple source domains exist, simply merging them into a single source domain ignores inter-source domain discrepancies, leading to potential negative transfer when generalizing to the target domain(Yin et al., 2022). Moreover, UniMDA models are not directly applicable to UniSDA due to their specialized multi-source training designs. These issues motivate us to develop a unified model capable of handling both UniSDA and UniMDA scenarios effectively.

Based on the reasons mentioned above, this paper designs the model based on the following characteristics and requirements: (1) The number of source domains is uncertain; (2) Target domain labels are unavailable; (3) In addition to the shared common labels, both the source domains and the target domain may have private labels; (4) It is necessary to identify the private classes in the target domain. Additionally, current methods are primarily based on image features. Since the source domain data are labeled, these labels are typically used in these methods only to provide supervision information, while the textual information associated with these labels is often ignored. Our model is inspired by this and makes full use of the multi-modal information provided by both text and image, helping align the source and target domains in the class-level feature space.

The contributions of this paper are as follows: (1) We propose the MUEUDA model to address the issue of an uncertain number of source domains in UniDA. To the best of our knowledge, this is the first unified framework designed to handle both single-source and multi-source UniDA, with SOTA results. (2) We introduce multi-modal information into MUEUDA, utilizing the available label information from the source domain. This guides the alignment of the source and target domains in the feature space. (3) We innovatively design an uncertainty estimation method based on class prediction and prototype match similarity to measure the class uncertainty of images, effectively identifying private class samples. This method provides new ideas for open class classification.

2 RELATED WORK

2.1 UNIVERSAL SINGLE SOURCE DOMAIN ADAPTATION

UniDA is a more generalized form of UDA, which imposes looser restrictions on the label sets of the source and target domain. You et al. (2019) provided a clear definition of UniDA. They employ a domain adversarial training strategy to achieve domain alignment and utilizes uncertainty scores to determine whether an image belongs to an unknown class. Similarly, Fu et al. (2020) leveraged the complementary effects of entropy, consistency, and confidence to more clearly distinguish varying degrees of uncertainty. Chen et al. (2022) designed a cross-domain multi-sample contrastive loss based on mutual nearest neighbors to achieve common class matching and private class separation. However, Saito et al. (2020) argued that such methods ignore the inherent structure of the target

108 domain. Therefore, DANCE adopted a self-supervised learning approach based on neighborhood
 109 clustering to learn the features of known and unknown classes. Similarly, Li et al. (2021) proposed
 110 a domain consensus clustering method to mine domain-shared knowledge at both the semantic and
 111 sample levels. Zhu et al. (2023) argued that models relying on sample features for judgment overly
 112 emphasize global information while neglecting critical local objects in images. They implicitly
 113 explored object information in images by sparsely reconstructing attention to achieve better common
 114 feature alignment and target class separation. LEAD (Qu et al., 2024) and GLC (Qu et al., 2023)
 115 achieved source-free UniDA.

116 2.2 UNIVERSAL MULTI-SOURCE DOMAIN ADAPTATION

117 UniMDA task must account for domain shifts both between source and target domains and among
 118 multiple source domains. HyMOS (Bucci et al., 2022) performs class-balanced alignment between
 119 different source domains, and then employs a progressive self-training process to further enhance
 120 the alignment between source and target domain clusters. UMAN (Yin et al., 2022) estimates the
 121 reliability of each known class belonging to the shared label set by introducing a pseudo boundary
 122 vector and its weighted form. These methods are based on visual feature mining and alignment,
 123 and they often ignore the textual information provided by source domain labels. SAP-CLIP (Yang
 124 et al., 2024a) introduces textual information into UniMDA. It aligns source and target domains at
 125 the instance level through image-text alignment. An energy-based uncertainty modeling strategy is
 126 proposed to enlarge the margin between known and unknown samples. However, this method relies
 127 on a fixed threshold. APNE-CLIP (Yang et al., 2024b) further improves upon this by using a thresh-
 128 old determined by the mean and standard deviation of energy scores to classify whether a sample
 129 belongs to an unknown class. To the best of our knowledge, these models are not simultaneously
 130 well-suited for both UniSDA and UniMDA. Our method introduces multi-modal information and
 131 a novel uncertainty estimation strategy, enabling the model to perform effectively on both single-
 132 source and multi-source UniDA, achieving outstanding performance.

133 3 METHODOLOGY

134 3.1 PRELIMINARY

135 We are given access to N labeled source domains and 1 unlabeled target domain. Let the input space
 136 be $\mathcal{X} \subseteq \mathbb{R}^d$ and the label space be $\mathcal{Y} = \{1, 2, \dots, K\}$. Each source domain is denoted as $\mathcal{D}_s^{(i)} =$
 137 $\{(x_j^{(i)}, y_j^{(i)})\}_{j=1}^{n_i}$, where $x_j^{(i)} \in \mathcal{X}$ is the j -th sample from the i -th source domain, $y_j^{(i)} \in \mathcal{Y}_i \subseteq \mathcal{Y}$
 138 is the corresponding label, n_i and \mathcal{Y}_i are the number of labeled samples and label set in i -th source
 139 domain. The unlabeled target domain is represented as $\mathcal{D}_t = \{x_k^t\}_{k=1}^{n_t}$, where $x_k^t \in \mathcal{X}$ and n_t is
 140 the number of target domain samples. The corresponding label set of the target domain is denoted
 141 by $\mathcal{Y}_T \subseteq \mathcal{Y}$. We define the following sets to characterize label distribution across domains. $\mathcal{Y}_{CS} =$
 142 $\bigcap_{i=1}^M \mathcal{Y}_i$, which \mathcal{Y}_{CS} is the **common label set shared across all source domains**. $\mathcal{Y}_S = \bigcup_{i=1}^N \mathcal{Y}_i$
 143 is the **total source label set**, $\mathcal{Y}_{T \setminus S} = \mathcal{Y}_T \setminus \mathcal{Y}_S$ is the **target-private label set**, $\mathcal{Y}_{S \setminus T} = \mathcal{Y}_S \setminus \mathcal{Y}_T$ is
 144 the **source-private label set**. $\mathcal{Y}_C = \mathcal{Y}_S \cap \mathcal{Y}_T$ is the **shared common label set** between source and
 145 target domains. We assume each source domain is drawn from a joint distribution $(x, y) \sim p_i(x, y)$,
 146 and the target domain from $(x, y) \sim q(x, y)$, with different marginals $p_i(x)$ and $q(x)$ reflecting
 147 domain shifts. The objective of UniDA is to learn a classifier $h : \mathcal{X} \rightarrow \mathcal{Y}$ using labeled source
 148 data $\{\mathcal{D}_s^{(i)}\}_{i=1}^N$ and unlabeled target data \mathcal{D}_t , such that h generalizes well to the target domain,
 149 especially on the common label set \mathcal{Y}_C and avoids misclassifying target-private samples from $\mathcal{Y}_{T \setminus S}$
 150 as known classes. This paper proposes a model based on multi-modal information and uncertainty
 151 estimation (MUEUDA) to achieve alignment between the source domains and target domain, as
 152 well as classification of common and private classes in the target domain. The model is applicable
 153 to both UniSDA and UniMDA scenarios, and it delivers strong performance without the need for
 154 any modifications. The architecture of the proposed network is illustrated in Figure 2.

