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ABSTRACT

Universal domain adaptation (UniDA) imposes no constraints on the label sets of
the source and target domains, aiming to transfer knowledge from source to tar-
get domain. Existing works typically target either single-source or multi-source
UniDA, rarely both. Naively merging multi-source data into a single source do-
main may lead to negative transfer and performance degradation. Moreover, since
multi-source models are often equipped with modules tailored for multi-source
data, they are usually not directly applicable to single-source tasks. These chal-
lenges hinder the development of a unified framework. In this paper, we pro-
pose a unified model based on multi-modal and uncertainty estimation, termed
MUEUDA, to address this issue. First, we incorporate multi-modal information,
enabling class-level feature alignment between source and target domains using
fine-tuning and prompt learning techniques. Second, we extract class-level image
feature prototype from the source domain and progressively update them during
training. Finally, we introduce a novel uncertainty estimation method that deter-
mines whether an image in the target domain belongs to a known or unknown
class through a learnable threshold. Extensive experiments are conducted on
both single-source and multi-source benchmarks, and our model achieved state-
of-the-art performance. The method demonstrates strong performance across
both scenarios, balancing effectiveness and generality. The code is available at
https://github.com/jstree365/MUEUDA.

1 INTRODUCE

Domain adaptation (DA) aims to generalize knowledge learned from the source domain to the target
domain. Many scholars have researched DA techniques, with applications including image classifi-
cation(Long et al., [2015)), object detection(Hsu et al., 2020; Inoue et al., [2018)), and image segmen-
tation(Zhang et al.l [2017; [Li et al., |2019). In real-world, the labels in the target domain are often
unavailable, which is referred to as unsupervised domain adaptation (UDA) (Ganin & Lempitsky,
2015} |Long et al., [2016). Although most studies assume that the source and target domains share
the same label set, in practice, the label set in the target domain are inaccessible. This implies that,
in addition to shared classes, both source and target domains may also contain private classes. This
phenomenon has led scholars to investigate universal domain adaptation (UniDA).

Fortunately, some scholars have conducted in-depth research on UniDA. [You et al| (2019) have
provided a clear definition of UniDA. DANCE (Saito et al.,2020) and DCC (Li et al.,|2021) use self-
supervised learning based on clustering to distinguish common and private classes. These works are
based on single source setting. In this paper, we refer to universal single-source domain adaptation as
UniSDA. Some researchers have also studied universal multi-source domain adaptation (UniMDA),
such as HyMOS (Bucci et al.}|2022) and UMAN (Yin et al., 2022), which align source domains with
each other and source and target domains. However, it is important to note that these tasks assume
the number of source domains is predetermined.

Different DA are illustrated in Figure[I] Typically, DA can be categorized based on the number of
source domains into single-source and multi-source DA. Additionally, DA can be classified based
on whether they are UniDA methods into non-universal and universal types. Among these, non-
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Figure 1: Different DA categories

universal DA also includes closed-set (Long et al, |20135)), partial (Zhang et al., 2018} |Cao et al.,
2018)), and open-set (Saito et al.,[2018;|Luo et al.,[2020) scenarios. In this paper, our model addresses
both UniSDA and UniMDA to meet practical needs.

When multiple source domains exist, simply merging them into a single source domain ignores
inter-source domain discrepancies, leading to potential negative transfer when generalizing to the
target domain(Yin et al.} [2022)). Moreover, UniMDA models are not directly applicable to UniSDA
due to their specialized multi-source training designs. These issues motivate us to develop a unified
model capable of handling both UniSDA and UniMDA scenarios effectively.

Based on the reasons mentioned above, this paper designs the model based on the following charac-
teristics and requirements: (1) The number of source domains is uncertain; (2) Target domain labels
are unavailable; (3) In addition to the shared common labels, both the source domains and the target
domain may have private labels; (4) It is necessary to identify the private classes in the target domain.
Additionally, current methods are primarily based on image features. Since the source domain data
are labeled, these labels are typically used in these methods only to provide supervision information,
while the textual information associated with these labels is often ignored. Our model is inspired
by this and makes full use of the multi-modal information provided by both text and image, helping
align the source and target domains in the class-level feature space.

The contributions of this paper are as follows: (1) We propose the MUEUDA model to address the
issue of an uncertain number of source domains in UniDA. To the best of our knowledge, this is the
first unified framework designed to handle both single-source and multi-source UniDA, with SOTA
results. (2) We introduce multi-modal information into MUEUDA, utilizing the available label
information from the source domain. This guides the alignment of the source and target domains
in the feature space. (3) We innovatively design an uncertainty estimation method based on class
prediction and prototype match similarity to measure the class uncertainty of images, effectively
identifying private class samples. This method provides new ideas for open class classification.

