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Abstract
Most reinforcement learning (RL) algorithms rely
on hand-crafted extrinsic rewards to learn skills.
However, crafting a reward function for each skill
is not scalable and results in narrow agents that
learn reward-specific skills. To alleviate the re-
liance on reward engineering it is important to
develop RL algorithms capable of efficiently ac-
quiring skills with no rewards extrinsic to the
agent. While much progress has been made on
reward-free exploration in RL, current methods
struggle to explore efficiently. Self-play has long
been a promising approach for acquiring skills but
most successful applications have been in multi-
agent zero-sum games with extrinsic reward. In
this work, we present SelfPlayer, a data-efficient
single-agent self-play exploration algorithm. Self-
Player samples hard but achievable goals from the
agent’s past by maximizing a symmetric KL diver-
gence between the visitation distributions of two
copies of the agent, Alice and Bob. We show
that SelfPlayer outperforms prior leading self-
supervised exploration algorithms such as Go-
Explore and Curiosity on the data-efficient Atari
benchmark.

1. Introduction
Deep Reinforcement Learning (RL) has seen a number of
breakthrough advances over the last decade. From learn-
ing to play Atari video games from pixels (Mnih et al.,
2015), to mastering the game of Go (Silver et al., 2017b),
to learning robotic locomotion (Schulman et al., 2017) and
manipulation (Kalashnikov et al., 2018) skills, to compet-
ing at grandmaster level on large scale multi-agent video
games (Vinyals et al., 2019). All of these breakthroughs
were based on training RL algorithms to maximize an ex-
trinsic reward that was provided by the human designers of
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Figure 1. Mean and median human normalized scores (HNS) of
unsupervised RL algorithms – SelfPlayer (ours), GoExplore, and
Curiosity – on the data-efficient Atari benchmark (Atari100k)
(Kaiser et al., 2020).

these environments, and indeed most RL algorithms today
are developed with the assumption that an extrinsic reward
function is provided. However, dense reward shaping is
a manual and cumbersome process and many real-world
tasks that humans solve on a daily basis either have delayed
sparse rewards or no apparent rewards at all. How can we
enable artificial agents to explore their worlds efficiently
in a self-supervised manner without access to task-specific
extrinsic rewards?

Perhaps the most common approach to self-supervised ex-
ploration in RL is intrinsic motivation (Oudeyer & Kaplan,
2009) where an intrinsic reward function is specified that
does not depend on the extrinsic reward. The RL agent still
optimizes a reward function but the reward function does
not use any data extrinsic to the agent. A popular example
of an agent trained with an intrinsic motivation objective is
Curiosity (Pathak et al., 2017) though many other instrinsic
motivation objectives exist (Bellemare et al., 2016; Osband
et al., 2016; Eysenbach et al., 2019). A less commonly
used but alternate approach is through novel goal discovery
where an agent sets progressively harder goals for itself dur-
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ing training and uses a goal-reaching policy to achieve them.
A recent example of this approach is GoExplore (Ecoffet
et al., 2020), which uses a count-based heuristic to score
previous goals achieved and select challenging ones.

This work falls into the latter category of exploration meth-
ods with a focus of automatic goal discovery in the single-
agent setting through self-play. Self-play has long been
utilized for effective exploration in multi-agent settings. It
was a key component that enabled state-of-the-art perfor-
mance in large-scale multi-agent experiments (Silver et al.,
2017a; Vinyals et al., 2019; Berner et al., 2019). However,
given that self-play is defined as a game between two or
more agents, it has been more challenging to employ in the
single-agent setting.

Recently, it was shown (Sukhbaatar et al., 2018; OpenAI
et al., 2021) that self-play can also be utilized for single-
agent problems. In asymmetric self-play, the single agent
maintains two copies of itself - Alice and Bob - that play an
asymmetric game where Alice tries to achieve goals that are
hard for Bob to clone and Bob in turn tries to copy Alice.
Through this adversarial game, an automatic goal-reaching
curriculum is built. While promising, the main shortcom-
ing of this approach is that the self-play reward requires
Monte-Carlo rollouts for Alice’s policy, which results in
extremely sample inefficient training. As such, ASP has
only been shown to work beyond toy domains in large-scale
experiments from OpenAI that required over 30B training
steps to learn effective exploration policies.

