Under review as a conference paper at ICLR 2026

LEARNING TO EVICT FROM KEY-VALUE CACHE

Anonymous authors
Paper under double-blind review

ABSTRACT

The growing size of [Large Language Models (LLMs)| makes efficient inference
challenging, primarily due to the memory demands of the autoregressive [Key-Value]
cache. Existing eviction or compression methods reduce cost but rely on
heuristics, such as recency or past attention scores, which serve only as indirect
proxies for a token’s future utility and introduce computational overhead. We
reframe cache eviction as a reinforcement learning (RL) problem: learning
to rank tokens by their predicted usefulness for future decoding. To this end,
we introduce [KV Policy (KVP)] a framework of lightweight per-head RL agents
trained on pre-computed generation traces using only key and value vectors. Each
agent learns a specialized eviction policy guided by a holistic reward, derived from
future utility, that evaluates the quality of the ranking across all cache budgets, re-
quiring no modifications to the underlying or additional inference. Evaluated
on the long-context benchmark RULER and the multi-turn dialogue benchmark
OASST2-4k, [KVP] significantly outperforms baselines. Furthermore, zero-shot
tests on standard downstream tasks indicate that[KVP| generalizes well beyond its
training distribution. These results demonstrate that learning to predict future token
utility is a powerful and scalable paradigm for adaptive KV cache management.

1 INTRODUCTION

Large Language Models (LLMs) based on the Transformer architecture (Vaswani et al.,2017) have
revolutionized natural language processing, demonstrating remarkable capabilities across a wide range
of tasks (Brown et al., 2020 Onden & Alnour, 2023 Touvron et al., 2023). However, their practical
deployment, especially for applications involving long sequences or interactive sessions, is often
burdened by substantial computational requirements during inference. A critical bottleneck arises
from the Key-Value (KV) cache, a mechanism inherent to autoregressive generation in Transformers
(Sheng et al.,|2023). This cache stores the keys and values of previous tokens, avoiding redundant
computations but growing linearly with the input and generated sequence length. For long contexts,
the KV cache can consume tens or even hundreds of gigabytes of memory, rapidly exceeding the
capacity of modern hardware accelerators and necessitating strategies for efficient management.

To address this memory challenge, a variety of KV cache management techniques have been proposed.
These range from simple heuristics like keeping only the most recent tokens (sliding window), to more
sophisticated methods that leverage insights into attention patterns. Approaches like H20, SnapKYV,
and TOVA [Zhang et al.|(2023); |Li et al.| (2024); |Oren et al.|(2024) use signals such as past attention
scores or attention sinks to identify and retain important tokens. Others employ quantization to reduce
the memory footprint (Dettmers et al., 2022} Xiao et al.,|2023)) or use low-rank approximations to
represent the cache state more compactly (Singhania et al.,|2024; Ribar et al.| 2024).

While these hand-crafted policies have advanced the state of the art, they are fundamentally built on
heuristics that serve as indirect proxies for a token’s future importance. They assume that what was
important before will remain important. This assumption might not always hold, as the informational
needs of generation are dynamic and content-dependent. A token’s true value is determined by its
utility to future decoding steps, a quantity these methods do not directly optimize for. Consequently,
they are prone to suboptimal eviction decisions, leading to an irrecoverable loss of critical information
and degraded generation quality. Even post-hoc compression methods based on attention signals are
fundamentally backward-looking and have additional drawbacks: they require repeated computation
of attention statistics, which introduces significant overhead; and they are not compatible with
efficient implementations like FlashAttention (Dao et al., [2022)), limiting their practicality.

Under review as a conference paper at ICLR 2026

KVR

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?

Future Attention Importance

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?

StreamingLLM

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?

<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

Figure 1: Future token importance for KV cache eviction. Effective KV cache eviction requires
identifying tokens that will receive little or no future attention. (center) We roll out a sample KV cache
and measure the true cumulative future attention for each token, then rank tokens by this importance
and color them accordingly (bright = high rank, white = low). (right) Importance estimated by
the fixed sink-and-recency heuristic of StreamingLLM deviates substantially from true importance
ranking. (left) Our learned policy closely recovers the complex, non-local structure of future attention
despite using only past keys and values, without access to queries, attention scores, or future tokens.
We expand the comparison with all strategies in Figure@

In this work, we move beyond hand-crafted policies and reframe KV cache eviction as a Reinforce-
ment Learning (RL) problem: learning an attention-free policy that selects which tokens to evict. We
formulate this learning problem as a ranking task, where the agent orders tokens by their predicted
future utility. As qualitatively illustrated in Figure[I] a learned policy can successfully approximate a
token’s future utility, a complex, non-local structure, where simple heuristics fail. Such a ranking
enables a highly efficient and flexible strategy: eviction is performed by discarding the lowest-ranked
entries to meet any memory budget. As a reward signal, we define the ranking successful if for any
given cache size, the most valuable information is retained, thus minimizing performance degradation.

We introduce [KV Policy (KVP)] a framework that trains a distinct, lightweight RL agent for each
KV head in the model. This per-head specialization allows each policy to adapt to the unique
attentional patterns of its corresponding head. The agents are trained efficiently on pre-computed
generation traces without any additional inference, using only the key and value vectors as input
and requiring no architectural changes to the underlying LLM. To train the agents, we introduce a
reward that holistically evaluates the quality of the policy’s sorting for all possible cache budgets.
For every possible cache budget, we measure how much essential information in the future would be
erroneously evicted with the candidate sorting when only the top tokens from the cache are kept.

Evaluated on long-context synthetic benchmark RULER (Hsieh et al.| [2024) and a multi-turn natural
language benchmark OASST2-4k (Kopf et al., 2023), significantly outperforms strong heuristic
baselines, demonstrating that learning specialized policies to predict the future utility of tokens is
a powerful and scalable paradigm for KV cache eviction. Evaluation in a zero-shot generalization
setting on standard downstream benchmarks from the EleutherAl Language Model Evaluation
Harness (Gao et al.| 2024) suggests that[KVP|retains strong performance even out of distribution.

In summary, our main contributions are:
* We reframe KV cache eviction as a learning problem: ranking cache entries by their predicted
future utility.

