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ABSTRACT

Graph Convolutional Networks (GCNs) have demonstrated their effectiveness in a
variety of graph-based tasks. However, their performance heavily depends on the
availability of a sufficient amount of labeled data, which is often costly to acquire
in real-world applications. To address this challenge, GNN-based Active Learning
(AL) methods have been proposed to improve labeling efficiency by selecting the
most informative nodes in a graph for labeling. The existing graph active learning
methods employ different heuristic approaches, while efficiency sometimes, they
fail to explicitly explore the influence of labeled data on unlabeled data, thus
limiting the generalizability of graph models to various types of graph data. In this
paper, we propose an Attention-based Graph Coreset Labeling framework (AGCL).
AGCL can, with limited budgets, gradually discover core data to be labeled from
a global view so as to obtain a training dataset that can efficiently depict the
whole graph space and maximize the performance of GNNs. Specifically, we
explicitly explore and exploit the correlations between nodes in the unlabeled pool
and those in the labeled pool using an attention architecture and directly connect
the correlations with the prediction performance on unlabeled set. By leveraging
influence (attention) scores, AGCL identifies and labels data with the maximum
representation difference from the existing labeled pool, thereby enhancing sample
complexity. We theoretically demonstrate the superiority of the attention-based
data selection strategy in reducing the covering radius bound, thereby improving
the expected prediction performance on unlabeled data. Our experimental results
show that the labeled coreset significantly enhances the generalizability of various
graph models across different graph datasets, as well as CNN models in image
classification tasks.

1 INTRODUCTION

Graph neural networks (GNNs) (Duvenaud et al. (2015); Kipf & Welling (2017); Hamilton et al.
(2017)) have emerged as powerful approaches for learning representations of graph-structured data.
It has been noted (Zhang et al. (2022b)) that success of GNNs in various graph-based learning tasks
(Xu et al. (2018); Klicpera et al. (2019); Zhang & Chen (2018)) requires plenty of labeled data.
However, sufficient informative training data is often not available, as human annotation is expensive
and time-consuming, particularly for biological graphs that contain specialized structures requiring
expert labeling.

Active learning (AL) provides solutions by selecting and annotating a few highly informative and
representative points that can depict a large portion of the data space, especially uncertain regions.
While various active learning methods have been proposed and applied for CNN models (Sener &
Savarese (2018); Caramalau et al. (2021); Wang et al. (2016); Yoo & Kweon (2019)) on independent
and identically distributed (i.i.d) data, these methods fail to capture both the graph structure and node
features, leading to suboptimal performance when applied to GNNs (Gao et al. (2018a); Madhawa
& Murata (2020)). Additionally, the interconnected and interdependent nature of nodes in a graph
means that the choice of labeled data partitions has a significant impact on the performance of GNN
models (Shchur et al. (2018); Fu et al. (2024)). Therefore, it is not directly applicable to apply active
learning methods from CNNs to GNNs.
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To select more representative data on graphs, GNN-based active learning methods (Gao et al. (2018b);
Cai et al. (2017); Wu et al. (2019)) incorporate graph structural information into query heuristics
(uncertainty, diversity, or density). Several recent works (Zhang et al. (2022b; 2021e;a;c)) considered
the characteristic of influence propagation in the graph and proposed a series of graph active learning
methods aiming to identify nodes with maximum influence for the rest. For example, the Grain method
(Zhang et al. (2021e)) connects labeled data selection in GNNs with social influence, maximizing
the number of unlabeled nodes influenced by labeled ones. The intuition behind these methods is to
exploit the assumption that nodes that are close in feature space and graph structure are likely to have
the same label, i.e., they focus on the local structure of the graph.

While efficient, these strategies 1) lack a direct correlation with the expected prediction performance
on unlabeled nodes in the final task, and 2) mainly focus on the local graph structure, failing to
comprehensively explore the influence between labeled and unlabeled data across the entire graph
space. However, in real-world applications, graphs can be complex; for instance, in heterophilic
graphs, connected nodes may have different labels. These challenges raise a critical question for
graph annotation: Given a fixed labeling budget, how can we develop a general framework that
efficiently and effectively identifies core data in the graph by considering both the graph structure
(local and global) and features, ultimately improving model performance?

In this paper, we propose a general graph active learning framework called Attention-based Graph
Coreset Labeling (AGCL). We address the graph annotation problem as an unlabeled coreset selection
problem for GNNs, focusing on selecting data that maximizes coverage of the remaining data in the
graph representation space. The challenge of graph coreset selection lies in designing an effective
measure that evaluates the correlations between labeled and unlabeled data, while considering the
complex graph structure and features, which directly links to the expected predictions on unlabeled
data. In AGCL, we explicitly connect the labeled and unlabeled pools beyond the original graph
connections, construct the influence between them using an attention-aggregation strategy in the
embedding space, iteratively select core data from a global perspective. We theoretically demonstrate
that selecting unlabeled data with the maximum representation difference from the labeled pool,
based on an attention-based metric, helps reduce the bound radius δ, thereby decreasing the total
loss of the graph data. Empirically, we demonstrate the effectiveness of the proposed method across
various GNN architectures and different types of graph data (homophily and heterophily) as well as
different data scales (same-scale and large-scale). Additionally, we illustrate how AGCL can serve as
a general active learning framework, extending its applicability to image classification. In summary,
our main contributions are:

• We propose an attention-based active learning framework for graph models, which iteratively
selects and annotate data in a graph by addressing the coreset selection problem for non-i.i.d.
graph data.

• We theoretically prove the superiority of the attention-based selection strategy: selecting
unlabeled data with the maximum representation difference from the current labeled pool
can help reduce the bound in graph coreset selection and directly enhance the performance
of the graph model.

• Our proposed AGCL is a general active learning framework that can be applied to both
graph data and image tasks. We conduct extensive experiments on both types of data to
demonstrate the effectiveness of the proposed method for various classification tasks.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

In recent years, graph neural networks (GNNs) have attracted increasing attention due to their
superiority in the processing of graph-structured data (Henaff et al. (2015); Kipf & Welling (2017);
Gilmer et al. (2017); Bronstein et al. (2017); Velickovic et al. (2018)). To improve the expressive
power of GNNs, different message-passing schemes have been developed to propagate and aggregate
neighborhood information (Kipf & Welling (2017); Velickovic et al. (2018); Feng et al. (2020)).
Recently, some studies tried to understand the generalization ability of GNNs from the perspective of
training data. Zhu et al. (2021) explored the influence of training data and presented Shift-Robust
GNN (SR-GNN), designed to account for distributional differences between biased training data and
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a graph’s true inference distribution. Ma et al. (2021) extended PAC-Bayesian analysis for graph data
to analyze the generalization performance of GNNs, and demonstrated that the distance between a
test subgroup and the training set can be a key factor affecting the GNN performance. Su et al. proved
that the distance of the training set to the rest of the vertexes in the graph is negatively correlated to
the learning outcome of GNNs.

