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ABSTRACT

This paper studies the problem of distributed non-convex optimization under pri-
vacy requirements. We develop a differentially private communication efficient
algorithm and study its privacy and utility trade-offs. By introducing the shuffled
model into our algorithmic design, we are able to achieve strong privacy and util-
ity guarantees without relying on a trusted central server. We further show that
our proposed method can achieve improved utility guarantees (faster convergence
rates) compared to previous approaches. Additionally, we present preliminary ex-
perimental results to corroborate our theoretical findings.

1 INTRODUCTION

We consider the following distributed optimization problem with M clients:

min
x∈Rd

F (x) :=
1

M

M∑
m=1

Fm(x) :=
1

Mn

M∑
m=1

n∑
i=1

f(x; zmi ), (1.1)

where Fm is the objective for client m with its own local dataset Dm = {zm1 , . . . , zmn }. Our goal is
to find a model parameter x that can minimize the problem in equation 1.1 while acheiving differen-
tial privacy (DP) (see Definition 2.4) for each dataset Dm, where m ∈ [M ]. We are interested in the
non-convex heterogeneous case, where f is non-convex and clients have different data distributions.

To solve the distributed optimization problem in equation 1.1, we consider the intermittent com-
munication (IC) setting (Stich, 2018; Dieuleveut & Patel, 2019; Woodworth et al., 2021; Bullins
et al., 2021; Patel et al., 2022), where M clients work in parallel over R communication rounds, and
each client can sequentially compute T stochastic gradient estimates between two communication
rounds. In particular, we are interested in the federated learning (FL) framework (McMahan et al.,
2016; Kairouz et al., 2021b), where there exists a central server that will communicate with clients
at each communication round to allow the information sharing among clients.

We want to achieve DP for each individual data record in Dm for client m ∈ [M ], i.e., record-level
DP. This is in contrast to many previous works (McMahan et al., 2018; Kairouz et al., 2021a) for
FL that try to achieve DP for the whole data records in Dm, i.e., client-level DP. The client-level
DP is useful for cross-device FL, where each device/client (such as mobile phone) maintains data
records from a single individual. However, the record-level DP is useful for cross-silo FL, where
each silo/client (e.g., hospital) has data records from many different individuals (e.g., patients), and
it has been considered in many previous works (Murata & Suzuki, 2023; Lowy et al., 2023; Girgis
et al., 2021) for FL. In addition, we assume the central server is not trustworthy and thus we want
to protect against the curious central server. This is motivated by several findings (Boenisch et al.,
2023) highlighting the significant privacy leakage issues caused by the central server in FL.

Many attempts have been made to deal with the untrusted server. For example, one can use the
secure aggregation techniques, such as multi-party computation (MPC), in FL (Jayaraman et al.,
2018). However, these techniques often suffer from huge computational and memory costs, par-
ticularly in scenarios involving a large number of clients, extensive data records, and significant
model sizes. Another straightforward way is to achieve local DP (LDP) (Beimel et al., 2008; Duchi
et al., 2013) for each client. Nevertheless, LDP mechanisms often lead to poor privacy and utility
trade-offs (Duchi et al., 2013). A recent line of study (Cheu et al., 2019; Balle et al., 2019; Feld-
man et al., 2023) shows that one can significantly improve the privacy and utility trade-offs of LDP
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Table 1: Comparison of convergence rates for different (ϵ, δ)-DP algorithms in the IC setting. The
results are presented by ignoring numerical constants and the logarithmic dependence. τ is the
heterogeneity (see Assumption 2.3) of the problem and τ ≤ 2L. b is the batch size used by local
update algorithms for their local updates, K is the number of local steps. * DIFF2 requires Mn ≥
G2d1/2/(LDF ϵ), which implies (dDFLG)2/3/(Mnϵ)4/3 ≥ dG2/(Mnϵ)2. Red terms indicate
additional errors introduced by using mini-batch gradients instead of full gradients at the server and
ℓ = Mnϵ/(RdMKb)1/2. † SDP FEDPROX-SPIDER has an extra log(R/δ) dependency compared
our method due to the advanced composition used in its privacy guarantees (Abadi et al., 2016).

Method Convergence Rate Trusted Full Gradients
(Reference) E∥∇F (x̂)∥22 ≤ Server at Server

DIFF2-GD* DFL
R

+ DFL
√
d

Mnϵ
√
R
+ (dDFLG)2/3

(Mnϵ)4/3
Yes Yes(Murata & Suzuki, 2023)

MB-PSGM-FG†
DFL
R

+ (dDFLG)2/3

(Mnϵ)4/3
+ dG2

M2n2ϵ2
No YesTheorem A.4

SDP FEDPROX-SPIDER†
(Lowy et al., 2023)

DFL
R

+ (DFLG)2/3

(MKb)2/3
+ G2

MKbR
MB-PSGM
Theorem A.3 No No

+
(
1 + ℓ+ ℓ1/3

) (dDFLG)2/3

(Mnϵ)4/3
+ dG2

M2n2ϵ2

DF τ
R

+ DFL
RK

+ DFL

R
√
Kb

DIFF2-BVR-LSGD*
(Murata & Suzuki, 2023) Yes Yes

+DFL
√
d

R
√
Kϵb

+ DFL
√

d√
RMnϵ

+ (dDFLG)2/3

(Mnϵ)4/3

DF τ
R

+ DFL
RK

+ DFL

R
√
Kb

CE-PSGM-FG
Theorem A.2 No Yes

+DFL
√
d

R
√
Kϵb

+ DFL
√

d√
RMnϵ

+ (dDFLG)2/3

(Mnϵ)4/3
+ dG2

M2n2ϵ2

DF τ
R

+ DFL
RK

+ DFL

R
√
Kb

+ (DFLG)2/3

(MKb)2/3
+ G2

MKbRCE-PSGM
Theorem 4.2 +DFL

√
d

R
√
Kϵb

+ DFL
√

d√
RMnϵ

No No

+
(
1 + ℓ+ ℓ1/3

) (dDFLG)2/3

(Mnϵ)4/3
+ dG2

M2n2ϵ2

mechanisms through the shuffled model by amplifying privacy guarantees through anonymization
(the privacy guarantee will be amplified by a factor of 1/

√
M ). Therefore, we propose to follow the

idea of a shuffling model such that clients will first send their local updates to a secure shuffler. The
shuffler will then randomly permute clients’ updates and send the shuffled messages to the server.
See Figure 2 in Appendix A.4 for a simple illustration. Equipped with a secure random shuffler, we
can achieve strong privacy and utility trade-offs and handle the untrusted central server.

Related work. Recently, lots of efforts (Noble et al., 2022; Liu et al., 2021; Li et al., 2022; Lowy
& Razaviyayn, 2022; Murata & Suzuki, 2023; Lowy et al., 2023; Girgis et al., 2021) have been
made towards achieving DP in FL. The works most closely related to ours are those by Murata &
Suzuki (2023); Lowy et al. (2023), which also consider solving the problem in equation 1.1 within
the non-convex setting while achieving record-level DP. For example, Murata & Suzuki (2023)
proposes two differentially private algorithms, including one mini-batch algorithm (i.e., DIFF2-
GD) and one local update algorithm (i.e., DIFF2-BVR-LSGD), based on the non-private BVR-
L-SGD algorithm (Murata & Suzuki, 2021). For mini-batch algorithms, each machine computes
the stochastic/mini-batch gradient estimates at the same point (model parameter) for T times to
generate a large mini-batch gradient estimate. On the other hand, in the local update algorithm,
each machine computes stochastic/mini-batch gradient estimates at different points for each local
step and uses them to update the local model. They provide the convergence guarantees of their
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methods, showing that the local update algorithm can achieve a faster convergence rate than the
mini-batch algorithm when the problem heterogeneity (see Assumption 2.3) is low. However, their
approaches not only require a trustworthy central server but also ask clients to send full gradients
to the server for constructing a global differentially private gradient estimator. Lowy et al. (2023)
establishes a differentially private mini-batch algorithm, namely SDP FEDPROX-SPIDER, which
builds upon on the non-private SPIDER algorithm (Fang et al., 2018). Although their method can
handle the untrusted central server through the shuffle model, it fails to benefit from the problem’s
low heterogeneity and requires full gradient computations from the clients.