¢ We introduce a system of lightweight, per-head RL agents that learn specialized
sorting policies using only key and value vectors without using any attention information.

* We propose a holistic reward that evaluates eviction policies across all cache budgets without
additional LLM inference.

We show that substantially improves long-context performance over strong baselines
and generalizes to unseen domains.

2 RELATED WORK

Attention-Based Eviction. Eviction-based approaches aim to choose a subset of the KV cache.
Early methods used simple heuristics like First-In-First-Out (FIFO) or Least Recently Used (LRU)
(X1ao et al., |2024). More recent work leverages the inherent sparsity in attention patterns. Techniques
like StreamingL.LM (Xiao et al., 2024) and H20 (Zhang et al., 2023) observe that initial tokens
("attention sinks") and recent tokens often capture most of the required context, allowing for the
eviction of intermediate tokens. Others explicitly analyze attention scores or structures to identify

Under review as a conference paper at ICLR 2026

and retain important tokens (Cai et al.| [2024), sometimes using the current query to inform eviction
(L1 et al.| 2024} |Lee et al., 2024). Although our work is an eviction methodology, it departs from this
paradigm by instead learning a forward-looking policy to directly predict a token’s future utility.

Memory Hierarchy Management. Recognizing the limited size of fast GPU memory, some
approaches utilize system memory (CPU RAM) as a secondary cache layer (Chen et al.| [2024;
Sheng et al., [2023). Less critical or older KV entries are offloaded to the CPU and retrieved only
if needed later, possibly in pages|Tang et al.|(2024). While this allows for effectively larger cache
sizes, it introduces significant latency (a reload cost) when accessing offloaded entries. Policies for
deciding what and when to offload are often heuristic. While our work focuses on eviction rather
than offloading, the learned ranking it produces could provide a principled basis for such hierarchical
management: the lowest-ranked entries are natural candidates for being moved to slower memory.

Representation Compression. Instead of removing entries, another line of work focuses on
reducing the memory required per entry. Quantization techniques reduce the numerical precision
(e.g., to 8-bit integers or lower) of keys and values, significantly cutting memory usage, often with
minimal performance impact (Dettmers et al., 2022 Xiao et al.| 2023). Low-rank approximation
methods represent the key and value matrices using lower-dimensional projections, compressing
the cache state (Singhania et al., |2024; Ribar et al., 2024). These techniques are orthogonal and
complementary to eviction strategies, as one could combine any eviction policy with a compression
policy by simply applying eviction policy to a cache of compressed entries.

Learned Approaches. Applying machine learning to directly optimize cache management policies
is less common than heuristic approaches. While learning has been used extensively for general
caching problems (Afrin et al.| 2024} Shuja et al., 2020; \Wang & Friderikos), |2020), its application
specifically to the dynamic nature of the Transformer KV cache is emerging (Chari et al., 2025;
Cetin et al.||2024; [Nawrot et al., 2024; |Ge et al.,|2024). Our work falls into this category, utilizing
learning to improve KV cache management. Our approach is distinguished by utilizing RL to train a
lightweight policy and a novel reward signal, eviction error across all cache budgets, ensuring robust
performance under varying memory limits.

Overall, while prior work has addressed KV cache constraints through heuristics, memory hierarchies,
or compression, our approach introduces an RL framework that casts eviction as a ranking problem.
By training lightweight, per-head policies to predict tokens’ future utility and optimizing them with a
global, budget-agnostic reward, we offer a more adaptive solution to KV cache management.

3 METHODOLOGY: LEARNING TO EVICT KV CACHE ENTRIES

We consider the problem of KV cache eviction: given n tokens X' = {; };¢[,,) and a budget b, select
a subset S* C X maximizing some downstream performance reward R as

Sy € argmax g, sc 2 LU(S)- (1

Because generation is autoregressive and budgets vary over time, a practical solution must han-
dle arbitrary n and all b € [n]. Although this selection problem is NP-hard even for linear re-
wards (Nemhauser et al.,|1978)), it becomes structured under two mild conditions: (i) uniqueness:
each &y is unique and (ii) nestedness: S;7 C S;, | for all b. Uniqueness can be straightforwardly
achieved with simple tie-breaking and nestedness is natural because tokens essential under a small
budget should remain so as capacity grows. Under these constraints KV cache eviction problem is
equivalent to KV cache ranking with proof deferred to Appendix[A.]

Proposition 1. Assume (i) uniqueness of each Sy and (ii) nestedness: Sy C Sy, for all b. Then,
there exists a total order (ranking) w such that

Sy={ien]: n(i)<b} forallb.
Equivalently, there exists a scoring function whose top-b elements realize Sy for every b.

Proposition[I]lets us reformulate eviction as learning a single budget-agnostic scoring function. At
any generation step, the cache entries are ordered from most to least valuable for future decoding

Under review as a conference paper at ICLR 2026

using the learned scoring function; for a given budget b, we retain the top-b. A high-quality ranking
preserves critical information across all budgets, minimizing degradation.

To learn this scoring function, we adopt a reinforcement-learning (RL) approach. We parameterize
a stochastic ranking policy and directly optimize the true discrete end-to-end reward using policy-
gradient methods. We later analyze this choice against differentiable relaxations of sorting (Prillo &
Eisenschlos|, [2020; \Grover et al.,|2019; Blondel et al., [2020)) in Section@

We employ a lightweight RL agent, governed by parameters 6, to define the scoring function f(;).
To capture the specialized functions of different attention mechanisms, we train a distinct agent for
each KV head in the LLM. To this end, we introduce a framework for efficiently training
lightweight, per-head RL agents to perform this ranking. In the remaining of this section, we first
discuss the agent architecture, then the reward, and finally the learning process.

3.1 KV CACHE EVICTION AGENT

In order to formulate learning to sort as an RL problem, we largely follow the Plackett-Luce model
(Plackett, [{1975). Given a set of input tokens {xi},;e[N], we learn a parametric scoring function
f(x;;0) which assigns a score to each input token x;. This scoring function induces a stochastic
sorting policy mg which samples permutation o = (071, ..., o) sequentially as;

N
_ exp (f(z5,30)) 2
mololen, o) = [T 05 ’

At each step 7, the next element o; is sampled proportionally to its score, normalized over the
remaining tokens. This process defines a valid distribution over all permutations. The scoring
function f(;) together with the sampling policy, forms our KV cache eviction agent. We next
specify the parameterization of f(;6).

