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Abstract

Large language models (LLMs) have achieved
remarkable success in natural language process-
ing tasks, yet their internal knowledge struc-
tures remain poorly understood. This study ex-
amines these structures through the lens of his-
torical Olympic medal tallies, evaluating LLMs
on two tasks: (1) retrieving medal counts for
specific teams and (2) identifying rankings of
each team. While state-of-the-art LLMs excel
in reporting medal counts, they struggle with in-
ferring rankings, highlighting a key difference
between their knowledge organization and hu-
man reasoning. These findings shed light on
the limitations of LLMs’ internal knowledge
integration and suggest directions for improve-
ment. To facilitate further research, we release
our code, dataset, and model outputsl.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing (NLP), demon-
strating exceptional performance across a wide
range of tasks (Zhao et al., 2023; Minaee et al.,
2024). Despite their success, understanding how
these models internally organize and access knowl-
edge remains a significant challenge, primarily due
to their black-box architecture (Singh et al., 2024).
While previous studies have explored various char-
acteristics of LLMs (Zhao et al., 2024; Xiao et al.,
2024; Weller-Di Marco and Fraser, 2024; Liu et al.,
2024; Nowak et al., 2024), their internal knowl-
edge organization and its alignment with human
reasoning remain underexplored (Templeton et al.,
2024).

In this paper, we address the question: “Do
LLMs organize their internal knowledge in a man-
ner similar to humans?” To investigate this, we
evaluate LL.Ms using Olympic Games medal data
from 1964 to 2022, a domain where humans nat-
urally connect factual information (medal counts)
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with derived insights (rankings). Specifically, we
assess the models on two tasks: (1) retrieving
medal counts for individual teams and (2) identi-
fying rankings based on those counts. While state-
of-the-art (SOTA) proprietary and open-source
LLMs excel at recalling medal counts (e.g., “How
many medals did China win in the 2020 Tokyo
Olympics?”’), they struggle with ranking-related
queries (e.g., “Which country ranked 3rd in the
2022 Beijing Winter Olympics?”). This perfor-
mance gap highlights two key insights: (1) LLMs’
internal knowledge structures differ fundamentally
from human reasoning, and (2) LLMs face chal-
lenges in integrating related pieces of knowledge
to answer interconnected questions effectively.
Furthermore, we examine the robustness of
LLMs when faced with simple user expressions of
doubt, such as “Really?” Our findings reveal that
models often revise their correct initial responses,
resulting in performance degradation. This vul-
nerability underscores the need to improve LLMs’
ability to maintain confidence in accurate answers.
Our study sheds light on critical limitations in
the internal knowledge organization and robustness
of LLMs. By leveraging a structured analytical
framework based on Olympic medal data, we pro-
vide new insights into the unique challenges of
LLM reasoning. To facilitate further research, we
publicly release our code, dataset, and model.

2 Analysis Design

2.1 Data Collection

We first gathered the official medal tables from the
Olympic Games website?, covering events from the
1960 Rome Olympics to the 2024 Paris Olympics®.
Specifically, we collected the medal results of the
top 20 countries from each Olympic Games, along

https://olympics.com

3 As mentioned earlier, and as will be further discussed, we
only used data from the 1964 to 2022 Olympic Games for our
evaluation.
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with their rankings. As a result, we compiled medal
results for 650 teams across 34 Olympic Games,
involving both Summer and Winter Olympics®.

2.2 Task Configuration
2.2.1 Medal QA

Based on the collected data, we designed a
question-answering (QA) task focused on obtain-
ing the exact medal results for a specific team
in a particular Olympic Games. For this, we
constructed prompts for the LLMs in the following
format: “How many medals did STEAM
get in the S$YEAR SLOCATION S$SEA-
SON Olympics? Only provide the
number of each medal.”. Appendix A.l
demonstrates provides an example of a complete
conversation with an LLM based on this prompt.

To create questions for this task, we excluded
the 2024 Paris Olympics as it is too recent to be
included in the training data of LLMs, as well as
the 1960 Summer and Winter Games, which were
used as examples, as discussed in Section 2.3. This
resulted in a total of 596 questions for the medal
QA task.

2.2.2 Team QA

The second task focuses on asking the model to
identify the team that achieved a specific ranking in
a given Olympic Games. We constructed prompts
for this task in the following format: “Which
country ranked S$RANK in the S$YEAR
SLOCATION S$SEASON Olympics? Only
provide the name of the country.”.
Appendix A.2 provides a complete example of a
conversation with an LLM based on this prompt.

As with the Medal QA task, we excluded the
2024 and 1960 Olympic Games from our raw data.
Additionally, we limited our questions to the top
10 teams and excluded cases with joint rankings to
avoid complications®. This resulted in 304 ques-
tions for the team QA task.