2.2 ACTIVE LEARNING ON GRAPHS

In practice, obtaining sufficient informative training data is challenging, as human annotation is
expensive and time-consuming. Active learning and semi-supervised representation learning with few
labels are both designed to address the scarcity of labeled data, but from different perspectives. While
few-labeled semi-supervised learning focuses on comprehensively leveraging the small amount of
labeled data and the large amount of unlabeled data to achieve better performance, active learning
focuses on selecting and labeling the most informative nodes to maximize model performance with
minimal cost.

Generally, active learning is an iterative labeling process in which a model is learned at every
iteration, and a set of data points is chosen to be labeled from a pool of unlabelled points to maximize
model performance. Based on the query strategy, the majority of work can be divided into three
categories (Settles (2009)): theoretically-motivated methods (MacKay (1992)), ensemble approaches
(McCallum et al. (1998); Freund et al. (1997)) and uncertainty based (Tong & Koller (2001); Li &
Guo (2013); Settles & Craven (2008)). Demir et al. (2010) used a heuristic to first filter the pool
based on uncertainty and then choose the points to label using diversity. Sener & Savarese (2018)
proposed an effective batch active learning method for deep CNNs. In this method, the active learning
problem is defined as coreset selection; however, it is only for nonstructural data. Several attempts
have been made for applying AL on graph-structured data (Bilgic et al. (2010); Gu et al. (2013);
Kuwadekar & Neville (2011)) based on a graph signal processing framework. Subsequently, a series
of GNN-based AL methods (Cai et al. (2017); Gao et al. (2018a)) have been studied using different
metrics, including uncertainty, information density, and graph centrality to evaluate training data.
However, simply combining these metrics may not select informative data. Recently, several works
(Cui et al. (2022); Ma et al. (2022); Zhang et al. (2022a); Fuchsgruber et al. (2024); Wu et al. (2019);
Li et al. (2020); Zhang et al. (2021c)) were proposed to further consider the graph information.
To maximize the coverage of the labeled data, a new node selection metric is proposed in ALG
(Zhang et al. (2021a)) to maximize the effective reception field. Grain (Zhang et al. (2021e)) further
generalizes the reception field to the number of activated nodes in social influence maximization.
Reinforcement learning (Hu et al. (2020a)) and LLM (Chen et al. (2023)) are also used to improve
active learning on graphs. While most existing approaches are based on some query heuristics to
implicitly encode the relationships between labeled and unlabeled data, they often struggle to identify
truly informative data points in the face of complicated graph structures.

2.3 CORESET SELECTION

Coresets are defined as small and informative weighted data subsets, ensuring that models fitted
to the coreset also provide a good fit for the original data. Several works, such as those by Wei
et al. (2015), Mirzasoleiman et al. (2020), and Killamsetty et al. (2021a), have studied the efficient
training of deep learning models using selected coresets. Mirzasoleiman et al. (2020) focused on
selecting representative coresets of the training data that closely estimate the full training gradient.
Killamsetty et al. (2021b) treated coreset selection as an optimization problem for the validation set
loss, aiming for efficient learning with a focus on generalization. Killamsetty et al. (2021a) proposed
GRAD-MATCH, which selects subsets approximating the full training loss or validation loss gradient
using orthogonal matching pursuit. Meanwhile, coreset selection methods (Sener & Savarese (2018);
Ash et al. (2019)) were also used for active learning scenarios, where a subset of data instances from
the unlabeled set is selected to be labeled.

3 PRELIMINARIES

In this section, we formally define the problem of active learning for GNNs under the semi-supervised
node classification setting.
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Figure 1: (a) The input graph and a visualization of the influence of labeled data with bound δ
in embedding space. (b) AGCL explicitly construct the influence of data in unlabeled pool for
labeled data by an attention-based networks. The unlabeled data which have minimum representation
influence are selected into labeled pool. (c) The output graph with selected informative data and a
visualization of the decreased bound δ.

We are given a graph G = (V, E) with the node set V and edge set E . Suppose there are N nodes
in V and each node vi ∈ V has an associated feature vector xi ∈ X ∈ RN×d and a label vector
yi ∈ Y ∈ {0, 1}N×C . The connection among nodes can be described by the adjacency matrix A,
with Aij = 1 if there exists an edge (vi, vj), otherwise Aij = 0. Here, we focus on the C class node
classification task on graph G, with a label space Y = {1, . . . , C}.

In active learning on graphs, we consider that the full node set V is partitioned into training set
Vtrain, validation set Vval, and test set Vtest. The training set Vtrain contains labeled and unlabeled
data. An active learning algorithm As iteratively selects extra data from the unlabeled pool Vu and
gives labels to them into a labeled pool Vl. With a labeling budget B and an initial labeled pool
s0 =

{
s0j ∈ Vtrain

}
j<m

, an active learning algorithm expects to minimize the future expected loss
with a GNN model M by:

min
sk+1:|sk+1|≤B

Ex,y [lM (G,x, y;As0∪...sk+1)] . (1)

4 ATTENTION-BASED GRAPH CORESET LABELING (AGCL)

In this section, we present AGCL, a general graph active learning framework using a labeling coreset
from the graph data to maximize the generalization ability of various GNN models. We define graph
annotation as a coreset selection problem without labels on GNNs in subsection 4.1. To address this
problem, we theoretically showed that labeling the unlabeled data that have maximum representation
difference compared to the existing labeled pool obtains a smaller bound radius δ and reduce the
total prediction loss in subsection 4.2. Hence we construct an attention-based model to explicitly
evaluate the influence of each unlabeled sample u for each labeled sample v. While capturing the
correlations between labeled and unlabeled data from a global perspective, AGCL selects and labels
data according to attention scores at each batch of data labeling, enhancing the information complexity
in the labeled pool. The above process is repeated until the labeling budget B runs out. We introduce
each component of AGCL in subsection 4.3.