Scoring Function The representation for token x; is the concatenation of its key vector k;, value
vector v;, and its original position pos; as x; = (k;,v;, pos;). We define the scoring function f(; 6)
as a small Multi-Layer Perceptron (MLP) parametrized with 0 as f(x;0) = M LPy(k;, v;, pos;).
Crucially, the policy relies only on information available in the cache and does not require access to
future information, previous attention scores or any query embedding.

Efficient Parallel Sampling with Gumbel-Sort While Equation defines the distribution,
sequential sampling is inefficient. Fortunately, a permutation can be sampled from this distribution in
a single step using the Gumbel-Sort (Mena et al., [2018)). Given the scores f(x;; 8), we generate i.i.d.
noise samples g; ~ Gumbel(0, 1). A permutation o is then sampled by sorting the perturbed scores:

o = argsorten (f(zi;0) + g:) 3

This procedure is non-autoregressive, fully parallelizable on modern hardware, and allows us to
sample an entire permutation with just one forward pass of the scoring model and a fast sort operation.
This is critical for efficient training.

3.1.1 GLOBAL REWARD FOR OFFLINE RL

A key component of our framework is a reward signal that globally evaluates the quality of an
agent’s entire ranked output, directly optimizing for the efficient preservation of information across all
possible cache budgets. More importantly we define this reward in a way to enable training without
any additional LLM inference.

Consider the input set of n tokens X' = {x; };c[] and a candidate permutation {0 };c,), ordered
from most to least important. The total reward is defined as the sum of reward over all possible target
cache sizes 1 < b < n — 1. Since the kept tokens are always the top-b, this translates into

n—1

R(Ul,...,an;X):ZRb(an,b,...,an;X) 4
b=1

where R is the reward for a specific budget b.

Under review as a conference paper at ICLR 2026

Algorithm 1 RL Training Loop on Pre-Computed KV Traces

1: Input: Static dataset of pre-computed traces over m sequences each with length n;,j € [m]
denoted as X7 = {x? }ien, containing Q, K, V tensors.

2: while training not converged do

3: Sample a data item j ~ Unif(m) and a cache size n ~ Unif(n;).

4: Sample K permutations from the agent 0¥, ..., 0k ~ my(o|2], ..., 20), k € [K]
5: Calculate reward R(o¥, ..., a%; X7) using equation 4]

6: Update 6 using equation [6]

7: end while

We define R? based on an importance score derived from the future attention patterns. Consider f
future tokens (41 to 4 f) in the training data after n input tokens and the attention as A(z;, z;),

we define the importance of token x; as the total future attention it accumulates: Z?;{ 11 Alwis zj).

Given the permutation ¢, a cache of budget b retains the top-b tokens o1, . . ., o, and evicts the rest.
The cost for this budget is the total importance of the evicted tokens. We define the per-budget reward
RY as the negative of this cost for all evicted tokens:

n n+f
Rb(al,...,an;X):— Z Z A(zo,, 7)) o)
i=b+1j=n+1

For models with Grouped-Query Attention (Ainslie et al.| 2023)), the attention score A(x;, x j) from a
future query group is the maximum attention value across all queries within that group.

To create an objective invariant to scale and attention scores distribution, we normalize the total
cost by the cost incurred by an optimal ranking o*. The final reward we optimize is normalized as
R(01,-,003X) /R (0 ,...,04:%). In the experimental section, when we refer directly to R?, we always
refer to its normalized version R"(01.--.0n:X) /R (o7 ,....0%:X).

3.2 PER-HEAD RL AGENT AND EFFICIENT TRAINING

A significant advantage of our method is its training efficiency. The agents are trained entirely offline,
obviating the need for live LLM inference within the RL optimization loop. This is due to the fact
that our usefulness score is function of true sequences, not generated sequences. First, we generate a
dataset by running the base LLM on a training corpus. For each sample, we store the full sequence of
queries, keys, and values. The attention matrices are not stored due to their prohibitive size.

During training, we sample a sequence and a cache size to be evicted from. We update the parameters
0 of the agent using a policy gradient algorithm. Since our reward R (o) is a terminal reward assigned
only after the entire permutation o is generated, the objective is J(0) = E,~r,[R(c)]. We use the
REINFORCE algorithm with a Leave-One-Out (RLOO) baseline (Williams, [1992; |Ahmadian et al.,
2024) to reduce variance. For an episode (permutation) o* within a batch of K episodes, the baseline
R is the average terminal reward of all other episodes in the batch. Considering the advantage,
R(c%) — R, the gradient is thus estimated as:
1 K n
Vo (0) ~ = 3 [(R(0") = R) Y Vologmo(ot]X)]. ©)
i=1

K
k=1

We summarize the training in Alg.[T]and defer the further implementation details to Appendix[A.2]

Training per-head agents from offline traces is highly scalable. At inference, the learned policy for
each head ranks its KV entries, and the trailing entries are evicted based on the budget.

4 EVALUATION

We hypothesize that a high-quality KV cache eviction policy can be trained entirely offline and
deployed at inference time using only static token features (keys, values, and positions). To validate

Under review as a conference paper at ICLR 2026

this, we conduct a comprehensive evaluation of across multiple language modeling bench-
marks and a wide range of cache budgets. Our results show that[KVP|consistently shows stronger
downstream performance relative to existing heuristics, including methods that exploit privileged,
query-specific information. We also provide ablation studies to analyze the design choices that enable
this performance.

4.1 EXPERIMENTAL SETUP

Base Model and Datasets. Our experimental setup is centered on the Qwen2 . 5-7B—Chat model
(Yang et al.l 2024} [Wang et al., 2024), a state-of-the-art transformer LLM. We train and evaluate
our [KVP| agents using two distinct long-context benchmarks: RULER-4k (Hsieh et al [2024), a
synthetic dataset designed to probe long-context reasoning with sequences of approximately 4500
tokens; and OASST2-4k, a curated subset of the OpenAssistant Conversations Dataset (Kopf et al.
2023) featuring multi-turn dialogues of similar length. To assess generalization, we further perform
zero-shot evaluation on four standard downstream benchmarks from the EleutherAl Language Model
Evaluation Harness (Gao et al.|, [2024): BoolQ (Clark et al.,|2019), a reading comprehension task
framed as yes/no question answering; ARC-Challenge (Clark et al., [2018)), a collection of science
exam questions requiring multi-step reasoning; MMLU (Hendrycks et al.,|2021)), a benchmark testing
expert-level knowledge across a wide range of domains; and HellaSwag (Zellers et al 2019), a
commonsense sentence completion task. Importantly, KVP|is not trained or fine-tuned on these tasks.
Please refer to Appendix [A.2]for further implementation details.