2.2.3 Doubt Robustness

In addition to the two tasks described above, we
also investigated the robustness of the models
when faced with simple user feedback expressing

*While we aimed to collect medal results for the top 20
countries in each event, certain earlier Games, particularly
Winter Olympics, had fewer than 20 participants. For example,
the 1964 Innsbruck Winter Olympics featured only 14 entries.

SFor instance, in the 2010 Vancouver Winter Olympics,
China and Sweden both ranked 7th, having won the same
number of gold, silver, and bronze medals.

doubt, such as “Really?”. For this, we attached
the following prompt after the model’s response

for each task: “Really? Start the
answer with "Yes" or "No'". If
you answer with "No", then pro-

vide the correct number of each

medal/correct country name.”. This
allowed us to observe the model’s second response
and measure its robustness in handling user doubt.

2.3 Experimental Setup

We used 12 different models, covering SOTA-
level proprietary models and open-source models.
Specifically, we used GPT (OpenAl, 2023, 2024),
Claude (Anthropic, 2024), and Gemini (Google,
2024) models as proprietary models and LLaMA-
3.1 (Dubey et al., 2024), Qwen-2 (Yang et al.,
2024a), and Gemma-2 (Team et al., 2024) as open-
source models. Figure 1 includes the exact version
of the model we used for our experiment.

We experimented with each model with two-
shot examples to facilitate the models to follow
the prompt and produce responses in the desired
format. Specifically, we used the results from the
1960 Rome and Squaw Valley Olympics. Note
that these two-shot examples only contribute to the
formatting of the output and do not provide useful
clues to answer the given question, as we excluded
1960 games from our question data. The sample
conversation in Appendix A.1 and A.2 includes the
two-shot examples.

We implemented the experiment with
LangChain (LangChain, 2023) and vLLM
(Kwon et al., 2023) library. We used official API
for proprietary models and vLLM for open-source
models. We set the temperature of every model to
0, disabling the probabilistic language modeling,
thus easing the reproduction of the experimental
results. Please refer to our source code and data
for more details.

3 Experimental Results

3.1 Performance Gap between Medal QA and
Team QA

Figure 1 illustrates the results of our anal-
ysis. The most noticeable finding is the
significant performance gap between the two
tasks.  While prior studies have suggested
that LL.Ms often produce hallucinated responses
when dealing with numerical data, our analysis
shows that SOTA-level LLMs such as GPT—-4o,
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Figure 1: Main experimental results. The squares and diamonds represent the initial and final accuracy, respectively,
after receiving doubtful user feedback on the medal QA task, particularly for questions related to gold medals. The
triangles represent the initial and final accuracy on the team QA task. The results suggest a significant performance
gap between the two tasks, as well as a decrease in performance after receiving doubtful feedback. Detailed results

are provided in Table 1 in Appendix B.

GPT-4-turbo, Claude-3.5-Sonnet, and
Gemini-1.5-Pro demonstrate remarkable ac-
curacy in retrieving the number of medals won by
a specific team (Rawte et al., 2023, 2024).

However, in the Team QA task, no model
achieved an accuracy higher than 40%. The best
performance came from GPT-40-2024-08-06,
which achieved an initial accuracy of 39.8%. This
is particularly interesting since, for humans, infer-
ring rankings from known medal counts is rela-
tively straightforward. The underperformance of
LLMs in this task suggests that, during pretraining,
they may not organize or link related information
in a structured manner, unlike humans.

In conclusion, our findings indicate that the in-
ternal knowledge structures of LLMs differ from
those of humans. Furthermore, the models’ inabil-
ity to link related information efficiently during
pretraining appears to hinder their ability to an-
swer related queries. This observation highlights
a fundamental limitation of the next-token predic-
tion approach, which is the dominant method for
training LLMs (Bachmann and Nagarajan, 2024).

3.2 Evaluating Doubt Robustness with Doubt
Matrix

Another key finding is the performance drop ob-
served after user feedback expressing doubt. In
Figure 1, the diamond and reversed triangles indi-
cate the accuracy of the models’ final responses
after receiving doubtful feedback, as described in
Section 2.2.3. In most cases, the models’ perfor-

mance declined when they altered their initial an-
swers, even though the initial responses were cor-
rect. This suggests that LLMs are vulnerable to
user doubt, even when no evidence supports the
claim that the initial answer was wrong. Nonethe-
less, more recent models, such as GPT-40 and
Claude-3.5-Sonnet, showed only minor dif-
ferences in this regard. We denote the amount of
this performance drop as doubt robustness and
suggest that doubt robustness is another noteworthy
factor for the evaluation of LLMs, as it is important
to keep the original response and decision without
the reason to alter it, to ensure the reliability of the
model.