2 RELATED WORK

2.1 UNIVERSAL SINGLE SOURCE DOMAIN ADAPTATION

UniDA is a more generalized form of UDA, which imposes looser restrictions on the label sets of
the source and target domain. |You et al.|(2019) provided a clear definition of UniDA. They employ a
domain adversarial training strategy to achieve domain alignment and utilizes uncertainty scores to
determine whether an image belongs to an unknown class. Similarly, [Fu et al.[(2020) leveraged the
complementary effects of entropy, consistency, and confidence to more clearly distinguish varying
degrees of uncertainty. [Chen et al.| (2022) designed a cross-domain multi-sample contrastive loss
based on mutual nearest neighbors to achieve common class matching and private class separation.
However, [Saito et al.| (2020) argued that such methods ignore the inherent structure of the target
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domain. Therefore, DANCE adopted a self-supervised learning approach based on neighborhood
clustering to learn the features of known and unknown classes. Similarly, [Li et al.| (2021 proposed
a domain consensus clustering method to mine domain-shared knowledge at both the semantic and
sample levels. Zhu et al.| (2023)) argued that models relying on sample features for judgment overly
emphasize global information while neglecting critical local objects in images. They implicitly
explored object information in images by sparsely reconstructing attention to achieve better common
feature alignment and target class separation. LEAD (Qu et al} [2024) and GLC (Qu et al.| [2023)
achieved source-free UniDA.

2.2 UNIVERSAL MULTI-SOURCE DOMAIN ADAPTATION

UniMDA task must account for domain shifts both between source and target domains and among
multiple source domains. HyMOS (Bucci et al. 2022) performs class-balanced alignment between
different source domains, and then employs a progressive self-training process to further enhance
the alignment between source and target domain clusters. UMAN (Yin et al., 2022) estimates the
reliability of each known class belonging to the shared label set by introducing a pseudo boundary
vector and its weighted form. These methods are based on visual feature mining and alignment,
and they often ignore the textual information provided by source domain labels. SAP-CLIP (Yang
et al., |2024a)) introduces textual information into UniMDA. It aligns source and target domains at
the instance level through image-text alignment. An energy-based uncertainty modeling strategy is
proposed to enlarge the margin between known and unknown samples. However, this method relies
on a fixed threshold. APNE-CLIP (Yang et al., 2024b) further improves upon this by using a thresh-
old determined by the mean and standard deviation of energy scores to classify whether a sample
belongs to an unknown class. To the best of our knowledge, these models are not simultaneously
well-suited for both UniSDA and UniMDA. Our method introduces multi-modal information and
a novel uncertainty estimation strategy, enabling the model to perform effectively on both single-
source and multi-source UniDA, achieving outstanding performance.

3 METHODOLOGY

3.1 PRELIMINARY

We are given access to IV labeled source domains and 1 unlabeled target domain. Let the input space
be X C R and the label space be Y = {1,2,..., K}. Each source domain is denoted as Dgl) =

{ (xg.l), yj@) 2., where xg»z) € X is the j-th sample from the i-th source domain, yj(-z) cYy, Cy
is the corresponding label, n; and )); are the number of labeled samples and label set in ¢-th source
domain. The unlabeled target domain is represented as D; = {x} }}'* |, where x|, € X and n; is
the number of target domain samples. The corresponding label set of the target domain is denoted

by Yr C V. We define the following sets to characterize label distribution across domains. Ycg =

ﬂgl Y;, which V¢ is the common label set shared across all source domains. Jg = Ufil Y;
is the total source label set, yT\ s = Yr \ Vs is the target-private label set, yS\T =Ys\ Vris
the source-private label set. Jo = Vg N Vr is the shared common label set between source and
target domains. We assume each source domain is drawn from a joint distribution (z,y) ~ p;(x,y),
and the target domain from (z,y) ~ ¢(z,y), with different marginals p;(x) and ¢(x) reflecting
domain shifts. The objective of UniDA is to learn a classifier o : X — ) using labeled source

data {Dgl)}i]\il and unlabeled target data D;, such that h generalizes well to the target domain,
especially on the common label set }c and avoids misclassifying target-private samples from Vr\ 5
as known classes. This paper proposes a model based on multi-modal information and uncertainty
estimation (MUEUDA) to achieve alignment between the source domains and target domain, as
well as classification of common and private classes in the target domain. The model is applicable
to both UniSDA and UniMDA scenarios, and it delivers strong performance without the need for
any modifications. The architecture of the proposed network is illustrated in Figure 2]