155 3.2 MULTIMODAL INFORMATION BASED ON TEXT-IMAGE FEATURES

156 CLIP (Radford et al., 2021), as a large-scale vision-language pre-trained model, possesses strong
 157 cross-domain generalization capabilities. However, UniDA tasks require the model to recognize

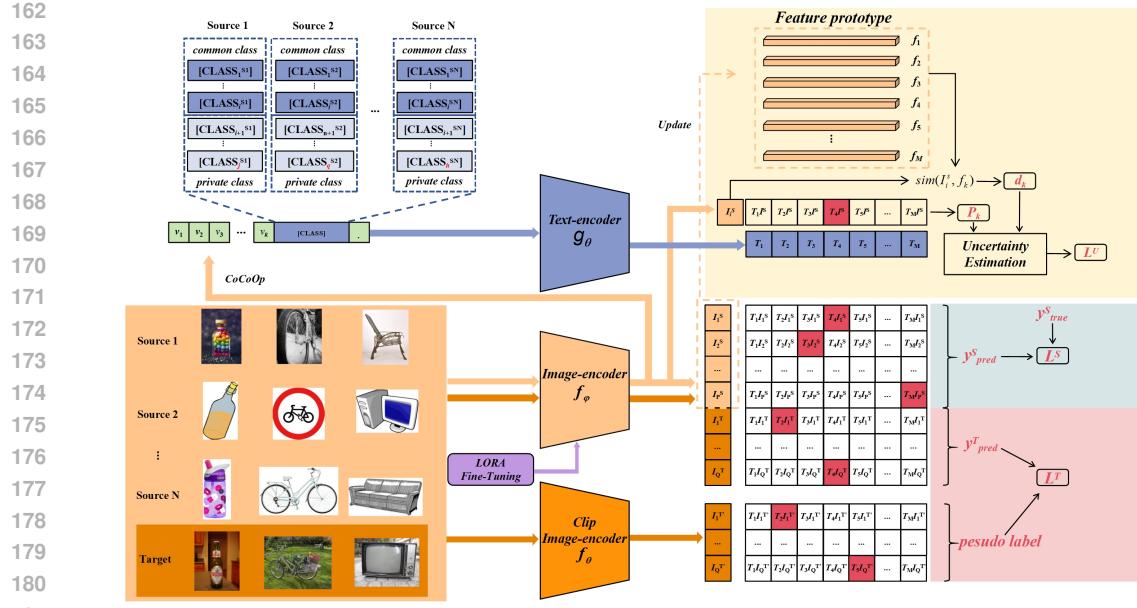


Figure 2: Overview of the proposed MUEUDA approach. Multi-modal information based on image-text is used in the model. Feature prototypes are continuously updated. Pseudo-labeling is used to provide supervision for the target domain samples. We propose a novel uncertainty estimation based on both the feature-prototype similarity and the class prediction confidence to determine whether an image belongs to the common or private classes.

unknown classes, which cannot be accomplished by directly using CLIP alone. There are three core challenges in directly applying CLIP to UniDA: (1) The image encoder, without fine-tuning, may not effectively adapt to the target domain. (2) The static text prompts cannot dynamically adjust to suit the data distribution. (3) CLIP itself lacks the capability to classify unknown classes. To address these challenges, we employ LoRA-based (Hu et al., 2022) fine-tuning to adapt the image encoder, enabling the model to generalize better in target domain. We use instance-based prompt learning to dynamically adjust the text input. Additionally, we construct feature prototypes of \mathcal{Y}_S to assist the model in identifying $\mathcal{Y}_{T \setminus S}$. In the training process, assume there is a set of learnable vectors $[v_1, v_2, \dots, v_k]$. The source domain image $x_j^{(i)}$ is input into the image encoder to obtain I_i^S . Following the approach of CoCoOp (Zhou et al., 2022), we input I_i^S into a Meta-Net to obtain π for the image, where $\pi = h_\theta(I_i^S)$. Then the learnable vector $v_k(x)$ is obtained by $v_k(x) = v_k + \pi$. The prompt input corresponding to this image is $t_m(x) = \{v_1(x), v_2(x), \dots, v_k(x), c_m\}$, where $m \in \{1, 2, \dots, |\mathcal{Y}_S|\}$ and c_m is the vector corresponding to the label. The text encoder processes the input to obtain T_m . T_m and I_i^S are then used to compute the predicted source domain label y_{pred}^S using a softmax over the cosine similarity as follows:

$$p(y = m|x) = \frac{\exp(\cos(I_i^S, T_m)/\tau)}{\sum_{|\mathcal{Y}_S|} \exp(\cos(I_i^S, T_m)/\tau)} \quad (1)$$

The loss L^S is calculated using the predicted labels and the true labels of the image:

$$L^S = - \sum_{i=1}^M y_{true}^S \log(y_{pred}^S) \quad (2)$$

To enhance the CLIP image encoder’s generalization performance to the target domain, we employ the low-rank adaptation (LoRA) (Hu et al., 2022) to replace its linear layers. Given an input $x \in \mathbb{R}^d$, the output $h \in \mathbb{R}^\alpha$ after adding LoRA is expressed using \mathbf{W}_0 and ΔW , \mathbf{W}_0 represents the pre-

216 trained weight and ΔW is the low-rank approximation of two smaller matrices $\mathbf{B} \in \mathbb{R}^{d \times r}$ and
 217 $\mathbf{A} \in \mathbb{R}^{r \times d}$.

$$219 \quad 220 \quad \mathbf{h} = (\mathbf{W}_0 + \frac{\alpha}{r} \Delta W) \mathbf{x} = \mathbf{W}_0 \mathbf{x} + \mathbf{B} \mathbf{A} \mathbf{x} \quad (3)$$

221 Here, α is a hyperparameter, and r is the rank of the matrix. The proposed MUEUDA method in-
 222 introduces a teacher network to generate high-quality pseudo-labels for target domain images. During
 223 training, the student network uses these pseudo-labels as supervision information to gradually opti-
 224 mize its predictive capability. The teacher network consists of the CLIP image encoder f_θ and the
 225 text encoder g_θ . We obtain pseudo-labels y_{pseudo}^T and predicted labels y_{pred}^T from teacher-net and
 226 student-net respectively. The loss L^T is calculated as follows:
 227

$$228 \quad 229 \quad L^T = - \sum_{i=1}^M y_{pseudo}^T \log(y_{pred}^T) \quad (4)$$