To explore this phenomenon further, we created
a doubt matrix, similar to a confusion matrix, to
analyze response changes in greater detail. We
categorized responses into four cases: (1) correct
initial and final responses, (2) correct initial but in-
correct final responses, (3) incorrect initial and final
responses, and (4) incorrect initial but correct final
responses. Figure 2 shows an example of a doubt
matrix, and Appendix C provides doubt matrices
for all models across the two tasks. The doubt ma-
trix shows that at least 28 responses, or 4.7% of
total responses, changed after receiving doubtful
feedback®. Notably, there were more cases where

®Note that 54 wrong initial & wrong final cases do not
necessarily mean that they maintained original response after
the doubtful reply of the user. For instance, where the correct
answer is the United States and the initial response is China,
the final response after the reply can be other countries such
as Australia.
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Figure 2: Doubt matrix for Claude-3.5-Sonnet
on the medal QA task, specifically for predicting the
number of gold medals. The matrix shows the model’s
response changes after user doubt was expressed.

correct initial responses were altered to incorrect fi-
nal responses, resulting in the overall performance
degradation.

In conclusion, we observed a consistent decline
in performance after the models received doubtful
feedback, despite the lack of supporting evidence
for the doubt. We refer to this performance decline
as doubt robustness and found that SOTA-level
models tend to exhibit higher doubt robustness. We
believe this concept of doubt robustness can also
be witnessed in other closed-book QA tasks, such
as MMLU (Hendrycks et al., 2021).

4 Related Works

Researchers have investigated the internal func-
tioning of LLMs using various approaches. Early
studies in this field focused on the emergence of in-
ternal structures to process linguistic features such
as syntax (Teehan et al., 2022). Another study ex-
plored how LLMs represent relationships between
entities, showing that such relations can be approxi-
mated using a single linear transformation (Hernan-
dez et al., 2024). Additionally, other researchers
examined the latent reasoning abilities of LLMs in
multi-hop setups, suggesting that LLMs can reason
over multiple steps when solving complex queries
(Yang et al., 2024b).

Other lines of research focus on scrutinizing
LLMs at a lower level, revealing which features
or layers contribute to the knowledge of specific
concepts (Jin et al., 2024a; Anthropic, 2024). These
studies examine how certain model architectures
encode and store factual knowledge, which ulti-
mately affects their performance across various
tasks.

5 Conclusion

In this study, we explored the internal knowledge
structure of LLMs using Olympic Games medal tal-
lies. By analyzing the models’ performance across
two distinct tasks—medal QA and team QA—we
identified a significant disparity between their abil-
ity to recall numerical data (medal count) and their
struggle to infer rankings, which is based on the
medal counts. This suggests that while LLMs are
adept at retrieving specific factual information, they
may not organize or link related knowledge as hu-
mans do.

Additionally, we revealed a vulnerability in
LLMs when exposed to doubtful user feedback.
In many cases, models altered their correct ini-
tial responses, leading to degraded performance,
which underscores the concept of doubt robustness.
This issue reflects the models’ vulnerability to user
prompts that challenge their answers without evi-
dence.

Our findings highlight fundamental differences
in how LLMs and humans organize knowledge,
and they emphasize the need for further research
into enhancing the robustness of LLMs. Future
work could explore methods to better structure the
internal knowledge of LL.Ms, making them more
capable of handling related queries and less prone
to altering correct answers due to unsupported chal-
lenges. We believe that incorporating graph-based
approaches during pretraining may help improve
LLMs’ ability to organize and connect information,
thereby enhancing their overall efficiency, both in
terms of data usage and computational resources
(Pan et al., 2024).

Limitations

This study provides valuable insights into LLMs’
internal knowledge organization, but several lim-
itations should be considered. First, our findings
do not imply that LL.Ms inherently lack the ability
to infer rankings from explicit medal counts. Prior
work demonstrates that advanced prompting strate-



gies, such as chain-of-thought reasoning (Wei et al.,
2022; Kojima et al., 2022), can enhance perfor-
mance on similar tasks. Our focus was specifically
on how LLMs organize knowledge acquired during
pretraining, rather than their capacity to reason with
explicitly provided information. This distinction
is critical, as the quality of LLM outputs often de-
pends on their internal knowledge structures, even
when relevant data is supplied (Jin et al., 2024b).

Second, while we identify performance gaps in
ranking inference and doubt robustness, we do not
propose solutions to these challenges. Future re-
search should explore methods to improve LLMs’
ability to integrate related information, maintain
response consistency, and generalize beyond our
Olympic-based evaluation framework.