Baselines. We benchmark [KVP|against two main categories of KV cache management techniques:
attention-based and attention-free. The first category includes state-of-the-art methods like TOVA
(Oren et al.l 2024) and SnapKV (Li et al.,|2024). These methods leverage attention scores to identify
important tokens, which introduces computational overhead by tying the eviction strategy to the
attention calculation step. The second, more efficient category of attention-free baselines, to which
our own|[KVP|agents belong, operates independently of the attention mechanism. This group includes
a Random eviction baseline, the recency-based StreamingLLM (Xiao et al., [2024), and several
approaches that prune tokens based on their key embeddings. These include methods based on
statistical patterns (LagKV (Liang et al.,|2025))), vector similarity (KeyDiff (Park et al., 2025)), and
L2 norm (K-Norm (Devoto et al.l 2024)). To ensure a fair comparison, we adapt all baselines to our
ranking-based framework by converting their binary keep/evict decisions into a full token permutation,
enabling evaluation with consistent metrics.

Budgeting and Compression Schedule. For all online evaluations, we follow a consistent com-
pression protocol. First, the entire context, including the final user message or question that prompts
the generation, is processed by the LLM to populate the initial KV cache (the “prefill” stage). Second,
the specified compression method is applied to this pre-populated cache to reduce its size to the target
budget. Finally, the model generates the response autoregressively using the compressed cache. This
setup tests the ability to compress a large context before generation begins. To isolate the performance
of the core ranking strategy, we apply a uniform compression budget across all heads and layers for
all methods. This ensures a fair comparison focused purely on the quality of the eviction strategy
itself, rather than on budget allocation heuristics. While head-specific or layer-specific budgeting is
an orthogonal and promising direction for further performance improvements, our approach provides
a clear and interpretable evaluation of the underlying policies.

Inference Efficiency. Our[KVP|agents make their ranking decisions using only the Key and Value
vectors, and their position in the context. This makes[KVP|highly efficient, as it avoids re-computing
attention scores. In contrast, attention-based baselines like TOVA and SnapKV are evaluated using
the attention scores generated during the prefill stage, giving them access to information about how
the final user message, for example, attends to the rest of the context. Our method is therefore
benchmarked against baselines that have access to more direct, query-specific information at the time
of compression. We highlight in all the figures the attention-based baselines with dashed lines.

Absolute vs. Relative Cache Size. A final methodological note concerns our use of cache size.
Throughout our evaluation, we report performance as a function of absolute KV cache size (i.e.,
the number of tokens retained) rather than a relative compression ratio. This decision is motivated

Under review as a conference paper at ICLR 2026

by practical application: practitioners operate under fixed memory constraints, making an absolute
token budget a more direct and interpretable measure of resource cost. In contrast, a compression
ratio’s impact on memory is dependent on the initial context length, making it a less stable metric for
cross-scenario comparison.

4.2 DOWNSTREAM PERFORMANCE

This section assesses the real-world efficacy of each compression method. We apply the strategies to
a live LLM, reducing the KV cache to a target budget after the prefill before measuring performance

on several downstream benchmarks.

RULER 370 OASST2
o L —>— Lagkv —e- TOVA
" : - KVP StreamingLLM
3.68 —e— KeyDiff Random
K-Norm ® - SnapKV

x

Accuracy
-

Kvp
—o— KeyDiff
—e- TOVA

@~ SnapKV

60

—>¢— Lagkv

StreamingLLM
Random
K-Norm

2000 3000

Cache Size

4000

5000

3.66

Dataset Perplexity

1=
S}

3.60

0 500 1000 1500 2000

Cache Size

2500 3000 3500

Figure 2: Overall accuracy on the RULER benchmark (Left) and perplexity on the OASST2-4k test
set (Right), as a function of the absolute KV cache size. achieves the highest accuracy and
lowest perplexity across most of the possible cache sizes.

RULER benchmark. We evaluate performance on the RULER benchmark using its official text-
based accuracy metric, which requires generating the correct answer for long-context reasoning tasks.
This tests whether the methods preserve the specific, often non-local, information needed for complex
problem-solving. Figure [2](left) shows that[KVP| consistently outperforms all baselines, retaining
higher accuracy as the cache budget shrinks. This result is a direct consequence of its learned policy:
unlike heuristics that might discard old but crucial clues, learns to identify and keep these
high-value tokens, regardless of their position, enabling the model to succeed at the task. A detailed
breakdown of performance across all RULER subtasks, along with their corresponding eviction error
curves, is provided in Figure [§] further highlighting the robustness of our method. This result is
particularly noteworthy given that RULER’s structure heavily favors strategies that can use the final
question to identify relevant context; an advantage held by attention-based baselines but not by

OASST?2 benchmark. We evaluate the efficacy of KV cache compression by its impact on per-
plexity (PPL), a measure of the model’s next-token prediction capability. An effective compression
method should minimize PPL degradation. As shown in Figure [2] (right), [KVP| consistently achieves
lower perplexity than baselines that rely solely on KV embeddings. Furthermore, it often outperforms
methods that use additional information across nearly all cache sizes. In contrast, heuristic approaches
like StreamingLLM exhibit a sharp increase in PPL as the cache budget decreases, confirming the
brittleness of their fixed-rule strategies. The superior performance of demonstrates a direct link
between our training objective and the preservation of the model’s downstream capabilities. These
findings are further corroborated by results on the RULER benchmark (Appendix Figure[6), where
[KVP|maintains a similar advantage.

