
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO EVICT FROM KEY-VALUE CACHE

Anonymous authors
Paper under double-blind review

ABSTRACT

The growing size of Large Language Models (LLMs) makes efficient inference
challenging, primarily due to the memory demands of the autoregressive Key-Value
(KV) cache. Existing eviction or compression methods reduce cost but rely on
heuristics, such as recency or past attention scores, which serve only as indirect
proxies for a token’s future utility and introduce computational overhead. We
reframe KV cache eviction as a reinforcement learning (RL) problem: learning
to rank tokens by their predicted usefulness for future decoding. To this end,
we introduce KV Policy (KVP), a framework of lightweight per-head RL agents
trained on pre-computed generation traces using only key and value vectors. Each
agent learns a specialized eviction policy guided by a holistic reward, derived from
future utility, that evaluates the quality of the ranking across all cache budgets, re-
quiring no modifications to the underlying LLM or additional inference. Evaluated
on the long-context benchmark RULER and the multi-turn dialogue benchmark
OASST2-4k, KVP significantly outperforms baselines. Furthermore, zero-shot
tests on standard downstream tasks indicate that KVP generalizes well beyond its
training distribution. These results demonstrate that learning to predict future token
utility is a powerful and scalable paradigm for adaptive KV cache management.

1 INTRODUCTION

Large Language Models (LLMs) based on the Transformer architecture (Vaswani et al., 2017) have
revolutionized natural language processing, demonstrating remarkable capabilities across a wide range
of tasks (Brown et al., 2020; Önden & Alnour, 2023; Touvron et al., 2023). However, their practical
deployment, especially for applications involving long sequences or interactive sessions, is often
burdened by substantial computational requirements during inference. A critical bottleneck arises
from the Key-Value (KV) cache, a mechanism inherent to autoregressive generation in Transformers
(Sheng et al., 2023). This cache stores the keys and values of previous tokens, avoiding redundant
computations but growing linearly with the input and generated sequence length. For long contexts,
the KV cache can consume tens or even hundreds of gigabytes of memory, rapidly exceeding the
capacity of modern hardware accelerators and necessitating strategies for efficient management.

To address this memory challenge, a variety of KV cache management techniques have been proposed.
These range from simple heuristics like keeping only the most recent tokens (sliding window), to more
sophisticated methods that leverage insights into attention patterns. Approaches like H2O, SnapKV,
and TOVA Zhang et al. (2023); Li et al. (2024); Oren et al. (2024) use signals such as past attention
scores or attention sinks to identify and retain important tokens. Others employ quantization to reduce
the memory footprint (Dettmers et al., 2022; Xiao et al., 2023) or use low-rank approximations to
represent the cache state more compactly (Singhania et al., 2024; Ribar et al., 2024).

While these hand-crafted policies have advanced the state of the art, they are fundamentally built on
heuristics that serve as indirect proxies for a token’s future importance. They assume that what was
important before will remain important. This assumption might not always hold, as the informational
needs of generation are dynamic and content-dependent. A token’s true value is determined by its
utility to future decoding steps, a quantity these methods do not directly optimize for. Consequently,
they are prone to suboptimal eviction decisions, leading to an irrecoverable loss of critical information
and degraded generation quality. Even post-hoc compression methods based on attention signals are
fundamentally backward-looking and have additional drawbacks: they require repeated computation
of attention statistics, which introduces significant overhead; and they are not compatible with
efficient implementations like FlashAttention (Dao et al., 2022), limiting their practicality.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

KVP
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

Future Attention Importance
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

StreamingLLM

Figure 1: Future token importance for KV cache eviction. Effective KV cache eviction requires
identifying tokens that will receive little or no future attention. (center) We roll out a sample KV cache
and measure the true cumulative future attention for each token, then rank tokens by this importance
and color them accordingly (bright = high rank, white = low). (right) Importance estimated by
the fixed sink-and-recency heuristic of StreamingLLM deviates substantially from true importance
ranking. (left) Our learned policy closely recovers the complex, non-local structure of future attention
despite using only past keys and values, without access to queries, attention scores, or future tokens.
We expand the comparison with all strategies in Figure 5.

In this work, we move beyond hand-crafted policies and reframe KV cache eviction as a Reinforce-
ment Learning (RL) problem: learning an attention-free policy that selects which tokens to evict. We
formulate this learning problem as a ranking task, where the agent orders tokens by their predicted
future utility. As qualitatively illustrated in Figure 1, a learned policy can successfully approximate a
token’s future utility, a complex, non-local structure, where simple heuristics fail. Such a ranking
enables a highly efficient and flexible strategy: eviction is performed by discarding the lowest-ranked
entries to meet any memory budget. As a reward signal, we define the ranking successful if for any
given cache size, the most valuable information is retained, thus minimizing performance degradation.

We introduce KV Policy (KVP), a framework that trains a distinct, lightweight RL agent for each
KV head in the model. This per-head specialization allows each policy to adapt to the unique
attentional patterns of its corresponding head. The agents are trained efficiently on pre-computed
generation traces without any additional inference, using only the key and value vectors as input
and requiring no architectural changes to the underlying LLM. To train the agents, we introduce a
reward that holistically evaluates the quality of the policy’s sorting for all possible cache budgets.
For every possible cache budget, we measure how much essential information in the future would be
erroneously evicted with the candidate sorting when only the top tokens from the cache are kept.

Evaluated on long-context synthetic benchmark RULER (Hsieh et al., 2024) and a multi-turn natural
language benchmark OASST2-4k (Köpf et al., 2023), KVP significantly outperforms strong heuristic
baselines, demonstrating that learning specialized policies to predict the future utility of tokens is
a powerful and scalable paradigm for KV cache eviction. Evaluation in a zero-shot generalization
setting on standard downstream benchmarks from the EleutherAI Language Model Evaluation
Harness (Gao et al., 2024) suggests that KVP retains strong performance even out of distribution.

In summary, our main contributions are:

• We reframe KV cache eviction as a learning problem: ranking cache entries by their predicted
future utility.

• We introduce KVP, a system of lightweight, per-head RL agents that learn specialized
sorting policies using only key and value vectors without using any attention information.

• We propose a holistic reward that evaluates eviction policies across all cache budgets without
additional LLM inference.

• We show that KVP substantially improves long-context performance over strong baselines
and generalizes to unseen domains.