232 3.3 FEATURE PROTOTYPE-BASED SIMILARITY CALCULATION

234 Before the training, we input the source domain images into the image encoder to obtain their fea-
 235 tures. The feature vectors of images belonging to the same class are averaged to obtain the initialized
 236 feature prototypes $\{f_1, f_2, f_3, \dots, f_M\}$, $M = |\mathcal{Y}_S|$. During training, the source domain image with
 237 label j is input into f_φ to obtain the image feature I_j^S , which are then used to update the feature
 238 prototypes. The update process is as follows:

$$240 \quad f_j = \beta f_j + (1 - \beta) I_j^S \quad (5)$$

242 β is a hyperparameter. We use the obtained I_j^S and the output of the text encoder to compute the
 243 maximum class prediction probability:

$$245 \quad P_k = \arg \max_{j \in \{1, 2, \dots, M\}} p(y = j | I_j^S, T_j) \quad (6)$$

247 We then compute the cosine similarity between I_j^S and the feature prototype f_k corresponding to
 248 the class with the highest prediction probability. The result is denoted as d_k , calculated as follows:
 249

$$250 \quad 251 \quad d_k = \text{sim}(I_j^S, f_k)$$

$$252 \quad 253 \quad \text{sim}(I_j^S, f_k) = \frac{I_j^S \cdot f_k}{\|I_j^S\| \|f_k\|} \quad (7)$$

255 3.4 UNCERTAINTY ESTIMATION

257 A target sample may fall into one of the following four cases: (1) high P_k and high d_k (ideal
 258 known class); (2) high P_k and low d_k (high confidence but semantic shift); (3) low P_k and high d_k
 259 (semantically close but low confidence); (4) low P_k and low d_k (typical unknown class). For cases
 260 (1) and (2), we argue that high prediction confidence P_k should dominate the decision, meaning
 261 that the sample should be considered as belonging to a known class even if its d_k is relatively low.
 262 In case (3), high d_k indicates semantic closeness to known classes, so the sample should not be
 263 immediately classified as unknown solely due to its low P_k . Our goal is to design an uncertainty
 264 estimation method that can effectively learn the decision boundary between cases (3) and (4). The
 265 proposed formula (8) achieves this by setting the score ranking as (1) \approx (2) $>$ (3) $>$ (4):
 266

$$267 \quad e^{P_k - d_k} + d_k < \tau \quad (8)$$

268 Here, τ is a learnable parameter. In summary, for cases (1) and (2), we use an exponential term
 269 to amplify the effect of P_k . However, this amplification may cause d_k to be neglected, leading to

samples in case (3) being easily classified as unknown. To address this, we add $-d_k$ as a penalty term to balance the impact of the exponential term. For cases (3) and (4), since the exponential term is close to 1, we linearly add d_k to increase its influence, so that samples with high d_k are more likely to be correctly classified as known classes.

Under mild assumptions, the statistic $S_e(P, d) = e^{P-d} + d$ can be interpreted via a Neyman–Pearson (Lehmann & Romano, 2005) likelihood ratio test, offering some theoretical insight. See Appendix A.1 for details. If the number of samples in a batch that satisfy (8) is greater than or equal to $num = \text{batchsize}/4$, we update τ using binary cross-entropy loss. First, we compute the prediction logits:

$$y'_k = \tau - (e^{P_k-d_k} + d_k) \quad (9)$$

The true label is set to $y_{\text{unknown}} = 1$, and the BCE loss is calculated as:

$$l^k = \text{BCELoss}(y_{\text{unknown}}, y'_k) \quad (10)$$

The losses l^k for the batch are stored as follows:

$$L = \{l^k | e^{P_k-d_k} + d_k < \tau\} \quad (11)$$

If the number of samples in the batch that meet the condition is $|L|$, then L^U is computed as:

$$L^U = \begin{cases} \frac{1}{|L|} \sum_{l^k \in L} l^k, & \text{if } |L| \geq num \\ 0, & \text{otherwise} \end{cases} \quad (12)$$

During testing, the test image is input into the image encoder f_φ . P_k and d_k with the corresponding class are then computed. The uncertainty measure $e^{P_k-d_k} + d_k$ is compared with τ . If $e^{P_k-d_k} + d_k < \tau$, the test image is predicted as *unknown*, otherwise, the label is assigned as k :

$$\text{label} = \begin{cases} \text{unknown}, & \text{if } e^{P_k-d_k} + d_k < \tau \\ k, & \text{otherwise} \end{cases} \quad (13)$$

3.5 OPTIMIZATION OBJECTIVE FUNCTION

The overall optimization objective function in this work consists of L^S , L^T , and L^U , expressed as:

$$L_{\text{overall}} = L^S + L^T + L^U \quad (14)$$

During the training phase, We utilize L^S and L^T to update the model parameters, L^U is employed to learn the dynamic threshold τ . In the testing phase, only the student network's image encoder f_φ , text encoder g_θ , and the updated feature prototypes $\{f_1, f_2, \dots, f_M\}$ are retained.

3.6 THEORETICAL ANALYSIS

Here, We explain why MUEUDA performs so well on UniDA based on Theorem 1, the derived Corollary 1 and Corollary 2.

Theorem 1. Assume there exists a fixed feature representation function \mathcal{Z}_S for the source domain and \mathcal{Z}_T for the target domain, such that $\mathcal{Z}_S, \mathcal{Z}_T \in \mathcal{Z}$. Let Θ be the hypothesis space and $\mathcal{H} \in \Theta$ is a hypothesis subspace. ϵ_S and ϵ_T denote the classification errors on the source and target domains, respectively. We define: $\epsilon_S = \sum_{i=1}^N \epsilon_{S_i}$. M is the number of source domains. For any classifier $h \in \mathcal{H}$ and an ideal classifier $h' \in \mathcal{H}$, we have:

$$\epsilon_S(h) - \epsilon_T(h, h') \leq \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) \quad (15)$$

$d_{\mathcal{H}\Delta\mathcal{H}}$ denotes the $\mathcal{H}\Delta\mathcal{H}$ – *distance*. See Appendix A.2 for the proof process

Corollary 1: For $\epsilon_T(h)$, based on Theorem 1, there exists a hypothesis space \mathcal{H} with dimension d , and m labeled samples drawn from \mathcal{Z}_S . Let $\eta' = \epsilon_S(h') + \epsilon_T(h')$, $\hat{\epsilon}_S(h)$ is the empirical estimate for source domain, then with probability at least $1 - \delta$, for every $h \in \mathcal{H}$:

$$\epsilon_T(h) \leq \hat{\epsilon}_S(h) + 4\sqrt{\frac{2em}{d} \log \frac{2em}{d} + \frac{4}{\delta}} + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) + \eta' \quad (16)$$

Corollary 2: Let $A(x) = 1(e^{P_k(x) - d_k(x)} + d_k(x) > \tau)$ denote that the target sample x passes the uncertainty filtering, with the probability mass $\sigma = \Pr_{x \sim \mathcal{Z}_T}[A(x) = 1]$. Define the filtered target distribution as $\tilde{\mathcal{Z}}_T$. Then we have

$$\epsilon_T(h) \leq \hat{\epsilon}_S(h) + 4\sqrt{\frac{2em}{d} \log \frac{2em}{d} + \frac{4}{\delta}} + \eta' + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \tilde{\mathcal{Z}}_T) + (1 - \sigma) \quad (17)$$