Generalization to other benchmarks. LLMs are widely regarded as general-purpose computa-
tional systems and their utility depends on robust performance in out-of-domain scenarios. Even
though [KVP|enables efficient training of domain specific policy using only unlabelled dataset of se-
quences, we evaluate its zero-shot generalization performance on a set of standard downstream tasks.
Specifically, we test agents trained on RULER (KVP|?) and OASST?2) on ARC-Challenge,
and BoolQ, reporting raw accuracy at varying KV cache sizes. Importantly, the “prefill” stage does

Under review as a conference paper at ICLR 2026

not include the question in BoolQ, so as to better reflect real-world scenarios where a given text is
compressed for different questions not known in advance. Results on MMLU and HellaSwag are
instead presented in Appendix [A.3] This evaluation is designed to assess whether policies optimized
for long-context efficiency maintain performance on short-context benchmarks that probe factual
knowledge, multi-step reasoning, and commonsense inference.

The results, presented in Figure 3] demonstrate that IKVP|consistently achieves competitive perfor-
mance. Across the diverse benchmarks, both K VP a rank at or near the top, outperforming
most heuristic baselines and closely tracking the accuracy of the uncompressed model, demonstrating
minimal degradation at different cache size reduction. While both agents generalize effectively, some
specialization emerges: (trained on conversational data) shows an advantage on the natural
question answering task BoolQ, whereas (trained on synthetic reasoning sequences) performs
best on the expert-knowledge benchmark MMLU as shown in Figure [7]in Appendix [AJ3] These
results highlight that the adaptive policy learned by [KVP| generalizes far beyond their training domain,
successfully preserving the model’s core capabilities. This confirms that[KVP]is not a specialized tool
with significant trade-offs, but a robust technique that can be enabled by default to provide memory
savings while minimizing degradation to the model’s general utility.

ARC CHALLENGE

85.0

%
o
(=}

> >
2 g
=750 =]
3 = 46.0 ;i
S 3
< <
700 i 44.0 — =~ Uncompressed K-Norm
’ e o— KVPS StreamingLLM
42.0 ¢ KVP? Random
65.0 ol —><— Lagkv —eo- TOVA
400 —o— KeyDiff @~ SnapKV
20 30 40 50 60 70 80 90 100 20 25 30 35 40 45 50
Cache Size Cache Size

Figure 3: Average test accuracy on (Left) BoolQ and (Right) ARC Challenge as a function of KV
cache size. Higher is better.

4.3 ABLATIONS

To validate the core design choices of [KVP} we conduct two key ablation studies. First, we analyze
our proposed reward function, as defined in Equation (#). Second, we study our use of RL instead of
supervised surragates of sorting.

Is the reward function R effective? To confirm that our reward R enables effective learning of
eviction policies, we measure the negative per-budget reward, —R°, on unseen test data. This value
corresponds to the total future importance of the tokens evicted at a given budget b which our agent is
trained to minimize across all budgets simultaneously.

The results in Figure fa] show a clear separation between methods: while attention-aware methods
that use query information at inference time (dashed lines) form a distinct, low-loss cluster, heuristics
without attention scores form a high-loss cluster. This is rather expected as the target, future attention
scores, is highly related to attention. Crucially,[KVP|performs within this top-tier group, achieving
a loss comparable to methods like TOVA and SnapKV without using their privileged information.
This demonstrates that our offline RL training successfully distills the principles of attention-based
ranking into an efficient, static policy. Furthermore, the analysis reveals the importance of policy
specialization across heads. A fixed heuristic like StreamingLLM can be effective for certain heads
(see layer 22, head 0 in Figure[I0) but detrimental for others (see layer 19, head 0 in Figure[9). Even
KeyDiff, a strong attention-free heuristic, exhibits hard failure modes (see layer 2, head 0 in Figure|10)).
This result, together with a comprehensive sweeps across all layers and heads in Figures Qand%
confirms that[KVP|learns diverse patterns that cannot be captured with a single heuristic.

Under review as a conference paper at ICLR 2026

0.05 OASS‘TZ | 0.10 OASST2
—e- TOVA StreamingLLM —e— RL Agent —— S2 '
KVP K-Norm —¥— S3 S1
0.04 ® = SnapKV —e— KeyDiff 0.08

—>¢— Lagkv Random

< <
b b

0.02 0.04

0.01 : 0.02

Q Mﬁ\ hbuidtles Ll Lg) 8
oot “‘C-Q‘._._ 1 B ¢ "”’*W%k 000 .
: 0 500 1000 1500 2000 2500 3000 : 0 500 1000 1500 2000 2500 3000
KV Cache Size KV Cache Size

(a) Effectiveness of the reward: performs onpar (b) RL vs Supervised Surragates of Sorting: The RL
with attention-aware methods (dashed lines) despite agent successfully reaches low cost (—R?) while the
not using their privileged information by learning to supervised surrogate (Blondel et al., 2020) fails. We
predict future attentions. A full visualization for all the tested the supervised approach with three learning rates:
layers is in Figures[9]and [T0} 5x107%,5x 1075 and 5 x 107%.

Figure 4: Cost per-budget (—R") on the OASST? test set for a representative head (layer 10, head 0).

Is RL necessary? We ablate the necessity of using RL by comparing it to a supervised learning
baseline using differentiable surragate of sorting (Blondel et al., 2020). This baseline uses the same
data and network architecture but replaces the policy gradient objective with a length-normalized
Mean Squared Error loss between predicted soft ranks (from a differentiable sorter (Blondel et al.,
2020)) and the ground-truth ranks. As shown in Figure @b] this leads to poor performance: the
supervised agent fails to learn an effective policy, evidenced by its high and unstable cost curve. In
contrast, the RL agent’s cost is low and stable confirming that RL is better suited for learning KV
cache policies.

We conjecture that the KV cache eviction task is inherently sparse: only a small fraction of tokens are
critical for future generation. This sparsity poses a fundamental challenge for supervised methods
using differentiable sorting surrogates. Such methods face a trade-oft: a low temperature provides
vanishing gradients, while a high temperature yields dense but biased gradients that incorrectly
disperse importance across irrelevant tokens. Policy gradient methods bypass this issue by providing
an unbiased learning signal through the non-differentiable sort operation. This allows for direct credit
assignment, concentrating the learning signal on the few ranking decisions that matter.