2 RELATED WORK

Attention-Based Eviction. Eviction-based approaches aim to choose a subset of the KV cache.
Early methods used simple heuristics like First-In-First-Out (FIFO) or Least Recently Used (LRU)
(Xiao et al., 2024). More recent work leverages the inherent sparsity in attention patterns. Techniques
like StreamingLLM (Xiao et al., 2024) and H2O (Zhang et al., 2023) observe that initial tokens
("attention sinks") and recent tokens often capture most of the required context, allowing for the
eviction of intermediate tokens. Others explicitly analyze attention scores or structures to identify

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and retain important tokens (Cai et al., 2024), sometimes using the current query to inform eviction
(Li et al., 2024; Lee et al., 2024). Although our work is an eviction methodology, it departs from this
paradigm by instead learning a forward-looking policy to directly predict a token’s future utility.

Memory Hierarchy Management. Recognizing the limited size of fast GPU memory, some
approaches utilize system memory (CPU RAM) as a secondary cache layer (Chen et al., 2024;
Sheng et al., 2023). Less critical or older KV entries are offloaded to the CPU and retrieved only
if needed later, possibly in pages Tang et al. (2024). While this allows for effectively larger cache
sizes, it introduces significant latency (a reload cost) when accessing offloaded entries. Policies for
deciding what and when to offload are often heuristic. While our work focuses on eviction rather
than offloading, the learned ranking it produces could provide a principled basis for such hierarchical
management: the lowest-ranked entries are natural candidates for being moved to slower memory.

Representation Compression. Instead of removing entries, another line of work focuses on
reducing the memory required per entry. Quantization techniques reduce the numerical precision
(e.g., to 8-bit integers or lower) of keys and values, significantly cutting memory usage, often with
minimal performance impact (Dettmers et al., 2022; Xiao et al., 2023). Low-rank approximation
methods represent the key and value matrices using lower-dimensional projections, compressing
the cache state (Singhania et al., 2024; Ribar et al., 2024). These techniques are orthogonal and
complementary to eviction strategies, as one could combine any eviction policy with a compression
policy by simply applying eviction policy to a cache of compressed entries.

Learned Approaches. Applying machine learning to directly optimize cache management policies
is less common than heuristic approaches. While learning has been used extensively for general
caching problems (Afrin et al., 2024; Shuja et al., 2020; Wang & Friderikos, 2020), its application
specifically to the dynamic nature of the Transformer KV cache is emerging (Chari et al., 2025;
Cetin et al., 2024; Nawrot et al., 2024; Ge et al., 2024). Our work falls into this category, utilizing
learning to improve KV cache management. Our approach is distinguished by utilizing RL to train a
lightweight policy and a novel reward signal, eviction error across all cache budgets, ensuring robust
performance under varying memory limits.

Overall, while prior work has addressed KV cache constraints through heuristics, memory hierarchies,
or compression, our approach introduces an RL framework that casts eviction as a ranking problem.
By training lightweight, per-head policies to predict tokens’ future utility and optimizing them with a
global, budget-agnostic reward, we offer a more adaptive solution to KV cache management.

3 METHODOLOGY: LEARNING TO EVICT KV CACHE ENTRIES

We consider the problem of KV cache eviction: given n tokens X = {xi}i∈[n] and a budget b, select
a subset S⋆ ⊂ X maximizing some downstream performance reward R as

S⋆
b ∈ argmax|S|=b,S⊂XR(S). (1)

Because generation is autoregressive and budgets vary over time, a practical solution must han-
dle arbitrary n and all b ∈ [n]. Although this selection problem is NP–hard even for linear re-
wards (Nemhauser et al., 1978), it becomes structured under two mild conditions: (i) uniqueness:
each S⋆

b is unique and (ii) nestedness: S⋆
b ⊂ S⋆

b+1 for all b. Uniqueness can be straightforwardly
achieved with simple tie-breaking and nestedness is natural because tokens essential under a small
budget should remain so as capacity grows. Under these constraints KV cache eviction problem is
equivalent to KV cache ranking with proof deferred to Appendix A.1.

Proposition 1. Assume (i) uniqueness of each S⋆
b and (ii) nestedness: S⋆

b ⊂ S⋆
b+1 for all b. Then,

there exists a total order (ranking) π such that

S⋆
b = { i ∈ [n] : π(i) ≤ b } for all b.

Equivalently, there exists a scoring function whose top-b elements realize S⋆
b for every b.

Proposition 1 lets us reformulate eviction as learning a single budget-agnostic scoring function. At
any generation step, the cache entries are ordered from most to least valuable for future decoding

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

using the learned scoring function; for a given budget b, we retain the top-b. A high-quality ranking
preserves critical information across all budgets, minimizing degradation.

To learn this scoring function, we adopt a reinforcement-learning (RL) approach. We parameterize
a stochastic ranking policy and directly optimize the true discrete end-to-end reward using policy-
gradient methods. We later analyze this choice against differentiable relaxations of sorting (Prillo &
Eisenschlos, 2020; Grover et al., 2019; Blondel et al., 2020)) in Section 4.3.

We employ a lightweight RL agent, governed by parameters θ, to define the scoring function f(; θ).
To capture the specialized functions of different attention mechanisms, we train a distinct agent for
each KV head in the LLM. To this end, we introduce KVP, a framework for efficiently training
lightweight, per-head RL agents to perform this ranking. In the remaining of this section, we first
discuss the agent architecture, then the reward, and finally the learning process.

3.1 KV CACHE EVICTION AGENT

In order to formulate learning to sort as an RL problem, we largely follow the Plackett-Luce model
(Plackett, 1975). Given a set of input tokens {xi}i∈[N], we learn a parametric scoring function
f(xi; θ) which assigns a score to each input token xi. This scoring function induces a stochastic
sorting policy πθ which samples permutation σ = (σ1, . . . , σN) sequentially as;

πθ(σ|x1, . . . , xN) =

N∏
i=1

exp (f(xσi ; θ))∑N
j=i exp

(
f(xσj

; θ)
) (2)

At each step i, the next element σi is sampled proportionally to its score, normalized over the
remaining tokens. This process defines a valid distribution over all permutations. The scoring
function f(; θ) together with the sampling policy, forms our KV cache eviction agent. We next
specify the parameterization of f(; θ).

