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Abstract
Large language models (LLMs) have achieved001
remarkable success in natural language process-002
ing tasks, yet their internal knowledge struc-003
tures remain poorly understood. This study ex-004
amines these structures through the lens of his-005
torical Olympic medal tallies, evaluating LLMs006
on two tasks: (1) retrieving medal counts for007
specific teams and (2) identifying rankings of008
each team. While state-of-the-art LLMs excel009
in reporting medal counts, they struggle with in-010
ferring rankings, highlighting a key difference011
between their knowledge organization and hu-012
man reasoning. These findings shed light on013
the limitations of LLMs’ internal knowledge014
integration and suggest directions for improve-015
ment. To facilitate further research, we release016
our code, dataset, and model outputs1.017

1 Introduction018

Large language models (LLMs) have revolution-019

ized natural language processing (NLP), demon-020

strating exceptional performance across a wide021

range of tasks (Zhao et al., 2023; Minaee et al.,022

2024). Despite their success, understanding how023

these models internally organize and access knowl-024

edge remains a significant challenge, primarily due025

to their black-box architecture (Singh et al., 2024).026

While previous studies have explored various char-027

acteristics of LLMs (Zhao et al., 2024; Xiao et al.,028

2024; Weller-Di Marco and Fraser, 2024; Liu et al.,029

2024; Nowak et al., 2024), their internal knowl-030

edge organization and its alignment with human031

reasoning remain underexplored (Templeton et al.,032

2024).033

In this paper, we address the question: “Do034

LLMs organize their internal knowledge in a man-035

ner similar to humans?” To investigate this, we036

evaluate LLMs using Olympic Games medal data037

from 1964 to 2022, a domain where humans nat-038

urally connect factual information (medal counts)039

1https://anonymous.4open.science/r/
Olympics_Analysis

with derived insights (rankings). Specifically, we 040

assess the models on two tasks: (1) retrieving 041

medal counts for individual teams and (2) identi- 042

fying rankings based on those counts. While state- 043

of-the-art (SOTA) proprietary and open-source 044

LLMs excel at recalling medal counts (e.g., “How 045

many medals did China win in the 2020 Tokyo 046

Olympics?”), they struggle with ranking-related 047

queries (e.g., “Which country ranked 3rd in the 048

2022 Beijing Winter Olympics?”). This perfor- 049

mance gap highlights two key insights: (1) LLMs’ 050

internal knowledge structures differ fundamentally 051

from human reasoning, and (2) LLMs face chal- 052

lenges in integrating related pieces of knowledge 053

to answer interconnected questions effectively. 054

Furthermore, we examine the robustness of 055

LLMs when faced with simple user expressions of 056

doubt, such as “Really?” Our findings reveal that 057

models often revise their correct initial responses, 058

resulting in performance degradation. This vul- 059

nerability underscores the need to improve LLMs’ 060

ability to maintain confidence in accurate answers. 061

Our study sheds light on critical limitations in 062

the internal knowledge organization and robustness 063

of LLMs. By leveraging a structured analytical 064

framework based on Olympic medal data, we pro- 065

vide new insights into the unique challenges of 066

LLM reasoning. To facilitate further research, we 067

publicly release our code, dataset, and model. 068

2 Analysis Design 069

2.1 Data Collection 070

We first gathered the official medal tables from the 071

Olympic Games website2, covering events from the 072

1960 Rome Olympics to the 2024 Paris Olympics3. 073

Specifically, we collected the medal results of the 074

top 20 countries from each Olympic Games, along 075

2https://olympics.com
3As mentioned earlier, and as will be further discussed, we

only used data from the 1964 to 2022 Olympic Games for our
evaluation.
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with their rankings. As a result, we compiled medal076