See Appendix A.2 for the proof process of Corollary 1 and Corollary 2. We observe that η' represents the classification error of the ideal classifier on the target and source domains. The main influencing factors on $\epsilon_T(h)$ are the first term $\hat{\epsilon}_S(h)$, which is the empirical training error, the $\mathcal{H}\Delta\mathcal{H}$ -distance and $(1 - \sigma)$. Specifically, the source domain supervision (L^S) is used to minimize $\hat{\epsilon}_S(h)$, multimodal feature alignment techniques are employed to align the source and target domain subsets, thereby reducing $d_{\mathcal{H}\Delta\mathcal{H}}$. In addition, with $\sigma = \Pr_{x \sim \mathcal{Z}_T}[A(x) = 1 | (e^{P_k(x) - d_k(x)} + d_k(x) > \tau)]$, this paper leverages effective uncertainty estimation methods to increase σ , enabling the model to accept more correct known-class samples, which further tightens the upper bound.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOLS

Datasets Our method is validated on 3 popular domain adaptation datasets. **Office-31** (Saenko et al., 2010) contains 31 classes with 4,110 images across 3 domains: Amazon (A), Dslr (D), and Webcam (W). **Office-Home** (Venkateswara et al., 2017) comprises 65 classes and 15,588 images across 4 domains: Art (A), Clipart (C), Product (P), and Real-World (R). **DomainNet** (Peng et al., 2019) is the largest domain adaptation dataset, 345 classes across 6 domains with approximately 600,000 images total. Following Fu et al. (2020), we select 3 domains (Painting (P), Real (R), and Sketch (S)) from DomainNet for our experiments. We conduct experiments on two UniDA scenarios: UniSDA and UniMDA. Both the source and target domains have private class. For UniSDA, following Chang et al. (2022), we divide the label sets of Office-Home and DomainNet to ensure the fairness of experiments. For UniMDA, we conduct experiments on the Office-31 and Office-Home datasets. We follow the method of Yin et al. (2022); Yang et al. (2024b) to divide the label sets. The specific dataset division methods are described in Appendix A.3.

Evaluation Protocols We employ the H-score to evaluate the experimental results, which comprehensively assesses the model’s classification performance for both common classes and private classes. The H-score is calculated as:

$$\text{H-score} = \frac{2 \times \text{Acc}_{\mathcal{Y}_C} \times \text{Acc}_{\mathcal{Y}_{T \setminus S}}}{\text{Acc}_{\mathcal{Y}_C} + \text{Acc}_{\mathcal{Y}_{T \setminus S}}} \quad (18)$$

where $\text{Acc}_{\mathcal{Y}_C}$ represents the classification accuracy for common classes \mathcal{Y}_C , $\text{Acc}_{\mathcal{Y}_{T \setminus S}}$ denotes the classification accuracy for private classes $\mathcal{Y}_{T \setminus S}$.

4.2 EXPERIMENTS DETAILS

Our framework initializes the text and image encoders using a pre-trained CLIP model with ViT-B/16 architecture. Fine-tuning based LoRA method with hyperparameters $r = 8$ and $\alpha = 4$, which are determined based on preliminary experiments. The value of β is set to 0.999. We employ

378
379 Table 1: Performance Comparison of H-score on Office-31 and Office-Home Datasets for UniMDA
380

381 Protocols	382 Method	383 Office-31				384 Office-Home				
		385 2A	386 2D	387 2W	388 Avg	389 2A	390 2C	391 2P	392 2R	393 Avg
394 Source-Combine	CLIP (Radford et al., 2021)	51.2	46.9	57.0	51.7	46.2	42.3	47.7	44.0	45.1
	UniOT (Chang et al., 2022)	45.6	38.7	36.2	40.2	34.6	42.2	41.6	37.5	39.0
	NCAL (Su et al., 2023)	52.0	48.5	57.1	52.5	45.4	40.7	28.8	39.5	38.6
	CMU (Fu et al., 2020)	72.4	74.7	71.8	73.0	77.7	61.0	64.8	71.9	68.9
395 Multi-source	MOSDANET (Rakshit et al., 2020)	69.2	58.8	65.4	64.5	67.1	52.1	53.7	61.5	58.6
	TFFN (Li et al., 2023)	68.6	71.6	73.4	71.2	68.9	57.4	58.7	64.1	62.3
	HyMOS (Bucci et al., 2022)	62.3	74.9	75.3	70.8	75.7	65.8	66.3	70.8	69.7
	UMAN (Yin et al., 2022)	80.2	72.8	74.2	75.7	84.6	68.8	71.0	74.4	74.7
	APNE-CLIP (Yang et al., 2024b)	84.2	<u>76.5</u>	<u>76.1</u>	<u>78.9</u>	87.2	<u>69.5</u>	<u>83.2</u>	<u>86.4</u>	<u>81.6</u>
	MUEUDA	<u>82.8</u>	83.2	83.0	<u>83.0</u>	<u>86.3</u>	78.7	88.9	90.4	86.1

394
395 Table 2: Performance Comparison of H-score on Office-Home for UniSDA
396

	A2C	A2P	A2R	C2A	C2P	C2R	P2A	P2C	P2R	R2A	R2C	R2P	Avg
DANN (Ganin et al., 2016)	42.4	48.0	48.9	45.5	46.5	48.4	45.8	42.6	48.7	47.6	42.7	47.4	46.2
OSBP (Saito et al., 2018)	39.6	<u>45.1</u>	46.2	45.7	45.2	46.8	45.3	40.5	45.8	45.1	41.6	46.9	44.5
UAN (You et al., 2019)	51.6	51.7	54.3	61.7	57.6	61.9	50.4	47.6	61.5	62.9	52.6	65.2	56.6
CMU (Fu et al., 2020)	56.0	56.9	59.2	67.0	64.3	67.8	54.7	51.1	66.4	68.2	57.9	69.7	61.6
DANCE (Saito et al., 2020)	26.7	11.3	18.0	33.2	12.5	14.3	41.6	39.9	33.3	16.3	27.1	25.9	25.0
DCC (Li et al., 2021)	58.0	54.1	58.0	74.6	70.6	77.5	64.3	<u>73.6</u>	75.0	81.0	75.1	80.4	70.1
TNT (Chen et al., 2022)	61.9	74.6	80.2	73.5	71.4	79.6	74.2	69.5	82.7	77.3	70.1	81.2	74.7
UniOT (Chang et al., 2022)	67.3	80.5	86.0	73.5	77.3	84.3	75.5	63.3	86.0	77.8	65.4	81.9	76.6
OVANet (Saito & Saenko, 2021)	62.8	75.5	78.6	70.7	68.8	75.0	71.3	58.6	80.5	76.1	64.1	78.9	71.7
GLC (Qu et al., 2023)	64.3	78.2	<u>89.8</u>	63.1	81.7	<u>89.1</u>	77.6	54.2	88.9	80.7	54.2	85.9	75.7
SAN (Zang et al., 2023)	68.2	80.6	86.7	73.4	73.0	79.8	76.5	64.9	83.3	80.1	67.1	80.1	76.1
MLNet (Lu et al., 2024)	68.2	83.8	85.0	73.6	78.2	82.2	75.2	64.7	85.1	78.8	69.9	83.9	77.4
UniAM (Zhu et al., 2023)	72.0	<u>87.1</u>	90.7	80.3	<u>82.4</u>	79.8	<u>85.0</u>	68.4	<u>89.0</u>	<u>85.4</u>	<u>72.1</u>	<u>86.1</u>	<u>81.7</u>
MUEUDA	79.0	89.2	89.7	<u>86.2</u>	88.5	<u>89.8</u>	<u>86.8</u>	79.0	<u>90.5</u>	<u>86.9</u>	<u>79.3</u>	<u>89.9</u>	<u>86.2</u>