5 CONCLUSIONS AND FUTURE WORK

In this work, we introduced a new paradigm for KV cache eviction by reframing it as a learnable
sorting problem. We proposed [KVP} a system of lightweight, per-head policies trained to rank cache
entries by their predicted future utility. The core of our method is a reward signal based on the
ranking quality across all possible memory budgets and its efficient inference-free optimization via
reinforcement learning. This approach allows for fine-grained, adaptive memory control without
requiring architectural changes or costly live[LLM|inference during training.

Our evaluations on long-context benchmarks demonstrate that[KVP|consistently outperforms strong
heuristic baselines, achieving lower perplexity degradation and higher task accuracy under tight
memory constraints. This validates our central hypothesis: directly learning a specialized sorting
policy is a more powerful and robust strategy than relying on handcrafted, backward-looking proxies
for token importance. By preserving model fidelity more effectively, establishes a promising
direction for building more efficient and capable LLM inference systems.

Future work could extend this framework in several exciting directions. A natural next step is to
develop an adaptive budget allocation policy that dynamically assigns memory where it is most
needed across heads and layers. Furthermore, while [KVP]is highly efficient, it does not model inter-
dependencies between heads. A powerful extension would be to explore joint, end-to-end optimization
of all policies, which could capture these complex dynamics at the cost of requiring online training.

Under review as a conference paper at ICLR 2026

REFERENCES

Sadia Afrin, Md Abdullah All Mahmud, Abdus Salam, Md Abdullah Al Jubair, and Muhammad Firoz
Mridha. Machine learning for predictive database caching strategies: A state-of-the-art review. In
Proceedings of the 3rd International Conference on Computing Advancements, ICCA 2024, pp.
540-547. ACM, 2024. doi: 10.1145/3723178.3723250.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. ArXiv preprint, abs/2402.14740, 2024. URL https:
//arxiv.org/abs/2402.14740.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
In EMNLP, Singapore, 2023.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In ICML, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue
Dong, Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression
based on pyramidal information funneling. ArXiv preprint, abs/2406.02069, 2024. URL https |
//arxiv.org/abs/2406.020609.

Edoardo Cetin, Qi Sun, Tianyu Zhao, and Yujin Tang. An evolved universal transformer memory.
ArXiv preprint, abs/2410.13166, 2024. URL https://arxiv.org/abs/2410.13166,

Vivek Chari, Guanghui Qin, and Benjamin Van Durme. Kv-distill: Nearly lossless learnable context
compression for llms. ArXiv preprint, abs/2503.10337, 2025. URL https://arxiv.org/
abs/2503.10337.

Shaoyuan Chen, Yutong Lin, Mingxing Zhang, and Yongwei Wu. Efficient and economic large
language model inference with attention offloading. ArXiv preprint, abs/2405.01814, 2024. URL
https://arxiv.org/abs/2405.01814.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=H4DgfPSibmx.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. ArXiv preprint, abs/2208.07339, 2022. URL https
//arxiv.org/abs/2208.07339.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective
[_2 norm-based strategy for kv cache compression. ArXiv preprint, abs/2406.11430, 2024. URL
https://arxiv.org/abs/2406.11430.

10

https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2410.13166
https://arxiv.org/abs/2503.10337
https://arxiv.org/abs/2503.10337
https://arxiv.org/abs/2405.01814
https://openreview.net/forum?id=H4DqfPSibmx
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2406.11430

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 2024. URL https://zenodo.org/records/12608602.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive KV cache compression for llms. In /CLR, 2024.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In /CLR, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In /CLR, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? ArXiv preprint, abs/2404.06654, 2024. URL https://arxiv.org/abs/2404|
06654.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richard Nagyfi, Shahul ES, Sameer Suri, David
Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander
Mattick. Openassistant conversations - democratizing large language model alignment. In NeurIPS,
2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative inference
of large language models with dynamic kv cache management. ArXiv preprint, abs/2406.19707,
2024. URL https://arxiv.org/abs/2406.19707.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are looking for before
generation. In NeurIPS, 2024.

Manlai Liang, JiaMing Zhang, Xiong Li, and Jinlong Li. Lagkv: Lag-relative information of the kv
cache tells which tokens are important. ArXiv, abs/2504.04704, 2025.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In ICLR, 2018.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dynamic
memory compression: Retrofitting llms for accelerated inference. In ICML, 2024.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions. Mathematical Programming, 14(1):265-294, 1978.

Abdullah Onden and Mohammed Alnour. Chatgpt and openai: A comprehensive bibliometric review.
Journal of Soft Computing and Decision Analytics, 1(1):254-264, 2023.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. ArXiv preprint, abs/2401.06104, 2024. URL https://arxiv.org/abs/2401.
06104,

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydiff:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. ArXiv preprint, abs/2504.15364, 2025. URL https://arxiv.org/abs/
2504.15364.

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society., 24(2):193-202,
1975.

Sebastian Prillo and Julian Martin Eisenschlos. Softsort: A continuous relaxation for the argsort
operator. In ICML, 2020.

11

https://zenodo.org/records/12608602
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2504.15364
https://arxiv.org/abs/2504.15364

Under review as a conference paper at ICLR 2026

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient LLM inference. In ICML, 2024.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large
language models with a single GPU. In ICML, 2023.

Junaid Shuja, Kashif Bilal, Waleed Alasmary, Hassan Sinky, and Eisa Alanazi. Applying machine
learning techniques for caching in edge networks: A comprehensive survey. ArXiv preprint,
abs/2006.16864, 2020. URL https://arxiv.org/abs/2006.16864.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. In NeurIPS, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
query-aware sparsity for efficient long-context LLM inference. In ICML, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023. URL https://arxiv,
org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men,
Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-
language model’s perception of the world at any resolution. ArXiv preprint, abs/2409.12191, 2024.
URLhttps://arxiv.org/abs/2409.12191.

Yantong Wang and Vasilis Friderikos. A survey of deep learning for data caching in edge network.
ArXiv preprint, abs/2008.07235, 2020. URL https://arxiv.org/abs/2008.07235.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3—4):229-256, 1992.