results for 650 teams across 34 Olympic Games,077

involving both Summer and Winter Olympics4.078

2.2 Task Configuration079

2.2.1 Medal QA080

Based on the collected data, we designed a081

question-answering (QA) task focused on obtain-082

ing the exact medal results for a specific team083

in a particular Olympic Games. For this, we084

constructed prompts for the LLMs in the following085

format: “How many medals did $TEAM086

get in the $YEAR $LOCATION $SEA-087

SON Olympics? Only provide the088

number of each medal.”. Appendix A.1089

demonstrates provides an example of a complete090

conversation with an LLM based on this prompt.091

To create questions for this task, we excluded092

the 2024 Paris Olympics as it is too recent to be093

included in the training data of LLMs, as well as094

the 1960 Summer and Winter Games, which were095

used as examples, as discussed in Section 2.3. This096

resulted in a total of 596 questions for the medal097

QA task.098

2.2.2 Team QA099

The second task focuses on asking the model to100

identify the team that achieved a specific ranking in101

a given Olympic Games. We constructed prompts102

for this task in the following format: “Which103

country ranked $RANK in the $YEAR104

$LOCATION $SEASON Olympics? Only105

provide the name of the country.”.106

Appendix A.2 provides a complete example of a107

conversation with an LLM based on this prompt.108

As with the Medal QA task, we excluded the109

2024 and 1960 Olympic Games from our raw data.110

Additionally, we limited our questions to the top111

10 teams and excluded cases with joint rankings to112

avoid complications5. This resulted in 304 ques-113

tions for the team QA task.114

2.2.3 Doubt Robustness115

In addition to the two tasks described above, we116

also investigated the robustness of the models117

when faced with simple user feedback expressing118

4While we aimed to collect medal results for the top 20
countries in each event, certain earlier Games, particularly
Winter Olympics, had fewer than 20 participants. For example,
the 1964 Innsbruck Winter Olympics featured only 14 entries.

5For instance, in the 2010 Vancouver Winter Olympics,
China and Sweden both ranked 7th, having won the same
number of gold, silver, and bronze medals.

doubt, such as “Really?”. For this, we attached 119

the following prompt after the model’s response 120

for each task: “Really? Start the 121

answer with "Yes" or "No". If 122

you answer with "No", then pro- 123

vide the correct number of each 124

medal/correct country name.”. This 125

allowed us to observe the model’s second response 126

and measure its robustness in handling user doubt. 127

2.3 Experimental Setup 128

We used 12 different models, covering SOTA- 129

level proprietary models and open-source models. 130

Specifically, we used GPT (OpenAI, 2023, 2024), 131

Claude (Anthropic, 2024), and Gemini (Google, 132

2024) models as proprietary models and LLaMA- 133

3.1 (Dubey et al., 2024), Qwen-2 (Yang et al., 134

2024a), and Gemma-2 (Team et al., 2024) as open- 135

source models. Figure 1 includes the exact version 136

of the model we used for our experiment. 137

We experimented with each model with two- 138

shot examples to facilitate the models to follow 139

the prompt and produce responses in the desired 140

format. Specifically, we used the results from the 141

1960 Rome and Squaw Valley Olympics. Note 142

that these two-shot examples only contribute to the 143

formatting of the output and do not provide useful 144

clues to answer the given question, as we excluded 145

1960 games from our question data. The sample 146

conversation in Appendix A.1 and A.2 includes the 147

two-shot examples. 148

We implemented the experiment with 149

LangChain (LangChain, 2023) and vLLM 150

(Kwon et al., 2023) library. We used official API 151

for proprietary models and vLLM for open-source 152

models. We set the temperature of every model to 153

0, disabling the probabilistic language modeling, 154

thus easing the reproduction of the experimental 155

results. Please refer to our source code and data 156

for more details. 157

3 Experimental Results 158

3.1 Performance Gap between Medal QA and 159

Team QA 160

Figure 1 illustrates the results of our anal- 161

ysis. The most noticeable finding is the 162

significant performance gap between the two 163

tasks. While prior studies have suggested 164

that LLMs often produce hallucinated responses 165

when dealing with numerical data, our analysis 166

shows that SOTA-level LLMs such as GPT-4o, 167

2



Figure 1: Main experimental results. The squares and diamonds represent the initial and final accuracy, respectively,
after receiving doubtful user feedback on the medal QA task, particularly for questions related to gold medals. The
triangles represent the initial and final accuracy on the team QA task. The results suggest a significant performance
gap between the two tasks, as well as a decrease in performance after receiving doubtful feedback. Detailed results
are provided in Table 1 in Appendix B.