In this paper, we propose an alternate approach to single-
agent self-play that does not rely on Monte-Carlo rollouts
for reward computation. Our key insight is to leverage
previous data collected by Alice and Bob to set goals instead
of relying on Monte-Carlo rollouts of the goal-generating
agent. In our formulation, Alice and Bob are symmetric
goal-conditioned agents, and they receive goals from an
independent goal-setter. The goal-setter is rewarded for
setting goals for Alice that are hard for Bob to achieve
and vice versa. To formalize this idea, we introduce a new
objective function for self-play based on the symmetric KL
divergence between Alice and Bob’s goal distributions. To
summarize, we present our contributions below:

1. We introduce SelfPayer a new algorithm for single-
agent self-play that instantiates two copies of the same
agent, Alice and Bob, and samples challenging goals
in hindsight for each agent based on the agent’s prior
experience.

2. SelfPlayer leverages a new objective function for
reward-free exploration that is expressed in terms of
the symmetric KL divergence between the visitation
distributions of different copies of the agent.

3. We demonstrate that this formulation explores Atari

games more efficiently than leading exploration ap-
proaches for Atari such as Curiosity (Burda et al.,
2019) and GoExplore (Ecoffet et al., 2020) by eval-
uating performance on the efficient Atari (Atari100k)
benchmark (Kaiser et al., 2020).

2. Related Work
Exploration through Intrinsic Motivation: In recent
years, a number of works in RL have aimed to answer this
question. The most common approaches to exploration in
RL have been motivated by the psychological concept of
intrinsic motivation (Oudeyer & Kaplan, 2009) wherein
an agent seeks to maximize a task-agnostic and hence in-
trinsic reward function that, if maximized, will help the
agent explore its environment more effectively. Proposals
for intrinsic reward heuristics have included state-based
counting (Bellemare et al., 2016; Machado et al., 2020),
prediction error (Pathak et al., 2017; Burda et al., 2019), un-
certainty (Osband et al., 2016; Pathak et al., 2019), and mu-
tual information-based option discovery (Eysenbach et al.,
2019; Achiam et al., 2018; Sharma et al., 2020) to name a
few. While intrinsic motivation approaches enable agents to
autonomously discover short-horizon skills such as jump-
ing, hopping, and flipping, a limitation is that, in practice,
they fail to discover long-horizon skills. This is particu-
larly evident in hard exploration games like Montezuma’s
Revenge where exploration schemes that rely solely on in-
trinsic motivation fail to discover far apart rooms (Burda
et al., 2019).

Goal-conditioned Exploration: A less frequently em-
ployed approach to exploration that overcomes the limita-
tions of intrinsic motivation is exploring through automatic
goal discovery. The automatic goal discovery family of
approaches trains a goal-conditioned agent jointly with a
goal-setting policy that sets incrementally harder goals over
time. Automatically increasing the goal difficulty induces a
curriculum and allows the goal-conditioned agent to explore
over long-horizons and discover far apart states. Exam-
ples of automatic goal discovery algorithms are GoExplore
(Ecoffet et al., 2020), which utilizes a hand-crafted state
counting heuristic to set goals, goal generating algorithms
(Florensa et al., 2018; Campero et al., 2021; Zhang et al.,
2020), and self-play approaches (Sukhbaatar et al., 2018;
OpenAI et al., 2021), which pit two or more agents against
each other to compete in a way that induces an automatic
goal-reaching curriculum.

Reinforcement Learning with Self-Play: Self-play has
been a core feature of several advances in supervised Rein-
forcement Learning, particularly in two-player game al-
gorithms such as AlphaZero (Silver et al., 2017a) and
large-scale multiplayer game algorithms such as AlphaStar
(Vinyals et al., 2019) and Dota5 (Berner et al., 2019). While
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a key component of many leading multi-player supervised
RL algorithms, self-play has not been adopted to single-
agent settings until recently when Asymmetric Self-Play
(ASP) (Sukhbaatar et al., 2018) provided a framework for
casting single-agent exploration as a multi-agent problem.
In ASP, two copies of the same agent - Alice and Bob -
compete against each other to achieve progressively harder
goals. Alice is a state-conditioned agent that is rewarded
for finding paths that are hard for Bob to copy. Bob is a
state and goal-conditioned agent that aims to copy the goals
achieved during Alice’s rollout. A recent extension of ASP
(OpenAI et al., 2021) demonstrated that it can scale to simu-
lated robotics manipulation settings but requires enormous
compute resources that are only available to a small handful
of industrial labs. To date, no self-supervised self-play ex-
ploration approaches have been demonstrated in the Atari
setting.