Contributions. The contributions of our work are summarized as follows.

• We develop a differentially private algorithm CE-PSGM for solving the distributed non-convex
optimization problem with heterogeneous data. At the core of our algorithm is the non-private
communication efficient local update algorithm (Patel et al., 2022) and the shuffled model (Feld-
man et al., 2023). By using a secure random shuffler, our method is able to address the scenario
where the central server is untrustworthy. Additionally, our approach can seamlessly reduce to
the mini-batch algorithm (i.e., MB-PSGM), which is widely used in practice, by omitting local
updates.

• We show the convergence guarantees of our proposed method. Specifically, our mini-batch algo-
rithm achieves a faster convergence rate than existing mini-batch algorithms (Murata & Suzuki,
2023; Lowy et al., 2023). Furthermore, for the local update algorithm, our method attains the
state-of-the-art convergence rate (Murata & Suzuki, 2023). More importantly, we illustrate that
the local update algorithm can converge faster than the mini-batch algorithm when the problem
heterogeneity is low. Detailed comparisons are provided in Table 1.

• Compared to existing methods (Murata & Suzuki, 2023; Lowy et al., 2023), our proposed method
allows clients to transmit mini-batch gradients, as opposed to full gradients, to the central server
for constructing the global differentially private gradient estimator, while also achieving fast con-
vergence rates. This advancement is made possible through our new privacy amplification results
(Lemma 2.7), which take into account the combined effects of data sampling and random shuf-
fling.

Notation. We use B to denote the index set. [n] denotes the set {1, 2, . . . , n}. We use ≲ to denote in-
equality up to numerical constants and poly-logarithmic terms, and let DF = F (x0)−infx∈Rd F (x).

2 PRELIMINARIES

Our goal is to find an ε-approximate stationary point of F , i.e., a point x ∈ Rd such that
E∥∇F (x)∥22 ≤ ε, that is also DP. We have the following assumptions on the objective loss functions.
Assumption 2.1. f(x; z) is G-Lipschitz, i.e., ∀x, y ∈ Rd, |f(x; z)− f(y; z)| ≤ G∥x− y∥2.

The Lipchitz assumption is a standard assumption in the differentially private optimization literature
(), and it is necessary for us to show the convergence of our method.
Assumption 2.2. f(x; z) is L-smooth, i.e., ∀x, y ∈ Rd, ∥∇f(x; z)−∇f(y; z)∥2 ≤ L∥x− y∥2.

We make the following assumption that relate the functions of different clients to one another, which
is also known as the “heterogeneity” of the problem.
Assumption 2.3. The objective function of each client is second-order τ -heterogeneous, i.e., ∀m ∈
[M ], supm∈[M ],x∈Rd ∥∇2Fm(x)−∇2F (x)∥2 ≤ τ.

Assumption 2.3 can always be satified by setting τ ≥ 2L for smooth functions. This second-order
heterogeneity assumption has been previously considered in the non-private setting (Karimireddy
et al., 2021; Murata & Suzuki, 2021; Patel et al., 2022), and is crucial to show the benifits (Patel
et al., 2022) of the local updates when τ ≪ L.

We next introduce the notions of differential privacy (Dwork et al., 2006) and Rényi Differential
Privacy (RDP) (Mironov, 2017). In our privacy analysis, we use RDP to account for privacy loss
and then state our results by converting the RDP guarantee to (ϵ, δ)-DP guarantee.
Definition 2.4 ((ϵ, δ)-DP). A randomized mechanism M satisfies (ϵ, δ)-differential privacy if for
adjacent datasets D,D′ differing by one element, and any output subset O, it holds that P[M(D) ∈
O] ≤ eϵ · P[M(D′) ∈ O] + δ.
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Definition 2.5 (RDP). A randomized mechanism M satisfies (α, ρ)-Rényi differential privacy
with α > 1 and ρ > 0 if for adjacent datasets D,D′ ∈ D differing by one element,
Dα

(
M(D)||M(D′)

)
= logEM(D′)

(
M(D)/M(D′)

)α
/(1− α) ≤ ρ.

We can use the following Gaussian Mechanism (Mironov, 2017) to acheive RDP.
Lemma 2.6. Given a function q, the Gaussian Mechanism M = q(D) + u, where u ∼
N(0, σ2I), satisfies (α, αS2

2/(2σ
2))-RDP, where S2 is the ℓ2-sensitivity of q and is defined as

S2 = supD,D′ ∥q(D)− q(D′)∥2 for two adjacent datasets D,D′ differing by one element.

In our algorithmic design, we propose to use both data sampling and random shuffling (see line 5
to line 12 in Algorithm 1) at r-th communication round to construct the global differentially private
gradient estimator, and we denote this process by Mr (see detailed definition in Appendix A.3).
Therefore, we provide the following new privacy amplification result that captures the combined
effect of data sampling and shuffling on the privacy guarantees.
Lemma 2.7. Let γ = B/n and ML is an ϵ0-LDP mechanism. Then the mechanism Mr is
(α, 26γ2αρ)-RDP with ρ = ceϵ0/(MB) for all α ∈ [2,MB/(4cϵ0e

ϵ0)] and some constant c when
γ ≤ 0.1, ρ ≤ 0.1, ϵ0 ≥ 1, c ≥ 16ϵ0 log(1/γ), 6ceϵ0 ≤ MB log(1/δ).

3 METHODS

The proposed algorithm, i.e., CE-PSGM, is illustrated in Algorithm 1.

Algorithm 1 Communication Efficient Private Stochastic Gradient Method (CE-PSGM)
input Initialization x0, iteration number R, step size η, local steps H , batch sizes B0, B1, B2, weight param-

eters β, clipping parameters C1, C2, C3, noise parameter σ2, LDP parameter ϵ0
1: Let x0 = x−1, v̄−1 = 0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 set ρ = 1, Q = 1, B = B0 else set ρ = β, Q = H , B = B1

4: Send (communicate) (xr, xr−1) to clients
5: on client m ∈ [M ] do
6: Data sampling: choose B samples uniformly at random indexed by Bm

r

7: Compute stochastic gradients: g1,im,r = ∇f(xr; z
m
i ) − ∇f(xr−1; z

m
i ) and g2,im,r = ∇f(xr−1; z

m
i ),

where i ∈ Bm
r

8: LDP estimators: ḡ1,im,r = ML

(
CLIP(g1,im,r, C

1
r )
)

and ḡ2,im,r = ML

(
CLIP(g2,im,r, C

2
r )
)
, where C1

r =

C1∥xr − xr−1∥2, C2
r = C2

9: Send (communicate)
(
{ḡ1,im,r}i∈Bm

r
, {ḡ2,im,r}i∈Bm

r

)
to the shuffler

10: end on client
11: shuffling: Shuffler randomly shuffles {ḡ1,im,r}i∈Bm

r ,m∈[M ] and {ḡ2,im,r}i∈Bm
r ,m∈[M ] and Send (commu-

nicate) them to the server
12: Private VR term: v̄r = (1− ρ)v̄r−1 +

1
MB

∑M
m=1

∑B
i=1

(
(1− ρ)ḡ1,im,r + ρḡ2,im,r

)
13: Send (communicate) (xr, v̄r) to client m̃r , where m̃r is (r mod M + 1)-th client
14: on client m̃r do
15: Set: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v̄

m̃r
r,0 := v̄r

16: for k = 1, . . . , H do
17: Data sampling: choose B2 samples uniformly at random indexed by Bm̃

r,k

18: dm̃k−1 = 1
B2

∑
i∈Bm̃

r,k
CLIP(∇f(wm̃r

r+1,k; z
m̃
i ) − ∇f(wm̃r

r+1,k−1; z
m̃
i ), Ck

r ), where Ck
r =

C3∥wm̃r
r+1,k − wm̃r

r+1,k−1∥2
19: Private gradient estimator: v̄m̃r

r,k = v̄m̃r
r,k−1 + dm̃k−1 + ν, where ν ∼ Ck

r ·N(0, σ2I)