Scoring Function The representation for token xi is the concatenation of its key vector ki, value
vector vi, and its original position posi as xi = (ki, vi, posi). We define the scoring function f(; θ)
as a small Multi-Layer Perceptron (MLP) parametrized with θ as f(xiθ) = MLPθ(ki, vi, posi).
Crucially, the policy relies only on information available in the cache and does not require access to
future information, previous attention scores or any query embedding.

Efficient Parallel Sampling with Gumbel-Sort While Equation (2) defines the distribution,
sequential sampling is inefficient. Fortunately, a permutation can be sampled from this distribution in
a single step using the Gumbel-Sort (Mena et al., 2018). Given the scores f(xi; θ), we generate i.i.d.
noise samples gi ∼ Gumbel(0, 1). A permutation σ is then sampled by sorting the perturbed scores:

σ = argsorti∈[N] (f(xi; θ) + gi) (3)

This procedure is non-autoregressive, fully parallelizable on modern hardware, and allows us to
sample an entire permutation with just one forward pass of the scoring model and a fast sort operation.
This is critical for efficient training.

3.1.1 GLOBAL REWARD FOR OFFLINE RL

A key component of our framework is a reward signal that globally evaluates the quality of an
agent’s entire ranked output, directly optimizing for the efficient preservation of information across all
possible cache budgets. More importantly we define this reward in a way to enable training without
any additional LLM inference.

Consider the input set of n tokens X = {xi}i∈[n] and a candidate permutation {σi}i∈[n], ordered
from most to least important. The total reward is defined as the sum of reward over all possible target
cache sizes 1 ≤ b ≤ n− 1. Since the kept tokens are always the top-b, this translates into

R(σ1, . . . , σn;X) =

n−1∑
b=1

Rb(σn−b, . . . , σn;X) (4)

where Rb is the reward for a specific budget b.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 RL Training Loop on Pre-Computed KV Traces

1: Input: Static dataset of pre-computed traces over m sequences each with length nj , j ∈ [m]

denoted as X j = {xj
i}i∈nj

containing Q, K, V tensors.
2: while training not converged do
3: Sample a data item j ∼ Unif(m) and a cache size n ∼ Unif(nj).
4: Sample K permutations from the agent σk

1 , . . . , σ
k
n ∼ πθ(σ|xj

1, . . . , x
j
n), k ∈ [K]

5: Calculate reward R(σk
1 , . . . , σ

k
n;X j) using equation 4.

6: Update θ using equation 6.
7: end while

We define Rb based on an importance score derived from the future attention patterns. Consider f
future tokens (xn+1 to xn+f) in the training data after n input tokens and the attention as A(xi, xj),
we define the importance of token xi as the total future attention it accumulates:

∑n+f
j=n+1 A(xi, xj).

Given the permutation σ, a cache of budget b retains the top-b tokens σ1, . . . , σb and evicts the rest.
The cost for this budget is the total importance of the evicted tokens. We define the per-budget reward
Rb as the negative of this cost for all evicted tokens:

Rb(σ1, . . . , σn;X) = −
n∑

i=b+1

n+f∑
j=n+1

A(xσi
, xj) (5)

For models with Grouped-Query Attention (Ainslie et al., 2023), the attention score A(xi, xj) from a
future query group is the maximum attention value across all queries within that group.

To create an objective invariant to scale and attention scores distribution, we normalize the total
cost by the cost incurred by an optimal ranking σ⋆. The final reward we optimize is normalized as
R(σ1,...,σn;X)/R(σ⋆

1 ,...,σ
⋆
n;X). In the experimental section, when we refer directly to Rb, we always

refer to its normalized version Rb(σ1,...,σn;X)/R(σ⋆
1 ,...,σ

⋆
n;X).

3.2 PER-HEAD RL AGENT AND EFFICIENT TRAINING

A significant advantage of our method is its training efficiency. The agents are trained entirely offline,
obviating the need for live LLM inference within the RL optimization loop. This is due to the fact
that our usefulness score is function of true sequences, not generated sequences. First, we generate a
dataset by running the base LLM on a training corpus. For each sample, we store the full sequence of
queries, keys, and values. The attention matrices are not stored due to their prohibitive size.

During training, we sample a sequence and a cache size to be evicted from. We update the parameters
θ of the agent using a policy gradient algorithm. Since our reward R(σ) is a terminal reward assigned
only after the entire permutation σ is generated, the objective is J(θ) = Eσ∼πθ

[R(σ)]. We use the
REINFORCE algorithm with a Leave-One-Out (RLOO) baseline (Williams, 1992; Ahmadian et al.,
2024) to reduce variance. For an episode (permutation) σk within a batch of K episodes, the baseline
R̄ is the average terminal reward of all other episodes in the batch. Considering the advantage,
R(σk)− R̄, the gradient is thus estimated as:

∇θJ(θ) ≈
1

K

K∑
k=1

[
(R(σk)− R̄)

n∑
i=1

∇θ log πθ(σ
k
i |X)

]
. (6)

We summarize the training in Alg. 1 and defer the further implementation details to Appendix A.2.

Training per-head agents from offline traces is highly scalable. At inference, the learned policy for
each head ranks its KV entries, and the trailing entries are evicted based on the budget.

4 EVALUATION

We hypothesize that a high-quality KV cache eviction policy can be trained entirely offline and
deployed at inference time using only static token features (keys, values, and positions). To validate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

this, we conduct a comprehensive evaluation of KVP across multiple language modeling bench-
marks and a wide range of cache budgets. Our results show that KVP consistently shows stronger
downstream performance relative to existing heuristics, including methods that exploit privileged,
query-specific information. We also provide ablation studies to analyze the design choices that enable
this performance.

4.1 EXPERIMENTAL SETUP

Base Model and Datasets. Our experimental setup is centered on the Qwen2.5-7B-Chat model
(Yang et al., 2024; Wang et al., 2024), a state-of-the-art transformer LLM. We train and evaluate
our KVP agents using two distinct long-context benchmarks: RULER-4k (Hsieh et al., 2024), a
synthetic dataset designed to probe long-context reasoning with sequences of approximately 4500
tokens; and OASST2-4k, a curated subset of the OpenAssistant Conversations Dataset (Köpf et al.,
2023) featuring multi-turn dialogues of similar length. To assess generalization, we further perform
zero-shot evaluation on four standard downstream benchmarks from the EleutherAI Language Model
Evaluation Harness (Gao et al., 2024): BoolQ (Clark et al., 2019), a reading comprehension task
framed as yes/no question answering; ARC-Challenge (Clark et al., 2018), a collection of science
exam questions requiring multi-step reasoning; MMLU (Hendrycks et al., 2021), a benchmark testing
expert-level knowledge across a wide range of domains; and HellaSwag (Zellers et al., 2019), a
commonsense sentence completion task. Importantly, KVP is not trained or fine-tuned on these tasks.
Please refer to Appendix A.2 for further implementation details.