3.2 MULTIMODAL INFORMATION BASED ON TEXT-IMAGE FEATURES

CLIP (Radford et al., [2021), as a large-scale vision-language pre-trained model, possesses strong
cross-domain generalization capabilities. However, UniDA tasks require the model to recognize
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Figure 2: Overview of the proposed MUEUDA approach. Multi-modal information based on image-
text is used in the model. Feature prototypes are continuously updated. Pseudo-labeling is used to
provide supervision for the target domain samples. We propose a novel uncertainty estimation based
on both the feature-prototype similarity and the class prediction confidence to determine whether an
image belongs to the common or private classes.

unknown classes, which cannot be accomplished by directly using CLIP alone. There are three core
challenges in directly applying CLIP to UniDA: (1) The image encoder, without fine-tuning, may
not effectively adapt to the target domain. (2) The static text prompts cannot dynamically adjust
to suit the data distribution. (3) CLIP itself lacks the capability to classify unknown classes. To
address these challenges, we employ LoRA-based 2022) fine-tuning to adapt the image
encoder, enabling the model to generalize better in target domain. We use instance-based prompt
learning to dynamically adjust the text input. Additionally, we construct feature prototypes of Vg
to assist the model in identifying Vr\ 5. In the training process, assume there is a set of learnable
vectors [v1, va, . . ., v]. The source domain image 2 is input into the image encoder to obtain I;°.
Following the approach of CoCoOp 2022), we input I into a Meta-Net to obtain
for the image, where 7 = hy(I;). Then the learnable vector vy, () is obtained by vy (x) = vy + 7.
The prompt input corresponding to this image is t,,(z) = {vi(x),v2(2),...,vx(z), ¢}, Where
m € {1,2,...,|Vs|} and ¢,, is the vector corresponding to the label. The text encoder processes the
input to obtain 7;,,. T}, and [ ZS are then used to compute the predicted source domain label y;,..

using a softmax over the cosine similarity as follows:

— ) = exp(cos(I,T,,)/T)
Pl =ml) = S explcos(IS, To) /1) M

The loss L* is calculated using the predicted labels and the true labels of the image:

M
LS = - Z yg"ue log(ygred) 2
1=1

To enhance the CLIP image encoder’s generalization performance to the target domain, we employ
the low-rank adaptation (LoRA) (Hu et al., 2022) to replace its linear layers. Given an input 2 € R,
the output h € R after adding LoRA is expressed using Wy and AW, W, represents the pre-
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trained weight and AW is the low-rank approximation of two smaller matrices B € R%*" and
A € R4

h = (W, + %AW)Z(,‘ — Wyz + BAz 3)

Here, « is a hyperparameter, and r is the rank of the matrix. The proposed MUEUDA method in-
troduces a teacher network to generate high-quality pseudo-labels for target domain images. During
training, the student network uses these pseudo-labels as supervision information to gradually opti-
mize its predictive capability. The teacher network consists of the CLIP image encoder fy and the
text encoder gg. We obtain pseudo-labels ygesu 4o and predicted labels ygm 4 from teacher-net and

student-net respectively. The loss L7 is calculated as follows:

M

LT = - Z yzj;:esudo log(y;ed) (4)
i=1

3.3 FEATURE PROTOTYPE-BASED SIMILARITY CALCULATION

Before the training, we input the source domain images into the image encoder to obtain their fea-
tures. The feature vectors of images belonging to the same class are averaged to obtain the initialized
feature prototypes { f1, f2, f3,. .., far }» M = |Vs/|. During training, the source domain image with
label j is input into f, to obtain the image feature / jS , which are then used to update the feature
prototypes. The update process is as follows:

fi=Bf+0-8I; )

B is a hyperparameter. We use the obtained I jS and the output of the text encoder to compute the
maximum class prediction probability:

P, = = 4|15, T
) argje{lrgfany}p(y iy, Ty) ©6)

We then compute the cosine similarity between I and the feature prototype fj. corresponding to
the class with the highest prediction probability. The result is denoted as d, calculated as follows:

di = sim(I%, fi)

I? - fy (7)
; ]S’ V= 3 TF
S i) = 2T

3.4 UNCERTAINTY ESTIMATION

A target sample may fall into one of the following four cases: (1) high P} and high dj (ideal
known class); (2) high Pj, and low Pj, (high confidence but semantic shift); (3) low Py and high dj,
(semantically close but low confidence); (4) low Py and low dj, (typical unknown class). For cases
(1) and (2), we argue that high prediction confidence Pj, should dominate the decision, meaning
that the sample should be considered as belonging to a known class even if its dj, is relatively low.
In case (3), high dj indicates semantic closeness to known classes, so the sample should not be
immediately classified as unknown solely due to its low P;. Our goal is to design an uncertainty
estimation method that can effectively learn the decision boundary between cases (3) and (4). The
proposed formula (8) achieves this by setting the score ranking as (1) ~ (2) > (3) > (4):

et pdy <7 (8)

Here, 7 is a learnable parameter. In summary, for cases (1) and (2), we use an exponential term
to amplify the effect of P,. However, this amplification may cause dj, to be neglected, leading to
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samples in case (3) being easily classified as unknown. To address this, we add —dj, as a penalty
term to balance the impact of the exponential term. For cases (3) and (4), since the exponential term
is close to 1, we linearly add dj, to increase its influence, so that samples with high dj, are more
likely to be correctly classified as known classes.