3. Method
3.1. SelfPlayer: Data-Efficient Single-Agent Self-Play

In this paper, we consider the standard setting for goal-
conditioned RL where an agent acts within a Markov Deci-
sion Process, defined as the tuple (O,G,A, P, γ), with the
following components: observations o ∈ O = Rn, goals
s ∈ G = Rn, actions a ∈ A, and state transition distribu-
tion, P = P (o′, r|o, a), which defines the task mechanics
and rewards. Actions can either be discrete (A = J) or
continuous (A = Rm), though we evaluate on the Atari
benchmark (Bellemare et al., 2013) where the action space
is discrete. Without prior knowledge of P , the RL agent’s
goal is to use experience to maximize expected rewards,
R =

∑∞
t=0 γ

trt, under discount factor γ ∈ [0, 1). In Atari
the agent receives image-based observations which are a
high-dimensional indirect representations of the underly-
ing state. The above describes the general RL problem
setting. Since this work is concerned with self-supervised
exploration, we assume that we cannot access the extrin-
sic reward function and must explore given only extrinsic
reward-independent information in the MDP. The MDP
must still have a reward function but the reward is computed
with information intrinsic to the agent such as achieved ob-
servations, goals, or actions. Additionally, in this work goals
are defined as embeddings of observations. Let z ∈ Z be a
latent space of image embeddings and G = Z . Our MDP
then consists of the following tuple (O,Z,A, Runsup, P, γ).

To enable self-play in a single agent setting, we instantiate
two copies of the agent Alice and Bob similar to the setup
in ASP (OpenAI et al., 2021). The primary aim of self-play
approaches is to induce a curriculum that allows the agent
to achieve incrementally harder goals at each iteration. We
wish to set goals for Alice and Bob that are possible to
achieve yet challenging in order to induce this curriculum.

Given the two agents Alice A and Bob B, a goal g, a goal-
reaching policy π(j)

g where j = A,B and a success function
F (π

(j)
g , g) = {0, 1} that determines whether Alice or Bob’s

policy π(j)
g can successfully achieve a goal g, we wish to

maximize the following reward function for each agent:

Ri = 1 IF F (π(i)
g , g) = 1 AND F (π(j)

g , g) = 0 (1)

ELSE 0 , i = A,B, j = B,A (2)

In equation 1, Alice is rewarded if she can reach a goal that
Bob cannot and vice versa. To motivate this objective, we
first study its properties and show that the Nash equilibrium
according to eq. 1 corresponds to a fully explored MDP. Our
primary contribution is not the use of a self-play objective
but rather a new approach to approximating it which we
describe later in this section.

Definition 1. The MDP is considered fully explored if all
states of the MDP have been visited, meaning 6 ∃s ∈ S such
that s ∈ D where D is the replay buffer of the exploration
agent.

Definition 2. Given players i = 1, . . . , N and value func-
tions for a particular agent’s policy viπ , a game is considered
to be in a Nash equilibrium if all agents’ value functions are
optimal viπ = viπ∗∀i. This definition is taken from (Pérolat
et al., 2017).

Theorem 1. If Alice and Bob are in a Nash equilibrium
according to equation 1, then the environment has been
fully explored.

Proof. We provide a full proof in the Appendix and provide
a sketch of the proof here. We prove this theorem by contra-
diction. Suppose that Alice and Bob are in Nash equilibrium
but the MDP is not fully explored. We can show that there
is always a goal ∃ĝ ∈ G that Alice can reach but Bob cannot
(or vice versa). Therefore, Alice’s value function vAπ upon
selecting ĝ for Bob is greater than her current value function,
but Alice is in a Nash equilibrium meaning her current value
function is optimal. This is a contradiction. Therefore the
MDP must be fully explored.

We’ve shown that the Nash equilibrium of eq. 1 corresponds
to a fully explored MDP suggesting that this is an appro-
priate objective for exploration. We now focus on how to
optimize this objective efficiently. In this work, rather than
relying on Monte-Carlo rollouts, we instead rely on Alice
and Bob’s memory to sample goals from each agent’s past
that are hard for the other agent to achieve. Given Alice and
Bob’s replay buffers DA and DB we introduce a goal-setter
that provides goals for Alice and Bob conditioned on their
replay buffers. The goal-setter is rewarded for setting goals
for Alice that are hard for Alice to achieve but easy for Bob
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Figure 2. The SelfPlayer algorithm is comprised of two steps - (i) exploring stochastically and (ii) returning to goals. During the
exploration phase, Alice and Bob store observations in their respective replay buffers. Any policy can be used for exploration and we opt
for simple random exploration with sticky actions. During the goal returning phase, hard but achievable goals are sampled for Alice and
Bob using the self-play objective in eq. 3. Our goal space, defined in 3.1, consists of embeddings of observations o which we denote as
z ∈ Z . After sampling, a goal-conditioned policy is used to reset Alice and Bob at their sampled goals. Once a goal is reached, Alice and
Bob go back to exploring.

and vice versa, hence the goal-setter’s total reward after one
rollout for Alice and Bob is R =

∑
iRi = RA +RB .