20: Update: wm̃r
r+1,k+1 = wm̃r

r+1,k − ηv̄m̃r
r,k

21: end for
22: Send (communicate)

(
wm̃r

r+1,H+1

)
to the server

23: end on client
24: Let xr+1 = wm̃r

r+1,H+1
25: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[H]

Our method is motivated by the communication efficient local update algorithm (Patel et al., 2022).
At the central server, we construct a private global gradient estimator v̄r (see line 5 to line 12)
through a secure shuffler. Specifically, each client m ∈ [M ] first computes stochastic gradients
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{g1,im,r, g
2,i
m,r}i∈Bm

r
for a random subset Bm

r of B1 ≤ n samples (line 7). Then, the client applies the
ϵ0-LDP mechanism ML to these stochastic gradients (line 8). Each client sends the LDP stochas-
tic gradients {ḡ1,im,r, ḡ

2,i
m,r}i∈Bm

r
to the secure shuffler. The shuffler outputs a random permutation

of the received gradients and sends them to the server (line 11). Finally, the server will aggregate
the received gradients to construct v̄r (line 12), a private variant of the STORM gradient estimator
(Cutkosky & Orabona, 2019). For the local updates, we propose to use the private gradient estimator
v̄mr

r,k (line 19), which is constructed by adding random Gaussian noise to the SARAH gradient esti-
mator (Nguyen et al., 2017). Given these two private gradient estimators, we are able to make use
of the low heterogeneity of the problem to achieve a faster convergence rate (Patel et al., 2022). In
addition, the secure random shuffler allows us to not only achieve strong privacy guarantees through
anonymization (Feldman et al., 2023) but also deal with the untrustworthy central server. For the
ϵ0-LDP mechanism ML, we propose to use the method proposed by Duchi et al. (2018) for the
private mean estimation problem. The detailed algorithm can be found in Appendix A.4.

If we want to implement our algorithm in the IC setting with parameter T , we can set H = K,B2 =
b, B1 = Kb in Algorithm 1, and let Kb = T . In addition, if we set H = 1, our method reduces to
the mini-batch algorithm (MB-PSGM), i.e., the algorithm without local updates on the clients. By
setting B1 = Kb, we can also implement MB-PSGM in the IC setting with parameter T . Note that
if we are using full gradients to construct the private gradient estimator v̄r at the central server, i.e.,
B1 = n > T , we can divide the full gradient computation into ⌈n/T ⌉ rounds of communications.
We assume these settings of parameters to present the theoretical results of our methods.

4 MAIN RESULTS

In this section, we present the privacy and utility (convergence) guarantees of our methods.
Theorem 4.1 (Privacy of CE-PSGM). If we set local steps H = K, batch sizes B0 = b0, B1 =

Kb,B2 = b, noise parameter σ2 = O
(
max

{KR log(1/δ)
Mn2ϵ2 , log(1/δ)

b2ϵ

})
, then under conditions that

ϵ0 = O(1), ϵ = O(log(1/δ)), Mnmin{γ0, γ1} = Ω(log(1/δ)/ϵ), where γ0 = b0/n, γ1 = Kb/n,
Algorithm 1 is (ϵ, δ)-DP with ϵ = O

(√
(γ0 +Rγ1) log(1/δ)/(Mn)

)
.

Note that the privacy budget ϵ is restricted to be the order of
√
γ1R/Mn due to the technical re-

quirements of amplification by shuffling results (Feldman et al., 2023). This is also the case in the
previous work (Girgis et al., 2021) of using the shuffle model. This restriction is mild since we can
choose a larger R to achieve the privacy guarantee in the low privacy regime.

We can also use full gradients to construct the global private gradient estimator v̄r (line 5-12 in
Algorithm 1), as in the previous works (Murata & Suzuki, 2023; Lowy et al., 2023), and we denote
this algorithm as CE-PSGD-FG. According to Theorem 4.1, we only need to set B0 = B1 =
n, γ0 = γ1 = 1 to achieve its privacy guarantees. As we mentioned before, if we set H = 1,
then Algorithm 1 reduces to the mini-batch algorithm and we denote it as MB-PSGM. The privacy
guarantees of MB-PSGM can be found in Appendix A.1.
Theorem 4.2 (Utility of CE-PSGM). Suppose f satifies Assumptions 2.1-2.3, and we
choose the same parameters H,B0, B1, B2, σ, ϵ0 as in Theorem 4.1. If we set C1 =

C2 = L,C2 = G, β = max
{

1
R ,min

{
(Mnϵ)2/3(DFL)2/3

d1/3RG4/3 , (MKb)1/3(DFL)2/3

R2/3G4/3

}}
, η =

min
{√

βMb√
KL

,
√
βMnϵ√
dRKL

, 1
L ,

1
Kτ ,

√
b√

KL
, 1√

KdLσ

}
, and assuming 1/(Rb0) ≤ β2/(Kb), β ≤ 1, ϵ =

O(log(1/δ)), M min{b0,Kb} = Ω(log(1/δ)/ϵ), Kb < n, b0 < n, then Algorithm 1 satisfies

E
∥∥∇F (x̃)

∥∥2
2
≲

DF τ

R
+

DFL

RK
+

DFL

R
√
Kb

+
(DFLG)2/3

(MKb)2/3
+

G2

MKbR︸ ︷︷ ︸
non−private error

+
DFL

√
d

R
√
Kϵb

+
DFL

√
d√

RMnϵ︸ ︷︷ ︸
private error local

+

(
1 + ℓ+ ℓ1/3

)
(dDFLG)2/3

(Mnϵ)4/3
+

dG2

M2n2ϵ2︸ ︷︷ ︸
private error server

,

where ℓ = Mnϵ/
√
RdMKb.

According to Theorem 4.2, the utility guarantee consists of three parts. The first term, non-private
error, represents the optimization error. The second term, private error local, corresponds to the
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(a) Train loss (b) Test loss (c) Gradient norm

Figure 1: Numerical results of our proposed MB-PSGM-FG algorithm under different privacy
budgets. We can see that our method can achieve reasonable performance even in the high privacy
regime.

error introduced by the Gaussian mechanism during the local training. The third term, private error
server, is due to the private mechanisms for constructing the global private gradient estimator v̄r at
the server. If ϵ → ∞, i.e., there is no privacy guarantee, this result reduces to the non-private result
(Patel et al., 2022) by replacing the stochastic gradient variance with G2.

Compared to previous works (Murata & Suzuki, 2023; Lowy et al., 2023), our method enables the
use of mini-batch gradients, as opposed to full gradients, for constructing v̄r at the server. This will
cost additional errors (DFLG)2/3/(MKb)2/3 + G2/(MKbR) in the non-private error term, and
introduce additional ℓ + ℓ1/3 factor in the private error server term. The detailed utility guarantees
of using full gradient for v̄r can be found in Appendix A.1, and we refer it as CE-PSGM-FG.