Under mild assumptions, the statistic S, (P, d) = e’ ~¢+d can be interpreted via a Neyman—Pearson
(Lehmann & Romanol 2005)) likelihood ratio test, offering some theoretical insight. See Ap-
pendix [A.I|for details. If the number of samples in a batch that satisfy (8] is greater than or equal to
num = batchsize /4, we update 7 using binary cross-entropy loss. First, we compute the prediction
logits:

=1 — (M +dy) 9)

The true label is set to Yunknown = 1, and the BCE loss is calculated as:

1* = BCELOSS(Yunknown ) (10)

The losses I* for the batch are stored as follows:

L= {IF|eP 4 dy < 1) (11

If the number of samples in the batch that meet the condition is |L|, then LY is computed as:

LU _ ﬁszeL lk7 1f|L| Znum (12)
0, otherwise

During testing, the test image is input into the image encoder f,,. P, and d;, with the corresponding
class are then computed. The uncertainty measure e”* =% 4d}, is compared with 7. If e+~ % 1-d;. <
7, the test image is predicted as unknown, otherwise, the label is assigned as k:

if ePr—dk
label — {unknown7 ife +dp<T (13)

k, otherwise

3.5 OPTIMIZATION OBJECTIVE FUNCTION

The overall optimization objective function in this work consists of L5, LT and LY, expressed as:

Loverall = LS + LT + LU (14)

During the training phase, We utilize L° and L” to update the model parameters, LY is employed
to learn the dynamic threshold 7. In the testing phase, only the student network’s image encoder f,,
text encoder gy, and the updated feature prototypes { f1, fo, ..., far} are retained.

3.6 THEORETICAL ANALYSIS

Here, We explain why MUEUDA performs so well on UniDA based on Theorem 1, the derived
Corollary 1 and Corollary 2.

Theorem 1. Assume there exists a fixed feature representation function Zg for the source domain
and Zr for the target domain, such that Zg, Zr € Z. Let O be the hypothesis space and H € O is
a hypothesis subspace. €g and e denote the classification errors on the source and target domains,
respectively. We define:eg = Ef\il €s;,. M is the number of source domains. For any classifier
h € H and an ideal classifier b’ € H, we have:

1
es(h) —ep(h,h') < §d’HAH(ZS> Zr) (15)
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dyan denotes the HAH — distance. See Appendix [A.2]for the proof process

Corollary 1: For e (h), based on Theorem 1, there exists a hypothesis space H with dimension d,
and m labeled samples drawn from Zg. Let ' = eg(h') 4+ ep(h'), és(h) is the empirical estimate
for source domain, then with probability at least 1 — J, for every h € H:

2 2 4 1
er(h) < és(h) + 4\/edm log % t5+ EdHAH(Z& Zr)+n (16)
Corollary 2: Let A(x) = 1(eP*®) =) 1 g, (x) > 7) denote that the target sample z passes the
uncertainty filtering, with the probability mass ¢ = Pr,.z.[A(z) = 1]. Define the filtered target
distribution as Z7. Then we have

er(h) < és(h) + 4\/2(;77@ IOgZETm + % +n' + %dHAH(ZS; Zr)+(1-0) a7

See Appendixfor the proof process of Corollary 1 and Corollary 2. We observe that )’ represents
the classification error of the ideal classifier on the target and source domains. The main influencing
factors on er(h) are the first term ég(h), which is the empirical training error, the HAH-distance
and (1—o). Specifically, the source domain supervision (L~) is used to minimize é5 (h), multimodal
feature alignment techniques are employed to align the source and target domain subsets, thereby
reducing d 7. In addition, with 0 = Pryz,. [A(z) = 1|(ef*@) =) 4 g, (x) > 7)], this paper
leverages effective uncertainty estimation methods to increase o, enabling the model to accept more
correct known-class samples, which further tightens the upper bound.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOLS

Datasets Our method is validated on 3 popular domain adaptation datasets. Office-31 (Saenko et al.}
2010) contains 31 classes with 4,110 images across 3 domains: Amazon (A), Dslr (D), and Webcam
(W). Office-Home (Venkateswara et al., 2017) comprises 65 classes and 15,588 images across 4
domains: Art (A), Clipart (C), Product (P), and Real-World (R). DomainNet (Peng et al., [2019)
is the largest domain adaptation dataset, 345 classes across 6 domains with approximately 600,000
images total. Following|Fu et al.|(2020), we select 3 domains (Painting (P), Real (R), and Sketch (S))
from DomainNet for our experiments. We conduct experiments on two UniDA scenarios: UniSDA
and UniMDA. Both the source and target domains have private class. For UniSDA, following/Chang
et al. (2022), we divide the label sets of Office-Home and DomainNet to ensure the fairness of
experiments. For UniMDA, we conduct experiments on the Office-31 and Office-Home datasets.
We follow the method of |Yin et al.| (2022); [Yang et al.| (2024b) to divide the label sets. The specific
dataset division methods are described in Appendix [A.3]

Evaluation Protocols We employ the H-score to evaluate the experimental results, which com-
prehensively assesses the model’s classification performance for both common classes and private
classes. The H-score is calculated as:

2 x Accy, X Accy, s

H-score = (18)

Accy, + Accyy. s

where Accy,, represents the classification accuracy for common classes Ve, Accy,., s denotes the
classification accuracy for private classes Y\ s.

4.2 EXPERIMENTS DETAILS

Our framework initializes the text and image encoders using a pre-trained CLIP model with ViT-
B/16 architecture. Fine-tuning based LoRA method with hyperparameters » = 8 and o = 4, which
are determined based on preliminary experiments. The value of 3 is set to 0.999. We employ
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Table 1: Performance Comparison of H-score on Office-31 and Office-Home Datasets for UniMDA

Office-31 Office-Home
Protocols Method

2A 2D 2W  Avg 2A 2C 2P 2R Avg
CLIP (Radford et al.|[2021) 512 469 57.0 51.7 462 423 477 440 45.1
UniOT (Chang et al.|[2022) 45.6 387 362 402 346 422 41.6 375 39.0
Source-Combine NCAL (Su et al.|[2023) 52.0 48.5 57.1 525 454 40.7 28.8 395 38.6
CMU (Fu et al.}[|2020) 724 747 718 730 777 610 648 719 68.9
MOSDANET (Rakshit et al.|[2020) 69.2 58.8 654 645 67.1 52.1 537 615 58.6
TFFN (Li et al.![2023) 68.6 71.6 734 712 689 574 587 641 623
Multi-source HyMOS (Bucci et al.[[2022) 623 749 753 708 757 658 663 708 69.7
UMAN (Yin et al.|[2022) 80.2 728 742 757 846 688 71.0 744 747
APNE-CLIP (Yang et al.[|2024b) 842 76.5 76.1 789 872 69.5 832 864 8l.6
MUEUDA 82.8 832 83.0 830 863 787 889 904 86.1

Table 2: Performance Comparison of H-score on Office-Home for UniSDA
A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg
DANN (Ganin et al.|2016) 424 480 489 455 465 484 458 426 487 476 427 474 462

OSBP (Saito et al.|[2018) 39.6 451 462 457 452 46.8 453 405 458 451 416 469 445
UAN (You et al.|2019) 51.6 517 543 61.7 576 619 504 476 615 629 526 652 56.6
CMU (Fu et al.||2020) 56.0 569 592 670 643 678 547 511 664 682 579 697 61.6

DANCE (Saito et al.[[2020) 267 113 18.0 332 125 143 416 399 333 163 27.1 259 250
DCC (Li et al.[[2021) 580 541 580 746 706 775 643 73.6 750 81.0 751 804 70.1
TNT (Chen et al.[[2022) 619 746 802 735 714 79.6 742 695 827 773 70.1 812 747

UniOT (Chang et al.[|2022) 673 805 860 735 773 843 755 633 860 778 654 819 76.6
OVANet (Saito & Saenkol|2021) 62.8 755 786 70.7 688 750 713 58.6 805 76.1 641 789 717

GLC (Qu et al.|[2023) 643 782 89.8 631 817 89. 77.6 542 889 807 542 859 757
SAN (Zang et al.|[2023) 682 806 867 734 730 798 765 649 833 80.1 67.1 80.1 76.1
MLNef (Lu et al.| [2024) 682 838 850 736 782 822 752 647 851 788 699 839 774

UniAM (Zhu et al.| 2023} 720 87.1 907 803 824 798 850 684 89.0 854 721 86.1 8L7

MUEUDA 790 892 897 862 885 898 868 79.0 90.5 869 793 899 86.2

stochastic gradient descent (SGD) optimization with an initial learning rate of 2 x 103, incorpo-
rating a warmup phase (1 epoch, learning rate 2 x 10~°) followed by cosine decay scheduling. For
prompt tuning, we implement CoCoOp (Zhou et al.| 2022) with Ny = 4 learnable context tokens
initialized with the template a photo of a. The batch sizes is 8. The initial value of 7 is set to 2.1. We
conducted our experiments using the PyTorch framework, and all experiments were run on a single
GeForce RTX 4090 GPU with 24GB memory.