But how do we determine Alice and Bob’s success func-
tions F (πA, g) and F (πB , g) without relying on estimates
from Monte-Carlo rollouts? Our main insight is that goals
that were frequently achieved in the past are likely to be
achieved again and goals that were rarely achieved or not
achieved at all in the past are likely to be challenging for
the agent’s current policy. This enables us to approximate
the self-play reward in terms of distributions over Alice
and Bob’s past visitations. Specifically, we fit distributions
over Alice and Bob’s visitation histories pA ≡ p(g|DA) and
pB ≡ p(g|DB). Therefore, the expected log likelihood of
an agent’s j = A,B success is Eg∼pj [log pj ]. We can then
express the new cumulative reward function in terms of the
pj=A,B distributions.

R = Eg∼pA [log pA − log pB ] (3)
+ Eg∼pB [log pB − log pA] (4)
= DKL(pA||pB) +DKL(pB ||pA) (5)

which is the symmetric KL divergence between pA and
pB . In this framework, Alice and Bob are normal goal-
conditioned agents who aim to achieve goals given by a
goal-setter.The objective eq. 3 can be expressed in terms of
Alice and Bob’s cross and individual entropy.

R = DKL(pA||pB) +DKL(pB ||pA) (6)
= H(pA, pB)−H(pB) +H(pB , pA)−H(pA) (7)

where H(pA, pB) is the cross entropy (not to be confused
with the joint entropy). It is evident that Alice and Bob are
trying to increase their cross entropy with respect to the visi-
tation history of the other agent without increasing the other
agent’s entropy. This can be viewed as an implicitly adver-
sarial game, because Alice and Bob are trying to discover
unvisited parts of the observation space while ensuring that
the other agent does not benefit from these discoveries.

3.2. Practical Implementation

Sampling goals with self-play: We observe that since Al-
ice and Bob are goal-conditioned agents, the goal-setter is
the only part of the algorithm that is responsible for maxi-
mizing the self-play objective. Moreover, the goal-setter’s
MDP only has one timestep since it sets a goal and observes
its total reward in one step. This means that we can directly
maximize the self-play objective by sampling goals accord-
ing to eq. 3. The goal-setter thus functions as a critic. In our
practical implementation, we store discrete representations
z of the input observations o as goals in Dj , fit categorical
visitation probability distributions to Dj where j = A,B,
and score the goals in Alice and Bob’s replay buffers ac-
cording to eq. 3 for each agent. We then sample goals from
Dj according to the scoring function. The full method is
shown in Algorithm 1.

Reaching goal states and exploring: There are a number
of ways to reach goal states once a goal is sampled for Alice
and Bob. If given a simulator, the goal-reaching policy can
be a reset function that resets the agent at its desired goal.
Since Atari is a simulated environment, this is the strategy
used to report the main results in GoExplore (Ecoffet et al.,
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Figure 3. State visitation heatmaps for a random policy, GoEx-
plore, and SelfPlayer in a gridworld Tunnel environment after 10k
exploration steps.

2020) and we do so as well. A more general approach
for goal reaching is to dispatch a goal-conditioned policy
that starts at the current observed state and travels to the
desired goal. Prior works have explored how to craft such
goal-reaching policies in the context of Atari by leveraging
previous goal-reaching sequences as demonstrations (Hester
et al., 2018; Guo et al., 2020; Ecoffet et al., 2020). We pro-
vide an implementation of an imitation policy in our code
and visualizations of goal-reaching rollouts in the supple-
mentary material. Finally, for exploration we use the same
stochastic sticky-action policy used in GoExplore (Ecoffet
et al., 2020). We also tried more sophisticated exploration
policies such as Curiosity but found that random exploration
with sticky actions performed better (see appendix).