404 stochastic gradient descent (SGD) optimization with an initial learning rate of 2×10^{-3} , incorporating a warmup phase (1 epoch, learning rate 2×10^{-5}) followed by cosine decay scheduling. For 405 prompt tuning, we implement CoCoOp (Zhou et al., 2022) with $N_{ctx} = 4$ learnable context tokens 406 initialized with the template *a photo of a*. The batch sizes is 8. The initial value of τ is set to 2.1. We 407 conducted our experiments using the PyTorch framework, and all experiments were run on a single 408 GeForce RTX 4090 GPU with 24GB memory.

412
413 4.3 EXPERIMENTS RESULTS

414 **Comparison with state-of-the-arts:** To evaluate the performance of our model under the UniSDA 415 and UniMDA settings, we compare it with current SOTA methods. Under the UniMDA setting on 416 the Office-Home dataset, 2A denotes the experiment where Art is used as the target domain. Under 417 the UniSDA setting, A2C denotes the experiment where Art is the source domain and Clipart is the 418 target domain. The best results are shown in **bold**, and the second-best results are underlined. The 419 results for **UniMDA** is reported in Table 1. MUEUDA achieves SOTA results on Office-31 and 420 Office-Home. Specifically, MUEUDA outperforms the previous best method, APNE-CLIP (Yang 421 et al., 2024b), which also a CLIP-based method, by **4.1%** on Office-31 and **4.5%** on Office-Home. 422 For **UniSDA**, as shown in Table 2 and Table 3, our model achieves the best results. Specifically, 423 it surpasses the second-best UniAM (Zhu et al., 2023) by **4.5%** and **7.8%** on the OfficeHome and 424 DomainNet datasets, respectively. Taking the OfficeHome dataset as an example, our model does 425 not exhibit as large a performance gap between the UniMDA and UniSDA settings as UniOT (Chang 426 et al., 2022) and CMU (Fu et al., 2020), achieving balanced and superior performance under both 427 settings. Overall, these results confirm that MUEUDA is highly effective for both UniMDA and 428 UniSDA, delivering superior performance across various benchmarks and settings.

429 **Analysis of CLIP:** We further investigate whether the superior performance of MUEUDA under 430 UniSDA and UniMDA is solely attributed to CLIP. Based on these two settings, we replace the 431 backbone networks of some methods with the CLIP model for validation on OfficeHome. The 432 experimental results are presented in Table 4. We observe that employing CLIP generally leads to

432
 433 **Table 3: Performance Comparison of H-score on DomainNet**
 434 **for UniSDA**

	P2R	R2P	P2S	S2P	R2S	S2R	Avg
DANN (Ganin et al., 2016)	31.2	29.3	27.8	27.8	27.8	30.8	29.1
OSBP (Saito et al., 2018)	33.6	33.0	30.6	30.5	30.6	33.7	32.0
UAN (You et al., 2019)	41.9	43.6	39.1	39.0	38.7	43.7	41.0
CMU (Fu et al., 2020)	50.8	52.2	45.1	44.8	45.6	51.0	48.3
DCC (Li et al., 2021)	56.9	50.3	43.7	44.9	43.3	56.2	49.2
OVANet (Saito & Saenko, 2021)	56.0	51.7	47.1	47.4	44.9	57.2	50.7
SAN (Zang et al., 2023)	57.8	52.9	47.9	48.4	47.2	57.9	52.0
UniOT (Chang et al., 2022)	59.3	47.8	51.8	46.8	48.3	58.3	52.1
GLC (Qu et al., 2023)	63.3	50.5	54.9	50.9	49.6	61.3	55.1
UniAM (Zhu et al., 2023)	73.9	60.9	52.3	60.0	51.4	70.7	61.5
MUEUDA	75.9	66.5	65.6	66.3	65.4	76.3	69.3

435
 436 **Table 4: Analysis of CLIP on**
 437 **Office-Home for UniSDA and**
 438 **UniMDA settings (H-score)**

UniSDA		UniMDA	
Method	Avg	Method	Avg
CLIP	42.1	CLIP	45.1
UniOT	76.6	UMAN	74.7
UniOT+CLIP	78.3	UMAN+CLIP	<u>75.6</u>
MLNet	77.4	HyMOS	69.7
MLNet+CLIP	79.6	HyMOS+CLIP	71.2
MUEUDA	86.2	MUEUDA	86.1

444
 445 **Table 5: Ablation study of different components on the Office-Home dataset (H-score)**

Setting	UniSDA												Avg	UniMDA				
	A2C	A2P	A2R	C2A	C2P	C2R	P2A	P2C	P2R	R2A	R2C	R2P	Avg	2A	2C	2P	2R	Avg
w/o LoRA	78.7	88.9	89.4	86.0	88.2	89.6	86.5	78.9	90.3	86.7	79.3	89.9	86.0	86.3	78.5	88.4	89.8	85.8
w/o CoCoOp	73.0	83.5	85.0	82.3	83.3	84.9	82.7	73.1	85.4	83.1	72.7	84.0	81.1	82.4	72.1	83.3	84.9	80.7
w/o L^U	21.9	65.8	46.1	43.5	69.4	54.6	58.4	29.2	38.1	33.3	10.3	35.1	42.1	56.0	17.0	70.5	46.0	47.4
MUEUDA	79.0	89.2	89.7	86.2	88.5	89.8	86.8	79.0	90.5	86.9	79.3	89.9	86.2	86.3	78.7	88.9	90.4	86.1

452
 453 **Table 6: Ablation experiments on the OfficeHome dataset (H-score)**

	UniMDA	UniSDA
$e^{P_k - d_k} + d_k$	86.1	86.2
$e^{P_k - d_k}$	78.7 _(-7.4)	77.8 _(-8.4)
$e^{P_k + d_k}$	82.2 _(-3.9)	81.5 _(-4.7)
$P_k + d_k$	81.3 _(-4.8)	81.0 _(-5.2)
Only P_k ($\tau = 0.8$)	79.8 _(-6.3)	80.1 _(-6.1)
Only d_k ($\tau = 0.8$)	57.0 _(-29.1)	60.8 _(-25.4)

462 performance improvement in the models, but the enhancement is not substantial. This implies that
 463 the outstanding performance of MUEUDA is not merely brought by CLIP.