4.3 EXPERIMENTS RESULTS

Comparison with state-of-the-arts: To evaluate the performance of our model under the UniSDA
and UniMDA settings, we compare it with current SOTA methods. Under the UniMDA setting on
the Office-Home dataset, 2A denotes the experiment where Art is used as the target domain. Under
the UniSDA setting, A2C denotes the experiment where Art is the source domain and Clipart is the
target domain. The best results are shown in bold, and the second-best results are underlined. The
results for UniMDA is reported in Table [I, MUEUDA achieves SOTA results on Office-31 and
Office-Home. Specifically, MUEUDA outperforms the previous best method, APNE-CLIP (Yang
et al.| 2024b), which also a CLIP-based method, by 4.1% on Office-31 and 4.5% on Office-Home.
For UniSDA, as shown in Table [2| and Table |3} our model achieves the best results. Specifically,
it surpasses the second-best UniAM (Zhu et al., |2023) by 4.5% and 7.8% on the OfficeHome and
DomainNet datasets, respectively. Taking the OfficeHome dataset as an example, our model does
not exhibit as large a performance gap between the UniMDA and UniSDA settings as UniOT (Chang
et al., [2022) and CMU (Fu et al.} |2020), achieving balanced and superior performance under both
settings. Overall, these results confirm that MUEUDA is highly effective for both UniMDA and
UniSDA, delivering superior performance across various benchmarks and settings.

Analysis of CLIP: We further investigate whether the superior performance of MUEUDA under
UniSDA and UniMDA is solely attributed to CLIP. Based on these two settings, we replace the
backbone networks of some methods with the CLIP model for validation on OfficeHome. The
experimental results are presented in Table |4l We observe that employing CLIP generally leads to
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Table 3: Performance Comparison of H-score on DomainNet
for UniSDA Table 4: Analysis of CLIP on
P2R R2P P25 S2P R2S S2R  Avg  Office-Home for UniSDA and

DANN (Ganin et all2016) 312 293 278 278 278 308 201 UniMDA settings (H-score)

OSBP (Saito et al||2018) 33.6 330 306 305 306 337 320 UniSDA UniMDA
UAN (You et al|2019) 419 436 391 390 387 437 410
CMU (Fu et al} 2020) 50.8 522 451 448 456 510 483 Method Avg Method Avg
DCC (i et al} [2021) 569 503 437 449 433 562 492 CLIP 21 CLIP 45.1
OVANet (Saito & Saenko,[2021) 56.0 517 47.1 474 449 572 507 UniOT 76.6 UMAN 74.7
SAN (Zang et al.|[2023) 578 529 479 484 472 579 520 UniOT+CLIP 783  UMAN+CLIP 756
UniOT (Chang et al.;[2022) 593 478 518 46.8 483 583 52.1 MLNet 774 HyMOS 69.7
GLC (Qu et al}[2023) 633 505 549 509 496 613 55.1 MLNet+CLIP  79.6 ~ HyMOS+CLIP 712
UniAM (Zhu et al ] 2023) 739 609 523 600 514 707 615 MUEUDA 862 MUEUDA 86.1
MUEUDA 759 665 656 663 654 763 69.3

Table 5: Ablation study of different components on the Office-Home dataset (H-score)

. UniSDA UniMDA
Setting

A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg 2A 2C 2P 2R Avg

w/oLoRA ~ 787 889 894 86.0 882 89.6 865 789 903 867 79.3 899 860 863 785 884 898 858
wlo CoCoOp 73.0 835 850 823 833 849 827 73.1 854 831 727 840 811 824 721 833 849 807
wlo LY 219 658 461 435 694 546 584 292 381 333 103 351 421 560 170 705 460 474
MUEUDA  79.0 89.2 89.7 862 88.5 898 868 79.0 90.5 869 79.3 89.9 862 863 787 889 904 86.1

Table 6: Ablation experiments on the OfficeHome dataset (H-score)
UniMDA __ UniSDA

TR~ Tk 4 dy, 86.1 86.2
epk 7(17“ 78‘7(_7_4) 77.8(_3_4)
eFrtdi 82.2039) 81547
P + dg 81.3(.48) 81.0¢.5.2)

Only Pk (T = 08) 79.8(_(,_3) 80,1(_5_1)
Only dy (7 = 0.8)  57.0c20.1)  60.8(254)

performance improvement in the models, but the enhancement is not substantial. This implies that
the outstanding performance of MUEUDA is not merely brought by CLIP.