Baselines. We benchmark KVP against two main categories of KV cache management techniques:
attention-based and attention-free. The first category includes state-of-the-art methods like TOVA
(Oren et al., 2024) and SnapKV (Li et al., 2024). These methods leverage attention scores to identify
important tokens, which introduces computational overhead by tying the eviction strategy to the
attention calculation step. The second, more efficient category of attention-free baselines, to which
our own KVP agents belong, operates independently of the attention mechanism. This group includes
a Random eviction baseline, the recency-based StreamingLLM (Xiao et al., 2024), and several
approaches that prune tokens based on their key embeddings. These include methods based on
statistical patterns (LagKV (Liang et al., 2025)), vector similarity (KeyDiff (Park et al., 2025)), and
L2 norm (K-Norm (Devoto et al., 2024)). To ensure a fair comparison, we adapt all baselines to our
ranking-based framework by converting their binary keep/evict decisions into a full token permutation,
enabling evaluation with consistent metrics.

Budgeting and Compression Schedule. For all online evaluations, we follow a consistent com-
pression protocol. First, the entire context, including the final user message or question that prompts
the generation, is processed by the LLM to populate the initial KV cache (the “prefill” stage). Second,
the specified compression method is applied to this pre-populated cache to reduce its size to the target
budget. Finally, the model generates the response autoregressively using the compressed cache. This
setup tests the ability to compress a large context before generation begins. To isolate the performance
of the core ranking strategy, we apply a uniform compression budget across all heads and layers for
all methods. This ensures a fair comparison focused purely on the quality of the eviction strategy
itself, rather than on budget allocation heuristics. While head-specific or layer-specific budgeting is
an orthogonal and promising direction for further performance improvements, our approach provides
a clear and interpretable evaluation of the underlying policies.

Inference Efficiency. Our KVP agents make their ranking decisions using only the Key and Value
vectors, and their position in the context. This makes KVP highly efficient, as it avoids re-computing
attention scores. In contrast, attention-based baselines like TOVA and SnapKV are evaluated using
the attention scores generated during the prefill stage, giving them access to information about how
the final user message, for example, attends to the rest of the context. Our method is therefore
benchmarked against baselines that have access to more direct, query-specific information at the time
of compression. We highlight in all the figures the attention-based baselines with dashed lines.

Absolute vs. Relative Cache Size. A final methodological note concerns our use of cache size.
Throughout our evaluation, we report performance as a function of absolute KV cache size (i.e.,
the number of tokens retained) rather than a relative compression ratio. This decision is motivated

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

by practical application: practitioners operate under fixed memory constraints, making an absolute
token budget a more direct and interpretable measure of resource cost. In contrast, a compression
ratio’s impact on memory is dependent on the initial context length, making it a less stable metric for
cross-scenario comparison.

4.2 DOWNSTREAM PERFORMANCE

This section assesses the real-world efficacy of each compression method. We apply the strategies to
a live LLM, reducing the KV cache to a target budget after the prefill before measuring performance
on several downstream benchmarks.

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

A
cc

ur
ac

y

RULER

KVP
KeyDiff
TOVA
SnapKV

Lagkv
StreamingLLM
Random
K-Norm

0 500 1000 1500 2000 2500 3000 3500

Cache Size

3.60

3.62

3.64

3.66

3.68

3.70

D
at

as
et

Pe
rp

le
xi

ty

OASST2

Lagkv
KVP
KeyDiff
K-Norm

TOVA
StreamingLLM
Random
SnapKV

Figure 2: Overall accuracy on the RULER benchmark (Left) and perplexity on the OASST2-4k test
set (Right), as a function of the absolute KV cache size. KVP achieves the highest accuracy and
lowest perplexity across most of the possible cache sizes.

RULER benchmark. We evaluate performance on the RULER benchmark using its official text-
based accuracy metric, which requires generating the correct answer for long-context reasoning tasks.
This tests whether the methods preserve the specific, often non-local, information needed for complex
problem-solving. Figure 2 (left) shows that KVP consistently outperforms all baselines, retaining
higher accuracy as the cache budget shrinks. This result is a direct consequence of its learned policy:
unlike heuristics that might discard old but crucial clues, KVP learns to identify and keep these
high-value tokens, regardless of their position, enabling the model to succeed at the task. A detailed
breakdown of performance across all RULER subtasks, along with their corresponding eviction error
curves, is provided in Figure 8, further highlighting the robustness of our method. This result is
particularly noteworthy given that RULER’s structure heavily favors strategies that can use the final
question to identify relevant context; an advantage held by attention-based baselines but not by KVP.

OASST2 benchmark. We evaluate the efficacy of KV cache compression by its impact on per-
plexity (PPL), a measure of the model’s next-token prediction capability. An effective compression
method should minimize PPL degradation. As shown in Figure 2 (right), KVP consistently achieves
lower perplexity than baselines that rely solely on KV embeddings. Furthermore, it often outperforms
methods that use additional information across nearly all cache sizes. In contrast, heuristic approaches
like StreamingLLM exhibit a sharp increase in PPL as the cache budget decreases, confirming the
brittleness of their fixed-rule strategies. The superior performance of KVP demonstrates a direct link
between our training objective and the preservation of the model’s downstream capabilities. These
findings are further corroborated by results on the RULER benchmark (Appendix Figure 6), where
KVP maintains a similar advantage.

Generalization to other benchmarks. LLMs are widely regarded as general-purpose computa-
tional systems and their utility depends on robust performance in out-of-domain scenarios. Even
though KVP enables efficient training of domain specific policy using only unlabelled dataset of se-
quences, we evaluate its zero-shot generalization performance on a set of standard downstream tasks.
Specifically, we test agents trained on RULER (KVPR) and OASST2 (KVPS) on ARC-Challenge,
and BoolQ, reporting raw accuracy at varying KV cache sizes. Importantly, the “prefill” stage does

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

not include the question in BoolQ, so as to better reflect real-world scenarios where a given text is
compressed for different questions not known in advance. Results on MMLU and HellaSwag are
instead presented in Appendix A.3. This evaluation is designed to assess whether policies optimized
for long-context efficiency maintain performance on short-context benchmarks that probe factual
knowledge, multi-step reasoning, and commonsense inference.