GPT-4-turbo, Claude-3.5-Sonnet, and168

Gemini-1.5-Pro demonstrate remarkable ac-169

curacy in retrieving the number of medals won by170

a specific team (Rawte et al., 2023, 2024).171

However, in the Team QA task, no model172

achieved an accuracy higher than 40%. The best173

performance came from GPT-4o-2024-08-06,174

which achieved an initial accuracy of 39.8%. This175

is particularly interesting since, for humans, infer-176

ring rankings from known medal counts is rela-177

tively straightforward. The underperformance of178

LLMs in this task suggests that, during pretraining,179

they may not organize or link related information180

in a structured manner, unlike humans.181

In conclusion, our findings indicate that the in-182

ternal knowledge structures of LLMs differ from183

those of humans. Furthermore, the models’ inabil-184

ity to link related information efficiently during185

pretraining appears to hinder their ability to an-186

swer related queries. This observation highlights187

a fundamental limitation of the next-token predic-188

tion approach, which is the dominant method for189

training LLMs (Bachmann and Nagarajan, 2024).190

3.2 Evaluating Doubt Robustness with Doubt191

Matrix192

Another key finding is the performance drop ob-193

served after user feedback expressing doubt. In194

Figure 1, the diamond and reversed triangles indi-195

cate the accuracy of the models’ final responses196

after receiving doubtful feedback, as described in197

Section 2.2.3. In most cases, the models’ perfor-198

mance declined when they altered their initial an- 199

swers, even though the initial responses were cor- 200

rect. This suggests that LLMs are vulnerable to 201

user doubt, even when no evidence supports the 202

claim that the initial answer was wrong. Nonethe- 203

less, more recent models, such as GPT-4o and 204

Claude-3.5-Sonnet, showed only minor dif- 205

ferences in this regard. We denote the amount of 206

this performance drop as doubt robustness and 207

suggest that doubt robustness is another noteworthy 208

factor for the evaluation of LLMs, as it is important 209

to keep the original response and decision without 210

the reason to alter it, to ensure the reliability of the 211

model. 212

To explore this phenomenon further, we created 213

a doubt matrix, similar to a confusion matrix, to 214

analyze response changes in greater detail. We 215

categorized responses into four cases: (1) correct 216

initial and final responses, (2) correct initial but in- 217

correct final responses, (3) incorrect initial and final 218

responses, and (4) incorrect initial but correct final 219

responses. Figure 2 shows an example of a doubt 220

matrix, and Appendix C provides doubt matrices 221

for all models across the two tasks. The doubt ma- 222

trix shows that at least 28 responses, or 4.7% of 223

total responses, changed after receiving doubtful 224

feedback6. Notably, there were more cases where 225

6Note that 54 wrong initial & wrong final cases do not
necessarily mean that they maintained original response after
the doubtful reply of the user. For instance, where the correct
answer is the United States and the initial response is China,
the final response after the reply can be other countries such
as Australia.
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Figure 2: Doubt matrix for Claude-3.5-Sonnet
on the medal QA task, specifically for predicting the
number of gold medals. The matrix shows the model’s
response changes after user doubt was expressed.