Components ablation experiment: To evaluate the impact of LoRA, CoCoOp, and LY components
on the model, we conducted module ablation experiments on Office-Home under both UniSDA and
UniMDA settings. The experimental results are presented in Table[5] The results demonstrate that
each module contributes positively to model performance, with the best results achieved when all
components are included.

Uncertainty estimation ablation experiment: We compare against alternative uncertainty metrics,
including a simple linear form P}, + dj, two exponential variants e+ =% and e?**% as well as
thresholding-based baselines that rely solely on Py, or dj. The results is shown in Table [6] As
observed, our method achieves the best performance.

5 CONCLUSION

In this paper, we proposed MUEUDA, a unified model for UniDA that effectively handles both
single-source and multi-source scenarios without compromising performance. By introducing
CLIP-based multi-modal information, our method leverages fine-tuning and prompt learning to
achieve class-level feature alignment between source and target domains. Furthermore, we designed
a new uncertainty estimation method to distinguish between the common and private classes in the
target domain. This strategy is built upon a combination of model-predicted probabilities and the
similarity between features and class prototypes. We conducted extensive experiments and achieve
SOTA performance under both the multi-source setting and the single-source setting. This demon-
strates that our proposed MUEUDA is a unified UniDA framework with remarkable performance.
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A APPENDIX

A.1 A NEYMAN-PEARSON VIEW OF ¢(P~%) 4 d STATISTIC

The following conclusions are derived under idealized distributional assumptions and are intended to
help readers understand the related concepts. Let (P, d) € [0, 1]? be a sample drawn either from the
null distribution Py or the alternative P;. Assume PPy is uniform on [0, 1]? with density fo(P,d) = 1,
while under P; the density is
fi(Pd) o exp(—y Se(Pod)),  Se(P,d) =~ 4d, v >0,

For testing Hy : (P,d) ~ Pg vs. Hy : (P,d) ~ Py, the likelihood ratio satisfies
_ fl (Pa d)

fO (Pa d)
which is strictly decreasing in S.. Hence, for any fixed type-I error «, the most powerful level-a
test rejects Hy (i.e., declares “unknown’) when

Se(P,d) < to,

A(P,d)

x exp(f’ySe(P, d)),

for some threshold ¢, chosen such that
PO(SQ(P, d) < t(,) =a.

By the Neyman—Pearson lemma (Lehmann & Romano, 2005)), for simple hypotheses Hy vs. H; the
most powerful test at level « is the likelihood ratio test

¢*(P,d) = 1{A(P,d) > na},
where 1), is chosen so that Py(A > 7,) = «. In the present construction,

A(P,d) x exp(—’ySe(P, d)),
which is strictly decreasing in S.. Therefore

AP, d)>n, <= S(Pd)<tq,

with ¢, = —% log 7. The event {A > 7n,} has Py-probability « iff {e”~¢ + d < t,} has Py-
probability a. Consequently, the test ¢*(P,d) = 1{e"’~? 4+ d < t,} is the most powerful level-
test.

Under the above simplified assumptions, the statistic S, (P, d) = e£’~?+d is a monotone function of
the likelihood ratio between IP; and IPy. Hence, thresholding S, is equivalent to the Neyman—Pearson
likelihood ratio test, providing an intuitive statistical interpretation for using .S, as a decision rule.

12
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A.2 PROOF OF THEOREM 1

Theorem 1. Assume there exists a fixed feature representation function Zg for the source domain
and Z7 for the target domain, such that Zg, Zr € Z. Let O be the hypothesis space and H € ©
a hypothesis subspace. eg and e denote the classification errors on the source and target domains,

respectively. For multiple source domains, we define:eg = % vazl €s,. For any classifier h € H
and an ideal classifier k' € H, we have:

1
es(h,h') —er(h, 1) < §dHA7-L(ZS> Zr) (19)

dyay denotes the HAH — distance.
Proof: From the definition of HAH — distance, we have:

dar(Zs, 21) =2 swp | Pr [h(a) #W(@)] ~ Pr [h(@) # H(@)
h,h/€H |X~&5 r~zT (20)
=2 sup ‘GS(hﬂhl) - 6T(h7hl)| >2 ‘€S(h7h/) - 6T(h‘>h/)|
h,h'eH

Corollary 1: For er(h), based on Theorem 1, there exists a hypothesis space H with dimension
d, and m labeled samples drawn from Zg. let ' = eg(h') + er(h'), then with probability at least
1— 6, forevery h € H:

2em 2em 4
er(h) <és(h) + 4\/ T log——+ <+ dHAH(Z&ZT) +n 2y
We observe that )’ represents the classification error of the ideal classifier on the target and source
domains. The main influencing factors on er(h) are the first term ég(h), which is the empirical
training error, and the fourth term, the HA%H-distance. Therefore, a good representation should
reduce both empirical training error and domain discrepancy.