464 **Components ablation experiment:** To evaluate the impact of LoRA, CoCoOp, and L^U components
 465 on the model, we conducted module ablation experiments on Office-Home under both UniSDA and
 466 UniMDA settings. The experimental results are presented in Table 5. The results demonstrate that
 467 each module contributes positively to model performance, with the best results achieved when all
 468 components are included.

469 **Uncertainty estimation ablation experiment:** We compare against alternative uncertainty metrics,
 470 including a simple linear form $P_k + d_k$, two exponential variants $e^{P_k - d_k}$ and $e^{P_k + d_k}$, as well as
 471 thresholding-based baselines that rely solely on P_k or d_k . The results is shown in Table 6. As
 472 observed, our method achieves the best performance.

475 5 CONCLUSION

476 In this paper, we proposed MUEUDA, a unified model for UniDA that effectively handles both
 477 single-source and multi-source scenarios without compromising performance. By introducing
 478 CLIP-based multi-modal information, our method leverages fine-tuning and prompt learning to
 479 achieve class-level feature alignment between source and target domains. Furthermore, we designed
 480 a new uncertainty estimation method to distinguish between the common and private classes in the
 481 target domain. This strategy is built upon a combination of model-predicted probabilities and the
 482 similarity between features and class prototypes. We conducted extensive experiments and achieve
 483 SOTA performance under both the multi-source setting and the single-source setting. This demon-
 484 strates that our proposed MUEUDA is a unified UniDA framework with remarkable performance.

486 REFERENCES
487

488 Silvia Bucci, Francesco Cappio Borlino, Barbara Caputo, and Tatiana Tommasi. Distance-based
489 hyperspherical classification for multi-source open-set domain adaptation. In *Proceedings of the*
490 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 1119–1128, 2022.

491 Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Partial transfer learning with
492 selective adversarial networks. In *Proceedings of the IEEE conference on computer vision and*
493 *pattern recognition*, pp. 2724–2732, 2018.

494 Wanxing Chang, Ye Shi, Hoang Tuan, and Jingya Wang. Unified optimal transport framework for
495 universal domain adaptation. *Advances in Neural Information Processing Systems*, 35:29512–
496 29524, 2022.

497 Liang Chen, Yihang Lou, Jianzhong He, Tao Bai, and Minghua Deng. Evidential neighborhood
498 contrastive learning for universal domain adaptation. In *Proceedings of the AAAI conference on*
499 *artificial intelligence*, volume 36, pp. 6258–6267, 2022.

500 Bo Fu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Learning to detect open classes for uni-
501 versal domain adaptation. In *Computer vision–ECCV 2020: 16th European conference, glasgow,*
502 *UK, August 23–28, 2020, proceedings, part XV 16*, pp. 567–583. Springer, 2020.

503 Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
504 *International conference on machine learning*, pp. 1180–1189. PMLR, 2015.

505 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
506 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
507 *Journal of machine learning research*, 17(59):1–35, 2016.

508 Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh Singh,
509 and Ming-Hsuan Yang. Progressive domain adaptation for object detection. In *Proceedings of the*
510 *IEEE/CVF winter conference on applications of computer vision*, pp. 749–757, 2020.

511 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
512 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

513 Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. Cross-domain weakly-
514 supervised object detection through progressive domain adaptation. In *Proceedings of the IEEE*
515 *conference on computer vision and pattern recognition*, pp. 5001–5009, 2018.

516 Erich Leo Lehmann and Joseph P Romano. *Testing statistical hypotheses*. Springer, 2005.

517 Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and Yi Yang. Domain consensus clustering
518 for universal domain adaptation. In *Proceedings of the IEEE/CVF conference on computer vision*
519 *and pattern recognition*, pp. 9757–9766, 2021.

520 Yiyang Li, Shengsheng Wang, Bilin Wang, Zhiwei Hao, and Hao Chai. Transferable feature filtra-
521 tion network for multi-source domain adaptation. *Knowledge-Based Systems*, 260:110113, 2023.

522 Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional learning for domain adaptation of
523 semantic segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and*
524 *pattern recognition*, pp. 6936–6945, 2019.

525 Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
526 deep adaptation networks. In *International conference on machine learning*, pp. 97–105. PMLR,
527 2015.

528 Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation
529 with residual transfer networks. *Advances in neural information processing systems*, 29, 2016.

530 Yanzu Lu, Meng Shen, Andy J Ma, Xiaohua Xie, and Jian-Huang Lai. Mlnet: Mutual learning
531 network with neighborhood invariance for universal domain adaptation. In *Proceedings of the*
532 *AAAI Conference on Artificial Intelligence*, volume 38, pp. 3900–3908, 2024.

540 Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotagh. Progressive graph learning for
 541 open-set domain adaptation. In *International Conference on Machine Learning*, pp. 6468–6478.
 542 PMLR, 2020.

543 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 544 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference*
 545 *on computer vision*, pp. 1406–1415, 2019.

546 Sanqing Qu, Tianpei Zou, Florian Röhrbein, Cewu Lu, Guang Chen, Dacheng Tao, and Changjun
 547 Jiang. Upcycling models under domain and category shift. In *Proceedings of the IEEE/CVF*
 548 *conference on computer vision and pattern recognition*, pp. 20019–20028, 2023.

549 Sanqing Qu, Tianpei Zou, Lianghua He, Florian Röhrbein, Alois Knoll, Guang Chen, and Changjun
 550 Jiang. Lead: Learning decomposition for source-free universal domain adaptation. In *Proceedings*
 551 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23334–23343,
 552 2024.

553 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 554 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 555 models from natural language supervision. In *International conference on machine learning*, pp.
 556 8748–8763. PMLR, 2021.

557 Sayan Rakshit, Dipesh Tamboli, Pragati Shuddhodhan Meshram, Biplab Banerjee, Gemma Roig,
 558 and Subhasis Chaudhuri. Multi-source open-set deep adversarial domain adaptation. In *Computer*
 559 *Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,*
 560 *Part XXVI 16*, pp. 735–750. Springer, 2020.

561 Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to
 562 new domains. In *Computer vision–ECCV 2010: 11th European conference on computer vision,*
 563 *Heraklion, Crete, Greece, September 5–11, 2010, proceedings, part iV 11*, pp. 213–226. Springer,
 564 2010.

565 Kuniaki Saito and Kate Saenko. Ovanet: One-vs-all network for universal domain adaptation. In
 566 *Proceedings of the ieee/cvf international conference on computer vision*, pp. 9000–9009, 2021.

567 Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adapta-
 568 tion by backpropagation. In *Proceedings of the European conference on computer vision (ECCV)*,
 569 pp. 153–168, 2018.

570 Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation
 571 through self supervision. *Advances in neural information processing systems*, 33:16282–16292,
 572 2020.

573 Wan Su, Zhongyi Han, Rundong He, Benzheng Wei, Xueying He, and Yilong Yin. Neighborhood-
 574 based credibility anchor learning for universal domain adaptation. *Pattern Recognition*, 142:
 575 109686, 2023.