The detailed comparisons of different algorithms are summarized in Table1. Firstly, setting H = 1
enables us to derive the utility guarantees (refer to Appendix A.1) for the mini-batch algorithms MB-
PSGM and MB-PSGM-FG (utilizing full gradients for v̄r). Compared to the mini-batch algorithm
DIFF2-GD (Murata & Suzuki, 2023), the MB-PSGM-FG method attains a faster convergence rate
by eliminating the additional DFL

√
d/(Mnϵ

√
R) term. Additionally, MB-PSGM-FG converges

faster than SDP FEDPROX-SPIDER (Lowy et al., 2023), which suffers from an extra log(R/δ)
dependency due to the advanced composition used in its privacy guarantees (Abadi et al., 2016).
Secondly, the convergence rate of our local update algorithm CE-PSGM-FG is on par with the
state-of-the-art local update method DIFF2-BVR-LSGD (Murata & Suzuki, 2023), without the
need for a trustworthy server. Lastly, the local update algorithm proves more efficient than the mini-
batch algorithm when the heterogeneity parameter τ is small and the number of local steps K is
large, provided R is sufficiently large.

5 NUMERICAL RESULTS

In this section, we present preliminary numerical results to evaluate our proposed method. Figure 1
illustrates the performance of MB-PSGM-FG method under different privacy guarantees. We can
see from Figure 1 that our method can achieve reasonable performances even under high privacy
regime. More details about the datasets, model architectures and algorithm parameters can be found
in Appendix A.2.

6 CONCLUSION AND FUTURE WORK

In this paper, we develop a differentially private communication efficient algorithm for solving the
distributed non-convex optimization problem under privacy constraints. We show that our proposed
method can achieve faster convergence rates than the previous methods without relying on the trusted
server. We also present preliminary experimental results to evaluate the performance of our method.

As for the future work, we plan to conduct more experiments to thoroughly evaluate the perfor-
mances of our methods. We also plan to study the optimality of our algorithms.
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A APPENDIX

A.1 ADDITIONAL RESULTS

If we set the local steps H = 1, then Algorithm 1 reduces to the mini-batch algorithm, i.e., MB-
PSGM. We have the following privacy guarantee of MB-PSGM.
Theorem A.1 (Privacy of MB-PSGM). If we set local steps H = 1, B0 = b0, B1 = Kb, then
Algorithm 1 is (ϵ, δ)-DP for any δ > 0 with

ϵ = O
(√

(γ0 +Rγ1) log(1/δ)

Mn

)
,

where γ0 = b0/n, γ1 = Kb/n and under the conditions that ϵ0 = O(1), ϵ = O(log(1/δ)),
Mnmin{γ0, γ1} = Ω(log(1/δ)/ϵ).

Similarly, we can set γ0 = γ1 = 1 to obtain the privacy guarantee of our mini-batch method using
full gradients, i.e., MB-PSGM-FG.

Note that if we use full gradients to construct v̄r at the server, we have the following utility guarantee.
Theorem A.2 (Utility of CE-PSGM-FG). Suppose f satifies Assumptions 2.1-2.3, we choose
B0 = B1 = n, and set parameters H,B2, σ, ϵ0 the same as in Theorem 4.1. If we set
clipping paramters C1 = C2 = L,C2 = G, β = max

{
1
R , (Mnϵ)2/3(DFL)2/3

d1/3RG4/3

}
, step size

η = min
{√

βMnϵ√
dRKL

, 1
L ,

1
Kτ ,

√
b√

KL
, 1√

KdLσ

}
, and assuming β ≤ 1, ϵ = O(log(1/δ)), Mn =

Ω(log(1/δ)/ϵ), then the output x̃ of Algorithm 1 satisfies

E∥∇F (x̃)∥22 ≲
DF τ

R
+

DFL

RK
+

DFL

R
√
Kb︸ ︷︷ ︸

non−private error

+
DFL

√
d

R
√
Kϵb

+
DFL

√
d√

RMnϵ︸ ︷︷ ︸
private error local

+
(dDFLG)2/3

(Mnϵ)4/3
+

dG2

M2n2ϵ2︸ ︷︷ ︸
private error server

.

As we mentioned before, if we choose the local steps H = 1, Algorithm 1 reduces to MB-PSGM.
We have the following utility guarantee for MB-PSGM.
Theorem A.3 (Utility of MB-PSGM). Suppose f satifies Assumptions 2.1, 2.2, and we choose
the same parameters H,B0, B1, B2, ϵ0 as in Theorem A.1. If we set clipping paramters as
C1 = L,C2 = G, β = max

{
1
R ,min

{
(Mnϵ)2/3(DFL)2/3

d1/3RG4/3 , (MKb)1/3(DFL)2/3

R2/3G4/3

}}
, stepsize η =

min
{√

βMb√
KL

,
√
βMnϵ√
dRKL

, 1
L

}
, and assuming 1/(Rb0) ≤ β2/(Kb), β ≤ 1, ϵ = O(log(1/δ)),

M min{b0,Kb} = Ω(log(1/δ)/ϵ), then the output x̃ of Algorithm 1 satisfies

E
∥∥∇F (x̃)

∥∥2
2
≲

DFL

R
+

(DFLG)2/3

(MKb)2/3
+

G2

MKbR︸ ︷︷ ︸
non−private error

+

(
1 +

(
Mnϵ

(RdMKb)1/2

)2

+

(
Mnϵ

(RdMKb)1/2

)1/3)
(dDFLG)2/3

(Mnϵ)4/3
+

dG2

M2n2ϵ2︸ ︷︷ ︸
private error server

.

We can also provide the utility guarantee for the minibatch method using full gradients to construct
v̄r as follows.
Theorem A.4 (Utility of MB-PSGM-FG). Suppose f satifies Assumptions 2.1, 2.2, we choose
B0 = B1 = n, and set parameters H, ϵ0 the same as in Theorem A.1. If we set clipping paramters
C1 = L,C2 = G, β = max

{
1
R , (Mnϵ)2/3(DFL)2/3

d1/3RG4/3

}
, stepsize η = min

{√
βMnϵ√
dRKL

, 1
L

}
, and assum-

ing β ≤ 1, ϵ = O(log(1/δ)), Mn = Ω(log(1/δ)/ϵ), then the output x̃ of Algorithm 1 satisfies

E∥∇F (x̃)∥22 ≲
DFL

R︸ ︷︷ ︸
non−private error

+
(dDFLG)2/3

(Mnϵ)4/3
+

dG2

M2n2ϵ2︸ ︷︷ ︸
private error server

.
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A.2 EXPERIMENTS

We consider the regression task to evaluate our proposed method MB-PSGM-FG on the California
Housing dataset 1. Following the previous work (Murata & Suzuki, 2023), we randomly divide the
dataset into 80% train dataset and 20% test dataset, resulting in a train dataset of size 16512 and a
test dataset of size 4128. We then randomly split the train dataset into 10 subsets and assigned each
of them to one of 10 clients.

We use the same neural network as in Murata & Suzuki (2023). We set the communication rounds
as R = 500 with ϵ ∈ {0.4, 0.8, 1.6}, δ = 10−5. We choose the clipping parameter for MB-PSGM-
FG from {1, 3, 10, 30, 100}. We tuned the learning rate by setting it to 0.5 originally. Our algorithm
checked the train loss every 20 communication rounds. If all 500 communication rounds finish
without the train loss increasing to over 1.05 times its previous value 3 times in a row, the learning
rate is finalized. Otherwise, we halve the learning rate and restart training. This process is repeated
until the model completes R communication rounds successfully.

We evaluate our method using 3 metrics: train loss, squared train gradient norm, and test loss. We
plotted the mean and standard deviation of these metrics over the 5 repeated runs.

A.3 PROOF OF PRIVACY GUARANTEES

First of all, we present several useful lemmas that will be uses to prove our main results.

Given a privacy guarantee in terms of RDP, we can transfer it to (ϵ, δ)-DP using the following
lemma.
Lemma A.5. (Mironov, 2017) If a randomized mechanism M satisfies (α, ρ)-RDP, then M satis-
fies (ρ+ log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

Recall that, according to Lemma 2.6, we can use Gaussian mechanism to achieve RDP. In addition,
we have the following privacy amplification by subsampling result for the Gaussian mechanism.
Lemma A.6. (Bun et al., 2018) Let M be an Gaussian mechanism that takes a dataset of n ≤ N
examples as an input and γ = n/N is the sampling rate. If M is (α, αS2

2/(2σ
2))-RDP, then when

we apply M on a subsampled dataset, which consists of γN examples sampled without replacement
from the input dataset with size N , it is (α, 6γ2αS2

2/σ
2)-RDP provided that γ ≤ 0.1, σ/S2 ≥

√
5,

and α ≤ σ2 log(1/γ)/(2S2
2).