Proof: We have:

ET(h) < €T(h/) + GT(h, h/)
<er(h) +es(h, h') + ler(h,h') — es(h, 1)
, 1
< ET(h’) + Eg(h, h ) + §d?-LAH(Zs, ZT) 22)

1
< €T<h,) + €S(h) + GS(h/) + §d’HAH(Z57 ZT)
1
<es(h) + id’HAH(Zs, Zr) +er(h') 4+ €s (W)
The theorem now follows by a standard application of Vapnik-Chervonenkis (Vapnikl [1999) theory

to bound the true error €5(h) by its empirical estimate €;(h). If the source domain provides an i.i.d.
sample of size m, then with probability at least 1 — J,

R 2em 2em 4
esth) < as(h) + 1/ 2 10g 2 ©3)

Plugging this into the previous bound gives,

2 4 1
er(h) < és(h) + 4\/ edml Tm t5+ idHAH(Z& Zr)+1 24)

Corollary 2: Let A(x) = 1(e*®) =) 1 g, (x) > 7) denote that the target sample z passes the
uncertainty filtering, with the probability mass ¢ = Pr,..z,[A(xz) = 1]. Define the filtered target

distribution as ZT. Then we have

13



Under review as a conference paper at ICLR 2026

. 2em 2em 4 1 ~
GT(h) S €S(h) + 4\/d IOgT + g + T]/ + idHAH(ZS; ZT) + (1 - O') (25)
Proof: For any h, h' € H, denote the disagreement set as Sy, v = {x : h(z) # h/(x)}. According
to the definition of HAH, we need to bound |Pry.z.[Sh p/] — Pry~z, [Sh ]| . Since Zp is the
conditional distribution on the event A(z) = 1(efx@=d(@) 4 g, (x) > 7), we can write the
decomposition of Z as

E’T{[Sh,h/] = ETY[Sh,h/ N A] + ETY[Sh,h' A—A] = og;[sh,h/] +(1-o0) ZTP"EA[Sh,h’] (26)
Hence
Pr[Si] — PrlSin] = (1 — o) (Pr[Spiw] — Pr [Spaw
Z;[Sh,h = DrlShw]=(1-0) (Z;[Sh,} ] zT|£A[S” ]) 27)

Taking absolute values,

<(l-o0)-1=1-0 (28)

Pr[Sp n] — Pr[Sh n]
Zr Zr

since the maximum possible difference in probabilities is at most 1. By the triangle inequality,

Pr[Sh ] — Pr[Shn]| < |Pr[Sh.n] — Pr[Shn]| + |Pr[Sh.n] — Pr[Sh, ] (29)
Zs Zr Zs Zr Zr Zr
Then we have,
duan(Zs, Zr) < duau(Zs, Zr) +2(1 — o) (30)
Combining Equation (23), we have:
2 2 4 1 ~
er(h) < és(h) + 4\/‘;”‘ log == + = +0 + sduan(Zs, Zr)+(1—0) G

A.3 DATASET SPLITS
A.3.1 OFFICE-31

For UniMDA, we adopt the label split approach from |Yang et al.[(2024b). We select the 10 classes
shared between Office-31 and Caltech-256 as common classes, class 1-7 and 4-10 are the common
classes for the 2 source domains. The remaining 21 classes are sorted alphabetically. Specifically,
the last 10 classes are used as target domain private classes, while the remaining 5 and 6 classes are
assigned as source domain private classes for the 2 source domains, respectively.

A.3.2 OFFICE-HOME

For UniSDA, we follow the label split approach of [You et al.|(2019). We use the first 10 classes as
common classes, the next 5 classes as source domain private classes, and the remaining classes as
target private domain classes.

For UniMDA, we adopt the label division method from Yang et al.| (2024b)); |Yin et al.| (2022). The
last 50 classes in alphabetical order are treated as target domain private classes. We use the first 10
classes as the common classes, which are assigned alphabetically to the 3 source domains as follows:
classes 1-4, 4-7, and 7-10 for each source domain, resulting in 4 common classes per domain. The
next 5 classes are used as source domain private classes, which are also assigned alphabetically:
classes 1-2, 2-3, and 4-5 to the 3 source domains, with each domain having 2 private classes.
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A.3.3 DOMAINNET

For UniSDA, we follow the label split method of [Fu et al.| (2020). We use the first 150 classes as
common classes, the next 50 classes as source domain private classes, and the remaining classes as
target domain private classes. Due to the large dataset size, we select three domains (P, R, and S) for
our experiments.
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