Encoding Visual Observations: Our method relies on the
existence of discrete representations of the underlying goal
space in order to fit a categorical distribution for sampling
goals. Since we evaluate on the Atari benchmark where
observations and goals are pixel images, we wish to encode
images into discrete latent codes. In prior work (Ecoffet
et al., 2020) it was observed that downsampling the input
pixel image from (64, 64, 3)→ (11, 8, 1) dimensions with
numerical values discretized to 8 values is sufficient for
Atari. Another, more general approach, is to learn a discrete
representation space with a Vector Quantized Variational
Autoencoder (VQVAE) (van den Oord et al., 2018). In
this work, we examine self-play with both discrete codes
generated through downsampling as well as those learned
with VQVAE, opting for the VQVAE2 (Razavi et al., 2019)
due to its superior performance on vision tasks than its
predecessor. We run pixel downsampling experiments on
CPUs and VQVAE2 experiments on GeForce RTX Nvidia
GPUs (see appendix for details and hyperparameters).

3.3. Motivational Experiment: Exploring in PointMaze

We motivate SelfPlayer by investigating its performance in
a simple gridworld environment that contains a pointmass
agent in a maze (PointMaze). We choose this setting be-
cause mazes are closed and hence the underlying MDPs

are finite meaning that maze coverage directly measures
the exploration capabilities of the agent. We compare Self-
Player to a random exploration policy and a count-based
one (GoExplore) in the data-efficient regime by providing
only 10k exploration steps. To score Alice and Bob’s replay
buffers according to eq. 3, we fit a categorical distribu-
tion to the discrete gridworld states. We find that on large
Tunnel maze, SelfPlayer, GoExplore, and a random policy
achieve 35%, 21% and 4% coverage respectively when eval-
uated over 10 seeds suggesting that in a simple environment
SelfPlayer explores more efficiently. We show qualitative
visitation heatmaps in Fig. 3.

Algorithm 1 SelfPlayer Algorithm
1: Initialize: Denote Alice as A and Bob as B. The environ-

ment provides image observations o ∈ O. We are also given
a scoring function R according to Eq. 3. Given j = A,B,
initialize replay buffers Dj , goal reaching polices πg(a|o, g),
exploration policies πe(a|o), and goal probability distribu-
tions pj(·|Dj).

2: for N epochs do
3: for j in {A,B} do
4: for K trajectories do
5: Sample g from DA or DB from a categorical distri-

bution weighed according to Alice or Bob’s scoring
function in eq. 3. Run πg to reach g.

6: Collect exploration rollouts with a ∼ πe →
(ot, at, ot+1, gt) of length h. Note gt = ztf(ot)
where f is an encoder function and z ∈ Z is a la-
tent representation.

7: Dj ← Dj ∪ (ot, at, ot+1, gt)
8: update: goal distributions pj((·|Dj) and encoder f(o).

4. Experimental setup and baselines
Environments In this work, we focus on efficient explo-
ration of MDPs. The Atari arcade environment (Bellemare
et al., 2013) is perhaps the most common benchmark for
evaluating the performance of RL agents. Recently, the effi-
cient Atari benchmark (Atari100k) (Kaiser et al., 2020) was
introduced in an effort to develop more sample efficient su-
pervised RL algorithms. Atari100k evaluates performance
after 100k agent steps or equivalently 400k frames of game-
play since the baselines in this benchmark use an action re-
peat of 4 (Kaiser et al., 2020). Evaluation on the Atari100k
benchmark has dramatically improved the sample-efficiency
of pixel-based supervised RL algorithms (Kaiser et al., 2020;
Srinivas et al., 2020; Yarats et al., 2021; Schwarzer et al.,
2021). We utilize the same benchmark to evaluate the data
efficiency of unsupervised (reward-free) exploration agents
and evaluate performance after 400k frames of gameplay
for each method. For SelfPlayer this means that Alice and
Bob individually interact with the environment 200k times
for a total of 400k frames. We evaluate performance on the
48 games used in Curiosity (Burda et al., 2019).
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Baselines For baselines we compare to two leading self-
supervised exploration algorithms for Atari – GoExplore
(Ecoffet et al., 2020) and Curiosity (Pathak et al., 2017;
Burda et al., 2019).

Curiosity: Curiosity learns a dynamics model T̂ (st+1|st, at)
and incentives the agent to explore with an intrinsic reward
that is proportional to the prediction error ε = |ŝt+1− st+1|
where ŝt+1 ∼ T̂ . The dynamics model is learned from
data collected from by the agent’s policy which is optimized
with proximal policy optimization (PPO) (Schulman et al.,
2017). The agent therefore tends to explore parts of the state
space it has not seen before. We report performance on the
Atari100k benchmark based on data provided by the authors
(Burda et al., 2019).