4.1 CORESET SELECTION ON GRAPHS

Generally, the active learning algorithm acquires one label at a time by querying the oracle in each
iteration, i.e., B = 1. However, for graphs containing a large number of nodes and edges, this is
infeasible. Therefore, we focus on the batch active learning technique (Contardo et al. (2017)) in
which the active learning algorithm chooses a set of data to be labeled by an oracle at each iteration.
In a classification problem, given a training set, the loss of the training set can be calculated as:

Remp =
1

|s|
∑
i∈s

lM (G, xi, yi;As) , (2)
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where |s| is the number of labeled points and the empirical risk Remp is the average loss of all training
samples. After training a GNN model M, the aim is to predict the outputs for new or unseen data.
Among the generated hypotheses, the best hypothesis is the one that minimizes the expected value of
the loss over the whole input space, which is defined as:

R =
1

N

∑
j∈[N ]

lM (G, xj , yj ;As) . (3)

When designing an active learning algorithm method for GNNs, the goal is to minimize the general-
ization gap between Remp and R:

min
s1:|s1|≤B

∣∣∣∣∣∣ 1N
∑
i∈[N ]

lM (G, xi, yi;As0∪s1)−
1

|s0 + s1|
∑

j∈s0∪s1

lM (G, xj , yj ;As0∪s1)

∣∣∣∣∣∣ , (4)

where [N ] = {1, . . . , N}. In other words, given the initial labeled set s0 and the budget B, we aim to
find a set of points to query labels s1 such that when we train a GNN model, the performance of the
model on the labeled subset is as close as possible to its performance on the entire dataset.

4.2 THEORETICAL ANALYSIS

The optimization objective equation 4 is not directly computable since we do not have access to
all the labels. In (Sener & Savarese (2018)), an upper bound is given to the objective function of
coreset on CNNs. As shown in Theorem 1 Sener & Savarese (2018), we can bound this loss with

covering radius δ., i.e.,
∣∣∣ 1
N

∑
i∈[N ] l (xi, yi, As)− 1

|s|
∑

j∈s l (xj , yj ;As)
∣∣∣ ≤ O (δs) + O

(√
1
N

)
where δs with radius δ centered at each labeled sample in s can cover the entire representation space.
Obviously, if we want to reduce the loss, we need to decrease the covering radius.

Although this bound provides the original analysis of coreset selection, it is also important for directly
analyzing the influence of training/labeled data on the prediction performance of testing/unlabeled
data, offering theoretical guarantees for AL performance, particularly in the context of graph AL.

Proposition 4.1 Given a graph G, for any labeled data v with the hidden representation hv , there exist
a δv > 0, such that for two unlabeled nodes {u, u′} with representations hu and hu′ , if the distance
∆(u, v) < ∆(u′, v) < δv, then l(f(hu)) < l (f(hu′)), where f(·) is the prediction function, and
l(·) is the loss function.

This proposition states that for each training sample v, its hidden representation hv has a δv cover in
the embedding space. The prediction performance (loss) of two samples whose embedding located in
the radius δv centered at v admits simple monotonicity with respect to their distance to sample v. The
visualization about covering radius δ can be found in Figure 1 (a). Proposition 4.1 is formulated for
abstract points in the embedding space, making it applicable to both i.i.d. data and non-i.i.d. graph
data. For graph data, the embedding space encodes the complex graph connections.

Extending this to the entire graph data, we can conclude that a GNN trained on a training set
with closer distances to the remaining data—indicating an approximate coverage of the whole
representation space with a smaller covering radius—exhibits better performance in Lemma 4.1.

Lemma 4.1 Assume there are two training set Vtrain and V ′
train, and test set Vtest. Based

on two training set, we get two trained GNN models M(Vtrain) and M(V ′
train). If∑

v∈Vtrain
d(v,Vtest) <

∑
u∈V′

train
d(u,Vtest), thus the covering radius δv∈Vtrain

< δu∈V′
train

,
we have

∑
u∈Vtest

l(fM(Vtrain)(u)) <
∑

u∈Vtest
l(fM(V′

train)
(u)).

To tackle coreset selection on graph, it is important to explicitly show the relationship (distance) of
unlabeled data and labeled data through a measure that relates to final prediction performance.

Lemma 4.2 Assume a graph has a labeled data, v, with the hidden representation hv, and two
unlabeled nodes, {u1, u2}, with representations {hu1

,hu2
}. If hv = α1hu1

+ α2hu2
, where the

score α1 > α2 ≈ 0, then selecting u2 into the labeled pool (as u2 → v2) results in a smaller total
loss across the entire graph space than selecting u1 into the labeled pool (as u1 → v1).
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Proof. Consider a labeled input v, and two unlabeled inputs u1 and u2. If the hidden representation
of v can be represented as hv = α1hu1

+α2hu2
, where α1 > α2 ≈ 0, i.e., d(v, u1) < d(v, u2) ≤ δv

where δv is the covering radius of point v. The loss of v is then given by l(hv), where l(·) is the loss
function. For simplicity, we assume zero training loss (see that in Assumption 2 in Appendix A.2),
leading to: l(hv) = 0.

Selecting the data u2 that has the maximum difference with v according to scores {α1, α2} and
adding it to the labeled pool as u2 → v2, we now have two training nodes, v and v2, and one testing
node, u1. The total loss L1 on the entire input space is: L1 = l(hv) + l(hv2) + l(hu1

) ≈ l(hu1
)

since the training loss on the training set is zero. From the perspective of the covering radius, the loss
l(hu1

) ≤ O(δ1) ≤ O(max(d(v, u1), d(v2, u1))).

Consider the scenario in which u1 is selected to the labeled pool, we get the loss L2 = l(hv) +
l(hv1) + l(hu2) ≈ l(hu2), l(hu2) ≤ O(δ2) ≤ O(max(d(v, u2), d(v1, u2))).

As d(v, u1) < d(v, u2) and d(v2, u1) = d(v1, u2), we have max(d(v, u1), d(v2, u1)) <
max(d(v, u2), d(v1, u2)), thus, δ1 < δ2. According to Proposition 4.1, we have l (hu1

) < l (hu2
),

L1 < L2.

Lemma 4.2 clearly demonstrates the benefit of selecting the coreset based on an explicit metric
(representation scores) between the labeled and unlabeled pools in improving expected prediction
accuracy.