The results, presented in Figure 3, demonstrate that KVP consistently achieves competitive perfor-
mance. Across the diverse benchmarks, both KVPR and KVPS rank at or near the top, outperforming
most heuristic baselines and closely tracking the accuracy of the uncompressed model, demonstrating
minimal degradation at different cache size reduction. While both agents generalize effectively, some
specialization emerges: KVPS (trained on conversational data) shows an advantage on the natural
question answering task BoolQ, whereas KVPR (trained on synthetic reasoning sequences) performs
best on the expert-knowledge benchmark MMLU as shown in Figure 7 in Appendix A.3. These
results highlight that the adaptive policy learned by KVP generalizes far beyond their training domain,
successfully preserving the model’s core capabilities. This confirms that KVP is not a specialized tool
with significant trade-offs, but a robust technique that can be enabled by default to provide memory
savings while minimizing degradation to the model’s general utility.

20 30 40 50 60 70 80 90 100
Cache Size

65.0

70.0

75.0

80.0

85.0

A
cc

ur
ac

y

BOOLQ

20 25 30 35 40 45 50
Cache Size

40.0

42.0

44.0

46.0

48.0

50.0

52.0

A
cc

ur
ac

y

ARC CHALLENGE

Uncompressed
KVPS

KVPR

Lagkv
KeyDiff

K-Norm
StreamingLLM
Random
TOVA
SnapKV

Figure 3: Average test accuracy on (Left) BoolQ and (Right) ARC Challenge as a function of KV
cache size. Higher is better.

4.3 ABLATIONS

To validate the core design choices of KVP, we conduct two key ablation studies. First, we analyze
our proposed reward function, as defined in Equation (4). Second, we study our use of RL instead of
supervised surragates of sorting.

Is the reward function R effective? To confirm that our reward R enables effective learning of
eviction policies, we measure the negative per-budget reward, −Rb, on unseen test data. This value
corresponds to the total future importance of the tokens evicted at a given budget b which our agent is
trained to minimize across all budgets simultaneously.

The results in Figure 4a show a clear separation between methods: while attention-aware methods
that use query information at inference time (dashed lines) form a distinct, low-loss cluster, heuristics
without attention scores form a high-loss cluster. This is rather expected as the target, future attention
scores, is highly related to attention. Crucially, KVP performs within this top-tier group, achieving
a loss comparable to methods like TOVA and SnapKV without using their privileged information.
This demonstrates that our offline RL training successfully distills the principles of attention-based
ranking into an efficient, static policy. Furthermore, the analysis reveals the importance of policy
specialization across heads. A fixed heuristic like StreamingLLM can be effective for certain heads
(see layer 22, head 0 in Figure 10) but detrimental for others (see layer 19, head 0 in Figure 9). Even
KeyDiff, a strong attention-free heuristic, exhibits hard failure modes (see layer 2, head 0 in Figure 10).
This result, together with a comprehensive sweeps across all layers and heads in Figures 9 and 10,
confirms that KVP learns diverse patterns that cannot be captured with a single heuristic.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

OASST2

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
K-Norm
KeyDiff
Random

(a) Effectiveness of the reward: KVP performs on par
with attention-aware methods (dashed lines) despite
not using their privileged information by learning to
predict future attentions. A full visualization for all the
layers is in Figures 9 and 10.

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.02

0.04

0.06

0.08

0.10

−
R
b

OASST2

RL Agent
S3

S2
S1

(b) RL vs Supervised Surragates of Sorting: The RL
agent successfully reaches low cost (−Rb) while the
supervised surrogate (Blondel et al., 2020) fails. We
tested the supervised approach with three learning rates:
5× 10−6, 5× 10−5 and 5× 10−4.

Figure 4: Cost per-budget (−Rb) on the OASST2 test set for a representative head (layer 10, head 0).

Is RL necessary? We ablate the necessity of using RL by comparing it to a supervised learning
baseline using differentiable surragate of sorting (Blondel et al., 2020). This baseline uses the same
data and network architecture but replaces the policy gradient objective with a length-normalized
Mean Squared Error loss between predicted soft ranks (from a differentiable sorter (Blondel et al.,
2020)) and the ground-truth ranks. As shown in Figure 4b, this leads to poor performance: the
supervised agent fails to learn an effective policy, evidenced by its high and unstable cost curve. In
contrast, the RL agent’s cost is low and stable confirming that RL is better suited for learning KV
cache policies.

We conjecture that the KV cache eviction task is inherently sparse: only a small fraction of tokens are
critical for future generation. This sparsity poses a fundamental challenge for supervised methods
using differentiable sorting surrogates. Such methods face a trade-off: a low temperature provides
vanishing gradients, while a high temperature yields dense but biased gradients that incorrectly
disperse importance across irrelevant tokens. Policy gradient methods bypass this issue by providing
an unbiased learning signal through the non-differentiable sort operation. This allows for direct credit
assignment, concentrating the learning signal on the few ranking decisions that matter.

5 CONCLUSIONS AND FUTURE WORK

In this work, we introduced a new paradigm for KV cache eviction by reframing it as a learnable
sorting problem. We proposed KVP, a system of lightweight, per-head policies trained to rank cache
entries by their predicted future utility. The core of our method is a reward signal based on the
ranking quality across all possible memory budgets and its efficient inference-free optimization via
reinforcement learning. This approach allows for fine-grained, adaptive memory control without
requiring architectural changes or costly live LLM inference during training.

Our evaluations on long-context benchmarks demonstrate that KVP consistently outperforms strong
heuristic baselines, achieving lower perplexity degradation and higher task accuracy under tight
memory constraints. This validates our central hypothesis: directly learning a specialized sorting
policy is a more powerful and robust strategy than relying on handcrafted, backward-looking proxies
for token importance. By preserving model fidelity more effectively, KVP establishes a promising
direction for building more efficient and capable LLM inference systems.