GoExplore: GoExplore is a leading count-based algorithm
for exploration in Atari that, like SelfPlayer, is sepa rated
into exploration and goal-reaching phases. During the ex-
ploration phase GoExplore stores discrete representations of
the input images in a replay buffer and uses a hand-designed
count-based score function to sample goal states from the
replay buffer. During the goal-reaching phase, a goal is
sampled from the replay buffer and a goal-reaching policy
is used to reach the goal state. GoExplore has two variants -
one with human-specified features to define states and one
operating solely on image inputs. We compare to the variant
that operates solely in image input. To generate Atari100k
scores, we used the code provided by the authors (Ecoffet
et al., 2020) which we ported over to our codebase with a
few optimizations for faster runtimes.

Note that to make the fairest comparison to the baselines,
we use the same exploration and goal-reaching strategies
presented in GoExplore (Ecoffet et al., 2020) as well as
the same image downsampling procedure. The only differ-
ence is the self-play goal sampling strategy as well as the
inclusion of two agents, Alice and Bob. One drawback of
GoExplore is that the pixel downsampling procedure may
not be general. For this reason, we show in the ablations sec-
tion that SelfPlayer operating on discrete VQVAE (Razavi
et al., 2019) embeddings is competitive with SelfPlayer op-
erating on downsampled pixels, which alleviates generality
concerns in terms of the discrete embedding structure.

5. Results
5.1. Main results

A full list of Atari100k scores for SelfPlayer and the base-
lines is shown in Table 1. In line with prior work on
Atari (Mnih et al., 2015; Kaiser et al., 2020; Hessel et al.,
2017), we use Human Normalized Score (HNS) as our ag-
gregate statistic for evaluation. With this in mind, we pro-
vide a summary of our findings:

On the Atari100k benchmark SelfPlayer is the state-of-the-
art unsupervised RL algorithm. SelfPlayer achieves the
best score in 26 games, compared to 7 for the leading un-
supervised baseline. SelfPlayer has a 1.34x higher mean
and 2.5x higher median HNS than the next leading unsu-
pervised method and achieves superhuman performance on
some games (Breakout, JamesBond, and WizardOfWor).
We also find that without any access to extrinsic reward,
SelfPlayer outperforms common supervised RL algorithms
such as PPO (Schulman et al., 2017) and Rainbow DQN
(Hessel et al., 2017), an is competitive with the data-efficient
supervised model-based RL algorithm that introduced the
Atari100k benchmark (Kaiser et al., 2020) (see Fig. 6). Fi-
nally, SelfPlayer does not necessarily rely on Atari-specific
downsampled pixel representations. SelfPlayer with discrete
embeddings from a VQVAE2 (Razavi et al., 2019) trained
jointly using Alice and Bob’s replay buffers (VQ-SelfPlayer)
is competitive with SelfPlayer trained on downsampled pix-
els (see Fig. 6).

5.2. Ablations

To further investigate the SelfPlayer algorithm we perform
a series of ablations to answer the following questions.

Q1: Why does SelfPlayer achieve higher extrinsic reward
than prior unsupervised RL methods?

Since neither SelfPlayer, GoExplore, or Curiosity have ac-
cess to extrinsic reward, we investigate why SelfPlayer
achieves higher performance in terms of extrinsic reward
on Atari100k. To do so, we compare the number of distinct
discrete representations (cells) in a subset of SelfPlayer and
GoExplore runs that have identical downsampling factors.
Cell count is therefore the Atari equivalent of coverage in
gridworld, which we previously investigated in Fig. 3. Cell
count plots shown in Fig. 4 show that, as with the grid-
world, SelfPayer discovers substantially more cells than
GoExplore which means it has discovered more states in the
underlying MDP. Since Atari games are designed to reward
human player for advancing further in the game, the higher
scores for SelfPlayer are likely a result of more efficient
exploration.

Q2: How does SelfPlayer compare with superivsed RL on
Atari100k?

Given the efficiency gains achieved by SelfPlayer com-
pared to unsupervised exploration algorithms, we inves-
tigate whether SelfPlayer is competitive with supervised RL
approaches. To do so, we compare to the supervised RL
baselines presented the original Atari100k benchmark paper
(Kaiser et al., 2020) which introduced a data-efficient super-
vised model-based RL algorithm (SimPLe). The supervised
baselines include PPO (Schulman et al., 2017), Rainbow
DQN (Hessel et al., 2017), and SimPLe. We extract the
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Figure 4. To investigate why SelfPlayer achieves higher mean and median scores on Atari100k than prior unsupervised RL approaches, we
count the total number on unique discrete representations (cells) discovered by SelfPlayer compared to GoExplore. We select a subset of
environments that have the same discrete latent space dimension and plot cells discovered throughout training. It is evident that SelfPlayer
discovers substantially more cells than GoExplore. New cell discovery correlates higher extrinsic reward since Atari games and many
video games in general are designed in part to reward exploration.