With Lemma 4.1 and 4.2, we establish a connection between the core data selection and prediction
loss on GNNs, leading to the following theorem.

Theorem 4.1 Given the whole sample V drawn from G, let Vl represents the labeled pool consisting
of points with labels, and let Vu denotes the set of unlabeled data. ∃s ∈ Vu : ∀v ∈ Vl, As,v < Ak,v

with k ∈ Vu \ {s}, where Ai,j measures the representation similarity between nodes i and j, the
larger Ai,j , the closer nodes i and j are. Thus, we have δv∈Vl∪{s} < δv∈Vl∪{k} < δu∈Vl

, such that∑
i∈V l(fM(Vl∪{s})(i)) <

∑
i∈V l(fM(Vl∪{k}(i)) <

∑
i∈V l(fM(Vl

(i)).

Theorem 4.1 indicates that node s is the most informative data point in Vu with respect to the the
existing labeled pool Vl.

In this paper, an attention-based message-passing strategy is proposed to obtain Ai,j for coreset
selection on graph. In addition to considering the local structure in the graph, attention-based
networks also take into account global structural information. By learning the influence between one
node in the labeled pool and another in the unlabeled pool and mapping it to the attention matrix, we
can intuitively select nodes in the unlabeled pool that are farthest from the current labeled pool to
reduce the prediction loss.

4.3 ATTENTION-BASED MESSAGE-PASSING AND DATA SELECTION

As illustrated in Figure 1 (b), we design an attention-based graph coreset labeling method to effectively
identify the unlabeled data with minimum representation influence to improve the generalization
ability of the model.

To obtain the correlations between the labeled and the unlabeled pool, we first learn the hidden
representation of nodes by GNN layers to encode the structural information in a graph. Let X =

[x1,x2, . . . ,xN ]
T ∈ RN×d be the node features, the lth layer GNN is given by:

a(l)
v = Aggregation(l)

({
h(l−1)
u : u ∈ N (v)

})
,h(l)

v = Update(l)
(
h(l−1)
v ,a(l)

v

)
, (5)

where h(l)
v is the hidden feature vector of node v at the lth layer. We initialize h0

v = xv , and N (v) is a
set of nodes connected to v. We call Aggregation(·) an aggregation function and Update(·) an update
function. For example, the layer-wise message-passing in GCN (Kipf & Welling (2017)) is defined as
h
(l)
v = ReLU

(
W ·MEAN

{
h
(l−1)
u ,∀u ∈ N (v) ∪ {v}

})
, where W is a layer-specific trainable

weight matrix. We get the hidden representation of all labeled nodes with h(l) = [h
(l)
1 , . . . ,h

(l)
N ] ∈

RN×d′
in the layer of l.

6
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Then, we aim to assess the influence of unlabeled data for the existing labeled dataset from a global
perspective. Specifically, we employ an attention architecture to explicitly model the relationships
between the labeled and unlabeled data pools in the representation space. Assume the labeled pool
Vl = {v1, . . . , vm} with features hv(l) = [hv

1
(l), . . . ,hv

m
(l)] and unlabeled pool Vu = {u1, . . . , un}

with features hu(l) = [hu
1
(l), . . . ,hu

n
(l)] in lth layer. Consider the global information in the graph,

for each labeled data vi, we expect to represent it by aggregating the information from the unlabeled
pool. Connecting vi with all unlabeled data in Vu, the hidden representation hv

i can be obtained by
the labeled node vi acting as the query qv

i with qv
i
(l) = hv

i
(l−1)WQ:

As
i
(l) = αqv

i
(l)K⊤

Vu
,

hv
i
(l) = softmax

(
As

i
(l)
)
VVu

,
(6)

where α is a constant scalar (α = 1√
d′ ), KVu

= huWK and VVu
= huWV are the key and value

matrices of unlabeled pool, respectively. In this way, each labeled node aggregates the information
from all unlabeled data in Vu, and the attention score As

i
(l) measures the importance of samples in

the unlabeled pool for labeled data vi in representation space.

Similarly, viewing each unlabeled node ui as query qu
i , its hidden representation can be achieved by

aggregating the information from all labeled data:

qu
i
(l) = hu

i
(l−1)WQ,hu

i
(l) = softmax

(
αqu

i
(l)K⊤

Vv

)
VVv

, (7)

where KVv = hvWK and VVv = hvWV are the key and value matrices of labeled pool, respec-
tively.

The equation 6 and equation 7 indicate the computation on single-head attention. In practice, AGCL
adopts multi-head attention (MHA) followed by feed-forward blocks (FFN) and layer normalization
(LN(·)) as:

h′(l) = LN
(
MHA

(
h(l−1)

))
+ h(l−1);h(l) = LN

(
FNN

(
h′(l)

))
+ h′(l), (8)

where h(l) is the representation of labeled and unlabeled data in lth layer. In addition, we incorporate
positional encoding, including random walk positional encoding (Dwivedi & Bresson (2021)) and
Laplacian positional encoding (Dwivedi et al. (2021)), which are crucial components in transformers,
into our proposed AGCL.

Data selection. According to Theorem 4.1, to reduce the total loss total input data, we need to select
nodes in the unlabeled pool that have the maximum representation difference to the nearest labeled
data. Intuitively, data with the smallest similarity to the existing labeled data in the representation
space will help maximize sample diversity and complexity. Based on the AGCL algorithm, the
attention matrix As has explicitly show the importance of nodes in the unlabeled pool for labeled
data, thus, we sample node by:

u = arg max
u∈Vu

min
v∈Vv

As
v,u. (9)

Then, we get the labeled pool Vl = Vl ∪ {u}. The whole computation process and the complexity
analysis of AGCL can be found in Appendix A.1.

5 EXPERIMENTS

We conduct experiments to verify that the labeled data selected by our proposed AGCL can enhance
the generalization of different graph models. We focus on five popular GNN models: GCN (Kipf &
Welling (2017)), GAT (Velickovic et al. (2018), APPNP Klicpera et al. (2019)), H2GCN (Zhu et al.
(2020)) and GPRGNN (Chien et al. (2021)). The framework is adaptable to any general GNN model;
additional results using GraphSAGE (Hamilton et al. (2017)) are provided in Appendix A.5. Our
results show that the core graph data identified by our method can achieve improved performance
regardless of the GNN architecture. Additionally, we apply AGCL to image classification tasks
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to demonstrate the generalizability of the proposed method. An ablation study on how positional
encoding in the self-attention framework affects the performance of AGCL can be found in Appendix
A.8. Further robustness analysis of AGCL with noisy data is provided in Appendix A.9.