Future work could extend this framework in several exciting directions. A natural next step is to
develop an adaptive budget allocation policy that dynamically assigns memory where it is most
needed across heads and layers. Furthermore, while KVP is highly efficient, it does not model inter-
dependencies between heads. A powerful extension would be to explore joint, end-to-end optimization
of all policies, which could capture these complex dynamics at the cost of requiring online training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sadia Afrin, Md Abdullah All Mahmud, Abdus Salam, Md Abdullah Al Jubair, and Muhammad Firoz
Mridha. Machine learning for predictive database caching strategies: A state-of-the-art review. In
Proceedings of the 3rd International Conference on Computing Advancements, ICCA 2024, pp.
540–547. ACM, 2024. doi: 10.1145/3723178.3723250.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. ArXiv preprint, abs/2402.14740, 2024. URL https:
//arxiv.org/abs/2402.14740.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
In EMNLP, Singapore, 2023.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In ICML, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue
Dong, Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression
based on pyramidal information funneling. ArXiv preprint, abs/2406.02069, 2024. URL https:
//arxiv.org/abs/2406.02069.

Edoardo Cetin, Qi Sun, Tianyu Zhao, and Yujin Tang. An evolved universal transformer memory.
ArXiv preprint, abs/2410.13166, 2024. URL https://arxiv.org/abs/2410.13166.

Vivek Chari, Guanghui Qin, and Benjamin Van Durme. Kv-distill: Nearly lossless learnable context
compression for llms. ArXiv preprint, abs/2503.10337, 2025. URL https://arxiv.org/
abs/2503.10337.

Shaoyuan Chen, Yutong Lin, Mingxing Zhang, and Yongwei Wu. Efficient and economic large
language model inference with attention offloading. ArXiv preprint, abs/2405.01814, 2024. URL
https://arxiv.org/abs/2405.01814.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=H4DqfPSibmx.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. ArXiv preprint, abs/2208.07339, 2022. URL https:
//arxiv.org/abs/2208.07339.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective
l_2 norm-based strategy for kv cache compression. ArXiv preprint, abs/2406.11430, 2024. URL
https://arxiv.org/abs/2406.11430.

10

https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2410.13166
https://arxiv.org/abs/2503.10337
https://arxiv.org/abs/2503.10337
https://arxiv.org/abs/2405.01814
https://openreview.net/forum?id=H4DqfPSibmx
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2406.11430

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 2024. URL https://zenodo.org/records/12608602.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive KV cache compression for llms. In ICLR, 2024.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In ICLR, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? ArXiv preprint, abs/2404.06654, 2024. URL https://arxiv.org/abs/2404.
06654.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri, David
Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander
Mattick. Openassistant conversations - democratizing large language model alignment. In NeurIPS,
2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative inference
of large language models with dynamic kv cache management. ArXiv preprint, abs/2406.19707,
2024. URL https://arxiv.org/abs/2406.19707.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are looking for before
generation. In NeurIPS, 2024.

Manlai Liang, JiaMing Zhang, Xiong Li, and Jinlong Li. Lagkv: Lag-relative information of the kv
cache tells which tokens are important. ArXiv, abs/2504.04704, 2025.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In ICLR, 2018.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dynamic
memory compression: Retrofitting llms for accelerated inference. In ICML, 2024.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

Abdullah Önden and Mohammed Alnour. Chatgpt and openai: A comprehensive bibliometric review.
Journal of Soft Computing and Decision Analytics, 1(1):254–264, 2023.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. ArXiv preprint, abs/2401.06104, 2024. URL https://arxiv.org/abs/2401.
06104.

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydiff:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. ArXiv preprint, abs/2504.15364, 2025. URL https://arxiv.org/abs/
2504.15364.

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society., 24(2):193–202,
1975.

Sebastian Prillo and Julian Martin Eisenschlos. Softsort: A continuous relaxation for the argsort
operator. In ICML, 2020.

11

https://zenodo.org/records/12608602
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2504.15364
https://arxiv.org/abs/2504.15364

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient LLM inference. In ICML, 2024.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large
language models with a single GPU. In ICML, 2023.

Junaid Shuja, Kashif Bilal, Waleed Alasmary, Hassan Sinky, and Eisa Alanazi. Applying machine
learning techniques for caching in edge networks: A comprehensive survey. ArXiv preprint,
abs/2006.16864, 2020. URL https://arxiv.org/abs/2006.16864.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. In NeurIPS, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
query-aware sparsity for efficient long-context LLM inference. In ICML, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023. URL https://arxiv.
org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men,
Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-
language model’s perception of the world at any resolution. ArXiv preprint, abs/2409.12191, 2024.
URL https://arxiv.org/abs/2409.12191.

Yantong Wang and Vasilis Friderikos. A survey of deep learning for data caching in edge network.
ArXiv preprint, abs/2008.07235, 2020. URL https://arxiv.org/abs/2008.07235.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3–4):229–256, 1992.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In ICLR, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. Qwen2 technical report. ArXiv preprint, abs/2407.10671, 2024.
URL https://arxiv.org/abs/2407.10671.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In NeurIPS, 2023.

12

https://arxiv.org/abs/2006.16864
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2008.07235
https://arxiv.org/abs/2407.10671

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MISSING PROOF OF PROPOSITION 1

Proof. Since |S⋆
b+1| = b+1 and |S⋆

b | = b with S⋆
b ⊂ S⋆

b+1, the set difference S⋆
b+1 \S⋆

b is nonempty.
By uniqueness of S⋆

b+1, this difference must contain exactly one element; otherwise, there would
exist two distinct (b+ 1)-subsets strictly between S⋆

b and S⋆
b+1, contradicting uniqueness. Hence we

can define a sequence of distinct elements

xσ1
∈ S⋆

1 , xσb+1
∈ S⋆

b+1 \ S⋆
b (b = 1, . . . , n− 1).

By construction, for each b we have

S⋆
b = {xσ1 , . . . , xσb

}.

Now define a total order (ranking) π on [n] by setting

π(xσb
) = b (b = 1, . . . , n).

This is a bijection π : [n] → [n], and its top-b prefix is precisely {xσ1 , . . . , xσb
} = S⋆

b . Therefore,

S⋆
b = { i ∈ [n] : π(i) ≤ b } for all b,

as claimed.