SelfPlayer vs. Supervised RL

Figure 5. Mean and median HNS evaluated over the 36 games
reported in SimPLe (Kaiser et al., 2020). SelfPlayer outperforms
common supervised RL baselines such as PPO (Schulman et al.,
2017) and Rainbow DQN (Hessel et al., 2017) and is competitive
with with data-efficient supervised MBRL (SimPLe) (Kaiser et al.,
2020).
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Figure 6. Median HNS for SelfPlayer using a jointly trained VQ-
VAE2 for discrete embeddings (VQ-SelfPlayer) versus downsam-
pled pixel representations on 16 randomly selected Atari games.

scores from all the across the 36 games presented in (Kaiser
et al., 2020) for each baseline, compute the median HNS,
and show results in Fig. 6. We find that despite not having
access to extrinsic reward, SelfPlayer and VQ-SelfPlayer
substantially outerform PPO and Rainbow DQN and are
competitive with SimPLe.

Q3: Does SelfPlayer rely on Atari specific discrete repre-
sentations?

A concern with downsampling pixel observations as dis-
crete encodings of the input image for both SelfPlayer and
GoExplore is that it is an Atari-specific discretization. To in-
vestigate whether SelfPlayer would work with more general
representations we implement a variant of SelfPlayer that
operates on discrete embeddings produced by a VQVAE2
(Razavi et al., 2019) (VQ-SelfPlayer), which is a general
method for encoding images from any domain. To ensure
generality, we train the VQVAE2 online as the SelfPlayer
agent on data collected by Alice and Bob during exploration
and refresh the discrete encodings in the replay buffers after
a fixed number of rollouts. Due to compute constraints,
we randomly subsample 16 Atari games and report the me-
dian HNS in Fig. 6. We find that VQ-SelfPlayer achieves
a slightly higher median HNS than SelfPlayer suggesting
that SelfPlayer works comparably well when using more
general discrete encodings.

Broader Impact and Limitations
The primary benefits of data-efficient exploration methods
is enabling autonomous agents to learn skills quickly with-
out supervision. This could make training of robotic agents,
digital assistants, and other decision making systems more
scalable than the current paradigm where a reward function
is hand-designed for each task and domain. Additionally, ef-
ficient exploration could enable advances in other scientific
problems with large search spaces such as molecular dock-
ing in drug discovery. However, since exploration methods
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Table 1. Scores on the efficient Atari (Atari100k) benchmark, which evaluates scores after 100k agent steps with action repeat of 4 or
equivalently 400k frames. We report mean scores and standard errors evaluated over 10 random seeds for SelfPlayer and GoExplore.
Curiosity scores were provided by the authors of the original paper (Burda et al., 2019). Scores are considered ties if the means are within
5% of each other.