correct initial responses were altered to incorrect fi-226

nal responses, resulting in the overall performance227

degradation.228

In conclusion, we observed a consistent decline229

in performance after the models received doubtful230

feedback, despite the lack of supporting evidence231

for the doubt. We refer to this performance decline232

as doubt robustness and found that SOTA-level233

models tend to exhibit higher doubt robustness. We234

believe this concept of doubt robustness can also235

be witnessed in other closed-book QA tasks, such236

as MMLU (Hendrycks et al., 2021).237

4 Related Works238

Researchers have investigated the internal func-239

tioning of LLMs using various approaches. Early240

studies in this field focused on the emergence of in-241

ternal structures to process linguistic features such242

as syntax (Teehan et al., 2022). Another study ex-243

plored how LLMs represent relationships between244

entities, showing that such relations can be approxi-245

mated using a single linear transformation (Hernan-246

dez et al., 2024). Additionally, other researchers247

examined the latent reasoning abilities of LLMs in248

multi-hop setups, suggesting that LLMs can reason249

over multiple steps when solving complex queries250

(Yang et al., 2024b).251

Other lines of research focus on scrutinizing 252

LLMs at a lower level, revealing which features 253

or layers contribute to the knowledge of specific 254

concepts (Jin et al., 2024a; Anthropic, 2024). These 255

studies examine how certain model architectures 256

encode and store factual knowledge, which ulti- 257

mately affects their performance across various 258

tasks. 259

5 Conclusion 260

In this study, we explored the internal knowledge 261

structure of LLMs using Olympic Games medal tal- 262

lies. By analyzing the models’ performance across 263

two distinct tasks—medal QA and team QA—we 264

identified a significant disparity between their abil- 265

ity to recall numerical data (medal count) and their 266

struggle to infer rankings, which is based on the 267

medal counts. This suggests that while LLMs are 268

adept at retrieving specific factual information, they 269

may not organize or link related knowledge as hu- 270

mans do. 271

Additionally, we revealed a vulnerability in 272

LLMs when exposed to doubtful user feedback. 273

In many cases, models altered their correct ini- 274

tial responses, leading to degraded performance, 275

which underscores the concept of doubt robustness. 276

This issue reflects the models’ vulnerability to user 277

prompts that challenge their answers without evi- 278

dence. 279

Our findings highlight fundamental differences 280

in how LLMs and humans organize knowledge, 281

and they emphasize the need for further research 282

into enhancing the robustness of LLMs. Future 283

work could explore methods to better structure the 284

internal knowledge of LLMs, making them more 285

capable of handling related queries and less prone 286

to altering correct answers due to unsupported chal- 287

lenges. We believe that incorporating graph-based 288

approaches during pretraining may help improve 289

LLMs’ ability to organize and connect information, 290

thereby enhancing their overall efficiency, both in 291

terms of data usage and computational resources 292

(Pan et al., 2024). 293

Limitations 294

This study provides valuable insights into LLMs’ 295

internal knowledge organization, but several lim- 296

itations should be considered. First, our findings 297

do not imply that LLMs inherently lack the ability 298

to infer rankings from explicit medal counts. Prior 299

work demonstrates that advanced prompting strate- 300
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gies, such as chain-of-thought reasoning (Wei et al.,301

2022; Kojima et al., 2022), can enhance perfor-302

mance on similar tasks. Our focus was specifically303

on how LLMs organize knowledge acquired during304

pretraining, rather than their capacity to reason with305

explicitly provided information. This distinction306

is critical, as the quality of LLM outputs often de-307

pends on their internal knowledge structures, even308

when relevant data is supplied (Jin et al., 2024b).309

Second, while we identify performance gaps in310

ranking inference and doubt robustness, we do not311

propose solutions to these challenges. Future re-312

search should explore methods to improve LLMs’313

ability to integrate related information, maintain314

response consistency, and generalize beyond our315

Olympic-based evaluation framework.316

Finally, our analysis of doubt robustness relied317

on a simple form of user skepticism (“Really?”).318

Real-world interactions often involve more nu-319

anced or complex expressions of doubt, which320

could elicit different response behaviors. More-321

over, our binary correct/incorrect metric may not322

fully capture the subtleties of how models adjust323

their reasoning under challenge.324

Despite these limitations, this study lays a foun-325

dation for understanding how LLMs internally rep-326

resent and access knowledge. We hope these in-327

sights inspire further research into developing train-328

ing and evaluation strategies that enhance LLMs’329

reasoning capabilities and reliability across diverse330

real-world scenarios.331
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A Example Conversation with Prompts 472