576 Vladimir Vapnik. *The nature of statistical learning theory*. Springer science & business media,
 577 1999.

578 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 579 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE conference on*
 580 *computer vision and pattern recognition*, pp. 5018–5027, 2017.

581 Yuxiang Yang, Yun Hou, Lu Wen, Pinxian Zeng, and Yan Wang. Semantic-aware adaptive prompt
 582 learning for universal multi-source domain adaptation. *IEEE Signal Processing Letters*, 2024a.

583 Yuxiang Yang, Lu Wen, Yuanyuan Xu, Jiliu Zhou, and Yan Wang. Adaptive prompt learning with
 584 negative textual semantics and uncertainty modeling for universal multi-source domain adapta-
 585 tion. In *2024 IEEE International Conference on Multimedia and Expo (ICME)*, pp. 1–6. IEEE,
 586 2024b.

587 Yueming Yin, Zhen Yang, Haifeng Hu, and Xiaofu Wu. Universal multi-source domain adaptation
 588 for image classification. *Pattern Recognition*, 121:108238, 2022.

594 Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Universal
 595 domain adaptation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 596 *recognition*, pp. 2720–2729, 2019.

597 Zelin Zang, Lei Shang, Senqiao Yang, Fei Wang, Baigui Sun, Xuansong Xie, and Stan Z Li. Boost-
 598 ing novel category discovery over domains with soft contrastive learning and all in one classi-
 599 fier. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 11858–
 600 11867, 2023.

601 Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance weighted adversarial nets
 602 for partial domain adaptation. In *Proceedings of the IEEE conference on computer vision and*
 603 *pattern recognition*, pp. 8156–8164, 2018.

604 Yang Zhang, Philip David, and Boqing Gong. Curriculum domain adaptation for semantic segmen-
 605 tation of urban scenes. In *Proceedings of the IEEE international conference on computer vision*,
 606 pp. 2020–2030, 2017.

607 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 608 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 609 *pattern recognition*, pp. 16816–16825, 2022.

610 Didi Zhu, Yinchuan Li, Junkun Yuan, Zexi Li, Kun Kuang, and Chao Wu. Universal domain adap-
 611 tation via compressive attention matching. In *Proceedings of the IEEE/CVF International Con-*
 612 *ference on Computer Vision*, pp. 6974–6985, 2023.

613 A APPENDIX

614 A.1 A NEYMAN–PEARSON VIEW OF $e^{(P-d)} + d$ STATISTIC

615 The following conclusions are derived under idealized distributional assumptions and are intended to
 616 help readers understand the related concepts. Let $(P, d) \in [0, 1]^2$ be a sample drawn either from the
 617 null distribution \mathbb{P}_0 or the alternative \mathbb{P}_1 . Assume \mathbb{P}_0 is uniform on $[0, 1]^2$ with density $f_0(P, d) = 1$,
 618 while under \mathbb{P}_1 the density is

$$619 f_1(P, d) \propto \exp(-\gamma S_e(P, d)), \quad S_e(P, d) := e^{P-d} + d, \quad \gamma > 0.$$

620 For testing $H_0 : (P, d) \sim \mathbb{P}_0$ vs. $H_1 : (P, d) \sim \mathbb{P}_1$, the likelihood ratio satisfies

$$621 \Lambda(P, d) = \frac{f_1(P, d)}{f_0(P, d)} \propto \exp(-\gamma S_e(P, d)),$$

622 which is strictly *decreasing* in S_e . Hence, for any fixed type-I error α , the most powerful level- α
 623 test rejects H_0 (i.e., declares “unknown”) when

$$624 S_e(P, d) < t_\alpha,$$

625 for some threshold t_α chosen such that

$$626 \mathbb{P}_0(S_e(P, d) < t_\alpha) = \alpha.$$

627 By the Neyman–Pearson lemma (Lehmann & Romano, 2005), for simple hypotheses H_0 vs. H_1 the
 628 most powerful test at level α is the likelihood ratio test

$$629 \phi^*(P, d) = \mathbf{1}\{\Lambda(P, d) > \eta_\alpha\},$$

630 where η_α is chosen so that $\mathbb{P}_0(\Lambda > \eta_\alpha) = \alpha$. In the present construction,

$$631 \Lambda(P, d) \propto \exp(-\gamma S_e(P, d)),$$

632 which is strictly decreasing in S_e . Therefore

$$633 \Lambda(P, d) > \eta_\alpha \iff S_e(P, d) < t_\alpha,$$

634 with $t_\alpha = -\frac{1}{\gamma} \log \eta_\alpha$. The event $\{\Lambda > \eta_\alpha\}$ has \mathbb{P}_0 -probability α iff $\{e^{P-d} + d < t_\alpha\}$ has \mathbb{P}_0 -
 635 probability α . Consequently, the test $\phi^*(P, d) = \mathbf{1}\{e^{P-d} + d < t_\alpha\}$ is the most powerful level- α
 636 test.

637 Under the above simplified assumptions, the statistic $S_e(P, d) = e^{P-d} + d$ is a monotone function of
 638 the likelihood ratio between \mathbb{P}_1 and \mathbb{P}_0 . Hence, thresholding S_e is equivalent to the Neyman–Pearson
 639 likelihood ratio test, providing an intuitive statistical interpretation for using S_e as a decision rule.

648 A.2 PROOF OF THEOREM 1
649

650 **Theorem 1.** Assume there exists a fixed feature representation function \mathcal{Z}_S for the source domain
651 and \mathcal{Z}_T for the target domain, such that $\mathcal{Z}_S, \mathcal{Z}_T \in \mathcal{Z}$. Let Θ be the hypothesis space and $\mathcal{H} \in \Theta$
652 a hypothesis subspace. ϵ_S and ϵ_T denote the classification errors on the source and target domains,
653 respectively. For multiple source domains, we define: $\epsilon_S = \frac{1}{N} \sum_{i=1}^N \epsilon_{S_i}$. For any classifier $h \in \mathcal{H}$
654 and an ideal classifier $h' \in \mathcal{H}$, we have:

$$655 \quad \epsilon_S(h, h') - \epsilon_T(h, h') \leq \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) \quad (19)$$

656 $d_{\mathcal{H}\Delta\mathcal{H}}$ denotes the $\mathcal{H}\Delta\mathcal{H}$ – distance.
657

658 **Proof:** From the definition of $\mathcal{H}\Delta\mathcal{H}$ – distance, we have:

$$659 \quad d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) = 2 \sup_{h, h' \in \mathcal{H}} \left| \Pr_{x \sim \mathcal{Z}_S} [h(x) \neq h'(x)] - \Pr_{x \sim \mathcal{Z}_T} [h(x) \neq h'(x)] \right| \quad (20)$$

$$660 \quad = 2 \sup_{h, h' \in \mathcal{H}} |\epsilon_S(h, h') - \epsilon_T(h, h')| \geq 2 |\epsilon_S(h, h') - \epsilon_T(h, h')|$$

661 **Corollary 1:** For $\epsilon_T(h)$, based on Theorem 1, there exists a hypothesis space \mathcal{H} with dimension
662 d , and m labeled samples drawn from \mathcal{Z}_S . let $\eta' = \epsilon_S(h') + \epsilon_T(h')$, then with probability at least
663 $1 - \delta$, for every $h \in \mathcal{H}$:

$$664 \quad \epsilon_T(h) \leq \hat{\epsilon}_S(h) + 4 \sqrt{\frac{2em}{d} \log \frac{2em}{d} + \frac{4}{\delta}} + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) + \eta' \quad (21)$$

665 We observe that η' represents the classification error of the ideal classifier on the target and source
666 domains. The main influencing factors on $\epsilon_T(h)$ are the first term $\hat{\epsilon}_S(h)$, which is the empirical
667 training error, and the fourth term, the $\mathcal{H}\Delta\mathcal{H}$ -distance. Therefore, a good representation should
668 reduce both empirical training error and domain discrepancy.