ENV SELFPLAYER GOEXPLORE CURIOSITY RANDOM HUMAN

ALIEN 551.41 ± 41.8 550.32 ± 54.5 217.0 227.8 7127.7
AMIDAR 270.84 ± 17.9 166.92 ± 11.9 18.1 5.8 1719.5
ASSAULT 305.88 ± 17.0 180.67 ± 14.6 214.0 222.4 742.0
ASTERIX 743.43 ± 315.0 1007.14 ± 47.8 223.0 210.0 8503.3
ASTEROIDS 718.69 ± 101.5 217.78 ± 14.0 953.0 719.1 47388.7
ATLANTIS 6990.91 ± 1011.0 1220.63 ± 195.3 17400.0 12850.0 29028.1
BANKHEIST 68.99 ± 5.8 26.19 ± 3.9 12.9 14.2 753.1
BATTLEZONE 10679.01 ± 604.4 6412.7 ± 636.6 2560.0 2360.0 37187.5
BEAMRIDER 294.26 ± 14.8 285.08 ± 27.1 311.0 363.9 16926.5
BOWLING 40.53 ± 3.0 20.22 ± 1.2 20.2 23.1 160.7
BREAKOUT 87.31 ± 39.2 9.9 ± 0.8 3.3 1.7 30.5
CENTIPEDE 4024.76 ± 373.1 3308.33 ± 576.1 2100.0 2090.9 12017.0
CHOPPER 850.0 ± 65.1 719.05 ± 51.8 597.0 811.0 7387.8
CRAZYCLIMBER 3574.75 ± 337.0 1326.98 ± 59.4 9690.0 10780.5 35829.4
DEMONATTACK 455.33 ± 33.0 371.9 ± 26.2 161.0 152.1 1971.0
DOUBLEDUNK -23.64 ± 0.3 -15.87 ± 0.7 -18.0 -18.6 -16.4
ENDURO 0.38 ± 0.1 0.46 ± 0.2 0.0 0.0 860.5
FISHINGDERBY -88.62 ± 0.5 -73.65 ± 1.9 -92.3 -91.7 -38.7
FREEWAY 4.77 ± 0.2 5.16 ± 0.3 0.73 0.0 29.6
FROSTBITE 403.09 ± 59.0 86.03 ± 8.9 149.0 65.2 4334.7
GOPHER 142.96 ± 14.3 53.97 ± 7.8 397.0 257.6 2412.5
GRAVITAR 276.54 ± 22.0 103.97 ± 25.4 251.0 173.0 3351.4
ICEHOCKEY -15.02 ± 0.3 -14.02 ± 0.7 -13.1 -11.2 0.9
JAMESBOND 5483.89 ± 148.4 4663.49 ± 155.2 38.2 29.0 302.8
KANGAROO 866.67 ± 127.5 892.06 ± 234.8 59.3 52.0 3035.0
KRULL 83.52 ± 5.0 37.56 ± 11.2 814.0 1598.0 2665.5
KUNGFUMASTER 77.78 ± 33.9 17.46 ± 6.5 400.0 258.5 22736.3
MONTEZUMA 1369.14 ± 140.4 26.98 ± 6.3 0.0 0.0 4753.3
MSPACMAN 1381.73 ± 79.9 1071.11 ± 78.5 246.0 307.3 6951.6
NAMETHISGAME 1274.32 ± 64.2 1120.63 ± 62.9 2070.0 2292.3 8049.0
PITFALL -446.57 ± 107.3 -430.62 ± 44.3 -39.1 -229.4 6463.7
PONG -20.21 ± 0.2 -11.71 ± 0.7 -19.1 -20.7 14.6
PRIVATEEYE 2694.78 ± 764.7 2565.24 ± 893.4 -608.0 24.9 69571.3
QBERT 854.01 ± 168.7 687.7 ± 47.7 334.0 163.9 13455.0
RIVERRAID 2149.63 ± 203.9 1016.98 ± 54.7 1490.0 1338.5 17118.0
ROADRUNNER 2271.6 ± 312.5 1103.17 ± 239.7 60.0 11.5 7845.0
ROBOTANK 4.61 ± 0.3 3.62 ± 0.3 2.67 2.2 11.9
SEAQUEST 252.89 ± 26.3 179.52 ± 45.1 237.0 68.4 42054.7
SPACEINVADERS 330.06 ± 29.1 304.13 ± 29.2 191.0 148.0 1668.7
STARGUNNER 146.67 ± 7.6 19.05 ± 5.7 533.0 664.0 10250.0
TENNIS -23.08 ± 0.1 -15.79 ± 0.5 -23.5 -23.8 -8.3
TIMEPILOT 1122.22 ± 271.7 120.63 ± 17.5 2520.0 3568.0 5229.2
TUTANKHAM 16.2 ± 2.0 5.94 ± 1.1 7.41 11.4 167.6
UPNDOWN 1213.11 ± 114.5 1176.83 ± 107.3 1510.0 533.4 11693.2
VENTURE 23.33 ± 15.8 15.87 ± 8.9 83.3 0.0 1187.5
VIDEOPINBALL 10555.21 ± 1434.2 10454.87 ± 1549.6 35300.0 0.0 17667.9
WIZARDOFWOR 7813.33 ± 1012.8 1206.35 ± 66.1 817.0 563.5 4756.5
ZAXXON 391.11 ± 41.4 184.13 ± 34.8 1.68 32.5 9173.3

# ENVS BEST 26 6 7 7 -
AVERAGE HNS .47 .35 0.03 - -
MEDIAN HNS .05 .02 0.01 - -

like SelfPlayer, GoExplore, and Curiosity are unconstrained
a negative potential impact and limitation is the lack of
safety guarantees. For instance, deploying SelfPlayer onto a

real robot could have harmful and unintended consequences
for the environment and other agents since the algorithm is
designed only to explore. Subsequently the main limitation
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of our proposed approach SelfPlayer and other exploration
methods is that they are most useful in simulated environ-
ments as opposed to real world ones. Another limitation
specific to our approach is the reliance on discrete repre-
sentations, which are can be challenging to train. In future
work, it would be promising to investigate continuous rep-
resentation learning approaches as well as other ways of
optimizing the self-play objective.
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