Datasets. Focusing on semi-supervised node classification, we experiment on a range of graph
benchmarks: (1) homophilic graph datasets (Cora, Citeseer, Pubmed, and ogbn-arxiv) (Pei et al.
(2020); Hu et al. (2020b)) and (2) heterophilic graph datasets (Actor, Squirrel, roman-empire, Penn94)
(Zhu et al. (2020); Platonov et al. (2023); Lim et al. (2021)) involving diverse domains and sizes
(roman-empire, Penn94 and ogbn-arxiv are large-scale datasets). We also perform experiments on
CIFAR-10 (Krizhevsky et al. (2009)) and FashionMNIST (Xiao et al. (2017) Griffin et al. (2007))
datasets for image classification in Appendix A.7. The details of these datasets are provided in
Appendix A.4.

5.1 EXPERIMENTAL SETTING

We compare our proposed method with other active learning approaches for graphs: Random,
Standard, FeatProp (Wu et al. (2019)), AGE (Cai et al. (2017)), GRAIN (Zhang et al. (2021e)), RIM
(Zhang et al. (2021d)), ALG (Zhang et al. (2021b)), GraphPart (Ma et al. (2022)), and NC-ALG
(Zhang et al. (2024)). For active learning on images, we compare our method with baselines including
Random sampling, CoreSet (Sener & Savarese (2018)), VAAL (Sinha et al. (2019)), and (CoreGCN
Caramalau et al. (2021)). In general active learning, the initial pool is usually uniformly randomly
selected from the whole data. For i.i.d. data, this initial data selection method is reasonable. However,
for non-i.i.d. graphs in which nodes are connected by edges, it is of great importance to utilize
initial knowledge of the graph. Thus, except for the random selection, we propose a structure and
feature-based initial pool selection method.

Considering both the features and graph structure, we propagate features among nodes with the
layer-wise propagation rule:

H(l+1) = ÂH(l), (10)

where Â = D̂−1/2(A+I)D̂−1/2 is a symmetric normalized adjacency matrix, I is the identity matrix,
D̂ is the corresponding degree matrix of A+ I, and H(l) is the hidden node representation in lth

layer with H(0) = X. After k iterations of aggregation, the representation of a node hk
i captures the

structural information within its k-hop neighborhood. Then, we select k nodes into the initial pool
using the k-medoids method.

Our method introduces several hyperparameters, including the number of initial labels |s0|, batch
budget b, and final labeling budget B. For a fair comparison, we set the final amount of core data
obtained for all active learning methods to equal the standard training set for the Cora, Citeseer,
and Pubmed datasets. For the ogbn-arxiv dataset, the labeling budget is set to 800, and for the
heterophilic datasets, the labeling budget is 600. For |s0| and b, we perform a hyperparameter search
for each dataset. For other hyperparameters used in our experiments, including the learning rate, early
stopping patience, hidden layer size, dropout rates of the input layer and hidden layer, we usually
adopt a similar setting as in Kipf & Welling (2017); Velickovic et al. (2018); Klicpera et al. (2019).
Furthermore, all the experiments are conducted on a Linux server equipped with NVIDIA A100. The
detailed parameters used in the experiments are listed in Appendix A.3.

5.2 RESULTS ON GRAPH TASKS

We conducted experiments on active learning for semi-supervised node classification on homophilic
datasets. From Table 1, we can observe that our proposed AGCL outperforms other methods across
different graph datasets. Specifically, GCN with the training set selected by AGCL demonstrates
improvements of approximately 1.9% and 2.1% over the model trained on the training set selected
by GRAIN on Cora and Citeseer, respectively. The effectiveness of AGCL extends to other GNN
models, including GAT (Velickovic et al. (2018)) and APPNP (Klicpera et al. (2019)). We further
evaluate the influence of the labeling budget, and report the test accuracy of the GCN model versus
the number of labeled nodes for training in Appendix 2. Compared with the other baselines, AGCL
quickly boosts its accuracy at the beginning of the training and consistently outperforms the baselines
as the number of labeled nodes increases. Specifically, to achieve an accuracy of approximately 70%
on Citeseer, AGCL requires labeling only 40 samples, whereas other methods need over 60 nodes.
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Table 1: Classification accuracy (%) on three citation datasets with different training sets (mean
accuracy (%) and standard deviation over 5 different runs).

Methods Training Data Cora Citeseer pubmed

GCN

Random 79.81 ± 1.73 70.24 ± 2.04 76.54 ± 2.60
Standard 82.31 ± 0.47 71.45 ± 0.69 79.59 ± 0.41
AGE 80.95 ± 1.14 70.34 ± 7.01 79.50 ± 2.69
FeatProp 77.3 ± 1.36 64.0 ± 3.21 73.2 ± 1.94
GRAIN 80.96 ± 0.40 70.96 ± 0.42 79.94 ± 0.33
RIM 81.78 ± 0.52 72.45 ± 0.70 76.04 ± 0.83
ALG 83.01 ±0.28 71.8 ± 0.09 78.52 ± 0.04
GraphPart 82.50 ± 0.43 71.67 ± 0.64 79.64 ± 0.35
NC-ALG 83.02 ± 0.53 72.11 ± 0.37 80.23 ± 0.81

AGCL 83.92 ± 0.54 73.10 ± 0.58 79.83 ± 0.34

GAT

Random 80.60 ± 1.42 70.94 ± 1.77 76.84 ± 3.72
Standard 82.06 ± 0.56 71.38 ± 0.76 77.74 ± 0.84
AGE 81.42 ± 0.66 70.32 ± 0.74 79.50 ± 1.81
FeatProp 76.9 ± 1.69 59.0 ± 2.81 68.3 ± 3.19
GRAIN 80.44 ± 0.81 70.76 ± 0.37 79.67 ± 0.60
RIM 82.30 ± 0.70 73.08 ± 0.67 76.44 ± 1.07
ALG 82.92 ± 0.47 71.28 ± 0.35 78.86 ± 0.53
GraphPart 82.59 ± 0.82 70.78 ± 0.65 77.76 ± 0.61
NC-ALG 82.63 ± 0.93 71.27 ± 0.47 79.22 ± 1.32