We have the following composition result for RDP.
Lemma A.7 (Mironov (2017)). If k randomized mechanisms Mi for i ∈ [k], satisfy (α, ρi)-RDP,
then their composition

(
M1(S), . . . ,Mk(S)

)
satisfies (α,

∑k
i=1 ρi)-RDP. Moreover, the input of

the i-th mechanism can base on the outputs of previous (i− 1) mechanisms.

We have the following privacy amplification by shuffling result.
Lemma A.8. (Feldman et al., 2023) For any domain D, let Mi : O1 × · · · × Oi−1 × D → Oi

for i ∈ [N ] be a sequence of algorithms such that Mi(o1:i−1, ·) is an ϵ0-DP local randomizer for
auxiliary inputs o1:i−1 ∈ O1 × · · ·Oi−1. Let A : DN → O1 × · · · × ON be the algorithm that
given a dataset z1:N ∈ DN , samples a uniform random permutation π over [N ], then sequentially
computes oi = Mi(o1:i−1, zπ(i)) for i ∈ [N ] and outputs o1:n. Then, for ϵ0 ≥ 1 and any 2 ≤ α ≤
n/(32ϵ0e

ϵ0), A is (α, αρ)-RDP, where

ρ =
ceϵ0

n
,

where c = 1536.

Given these lemmas, we are ready to prove our privacy amplification by subsampling and shuffling
result, which is key to provide the strong privacy and utility guarantees of our method.

Before that, following Girgis et al. (2021), let us first formally define the mechanism Mr for each
round r, i.e., the resultant mechanism of both subsampling and shuffling that corresponds to lines
5-12 of Algorithm 1. To be more specific, recall that each client m ∈ [M ] has its local data

1https://www.dcc.fc.up.pt/ ltorgo/Regression/calhousing.html
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Dm = {zm1 , . . . , zmn } and let D = ∪M
m=1Dm denote the entire dataset. Fix a round r, we let

M1
r(xr, xr−1,D) be the private mechanism at round r that takes the entire dataset D, auxiliary

inputs (xr, xr−1) and generates the private term 1
MB

∑M
m=1

∑B
i=1(1 − ρ)ḡ1,im,r at the server. In

particular, according to Algorithm 1, we have
M1

r(xr, xr−1,D) := HMB ◦ (G1
1 , . . . ,G1

M ), (A.1)

where G1
m = sampn,B(ML(d

1,1
m,r), . . . ,ML(d

1,n
m,r)) and d1,im,r := CLIP(g1,im,r, C

1
r ), ∀m ∈ [M ] and

∀i ∈ [n]. Here HMB denotes the shuffling operation on MB elements and sampn,B denotes the
subsampling operation that chooses a random subset of B elements from a set of n elements. Note
that since the same mechanism ML is applied, we have the output distribution of first applying sub-
sampling and then private mechanism ML is equal to that of first applying private mechanism ML

and then subsampling. Similarly, we let M2
r(xr−1,D) be the private mechanism at round r that takes

the entire dataset D, auxiliary input xr−1 and generates the private term 1
MB

∑M
m=1

∑B
i=1 ρḡ

1,i
m,r at

the server. In particular, according to Algorithm 1, we have
M2

r(xr−1,D) := HMB ◦ (G2
1 , . . . ,G2

M ),

where G2
m = sampn,B(ML(d

2,1
m,r), . . . ,ML(d

2,n
m,r)) and d2,im,r := CLIP(g2,im,r, C

2
r ), ∀m ∈ [M ] and

∀i ∈ [n].

Finally, let the composite mechanism
Mr(xr, xr−1,D) = (M1

r(xr, xr−1,D),M2
r(xr−1,D)) (A.2)

be the private mechanism that takes the entire dataset D, auxiliary input (xr, xr−1) and generates
the private VR term v̄r at the server. That is, Mr can be viewed as a transformation of ML via both
subsampling and shuffling, both of which can be used to amplify privacy. Thus, one natural question
is whether these two amplification effects can be combined to yield an even stronger amplification
of privacy. This is answered affirmatively by the following lemma.
Lemma A.9 (Restate of Lemma 2.7). Let γ = B/n, and ML is an ϵ0-LDP mechanism. Then the
mechanism Mr defined in equation A.2 is (α, 26γ2αρ)-RDP with ρ = ceϵ0

MB and c = 1536 for
all α ∈ [2, MB log(1/γ)

4ceϵ0 ] when the following conditions are satisfied: (i) γ ∈ (0, 0.1], ρ = ceϵ0

MB ≤
0.1, ϵ0 ≥ 1; (ii) c ≥ 16ϵ0 log(1/γ); (iii) 6ceϵ0 ≤ MB log(1/γ).

Proof of Lemma 2.7. For notation simplicity, we denote Mr(xr, xr−1,D) by Mr(D) since our
follow-up analysis holds for all xr, xr−1. We will focus on M1

r and the same result holds for M2
r .

The final result for Mr follows from the composition result for RDP as in Lemma A.7.

As in Girgis et al. (2021), we first define Z(Dr) = HMB(ML(d
1
r), . . . ,ML(d

MB
r )), which is

a shuffling of MB outputs of a local mechanism ML, where Dr is an arbitrary set of MB data
points (d1r, . . . , d

MB
r ). Then, by Lemma A.8, the machanism Z is (α, αρ)-RDP, where 2 ≤ α ≤

MB/(32ϵ0e
ϵ0) and ρ ≤ ceϵ0/(MB) for ϵ0 ≥ 1.

Now, we aim to relate our M1
r in equation A.1 to the above mechanism Z . To this end, let Tm,r ⊆

{1, . . . , n} denote the random identities of the B data points chosen at client m at round r. Let
DTm,r = {zmj : j ∈ Tm,r}, i.e., the subsampled data points at client m in round r. Thus, let

DT r = ∪M
m=1D

Tm,r , then we can write M1
r = Z(DT r ).

Our next observation is the key step: Due to (i) independent subsampling of data points at each
client and (ii) no subsampling of clients, the privacy amplification in our case basically reduces to
the standard case, i.e., a single agent subsamples B points (without replacement) from a total of n
data points. In other words, M1

r can be viewed as first applying a subsampling with ratio B/n and
then a private mechanism Z with RDP guarantee stated above. Thus, we can apply Theorem 13
in Bun et al. (2018) to obtain that M1

r is (α, 13γ2αρ)-RDP with γ = B/n and ρ = ceϵ0

MB , c = 1536

for all α ∈ [2, MB log(1/γ)
4ceϵ0 ] when the following conditions are satisfied: (i) γ ∈ (0, 0.1], ρ = ceϵ0

MB ≤
0.1, ϵ0 ≥ 1; (ii) c ≥ 16ϵ0 log(1/γ); (iii) 6ceϵ0 ≤ MB log(1/γ).

Finally, given that the same privacy guarantee holds for M2
r , by composition of RDP, we have that

Mr is (α, 26γ2αρ)-RDP with γ = B/n and ρ = ceϵ0

MB , c = 1536 for all α ∈ [2, MB log(1/γ)
4ceϵ0 ] when

the above conditions (i - iii) are satisfied.
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Now, we are ready to prove the privacy gaurantees of our method.