Equivalently, given π we may define a scoring function consistent with the order, for instance

s(xσk
) = n− k (k = 1, . . . , n),

which is strictly decreasing in k. Then the top-b elements according to s are exactly
{xσ1

, . . . , xσb
} = S⋆

b .

A.2 IMPLEMENTATION DETAILS

Our KVP agents are lightweight 2-layer MLPs with 256 hidden units, trained using the RLOO
algorithm (Ahmadian et al., 2024) as described in Section 3. Following the Grouped-Query Attention
(GQA) architecture of Qwen2.5-7B-Chat, we train a separate agent for each of the 4 KV heads
across all 28 layers, yielding 112 specialized agents. Each agent contains approximately 600K
parameters.

The agents are optimized to maximize the reward signal in Equation (4), which encourages retention
of tokens with high future utility across all cache budgets. During inference, the learned policy ranks
all tokens except the first 4 and last 16, which are always retained. Token eviction is emulated via
custom attention masks in FlexAttention, preventing the model from attending to pruned tokens
during generation.

For training stability, we apply gradient clipping (maximum norm of 5) and normalize advantages by
their mean and standard deviation, without entropy regularization. We use AdamW with a learning
rate of 5× 10−5, following a cosine schedule with 100-step linear warmup (start factor 0.01) that
decays to 1 × 10−6. Each agent trains for 4,000 steps on pre-computed activations. The training
pipeline, leveraging 8 NVIDIA H100 80GB GPUs with efficient TorchTune implementations and a
custom Triton kernel for loss computation, completes in approximately one hour.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL RESULTS

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

ORACLE
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

KeyDiff
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

KNorm

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

KVP
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

LagKV
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

Random

I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

SnapKV
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

StreamingLLM
I'm planning a trip to Rome next month. I want to
visit the Colosseum, the Vatican Museums, and
the Trevi Fountain. What's the best order to visit
these attractions to minimize travel time?
<|im_end|>Also, should I book tickets in advance
for these places?<|im_end|>

TOVA

Figure 5: All strategies compared on the qualitative example shown in Figure 1. The attention scores
considered are from layer 12 head 0.

0 1000 2000 3000 4000 5000

Cache Size

4

6

8

10

12

14

16

18

20

D
at

as
et

Pe
rp

le
xi

ty

RULER

KVP
KeyDiff
TOVA
Lagkv

K-Norm
StreamingLLM
Random
SnapKV

Figure 6: Perplexity (PPL) as a function of KV cache size. KVP achieves highly competitive
perplexity, performing on par with or better than the leading baselines at most cache sizes and
significantly outperforming other methods. This result is particularly notable given that RULER’s
structure, which includes random sentences preceding a final question, heavily advantages methods
that can isolate tokens relevant to that question.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

20 25 30 35 40 45 50
Cache Size

30.0

40.0

50.0

60.0

70.0

A
cc

ur
ac

y

MMLU

20 25 30 35 40 45 50
Cache Size

63.0

64.0

65.0

66.0

67.0

68.0

69.0

N
or

m
al

iz
ed

A
cc

ur
ac

y
HELLASWAG

Uncompressed
KVPS

KVPR

Lagkv
KeyDiff

K-Norm
StreamingLLM
Random
TOVA
SnapKV

Figure 7: (Left) Average test accuracy on MMLU and (Right) average normalized accuracy on
Hellaswag as a function of KV cache size. Higher is better.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
N

IA
H

M
U

LT
IK

E
Y

2
Sc

or
e

RULER - NIAH MULTIKEY 2

KVP
TOVA
SnapKV
Lagkv

KeyDiff
StreamingLLM
Random
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
N

IA
H

M
U

LT
IK

E
Y

3
Sc

or
e

RULER - NIAH MULTIKEY 3

StreamingLLM
SnapKV
TOVA
KVP

Lagkv
Random
KeyDiff
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

55

60

65

70

75

R
U

L
E

R
N

IA
H

M
U

LT
IQ

U
E

RY
Sc

or
e

RULER - NIAH MULTIQUERY

KVP
KeyDiff
SnapKV
Lagkv

TOVA
StreamingLLM
Random
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
N

IA
H

M
U

LT
IV

A
L

U
E

Sc
or

e

RULER - NIAH MULTIVALUE

KVP
KeyDiff
Lagkv
TOVA

SnapKV
StreamingLLM
Random
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
N

IA
H

SI
N

G
L

E
1

Sc
or

e

RULER - NIAH SINGLE 1

KVP
TOVA
KeyDiff
SnapKV

Lagkv
K-Norm
StreamingLLM
Random

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
N

IA
H

SI
N

G
L

E
2

Sc
or

e

RULER - NIAH SINGLE 2

KVP
KeyDiff
TOVA
SnapKV

Lagkv
StreamingLLM
Random
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
C

W
E

Sc
or

e

RULER - CWE

SnapKV
KeyDiff
TOVA
StreamingLLM

Lagkv
Random
KVP
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
FW

E
Sc

or
e

RULER - FWE

StreamingLLM
KVP
KeyDiff
SnapKV

Lagkv
TOVA
Random
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
N

IA
H

M
U

LT
IK

E
Y

1
Sc

or
e

RULER - NIAH MULTIKEY 1

KVP
KeyDiff
TOVA
SnapKV

Lagkv
Random
StreamingLLM
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
N

IA
H

SI
N

G
L

E
3

Sc
or

e

RULER - NIAH SINGLE 3

KVP
KeyDiff
StreamingLLM
Lagkv

TOVA
SnapKV
Random
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

55

60

65

70

75

80

85

90

R
U

L
E

R
Q

A
1

Sc
or

e

RULER - QA 1

TOVA
SnapKV
StreamingLLM
KVP

Lagkv
KeyDiff
Random
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

52

54

56

58

60

62

64

66

R
U

L
E

R
Q

A
2

Sc
or

e

RULER - QA 2

TOVA
SnapKV
KVP
StreamingLLM

Lagkv
Random
KeyDiff
K-Norm

0 1000 2000 3000 4000 5000

Cache Size

50

60

70

80

90

100

R
U

L
E

R
V

T
Sc

or
e

RULER - VT

KVP
TOVA
SnapKV
KeyDiff

Lagkv
K-Norm
StreamingLLM
Random

Figure 8: Per-task accuracy on all RULER subtasks as a function of absolute KV cache size.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: Cost (−Rb) for all strategies across a selection of layers (rows) and all available heads
(columns) on the OASST2 test set. The plots show that the relative performance of different strategies
varies significantly across heads, highlighting the benefit of learning specialized per-head policies.
Lower is better.