A.1 Example Conversation for Medal QA task 473

System
Answer in short, single word or sentence.
User
How many medals did Japan get in 1960 Rome Summer Olympics? Only provide the number of each medals.
Model
Japan got:

- Gold: 4
- Silver: 7
- Bronze: 7
- Total: 18
User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct number of each medals.
Model
Yes
User
How many medals did Sweden get in 1960 Squaw Valley Winter Olympics? Only provide the number of each medals.
Model
Sweden got:

- Gold: 4
- Silver: 3
- Bronze: 1
- Total: 8
User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct number of each medals.
Model
No, Sweden got:

- Gold: 3
- Silver: 2
- Bronze: 2
- Total: 7
User
How many medals did Norway get in the 2022 Beijing Winter Olympics? Only provide the number of each medals.
Model
Norway got:

- Gold: 16
- Silver: 8
- Bronze: 13
- Total: 37
User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct number of each medals.
Model
Yes

7



A.2 Example Conversation for Team QA task474

System
Answer in short, single word or sentence.
User
Which country ranked 3rd in the 1960 Rome Summer Olympics? Only provide the name of the country.
Model
Italy
User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct name of the country.
Model
Yes
User
Which country ranked 6th in the 1960 Squaw Valley Winter Olympics? Only provide the name of the country.
Model
United Team of Germany
User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct name of the country.
Model
No. The correct answer is:
Finland
User
Which country ranked 1st in the 2022 Beijing Winter Olympics? Only provide the name of the country.
Model
Norway
User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct name of the country.
Model
Yes
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Models GoldInitial GoldFinal SilverInitial SilverFinal BronzeInitial BronzeFinal TotalInitial TotalFinal TeamInitial TeamFinal Performance Gap

gpt-4o-2024-08-06 88.93 -1.01 83.72 -0.67 80.87 -1.68 80.54 -1.85 39.80 -1.97 -49.13
gpt-4o-2024-05-13 88.59 -5.20 84.73 -4.70 81.38 -8.73 79.70 -11.24 38.16 -3.95 -50.43

gpt-4-turbo-2024-04-09 92.28 -3.52 90.44 -8.23 87.92 -17.45 86.74 -19.46 33.22 -8.22 -59.06
gpt-4o-mini-2024-07-18 41.11 -4.70 37.08 -3.19 31.88 -2.85 26.85 -4.70 23.36 -4.61 -17.75

gpt-3.5-turbo-0125 71.14 -4.86 67.79 -4.03 67.95 -7.55 64.77 -10.58 23.68 -3.29 -47.46
claude-3-5-sonnet-20240620 89.60 -2.02 87.08 -1.85 85.57 -6.04 85.91 -4.70 34.54 -2.30 -55.06
claude-3-haiku-20240307 36.07 -1.67 31.21 -6.38 25.00 -7.72 20.3 -8.56 14.14 -1.97 -21.93

gemini-1.5-pro-001 88.93 -6.55 86.74 -9.73 85.07 -15.44 84.23 -20.30 15.79 +2.63 -73.14
gemini-1.5-flash-001 65.77 -6.21 62.75 -16.27 59.73 -19.13 52.18 -22.31 21.38 +1.98 -44.39

gemma-2-9b-it 41.11 -2.18 34.06 -1.34 33.72 -3.35 21.48 -1.85 22.04 -6.91 -19.07
Meta-Llama-3.1-8B-Instruct 63.26 -3.53 52.52 -2.86 42.79 -4.70 36.07 -7.21 15.13 -2.96 -48.13

Qwen2-7B-Instruct 14.93 -1.00 14.60 -1.01 9.73 -1.68 4.70 +0.84 13.49 +1.64 -1.44

Table 1: Experimental result demonstrating the performance of models on medal QA task and team QA task. The
column denoted with Initial shows the accuracy of the initial model response before the doubtful feedback of the
user, and the column denoted with Final shows the change of the accuracy after the doubtful feedback of the user
(“Really?”). The “Performance Gap” column denotes the distinction between GoldInitial and TeamInitial.
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