AGCL 83.68 ± 0.39 72.92 ± 0.57 79.82 ± 0.50

APPNP

Random 82.15 ± 0.85 72.03 ± 1.07 77.84 ± 4.18
Standard 82.86 ± 0.28 71.07 ± 0.76 80.12 ± 0.32
AGE 83.68 ± 0.26 71.43 ± 0.48 80.42 ± 1.18
FeatProp 78.1 ± 1.56 66.3 ± 1.91 75.2 ± 1.32
GRAIN 82.27 ± 0.74 71.35 ± 0.20 80.55 ± 0.36
RIM 83.18 ± 0.34 74.22 ± 0.37 76.29 ± 0.42
ALG 84.59 ± 0.19 72.17 ± 0.10 80.05 ± 0.09
GraphPart 82.86 ± 0.28 71.21 ± 0.89 80.12 ± 0.32
NC-ALG 84.66 ± 0.40 71.73 ± 0.59 80.25 ± 0.30

AGCL 84.93 ± 0.42 73.53 ± 0.42 80.91 ± 0.34

Table 2: Classification accuracy (%) on three heterophilic datasets with different training sets (mean
accuracy (%) and standard deviation over 5 different runs).

Methods Training Data Actor Squirrel roman-empire

GCN

Random 28.47 ± 0.93 25.94 ± 1.67 16.63 ± 2.12
AGE 25.38 ± 0.38 23.50 ± 1.32 10.15 ± 3.83
GRAIN 26.47 ± 0.51 25.13 ± 0.31 4.17 ± 0.00

AGCL 29.14 ± 2.52 27.53 ± 1.19 20.31 ± 0.96

H2GCN

Random 31.51 ± 0.68 34.68 ± 0.95 21.36 ± 0.30
AGE 28.71 ± 1.68 27.26 ± 2.25 18.25 ± 1.92
GRAIN 31.63 ± 0.95 33.24 ± 0.47 12.23 ± 0.24

AGCL 32.12 ± 0.39 35.81 ± 0.82 21.71 ± 0.22

GPRGNN

Random 28.37 ± 1.41 25.55 ± 1.35 13.93 ± 0.06
AGE 25.67 ± 0.83 21.88 ± 1.15 7.83 ± 3.51
GRAIN 26.61 ± 0.51 26.26± 0.57 7.20 ± 3.94

AGCL 28.75 ± 0.66 28.45 ± 0.63 14.01 ± 0.03

This result highlights the efficiency of AGCL. The results on Table 4 demonstrates that our proposed
method can be extended to large-scale graphs.

While the homophilic datasets are graphs with high Homo. (indicating the proportion of edges
connecting nodes with the same label (Zhu et al. (2020))), we also consider heterophilic datasets
with low Homo.. The prediction accuracies for node classification on three different heterophilic
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datasets are reported in Table 2. It can be observed that our proposed AGCL method achieves
state-of-the-art or competitive performance on all heterophilic datasets across various GNN models
(H2GCN Zhu et al. (2020) and GPRGNN Chien et al. (2021) are specially designed heterophily-based
methods). The baseline methods fail to achieve better performance compared to random sampling
because they cannot explore and exploit more complex structural information, such as the long-range
dependent information in heterophilic datasets. In contrast, AGCL captures global-level graph
structural information by directly learning the correlations between labeled and unlabeled data from a
global perspective, which provides a significant advantage. We can achieve the similar observations
on Penn94 which is a large-scale heterophilic datasets in Table 5.

Table 3: Efficiency comparison of AGCL and other
graph AL competitors w.r.t. training time (s) on
NVIDIA A100.

Method Cora Citeseer Pubmed
AGE 57.45 71.68 978.14
ACL 38.23 62.36 176.08
GRAIN 21.55 37.81 172.73
AGCL 20.15 27.92 145.83

Training Efficiency. Table 3 reports the train-
ing time of different graph AL methods on cora,
citeseer, and Pubmed. We can observe that
AGCL is orders of magnitude faster than some
graph AL methods. Specifically, AGCL yields
3x training speedup over AGE on cora, and
2x training speedup over ACL on citeseer. In
terms of memory usage, AGCL shows memory
consumption of 1034.45 MB and 1496.38 MB
on the Cora and Citeseer datasets, respectively.
Some methods, such as those based on query
heuristics like diversity or density, generally re-
quire lower memory usage but tend to incur higher time costs and achieve lower performance. AGCL
strikes a balance between memory efficiency and training speed, making it a more scalable solution
for various datasets.

Table 4: Classification accuracy (%) on
ogbn-arxiv dataset with different training
sets. OOM denotes out-of-memory.

Training Data GCN
Random 63.35 ± 1.01
AGE 63.64 ± 0.78
GRAIN OOM
AGCL 64.48 ± 0.11

Table 5: Classification accuracy (%) on the Penn94
dataset with different training sets selected by graph
active learning methods.

Method H2GCN GPRGNN LINKX
Random 66.63 ± 0.67 67.29 ± 0.82 65.26 ± 1.06
AGE 66.83 ± 0.22 66.75 ± 0.35 65.49 ± 0.47
GRAIN 66.49 ± 0.09 67.45 ± 0.40 65.71 ± 0.24
AGCL 66.91 ± 0.20 67.89 ± 0.36 67.93 ± 0.81

6 CONCLUSION

In conclusion, we have presented an Attention-based Graph Coreset Labeling (AGCL) framework for
graph labeling. Our approach addresses the limitations of existing graph active learning methods in
capturing comprehensive graph structural information by connecting labeled and unlabeled data using
an attention architecture. Through AGCL, we effectively identify the most informative unlabeled
sample for the labeled pool, gradually expanding the labeled dataset to cover the entire graph
representation space. This results in improved sample complexity and diversity, leading to enhanced
performance of GNNs across various types of graph data. In theoretical analysis, we clear show that
selecting unlabeled data with maximum representation difference from the labeled pool helps reduce
the bound radius δ, thereby increasing coverage in the representation space. Empirical evaluations
across different graph datasets and image classification tasks demonstrate the effectiveness of AGCL
in improving the generalization ability of graph models. While the proposed AGCL can be applied
to large-scale datasets by operating on subgraphs or subsets, we aim to further explore alternative
methods to address efficiency challenges in large-scale datasets. In the paper, we assume a practical
scenario where the dataset does not contain a significant amount of outlier data. If there are many
anomalies in the dataset, the proposed method may select points that have different representations
from the majority of the data. Therefore, it is necessary to consider excluding these anomalies. In the
future, we will further consider this case and to achieve class-balanced coreset.
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A APPENDIX

A.1 COMPLEXITY ANALYSIS AND ALGORITHM OF AGCL

In AGCL, the complexity of the attention-based networks is O(LU), where L is the number of labeled
data, U is the number of unlabeled nodes. For data selection with a greedy searching method, the
complexity is O(LUm+ Ulog(U)), where m is the dimension of the low-dimensional embedding.