Proof of Theorem 4.1. Privacy guarantee of the variance reduction term at server. Note that we
need to shuffle both {ḡ1,im,r}i∈Bm

r
and {ḡ2,im,r}i∈Bm

r
at r-th iteration. We denote these two mechanism

as Mr,1
Ser and Mr,2

Ser. According to Lemma A.9, Mr,1
Ser and Mr,2

Ser are (α, αρ̄)-RDP, where ρ̄ =
26γ1ρ̃ and γ1 = B1/n for r > 0 and γ1 = B0/n for r = 0, ρ̃ = ceϵ0/(Mn) for ϵ0 ≥ 1 and
under conditions that ρ ≤ 0.1, ϵ0 ≥ 1, 2 ≤ α ≤ MB log(1/γ)/(4ceϵ0), 6ceϵ0 ≤ MB log(1/γ),
c ≥ 16ϵ0 log(1/γ), where B, γ denotes B0, B1 and γ1 for simplicity. Note that the conditions
ρ ≤ 0.1, c ≥ 16ϵ0 log(1/γ), 6ce

ϵ0 ≤ MB log(1/γ) can be satisfied when MB is large enough.

Privacy guarantee of the local update for the selected client. According to Algorithm 1 (line 12),
we use one client for the local update, then each local data set Di for i ∈ [M ] will be used at most
⌈R/M⌉ times. Furthermore, at r-th communication round, the selected client will use subsampled
Gaussian mechansim (line 17-line 19), denoted by Mr,k

loc with sampling rate γ2 = B2/n at k-th local
update. Therefore, according to Lemma A.6, at r-th round, the k-th local update for the selected
client is (α, ρ2)-RDP with respected to the selected local data set, where ρ2 = 24γ2

2α/(B
2
2σ

2). In
addition, we need the conditions γ2 ≤ 0.1, B2σ ≥ 2

√
5, and α ≤ σ2B2

2 log(1/γ2)/2.

Privacy guarantee of Algorithm 1. By the composition and post processing results in Lemma A.7,
we have that Algorithm 1 is (α, 2αρ̄0 + 2(R − 1)αρ̄1 + K⌈R/M⌉ρ2)-RDP, where ρ̄0 = 26γ0ρ̃,
ρ̄1 = 26γ1ρ̃, ρ2 = 24γ2

2α/(B
2
2σ

2), γ0 = B0/n, γ1 = B1/n, γ2 = B2/n, and ρ̃ = ceϵ0/(Mn). In
addition, we require the conditions that γ2 ≤ 0.1, B2σ ≥ 2

√
5, and α ≤ σ2B2

2 log(1/γ2)/2, and
2 ≤ α ≤ MB log(1/γ)/(4ceϵ0), 6ceϵ0 ≤ MB log(1/γ).

Finally, by Lemma A.5, we have that Algorithm 1 is (2αρ̄0 + 2(R − 1)αρ̄1 + K⌈R/M⌉ρ2 +
log(1/δ)/(α− 1), δ)-DP. Therefore, we have

2αρ̄0 + 2(R− 1)αρ̄1 =
52c(γ0 +Rγ1)e

ϵ0α

Mn
≤ C(γ0 +Rγ1)ϵ

2
0 log(1/δ)

Mnϵ
,

where C is a constant, and the last inequality is due to the choice of α = 1 + 2 log(1/δ)/ϵ, eϵ0 =
O(ϵ20) when ϵ0 = O(1), and ϵ = O(log(1/δ)). Therefore, if we choose

ϵ0 = ϵ

√
Mn

2C(γ0 +Rγ1) log(1/δ)
, (A.3)

we have
2αρ̄0 + 2(R− 1)αρ̄1 = ϵ/4.

Note that we choose ϵ0 = O(1), we have

ϵ = O
(√

(γ0 +Rγ1) log(1/δ)

Mn

)
.

Furthermore, the conditions 2 ≤ α ≤ MB log(1/γ)/(4ceϵ0), 6ceϵ0 ≤ MB log(1/γ) will be satis-
fied if we have ϵ0 = O(1), ϵ = O(log(1/δ)), Mnmin{γ0, γ1} = Ω(log(1/δ)/ϵ).

In addition, we have

K⌈R/M⌉ρ2 = 24
γ2
2αK⌈R/M⌉

B2
2σ

2
= 24

αK⌈R/M⌉
n2σ2

≤ ϵ/4,

where the last equality comes from the fact that

σ2 = O
(
max

{
KR log(1/δ)

Mn2ϵ2
,
log(1/δ)

B2
2ϵ

})
. (A.4)

In addition, the conditions B2σ ≥ 2
√
5 and α ≤ σ2B2

2 log(1/γ2)/2 can be satisfied due to σ2 =
O(log(1/δ)/(B2

2ϵ)) and ϵ = O(log(1/δ)).

As a result, we have that Algorithm 1 is (ϵ, δ)-DP with

ϵ = O
(√

(γ0 +Rγ1) log(1/δ)

Mn

)
,

under the conditions that ϵ0 = O(1), ϵ = O(log(1/δ)), Mnmin{γ0, γ1} = Ω(log(1/δ)/ϵ).
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Figure 2: Illustration of the shuffled model.

Proof of Theorem A.1. Following the similar arguement as in the proof of Theorem 4.1 about pri-
vacy guarantee of the variance reduction term at server, we can get our result.

A.4 PROOF OF UTILITY GUARANTEES

Recall that we are using the following ϵ0-LDP mechanism ML (Duchi et al., 2018) in Algorithm 1.

Algorithm 2 LDP Mechanism (ML: client-side LDP method)
input x with bounded ℓ2 norm C, local privacy parameter ϵ0

1: z =

{
C x

∥x∥2
, with probability 1

2 + ∥x∥2

2C ,

−C x
∥x∥2

, otherwise.

2: Sample v uniformaly from the unit sephere Sd

3: z̃ =

{
sign

(
⟨v, z⟩

)
v, with probability eϵ0

1+eϵ0 ,

− sign
(
⟨v, z⟩

)
v, otherwise.

4: z̄ = Bz̃, where B = C eϵ0+1
eϵ0−1

√
π
2

dΓ
(

d−1
2 +1

)
Γ
(

d
2+1

)
output z̄

To provide the utility guarantees, we need the following lemmas.

Lemma A.10. (Duchi et al., 2018) The menchanism ML in Algorithm 2 is ϵ0-LDP. In addition, for
any x ∈ Rd with ∥x∥2 ≤ C, we have

E[ML(x)] = x and ∥ML(x)∥2 ≤ C
eϵ0 + 1

eϵ0 − 1

3
√
π
√
d

4
.

Lemma A.11. (Lei et al., 2017) Consider vectors ai satisfying
∑n

i=1 ai = 0. Let B be a uniform
random subset of {1, 2, . . . , n} with size m, we have

E
∥∥∥∥ 1

m

∑
i∈B

ai

∥∥∥∥2
2

≤ 1{|B| < n}
mn

n∑
i=1

∥ai∥22.

Now, we are ready to provide the utility guarantees of our method.

Proof of Theorem 4.2. Note that according to the clipping parameters we choose, we do not execute
any clipping procedure in Algorithm 1. Therefore, according to the local update in Algrotihm 1 and

14
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the smoothness, we have

F (wm̃
r+1,k+1) ≤ F (wm̃

r+1,k) + ⟨∇F (wm̃
r+1,k), w

m̃
r+1,k+1 − wm̃

r+1,k⟩+
L

2
∥wm̃

r+1,k+1 − wm̃
r+1,k∥22

= F (wm̃
r+1,k) +

1

2η

(
∥wm̃

r+1,k+1 − wm̃
r+1,k + η∇F (wm̃

r+1,k)∥22 − η2∥∇F (wm̃
r+1,k)∥22

− ∥wm̃
r+1,k+1 − wm̃

r+1,k∥22
)
+

L

2
∥wm̃

r+1,k+1 − wm̃
r+1,k∥22

= F (wm̃
r+1,k)−

η

2
∥∇F (wm̃

r+1,k)∥22 +
η

2
∥v̄m̃r,k −∇F (wm̃

r+1,k)∥22

−
(

1

2η
− L

2

)
∥wm̃

r+1,k+1 − wm̃
r+1,k∥22

≤ F (wm̃
r+1,k)−

η

2
∥∇F (wm̃

r+1,k)∥22 +
η

2
∥v̄m̃r,k −∇F (wm̃

r+1,k)∥22 −
1

4η
∥wm̃

r+1,k+1 − wm̃
r+1,k∥22,

(A.5)

where the last inequality is due to the fact that η ≤ 1/(2L).