Guangxuan Xiao, Ji Lin, Mickaél Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In /ICML, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In ICLR, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. Qwen2 technical report. ArXiv preprint, abs/2407.10671, 2024.
URL https://arxiv.org/abs/2407.10671.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,

Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In NeurlIPS, 2023.

12

https://arxiv.org/abs/2006.16864
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2008.07235
https://arxiv.org/abs/2407.10671

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MISSING PROOF OF PROPOSITION 1

Proof. Since |y, | = b+1and [S;| = bwith Sj C Sj, ,, the set difference Sj, ; \ Sj is nonempty.
By uniqueness of Sy, , this difference must contain exactly one element; otherwise, there would
exist two distinct (b + 1)-subsets strictly between S} and S}, |, contradicting uniqueness. Hence we
can define a sequence of distinct elements

Ty €57, Topy €Spp1\ Sy (b=1,...,n—1).
By construction, for each b we have

Sy ={%oy,- 1 To,)

Now define a total order (ranking) 7 on [n] by setting
m(zy,)=b (b=1,...,n).
This is a bijection 7 : [n| — [n], and its top-b prefix is precisely {z,,, ..., s, } = Sf. Therefore,
Sy ={i€n]:7()<b} forallb,
as claimed.
Equivalently, given 7 we may define a scoring function consistent with the order, for instance
s(xo,)=n—k (k=1,...,n),

which is strictly decreasing in k. Then the top-b elements according to s are exactly
{Zoy, - s Toy } = ST O

A.2 IMPLEMENTATION DETAILS

Our agents are lightweight 2-layer MLPs with 256 hidden units, trained using the RLOO
algorithm (Ahmadian et al., 2024) as described in Section 3] Following the Grouped-Query Attention
(GQA) architecture of Qwen2 .5-7B-Chat, we train a separate agent for each of the 4 KV heads
across all 28 layers, yielding 112 specialized agents. Each agent contains approximately 600K
parameters.

The agents are optimized to maximize the reward signal in Equation (@), which encourages retention
of tokens with high future utility across all cache budgets. During inference, the learned policy ranks
all tokens except the first 4 and last 16, which are always retained. Token eviction is emulated via
custom attention masks in FlexAttention, preventing the model from attending to pruned tokens
during generation.

For training stability, we apply gradient clipping (maximum norm of 5) and normalize advantages by
their mean and standard deviation, without entropy regularization. We use AdamW with a learning
rate of 5 x 1072, following a cosine schedule with 100-step linear warmup (start factor 0.01) that
decays to 1 x 1075, Each agent trains for 4,000 steps on pre-computed activations. The training
pipeline, leveraging 8 NVIDIA H100 80GB GPUs with efficient TorchTune implementations and a
custom Triton kernel for loss computation, completes in approximately one hour.

13

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL RESULTS

ORACLE

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

[KVP

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

SnapKV

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

KeyDiff
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<[im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

LagKV

I'm planning’a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

StreaminglL.LM

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

KNorm

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain.[What's the best order to visit
these attractions to minimize travel time?
<[im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

Random

I'm planning a trip to Rome next month. I want to!
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

TOVA

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

Figure 5: All strategies compared on the qualitative example shown in Figure The attention scores
considered are from layer 12 head 0.

RULER

20

Dataset Perplexity
= 8 2 5 &

oo}

KVP K-Norm
A —e— KeyDiff StreamingLLM
\ -e- TOVA Random
“ —>¢— Lagkv @~ SnapKV

0

Figure 6: Perplexity (PPL) as a function of KV cache size.

1000 2000 3000

Cache Size

4000

5000

achieves highly competitive

perplexity, performing on par with or better than the leading baselines at most cache sizes and
significantly outperforming other methods. This result is particularly notable given that RULER’s
structure, which includes random sentences preceding a final question, heavily advantages methods
that can isolate tokens relevant to that question.

14

Under review as a conference paper at ICLR 2026

HELLASWAG
- 69.0
70.0
68.0
z
60.0 <
§ 67.0
> 5}
Q
& <
5 50.0 8 66.0
g N
=
40.0 E 650 7 | === Uncompressed K-Norm
2 ,/ —e— KVP¥ o~ StreamingLLM
640 7 o~ KVP# +— Random
300) < Lagkv -~ TOVA
63.0 ¢ —e— KeyDiff —~® - SnapKV
20 25 30 35 40 45 50 20 25 30 35 40 45 50
Cache Size Cache Size

Figure 7: (Left) Average test accuracy on MMLU and (Right) average normalized accuracy on
Hellaswag as a function of KV cache size. Higher is better.

15

Under review as a conference paper at ICLR 2026

RULER - NIAH MULTIKEY 2 RULER - NIAH MULTIKEY 3 RULER - NIAH MULTIQUERY
° B
210 g 100 S
3 3 A7
a = >
700 ¢ P00 r:f: ol 11
g g S
X E <%
5] &
R K g & =6
= [= s
T 7 P T 7 T
< ! < = 60
Z H KeyDiff Z —— Lagkv Z o TOVA
) I |-e- TOVA “ SueaminglLM | & o Random | po I'|—e— KeyDiff StreamingLLM
=) 4 Random 3 g > [|-+~ snapkv Random
2 / K-Norm 2) 2) K-Norm
] 1000 2000 3000 1000 5000) 1000 2000 3000 1000 5000 0 1000 200 3000 1000 5000
Cache Size Cache Size Cache Size
RULER - NIAH MULTIVALUE RULER - NIAH SINGLE 1 RULER - NIAH SINGLE 2
g
S 100 2 100 © 100 -
] 8 g /
2 S S -4 ¥
= 2 3 i /
3 9% 90 I N
=z m o ! N
= 2 i
z 5} B A
3 80 Z s Z 50 ! f
=) 1zl Izl 1
3 z z i
T 0 = = 1
< z z |
Z ~®~ SnapKV o o~ H —— Lagkv
5 P StreamingLLLM f-_ﬂl 0 f-_ﬂ} & ! +— StreamingLLM
= Random =] 2 ! > Random
3 K-Norm ~ I ~e~ SnapKV K-Norm
/ - i
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 T 1000 2000 3000 4000 5000
Cache Size Cache Size Cache Size
RULER - CWE RULER - FWE RULER - NIAH MULTIKEY |
100 »
100 S 100
S
©
90 -
2 9 2
§ § E 90
A) £
8 &
R E 3 %0
=)
o 3
4 [
=7 w0 T
=) = <7
2 —e- SnapKV 2 o SweaminglLM —— Lagkv | Z = Lagkv
w0 —e— KeyDiff 60 o KVE Se- TOVA | -~ Random
~e- TOVA —— KeyDiff =~ Random| = StreamingLLM
“ StreamingLLM ! ~- SnapKV K-Norm| 2 K-Norm
0 1000 2000 3000 1000 5000 0 1000 2000 3000 1000 5000 0 1000 2000 3000 1000 5000
Cache Size Cache Size Cache Size
RULER - NIAH SINGLE 3 RULER - QA 1 RULER - QA 2
0
66
100
% 85 X
3 64
a 280 2
o 5 g6
| A o A
2 -7 60
Z 80 <. <
@ o O'ss
z & %
2 Eo &,
z ' | 8 56
z E . a —%— Lagkv
& 60 51
= i
2 StreamingLLM 4 55 o
—4 Lagkv KVP StreamingLLM
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 R 1000 2000 3000 4000 5000
Cache Size Cache Size Cache Size
RULER - VT
100
PRl
o
g ¢
12}
=80
>
& tu
5 70
= 1l
60{ 1
i StreamingLLM
% Random
- n ’
0 1000 2000 3000 4000 5000