Algorithm 1 Attention-based Graph Coreset Labeling
Input: Graph G = (V, E), batch budget b, labeling budget B.
Output: Labeled pool s.

1: Initialize labeled pool s = s0 with labels
2: While |s| < B do
3: Get the hidden embedding of all data by a GNN model
4: Get the node representations based on attention-based networks
5: for batch i = 0, 1, 2, . . . ,b− 1 do
6: Select node ui according to Equation equation 9
7: s = s ∪ {ui}
8: end for
9: End while

A.2 PROOF

Proof of Proposition 4.1

Proof. We proof Proposition 4.1 based on the following assumptions.

Assumption 1 (local curvature). For a representation h, both d
dhL(f(h)) and d2

d2hL(f(h)) exist and
and are continuous and bounded.

Assumption 2 (well trained model). For a given training set Vl, and a well-trained GNN model M ,
for any ϵ > 0 and v ∈ VL, we have lM (f (hv)) < ϵ

Assumption 1 regarding local curvature is a standard technical assumption to make the analysis
feasible. Assumption 2 has been formally proved Keriven & Peyré (2019), demonstrating that GNNs
can achieve universal approximation power. Under mild conditions and with enough parameters in
the model, a model with universal approximation power can achieve zero loss on the training set
upon convergence, i.e., the property in Assumption 2 Su et al., with high probability.

Let θD be the set of parameters learnt by the GNN model M that satisfy properties given in
Assumption 2. For a labeled sample v with representation hv , we have lθD (f (hv)) < ϵ with ϵ > 0,
i.e., it achieves the global minimum of the loss function in the embedding space, where hv = M(v),
f(·) is the prediction function, and l(·) is the loss function. Here, we assume that both f(·) and l(·)
are smooth.

According to Assumption 1, we have d
dh l (f (hv)) = 0 since it achieves a local minimum. Further-

more, the global minimum also states that d2

d2h l (f (hv)) ≥ 0.

Assume there are two embeddings h and h′, where ∆(h,hv) ≤ ∆(h′,hv) ≤ rv , with ∆ measuring
the distance in the embedding space and rv defining the width of the neighborhood around hv in the
embedding space. This indicates that h is closer to hv than h′, we have h′ = h+ δ, δ > 0. Thus we
can get:

l (f (h′)) = l(f(h+ δ)) ≥ l(f(h)) +
d

dh
l(f(h))∥δ∥ (11)

As d
dh l (f (h)) ≥ 0 and ∥δ∥ > 0, we have l(f(h)) < l(f(h′)).

Based on Proposition 4.1, we provide the proof for Lemma 4.1.
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Proof of Lemma 4.1 Assume there are two training set Vtrain and V ′
train, and test set

Vtest. Based on two training set, we get two trained GNN models M(Vl) and M(V ′
l). If∑

v∈Vtrain
d(v,Vtest) <

∑
u∈V′

train
d(u,Vtest), thus the covering radius δv∈Vtrain

< δu∈V′
train

,
we have

∑
u∈Vtest

l(fM(Vtrain)(u)) <
∑

u∈Vtest
l(fM(V′

train)
(u)).

Proof. Assume there are two training set Vtrain and V ′
train, and test set Vtest. Let G = (V,E) be

the input graph with node feature vector Xv for all v ∈ V . Let M be a given GNN model and f
be the prediction function that maps the output of M to the class representation. The loss function
l is λl Lipschitz continuous for all y bounded by L. According to Proposition 4.1, we can obtain
zero-error for labeled data and have

∑
v∈Vtrain

l
(
fM(Vtrain)(v)

)
= 0,

∑
v∈V′

train

l
(
fM(V′

train)
(v)

)
= 0.

Then, we consider the loss on the test set Vtest with the model trained on two training sets, which can
be written as:

∑
u∈Vtest

L
(
fM(Vtrain)(u)

)
,

∑
u∈Vtest

L
(
fM(V′

train)
(u)

)
.

From Proposition 4.1, we known that the loss function is monotonically increasing with respect to
the embedding distance in δhv

, where hv is the hidden representation based on trained model M.

According to Theorem 1 in Sener & Savarese (2018), we know that the loss function is bounded by
convering radius δ. Now we extend the similar conclusion to GNN: We have a condition which states
that there exists hj in δ ball around hi such that hj has 0 loss.

Eyi∼η(hi) [lM (G, yi;As)] =
∑
k∈[C]

pyi∼ηk(hi)(yi = k)lM (G, k;As)

(d)

≤
∑
k∈[C]

pyi∼ηk(hj)(yi = k)lM (G, k;As)

+
∑
k∈[C]

|ηk (hi)− ηk (hj)| lM (G, k;As)

(e)

≤
∑
k∈[C]

pyi∼ηk(hj)(yi = k)lM (G, k;As) + δληLC

(12)

We use the Claim in Berlind & Urner (2015), i.e., fix p, p′ ∈ [0, 1] and y′ ∈ [0, 1], then,
py∼p (y ̸= y′) ≤ py∼p′ (y ̸= y′) + |p− p′| to achieve (d), and use Lipschitz property of regres-
sion function and bound of loss in (e). Then, we further bound

∑
k∈[C]

pyi∼ηk(hj) (yi = k) lM (G, k;As) =
∑
k∈[C]

pyi∼ηk(hj) (yi = k) [l (hi, k;As)− l (hj , k;As)]

+
∑
k∈[C]

pyi∼ηk(hj) (yi = k) l (hj , k;As)

≤δλl

(13)
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where last step is coming from the fact that the trained classifier assumed to have 0 loss over training
data. Here, lM (G, yi;As) = l (hi, yi;As), as hi is the low-dimensional embedding of xi by GNN
M. Then, we can get

Eyi∼η(hi) [lM (G, k;As)] ≤ δ
(
λl + ληLC

)
. (14)

We further use Hoeffding’s inequality Hoeffding (1994) and finally obtain

∣∣∣∣∣∣ 1N
∑
i∈[N ]

lM (G, yi;As)−
1

|s|
∑
j∈s

lM (G, yj ;As)

∣∣∣∣∣∣ ≤ δ
(
λl + ληLC

)
+ L

√
log(1/γ)

2N
(15)

with probability at least 1− γ.