Rearranging terms in equation A.5, we can get

∥∇F (wm̃
r+1,k)∥2 ≤ 2

η

(
F (wm̃

r+1,k)− F (wm̃
r+1,k+1)

)
+ ∥v̄m̃r,k −∇F (wm̃

r+1,k)∥22 −
1

2η2
∥wm̃

r+1,k+1 − wm̃
r+1,k∥22.

Since wm̃
r+1,1 = xr and wm̃

r+1,K+1 = xr+1, averaging over K and taking expectation, we can obtain

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤ 2

Kη

(
EF (xr)− EF (xr+1)

)
+

1

K

K∑
k=1

E∥v̄m̃r,k −∇F (wm̃
r+1,k)∥22

− 1

2η2
1

K

K∑
k=1

∥wm̃
r+1,k+1 − wm̃

r+1,k∥22. (A.6)

In addition, for any j, we have v̄jr,k = v̄jr,k−1 + djk−1 + νk = v̄jr,k−1 + ∇Fj,Bj
r,k

(wj
r+1,k) −

∇Fj,Bj
r,k

(wj
r+1,k−1) + νk, where νk ∼ C3 ·N(0, σ2I). Therefore, we can obtain

E∥v̄jr,k −∇F (wj
r+1,k)∥

2
2

= E
∥∥(v̄jr,k−1 −∇F (wj

r+1,k−1)
)
+ νk

+
(
∇Fj,Bj

r,k
(wj

r+1,k)−∇Fj,Bj
r,k

(wj
r+1,k−1)−∇Fj(w

j
r+1,k) +∇Fj(w

j
r+1,k−1)

)
+
(
∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

)∥∥2
2

= E
∥∥∇Fj,Bj

r,k
(wj

r+1,k)−∇Fj,Bj
r,k

(wj
r+1,k−1)−∇Fj(w

j
r+1,k) +∇Fj(w

j
r+1,k−1)

∥∥2
2
+ E∥νk∥22

+ E
∥∥(v̄jr,k−1 −∇F (wj

r+1,k−1)
)

+
(
∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

)∥∥2
2

≤ L2

b
E∥wj

r+1,k − wj
r+1,k−1∥

2
2 +

(
1 +

1

K

)
E∥v̄jr,k−1 −∇F (wj

r+1,k−1)∥
2
2 + E∥νk∥22

+ (1 +K)E
∥∥∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

∥∥2
2
,
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where the second equality is due to the independence of the random variables, the inequality comes
from Lemma A.11 and smoothness. Therefore, we can further obtain

E∥v̄jr,k −∇F (wj
r+1,k)∥

2
2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥22 +

eL2

b

K∑
k=1

E∥wj
r+1,k − wj

r+1,k−1∥
2
2 + e

K∑
k=1

E∥νk∥22

+ e(1 +K)

K∑
k=1

E
∥∥∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

∥∥2
2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥22 +

(
eL2

b
+ 8eKτ2 + edL2σ2

) K∑
k=1

E∥wj
r+1,k − wj

r+1,k−1∥
2
2,

(A.7)

where the second inequality is due to the fact that ν ∼ C3 · N(0, σ2I) with C3 = L∥wj
r+1,k −

wj
r+1,k−1∥2, E∥νk∥22 = dL2σ2E∥wj

r+1,k − wj
r+1,k−1∥22, and the second order heterogeneity.

Plugging the result in equation A.7 into equation A.6, we can get

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤ 2

Kη

(
EF (xr)− EF (xr+1)

)
+ eE∥v̄r −∇F (xr)∥22

+

(
eKL2

b
+ 8eK2τ2 + edKL2σ2

)
1

K

K∑
k=1

E∥wm̃
r+1,k − wm̃

r+1,k−1∥22

− 1

2η2
1

K

K∑
k=1

∥wm̃
r+1,k+1 − wm̃

r+1,k∥22

≤ 2

Kη

(
EF (xr)− EF (xr+1)

)
+ eE∥v̄r −∇F (xr)∥22

− 1

4η2
1

K

K∑
k=1

∥wm̃
r+1,k+1 − wm̃

r+1,k∥22 (A.8)

where the last inequality is due to the fact that η ≤ C/(Kτ),η ≤ C
√
b/(

√
KL), η ≤ C/(

√
KdLσ).

Furthermore, averaging equation A.8 from r = 0, . . . , R− 1, we can get

E∥∇F (x̃)∥2 ≤ 2

RKη

(
EF (x0)− EF (xR)

)
+

e

R

R−1∑
r=0

E∥v̄r −∇F (xr)∥22

− 1

4η2
1

RK

R−1∑
r=0

K∑
k=1

∥wm̃
r+1,k+1 − wm̃

r+1,k∥22. (A.9)

Additionally, according Algorithm 1, set ρ = β and B = b, we have

v̄r = (1− β)v̄r−1 +
1

Mb

M∑
m=1

b∑
i=1

(
(1− β)ḡ1,im,r + βḡ2,im,r

)
.
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Therefore, we can get

v̄r −∇F (xr) = (1− β)
(
v̄r−1 −∇F (xr−1)

)
+ β

(
1

M

M∑
j=1

∇Fj,Bj
r
(xr)−∇F (xr)

)

+ (1− β)

(
1

M

M∑
j=1

∇Fj,Bj
r
(xr)−

1

M

M∑
j=1

∇Fj,Bj
r
(xr−1) +∇F (xr−1)−∇F (xr)

)

+ (1− β)

(
1

Mb

M∑
m=1

b∑
i=1

ḡ1,im,r −
(

1

M

M∑
j=1

∇Fj,Bj
r
(xr)−

1

M

M∑
j=1

∇Fj,Bj
r
(xr−1)

)
︸ ︷︷ ︸

err1

+ β

(
1

Mb

M∑
m=1

b∑
i=1

ḡ2,im,r −
1

M

M∑
j=1

∇Fj,Bj
r
(xr)

)
︸ ︷︷ ︸

err2

.

Case 1: If we are using mini-batch gradients for the server variance reduction term, i.e., the batch
size |Bj

r| = Kb < n, according to the definition of ḡ1,im,r, ḡ2,im,r, Lemma A.10, and Lemma A.11, we
have the following conditional probability (up to r-th iteration) hold

Er

∥∥v̄r −∇F (xr)
∥∥2
2
≤ (1− β)2Er

∥∥v̄r−1 −∇F (xr−1)
∥∥2
2

+ 2β2Er

∥∥∥∥ 1

M

M∑
j=1

∇Fj,Bj
r
(xr)−

1

M

M∑
j=1

∇Fj(xr)

∥∥∥∥2
2

+ 2β2dC0
G2

Mn

+ 2(1− β)2
L2

MKb
Er

∥∥xr − xr−1

∥∥2
2
+ 2(1− β)2dC0

L2

Mn
E
∥∥xr − xr−1

∥∥2
2

≤ (1− β)2Er

∥∥v̄r−1 −∇F (xr−1)
∥∥2
2
+ 2β2 G2

MKb
+ 2β2dC0

G2

Mn

+ 2(1− β)2
L2

MKb
Er

∥∥xr − xr−1

∥∥2
2
+ 2(1− β)2dC0

L2

Mn
E
∥∥xr − xr−1

∥∥2
2
,

(A.10)

where C0 = 4(eϵ0 + 1)2/(eϵ0 − 1)2.