Cache Size

Figure 8: Per-task accuracy on all RULER subtasks as a function of absolute KV cache size.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: Cost (—RP) for all strategies across a selection of layers (rows) and all available heads
(columns) on the OASST? test set. The plots show that the relative performance of different strategies
varies significantly across heads, highlighting the benefit of learning specialized per-head policies.

Lower is better.

Layer 0, Head 0 Layer 0, Head | Layer 0, Head 2 Layer 0, Head 3
Tes TR - SteminellM e ToA Ko Tes TR - StemineliM e ToA = Laky
o= SwpkV —e— Random SnapkV - Lagky oo SupkV KeNorm e SwcaminglLM —e— KeyDiff

n e KVP —e Keilf SteamingLLM —=— Random I e KVP —e Keilf L1 E— —— Random

KNom = Lagkv kv — Keyitl > Lagty —+— Random kv KeNom:
003 003
¥ ¥
002 002

KV Cache Size
Layer 5. Head 0

] 000150 200 2000

= Lagky

ze
Layer 10, Head 0

o= TovA
e KVP
“eo SupkV
Lagky

ili

W00 150 200
KV Cache Size

KV Cache Size
L Head 2

100
KV Cache Size

[
KV Cache Size
Layer 10, Head 2

o SteamingLLM
KeyDiff |~ Random
g TR
| 1

hl,

e

KV Cache Size
Layer 15, Head |

1
KV Cache Size
Layer 15, Head 2

Layer 5. Head 3
o
—e- TovA

K

I
|

KV Cache Size
Layer 15, Head 3

o KeyDill

KVP e StrcamingLLM

K-Nom

*

_Rb

0 12000
KV Cache Size
[

K-Norm

i |
il
e % it

100 2000
KV Cache Size
Layer 19, Head 2

1000 2000
KV Cache Size
Layer 19, Head 3

J‘\ \“ w\“ ”}\ i [

&0
KV Cache Size
Layer 20, Head |

SnapkV

i

’m\mw i

—— KeyDift

o

10
KV Cache Size
Layer 20, Head 2

10
KV Cache Size
Layer 20, Head 3

w{ 1 !l

o SteamingLLM

01
KV Cache Size
Layer 25, Head |

e TOVA = Koyl
= Lagkv
e SucamingLLM

wil

W0 10 20
KV Cache Size

17

0
KV Cache Size

Under review as a conference paper at ICLR 2026

Figure 10: Cost (—R?) for all strategies on head 0 across all 28 layers of the model, evaluated on the
OASST? test set. This visualization shows how the effectiveness of different non attention-aware
eviction heuristics changes with model depth, whereas the learned [KVP| policy remains consistently
effective. Lower is better.

Layer2, Head 0

W00 1500 2000
KV Cache Size

u il w

1n 2000
KV Cache Sie
Layer 8, Head 0

W0 1 a0 20 00
KV Cache Size
Layer 5, Head 0

= Lagkv
e StreamingLLM
K-Nom —e— KeyDiff

W0 150 200
KV Cache Size

000 150 200
KV Cache Size

— KeDit

00
KV Cache Size
Layer 12, Head 0

0
KV Cache Size
Layer 9, Head 0

n,.....
’ } I
o0

KV Cache Size
Layer 10, Head 0

—e- TOWA
~o- Smapkv

kv Cache size
Layer 11, Head 0

N m “ Il H i H
Wil

1600
KV Cache Size
Layer 13, Head 0

TOVA = SweamingLLM
KvP KeyDift
Snapkv.

Layer 16, Head 0

—— KeyDiff

M vy |
Amu‘llhulnw ol

TOVA = SweamingLLM
SnapkV = KeyDiff
xvy K-Norm

0001

Layer 17, Head 0

o= TOVA -+ SweamingLLM
e KVP K-Norm
-4 s...va Tl

TOVA = KeyDiff
s...va > Lagkv

amingLLM

i ’u i " H

;.A%W'w

“e- SmpKV = Lagkv
K-Nom —— Rlndmn

alll

00 00 2000 20 000
KV Cache Size
Layer 21, Head 0

30 2000
KV Cache Size
Layer 24, Head 0

“es TOVA e KewDiff

0 1w
KV Cache Size

'\nyﬂwvw “M

W0 150 2
KV Cache Size

18

W00 1500 2000
KV Cache Size
0

150
KV Cache Size

TR TR TR
KV Cache Size
Layer 2. 0

K Cache Sire
Layer 27, Head 0

—— Keybiff

TR
KV Cache Size

	Introduction
	Related Work
	Methodology: Learning to Evict KV Cache Entries
	KV Cache Eviction Agent
	Global Reward for Offline RL

	Per-Head RL Agent and Efficient Training

	Evaluation
	Experimental Setup
	Downstream Performance
	Ablations

	Conclusions and Future Work
	Appendix
	Missing Proof of Proposition 1
	Implementation details
	Additional results