Thus, while
∑

v∈Vtrain
d(v,Vtest) <

∑
u∈V′

train
d(u,Vtest), we have he covering radius δv∈Vtrain <

δu∈V′
train

. The smaller covering radius means the smaller loss for the whole samples, thus, we have∑
u∈Vtest

l(fM(Vtrain)(u)) <
∑

u∈Vtest
l(fM(V′

train)
(u)).

Proof of Theorem 4.1

Proof. Given the whole sample V drawn from G, let Vl represent the labeled pool consisting of points
with labels, and let Vu denote the set of unlabeled data. ∃s ∈ Vu : ∀v ∈ Vl, d(s, v) < d(k, v) with
k ∈ Vu \ {s}, thus we have

∑
v∈Vl∪{s} d(v,V) <

∑
u∈Vl∪{k} d(u,V) where V denote the whole

graph data. In other word, we have
∑

v∈Vl∪{s} d(v,Vtest) <
∑

u∈Vl∪{k} d(u,Vtest) for test set
Vtest. Acoording to Lemma 4.1, we can get that δv∈Vl∪{s} < δv∈Vl∪{k} < δu∈Vl

. Thus, we have∑
i∈V l(fM(Vl∪{s})(i)) <

∑
i∈V l(fM(Vl∪{k}(i)) <

∑
i∈V l(fM(Vl

(i)).

A.3 EXPERIMENTAL PART

Table 6: Implementation details

Model Dataset Hyper-parameter

Epochs
Learning

Rate
Weight
Decay

Hidden
Units

GCN, GAT, APPNP Cora, Citeseer, Pubmed 200 1e-2 5e-4 64

–ogbn-arxiv 300 1e-2 0 64

Implementation details for image classification. ResNet-18 [15] is the favourite choice as learner
due to its relatively higher accuracy and better training stability. During training the learner, we set
a batch size of 64. We use Stochastic Gradient Descent (SGD) with a weight decay 5e − 4 and a
momentum of 0.9. At every selection stage, we train the model for 200 epochs. We set the initial
learning rate of 0.1 and decrease it by the factor of 10 after 160 epochs. We use the same set of
hyper-parameters in all the experiments. For quantitative evaluation, we report the mean average
accuracy of 5 trials on the test sets.

A.4 DATASET STATISTIC.

Table 7: Statistics of graph benchmark datasets.
Cora Citeseer Pubmed ogbn-arxiv Actor roman-empire Squirrel

# Nodes 2,708 3,327 19,717 169,343 7,600 22,662 24,492
# Edges 5,429 4,732 44,338 1,166,343 26,752 32,927 93,050
Class 7 6 3 40 5 18 5
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Table 8: The performance of GraphSAGE on three citation datasets with different training sets.

Methods Training data Cora Citeseer Pubmed

GraphSAGE
GRAIN 81.55 ± 0.50 71.06 ± 0.44 79.23 ± 0.30

GraphPart 81.27 ± 0.43 70.42 ± 0.58 77.29 ± 0.35
AGCL 82.56 ± 0.39 72.64 ± 1.11 79.14 ± 0.33

A.5 THE RESULTS ON GRAPHSAGE.

We have conducted additional experiments to evaluate AGCL with GraphSAGE (Hamilton et al.
(2017)). The results, shown in the Table 8, indicate that AGCL performs consistently well across
different datasets. Specifically, AGCL outperforms other methods when using GraphSAGE, further
demonstrating its versatility and effectiveness in core data selection, irrespective of the underlying
GNN model.

A.6 MORE RESULTS.

Figure 2: The test accuracy across different labeling budgets for GCN model training.

A.7 RESULTS ON IMAGE CLASSIFICATION

To demonstrate the generalization ability of our proposed method, we report the performance
comparison of AGCL with six existing methods on CIFAR-10 and FashionMNIST datasets in Figure
3. Our proposed attention-based graph coreset labeling method can achieve the comparative or
even better performance compared to some CNN baselines. Especially, after selecting 4000 labeled
examples, the AGCL achieves highest performances with 82.23% and 89.97% on CIFAR-10 and
FashionMNIST, respectively.

Figure 3: The comparison of several active learning methods on CIFAR-10 and FashionMNIST. The
accuracy is averaged over 5 runs.
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A.8 ABLATION STUDY

Positional encoding plays a crucial role in the self-attention framework. Based on GCNs, we test its
impact on the proposed AGCL framework by comparing two common positional encoding methods:
Laplacian-based (lpe) and random walk positional encoding (rwpe) against AGCL without any
positional encoding (w/o pe).

As shown in Table 9, we observe that the GCN achieves superior performance when trained on
data selected by AGCL with positional encoding, compared to AGCL without positional encoding.
The difference in performance is minimal with either Laplacian-based or random walk positional
encoding methods across all three datasets.

Table 9: Ablation study on positional encoding in AGCL.

Methods Training Data Cora Citeseer pubmed

GCN
AGCL wo/ pe 82.59 ± 0.37 71.93 ± 0.64 79.53 ± 0.55
AGCL (lpe) 83.92 ± 0.54 73.16 ± 0.46 79.10 ± 0.90
AGCL (rwpe) 82.89 ± 0.38 73.10 ± 0.58 79.83 ± 0.34

A.9 ROBUSTNESS ANALYSIS OF AGCL WITH NOISY DATA

We further demonstrate the robustness of the proposed method on noisy data. Specifically, we
simulate noisy data by randomly removing a certain percentage (10%) of the graph node features.

As shown in Table 10, we observe that AGCL continues to achieve strong performance, especially on
the Cora and Citeseer datasets, in the presence of noise. This demonstrates the method’s robustness
and its ability to perform well in settings that might better resemble real-world, noisy data scenarios.

Table 10: Classification accuracy (%) on three citation datasets with different training sets (noise and
clear).

Methods Training data Cora Citeseer Pubmed

GCN noise 82.58 ± 0.40 72.04 ± 0.19 76.08 ± 0.46
clear 83.92 ± 0.54 73.10 ± 0.58 79.83 ± 0.34
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