Following the similar proofs in Patel et al. (2022), we can get

1

R

R−1∑
r=0

E
∥∥v̄r −∇F (xr)

∥∥2
2
≤ 2(1− β)2L2

βMKbR

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
2
+

2(1− β)2dC0L
2

βMnR

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
2

+ 2β
G2

MKb
+

G2

βRMb0
+ 2βdC0

G2

Mn
+ dC0

G2

βRMn
. (A.11)

Furthremore, we have C0 = 4(eϵ0 + 1)2/(eϵ0 − 1)2 = C/ϵ20 when ϵ0 = O(1) for some constant
C. Therefore, according to the definition of ϵ0 in equation A.3, and the condition that β ≥ 1/R, we
have (ignoring the constants and log(1/δ) for simpilcity)

1

R

R−1∑
r=0

E
∥∥v̄r −∇F (xr)

∥∥2
2
≲

(1− β)2L2

βMKbR

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
2
+

(1− β)2dL2R

βM2n2ϵ2R

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
2

+
βG2

MKb
+

G2

βRMb0
+ βd

RG2

M2n2ϵ2
+ d

G2

βRM2n2ϵ2
. (A.12)

Therefore, under the additional condition that

G2

βRMb0
≤ βG2

MKb
, (A.13)
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we have

1

R

R−1∑
r=0

E
∥∥v̄r −∇F (xr)

∥∥2
2
≲

(1− β)2L2

βMKbR

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
2
+

(1− β)2dL2R

βM2n2ϵ2R

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
2

+
βG2

MKb
+ βd

RG2

M2n2ϵ2

≲

(
L2

βMKb
+

dL2R

βM2n2ϵ2

)
1

R

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + βG2

MKb
+ βd

RG2

M2n2ϵ2

≲ K2

(
L2

βMKb
+

dL2R

βM2n2ϵ2

)
1

RK

R−1∑
r=0

K∑
k=1

∥wm̃
r+1,k+1 − wm̃

r+1,k∥22

+
βG2

MKb
+ βd

RG2

M2n2ϵ2
, (A.14)

where the last line is due to the following

1

R

R−1∑
r=0

∥xr+1 − xr∥22 ≤ K2

RK

R−1∑
r=0

K∑
k=1

∥wm̃
r+1,k+1 − wm̃

r+1,k∥22.

Plugging results in equation A.14 into equation A.9, we have

E∥∇F (x̃)∥2 ≲
1

RKη

(
EF (x0)− EF (xR)

)
+

βG2

MKb
+ βd

RG2

M2n2ϵ2

+

(
K2

(
L2

βMKb
+

dL2R

βM2n2ϵ2

)
− 1

4η2

)
1

KR

R−1∑
r=0

K∑
k=1

E∥wm̃
r+1,k − wm̃

r+1,k−1∥22.

(A.15)

Therefore, if we choose η ≤ C1

√
βMb/(

√
KL) and η ≤ C1

√
βMnϵ/(

√
dRKL) for some con-

stant C1, we have

E∥∇F (x̃)∥2 ≲
1

RKη

(
EF (x0)− EF (xR)

)
+

βG2

MKb
+ βd

RG2

M2n2ϵ2
. (A.16)

Recall that we also have η ≤ C1/L, η ≤ C1/(Kτ), η ≤ C1

√
b/(

√
KL), η ≤ C1/(

√
KdLσ),

where σ is defined in equation A.4.

Plugging the choice of η, we get

E∥∇F (x̃)∥2 ≲
DF τ

R
+

DFL

RK
+

DFL

R
√
Kb

+
DFL

R
√
βMKb

+
DFL

√
d√

RβMnϵ
+

DFL
√
d√

RMnϵ
+

DFL
√
d

R
√
Kϵb

+
βG2

MKb
+ βd

RG2

M2n2ϵ2
,

where DF = F (x0)− F (x∗). Therefore, if we choose β as

β = max

{
1

R
,min

{
(Mnϵ)2/3(DFL)

2/3

d1/3RG4/3
,
(MKb)1/3(DL)2/3

R2/3G4/3

}}
= max{β1, β2}
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we have

E∥∇F (x̃)∥2 ≲
DF τ

R
+

DFL

RK
+

DFL

R
√
Kb

+
DFL

√
d

R
√
Kϵb

+
DFL

√
d√

RMnϵ
+

(DFLG)2/3d1/6√
RMKb(Mnϵ)1/3

+
(DFLG)2/3

√
d

R1/6(MKb)1/6Mnϵ

+
(DFLG)2/3

(MKb)2/3
+

(dDFLG)2/3

(Mnϵ)4/3
+

G2

MKbR
+

dG2

M2n2ϵ2

≲
DF τ

R
+

DFL

RK
+

DFL

R
√
Kb

+
(DFLG)2/3

(MKb)2/3
+

G2

MKbR︸ ︷︷ ︸
non−private error

+
DFL

√
d

R
√
Kϵb

+
DFL

√
d√

RMnϵ︸ ︷︷ ︸
private error local

+

(
1 +

(
Mnϵ

(RdMKb)1/2

)
+

(
Mnϵ

(RdMKb)1/2

)1/3)
(dDFLG)2/3

(Mnϵ)4/3
+

dG2

M2n2ϵ2︸ ︷︷ ︸
private error server

.

(A.17)
The condition we have for this result is 1/(Rb0) ≤ β2/(Kb) and β ≤ 1.

Case 2: if we are using full gradients for the server variance reduction term, i.e., the batch size
|Bj

r| = Kb = b0 = n, the result in equation A.15 reduces to (without condition in equation A.13)

E∥∇F (x̃)∥2 ≲
1

RKη

(
EF (x0)− EF (xR)

)
+ βd

RG2

M2n2ϵ2

+

(
K2 2dL2R

βM2n2ϵ2
− 1

4η2

)
1

KR

R−1∑
r=0

K∑
k=1

E∥wm̃
r+1,k − wm̃

r+1,k−1∥22. (A.18)

Therefore, if we choose η ≤ C1

√
βMnϵ/(

√
dRKL), we have

E∥∇F (x̃)∥2 ≲
1

RKη

(
EF (x0)− EF (xR)

)
+ βd

RG2

M2n2ϵ2
. (A.19)

Recall that we also have η ≤ C1/L, η ≤ C1/(Kτ), η ≤ C1

√
b/(

√
KL), η ≤ C1/(

√
KdLσ).

Plugging the choice of η, we get

E∥∇F (x̃)∥2 ≲
DF τ

R
+

DFL

RK
+

DFL

R
√
Kb

+
DFL

√
d√

RβMnϵ
+

DFL
√
d√

RMnϵ
+

DFL
√
d

R
√
Kϵb

+ βd
RG2

M2n2ϵ2
.

Therefore, if we choose β as

β = max

{
1

R
,
(Mnϵ)2/3(DL)2/3

d1/3RG4/3

}
= max{β1, β2},

we have

E∥∇F (x̃)∥2 ≲
DF τ

R
+

DFL

RK
+

DFL

R
√
Kb︸ ︷︷ ︸

non−private error

+
DFL

√
d

R
√
Kϵb

+
DFL

√
d√

RMnϵ︸ ︷︷ ︸
private error local

+
(dDFLG)2/3

(Mnϵ)4/3
+

dG2

M2n2ϵ2︸ ︷︷ ︸
private error server

. (A.20)

We only need β ≤ 1 for this result.

Proof of Theorem A.2. This has been proved in the Case 2 of the Proof of Theorem 4.2.

Proof of Theorem A.3. The proof of this result directly follows the proof of Theorem 4.2. We can
just set K = 1, τ = L, and ignore the private error local and the term DFL/(R

√
Kb).

Proof of Theorem A.4. The proof of this result directly follows the proof of Case 2 in Theorem 4.2
by setting K = 1, τ = L, and ignore the private error local and the term DFL/(R

√
Kb).
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