669 **Proof:** We have:

$$670 \quad \epsilon_T(h) \leq \epsilon_T(h') + \epsilon_T(h, h')$$

$$671 \quad \leq \epsilon_T(h') + \epsilon_S(h, h') + |\epsilon_T(h, h') - \epsilon_S(h, h')|$$

$$672 \quad \leq \epsilon_T(h') + \epsilon_S(h, h') + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) \quad (22)$$

$$673 \quad \leq \epsilon_T(h') + \epsilon_S(h) + \epsilon_S(h') + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T)$$

$$674 \quad \leq \epsilon_S(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) + \epsilon_T(h') + \epsilon_S(h')$$

675 The theorem now follows by a standard application of Vapnik-Chervonenkis (Vapnik, 1999) theory
676 to bound the true error $\epsilon_S(h)$ by its empirical estimate $\hat{\epsilon}_S(h)$. If the source domain provides an i.i.d.
677 sample of size m , then with probability at least $1 - \delta$,

$$678 \quad \epsilon_S(h) \leq \hat{\epsilon}_S(h) + 4 \sqrt{\frac{2em}{d} \log \frac{2em}{d} + \frac{4}{\delta}} \quad (23)$$

679 Plugging this into the previous bound gives,
680

$$681 \quad \epsilon_T(h) \leq \hat{\epsilon}_S(h) + 4 \sqrt{\frac{2em}{d} \log \frac{2em}{d} + \frac{4}{\delta}} + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) + \eta' \quad (24)$$

682 **Corollary 2:** Let $A(x) = 1(e^{P_k(x) - d_k(x)} + d_k(x) > \tau)$ denote that the target sample x passes the
683 uncertainty filtering, with the probability mass $\sigma = \Pr_{x \sim \mathcal{Z}_T}[A(x) = 1]$. Define the filtered target
684 distribution as $\tilde{\mathcal{Z}}_T$. Then we have

702

703

$$\epsilon_T(h) \leq \hat{\epsilon}_S(h) + 4\sqrt{\frac{2em}{d} \log \frac{2em}{d} + \frac{4}{\delta}} + \eta' + \frac{1}{2}d_{H\Delta H}(Z_S, \tilde{Z}_T) + (1 - \sigma) \quad (25)$$

704

705

Proof: For any $h, h' \in H$, denote the disagreement set as $S_{h,h'} = \{x : h(x) \neq h'(x)\}$. According to the definition of $H\Delta H$, we need to bound $|\Pr_{x \sim Z_S}[S_{h,h'}] - \Pr_{x \sim Z_T}[S_{h,h'}]|$. Since \tilde{Z}_T is the conditional distribution on the event $A(x) = 1(e^{P_k(x)-d_k(x)} + d_k(x) > \tau)$, we can write the decomposition of Z_T as

706

707

$$\Pr_{Z_T}[S_{h,h'}] = \Pr_{Z_T}[S_{h,h'} \wedge A] + \Pr_{Z_T}[S_{h,h'} \wedge \neg A] = \sigma \Pr_{\tilde{Z}_T}[S_{h,h'}] + (1 - \sigma) \Pr_{Z_T \mid \neg A}[S_{h,h'}] \quad (26)$$

708

709

Hence

710

711

$$\Pr_{\tilde{Z}_T}[S_{h,h'}] - \Pr_{Z_T}[S_{h,h'}] = (1 - \sigma)(\Pr_{\tilde{Z}_T}[S_{h,h'}] - \Pr_{Z_T \mid \neg A}[S_{h,h'}]) \quad (27)$$

712

713

Taking absolute values,

714

715

$$\left| \Pr_{\tilde{Z}_T}[S_{h,h'}] - \Pr_{Z_T}[S_{h,h'}] \right| \leq (1 - \sigma) \cdot 1 = 1 - \sigma \quad (28)$$

716

717

since the maximum possible difference in probabilities is at most 1. By the triangle inequality,

718

719

$$\left| \Pr_{Z_S}[S_{h,h'}] - \Pr_{Z_T}[S_{h,h'}] \right| \leq \left| \Pr_{Z_S}[S_{h,h'}] - \Pr_{\tilde{Z}_T}[S_{h,h'}] \right| + \left| \Pr_{\tilde{Z}_T}[S_{h,h'}] - \Pr_{Z_T}[S_{h,h'}] \right| \quad (29)$$

720

721

Then we have,

722

723

$$d_{H\Delta H}(Z_S, Z_T) \leq d_{H\Delta H}(Z_S, \tilde{Z}_T) + 2(1 - \sigma) \quad (30)$$

724

725

Combining Equation (23), we have:

726

727

728

729

730

731

732

A.3 DATASET SPLITS

733

734

A.3.1 OFFICE-31

735

736

For UniMDA, we adopt the label split approach from Yang et al. (2024b). We select the 10 classes shared between Office-31 and Caltech-256 as common classes, class 1-7 and 4-10 are the common classes for the 2 source domains. The remaining 21 classes are sorted alphabetically. Specifically, the last 10 classes are used as target domain private classes, while the remaining 5 and 6 classes are assigned as source domain private classes for the 2 source domains, respectively.

737

738

A.3.2 OFFICE-HOME

739

740

741

742

743

744

745

For UniSDA, we follow the label split approach of You et al. (2019). We use the first 10 classes as common classes, the next 5 classes as source domain private classes, and the remaining classes as target private domain classes.

746

747

748

749

750

751

752

753

754

755

For UniMDA, we adopt the label division method from Yang et al. (2024b); Yin et al. (2022). The last 50 classes in alphabetical order are treated as target domain private classes. We use the first 10 classes as the common classes, which are assigned alphabetically to the 3 source domains as follows: classes 1-4, 4-7, and 7-10 for each source domain, resulting in 4 common classes per domain. The next 5 classes are used as source domain private classes, which are also assigned alphabetically: classes 1-2, 2-3, and 4-5 to the 3 source domains, with each domain having 2 private classes.

756 A.3.3 DOMAINNET
757

758 For UniSDA, we follow the label split method of Fu et al. (2020). We use the first 150 classes as
759 common classes, the next 50 classes as source domain private classes, and the remaining classes as
760 target domain private classes. Due to the large dataset size, we select three domains (P, R, and S) for
761 our experiments.

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809