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 0, Head 0

TOVA
SnapKV
KVP
K-Norm

StreamingLLM
Random
KeyDiff
Lagkv

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 0, Head 1

TOVA
SnapKV
StreamingLLM
KVP

K-Norm
Lagkv
Random
KeyDiff

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 0, Head 2

TOVA
SnapKV
KVP
Lagkv

StreamingLLM
K-Norm
KeyDiff
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 0, Head 3

TOVA
StreamingLLM
SnapKV
KVP

Lagkv
KeyDiff
Random
K-Norm

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 5, Head 0

TOVA
KVP
SnapKV
StreamingLLM

Lagkv
K-Norm
KeyDiff
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 5, Head 1

TOVA
KVP
SnapKV
Lagkv

KeyDiff
StreamingLLM
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 5, Head 2

TOVA
SnapKV
K-Norm
KVP

Lagkv
StreamingLLM
Random
KeyDiff

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 5, Head 3

TOVA
SnapKV
KVP
Lagkv

KeyDiff
K-Norm
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 10, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
K-Norm
KeyDiff
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 10, Head 1

TOVA
KVP
SnapKV
KeyDiff

Lagkv
K-Norm
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 10, Head 2

TOVA
KVP
SnapKV
KeyDiff

K-Norm
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 10, Head 3

TOVA
KVP
KeyDiff
SnapKV

K-Norm
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 15, Head 0

TOVA
KVP
SnapKV
StreamingLLM

Lagkv
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 15, Head 1

TOVA
SnapKV
KVP
StreamingLLM

K-Norm
Lagkv
KeyDiff
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 15, Head 2

TOVA
SnapKV
KVP
KeyDiff

K-Norm
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 15, Head 3

TOVA
SnapKV
KVP
StreamingLLM

Lagkv
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 19, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 19, Head 1

TOVA
KVP
SnapKV
StreamingLLM

Lagkv
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 19, Head 2

SnapKV
TOVA
KVP
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 19, Head 3

KVP
SnapKV
TOVA
StreamingLLM

Lagkv
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 20, Head 0

TOVA
KVP
SnapKV
KeyDiff

K-Norm
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 20, Head 1

TOVA
KVP
SnapKV
KeyDiff

StreamingLLM
Lagkv
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 20, Head 2

TOVA
KVP
SnapKV
KeyDiff

K-Norm
StreamingLLM
Lagkv
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 20, Head 3

TOVA
SnapKV
KVP
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 25, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
K-Norm
Random
KeyDiff

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 25, Head 1

TOVA
KVP
SnapKV
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 25, Head 2

TOVA
SnapKV
KVP
KeyDiff

K-Norm
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 25, Head 3

TOVA
SnapKV
KVP
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: Cost (−Rb) for all strategies on head 0 across all 28 layers of the model, evaluated on the
OASST2 test set. This visualization shows how the effectiveness of different non attention-aware
eviction heuristics changes with model depth, whereas the learned KVP policy remains consistently
effective. Lower is better.

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 0, Head 0

TOVA
SnapKV
KVP
K-Norm

StreamingLLM
Random
KeyDiff
Lagkv

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 1, Head 0

TOVA
SnapKV
KVP
StreamingLLM

KeyDiff
Lagkv
Random
K-Norm

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 2, Head 0

TOVA
SnapKV
KVP
K-Norm

Lagkv
Random
StreamingLLM
KeyDiff

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 3, Head 0

TOVA
SnapKV
KVP
K-Norm

StreamingLLM
Random
KeyDiff
Lagkv

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 4, Head 0

TOVA
KVP
SnapKV
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 5, Head 0

TOVA
KVP
SnapKV
StreamingLLM

Lagkv
K-Norm
KeyDiff
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 6, Head 0

TOVA
KeyDiff
K-Norm
KVP

Lagkv
SnapKV
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 7, Head 0

TOVA
SnapKV
KVP
KeyDiff

Lagkv
StreamingLLM
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 8, Head 0

TOVA
KVP
SnapKV
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 9, Head 0

TOVA
KVP
SnapKV
KeyDiff

K-Norm
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 10, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
K-Norm
KeyDiff
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 11, Head 0

TOVA
SnapKV
KVP
Lagkv

KeyDiff
K-Norm
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 12, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 13, Head 0

TOVA
SnapKV
KVP
Lagkv

StreamingLLM
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 14, Head 0

TOVA
SnapKV
KVP
K-Norm

KeyDiff
Lagkv
Random
StreamingLLM

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 15, Head 0

TOVA
KVP
SnapKV
StreamingLLM

Lagkv
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 16, Head 0

SnapKV
TOVA
KVP
Lagkv

KeyDiff
Random
K-Norm
StreamingLLM

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 17, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
Random
K-Norm
KeyDiff

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 18, Head 0

TOVA
KVP
SnapKV
K-Norm

KeyDiff
StreamingLLM
Lagkv
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 19, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
KeyDiff
K-Norm
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 20, Head 0

TOVA
KVP
SnapKV
KeyDiff

K-Norm
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 21, Head 0

TOVA
KVP
SnapKV
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 22, Head 0

TOVA
SnapKV
KVP
StreamingLLM

KeyDiff
K-Norm
Lagkv
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 23, Head 0

TOVA
KVP
SnapKV
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 24, Head 0

TOVA
K-Norm
KVP
SnapKV

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 25, Head 0

TOVA
KVP
SnapKV
Lagkv

StreamingLLM
K-Norm
Random
KeyDiff

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 26, Head 0

TOVA
KVP
SnapKV
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

0 500 1000 1500 2000 2500 3000

KV Cache Size

0.00

0.01

0.02

0.03

0.04

0.05

−
R
b

Layer 27, Head 0

TOVA
SnapKV
KVP
K-Norm

KeyDiff
Lagkv
StreamingLLM
Random

18

	Introduction
	Related Work
	Methodology: Learning to Evict KV Cache Entries
	KV Cache Eviction Agent
	Global Reward for Offline RL

	Per-Head RL Agent and Efficient Training

	Evaluation
	Experimental Setup
	Downstream Performance
	Ablations

	Conclusions and Future Work
	Appendix
	Missing Proof of Proposition 1
	Implementation details
	Additional results