Finally, our analysis of doubt robustness relied
on a simple form of user skepticism (“Really?”).
Real-world interactions often involve more nu-
anced or complex expressions of doubt, which
could elicit different response behaviors. More-
over, our binary correct/incorrect metric may not
fully capture the subtleties of how models adjust
their reasoning under challenge.

Despite these limitations, this study lays a foun-
dation for understanding how LLMs internally rep-
resent and access knowledge. We hope these in-
sights inspire further research into developing train-
ing and evaluation strategies that enhance LLMs’
reasoning capabilities and reliability across diverse
real-world scenarios.
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A Example Conversation with Prompts

A.1 Example Conversation for Medal QA task

System
Answer in short, single word or sentence.

User
How many medals did Japan get in 1960 Rome Summer Olympics? Only provide the number of each medals.

Model
Japan got:

- Gold: 4
- Silver: 7
- Bronze: 7
- Total: 18

User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct number of each medals.

Model
Yes

User
How many medals did Sweden get in 1960 Squaw Valley Winter Olympics? Only provide the number of each medals.

Model
Sweden got:

- Gold: 4
- Silver: 3
- Bronze: 1
- Total: 8

User
Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct number of each medals.

Model
No, Sweden got:

- Gold: 3

- Silver: 2
- Bronze: 2
- Total: 7

User
How many medals did Norway get in the 2022 Beijing Winter Olympics? Only provide the number of each medals.

Model
Norway got:
- Gold: 16

- Silver: 8

- Bronze: 13
- Total: 37
User

Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct number of each medals.

Model
Yes




A.2 Example Conversation for Team QA task

System
Answer in short, single word or sentence.

User

Which country ranked 3rd in the 1960 Rome Summer Olympics? Only provide the name of the country.
Model

Italy

User

Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct name of the country.
Model

Yes

User

Which country ranked 6th in the 1960 Squaw Valley Winter Olympics? Only provide the name of the country.
Model
United Team of Germany

User

Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct name of the country.
Model

No. The correct answer is:

Finland

User

Which country ranked Ist in the 2022 Beijing Winter Olympics? Only provide the name of the country.
Model
Norway

User

Really? Start the answer with "Yes" or "No". If you answer with "No", then provide the correct name of the country.
Model

Yes

B Detailed Experimental Results

Models Goldpiriat  Goldginar | Silverpmitiar  Silverfina | Bronzepiiar  Bronzepina | Totalpisiar  Totalpina | Teampisia  Teampina | Performance Gap
gpt-40-2024-08-06 88.93 -1.01 83.72 -0.67 80.87 -1.68 80.54 -1.85 39.80 -1.97 -49.13
gpt-40-2024-05-13 88.59 -5.20 84.73 -4.70 81.38 -8.73 79.70 -11.24 38.16 -3.95 -50.43

gpt-4-turbo-2024-04-09 92.28 -3.52 90.44 -8.23 87.92 -17.45 86.74 -19.46 3322 -8.22 -59.06
gpt-40-mini-2024-07-18 41.11 -4.70 37.08 -3.19 31.88 -2.85 26.85 -4.70 23.36 -4.61 -17.75
gpt-3.5-turbo-0125 71.14 -4.86 67.79 -4.03 67.95 -7.55 64.77 -10.58 23.68 -3.29 -47.46
claude-3-5-sonnet-20240620 89.60 -2.02 87.08 -1.85 85.57 -6.04 85.91 -4.70 34.54 -2.30 -55.06
claude-3-haiku-20240307 36.07 -1.67 31.21 -6.38 25.00 <172 20.3 -8.56 14.14 -1.97 -21.93
gemini-1.5-pro-001 88.93 -6.55 86.74 -9.73 85.07 -15.44 84.23 -20.30 15.79 +2.63 -73.14
gemini-1.5-flash-001 65.77 -6.21 62.75 -16.27 59.73 -19.13 52.18 -22.31 21.38 +1.98 -44.39
gemma-2-9b-it 41.11 -2.18 34.06 -1.34 33.72 -3.35 21.48 -1.85 22.04 -6.91 -19.07
Meta-Llama-3.1-8B-Instruct 63.26 -3.53 52.52 -2.86 42.79 -4.70 36.07 -7.21 15.13 -2.96 -48.13
Qwen2-7B-Instruct 14.93 -1.00 14.60 -1.01 9.73 -1.68 4.70 +0.84 13.49 +1.64 -1.44

Table 1: Experimental result demonstrating the performance of models on medal QA task and team QA task. The
column denoted with Initial shows the accuracy of the initial model response before the doubtful feedback of the
user, and the column denoted with Final shows the change of the accuracy after the doubtful feedback of the user
(“Really?”). The “Performance Gap” column denotes the distinction between Goldy,;si,; and Teamy,;ziq;-



C Detailed Doubt Matrix Results

Doubt Matrix for gpt-3.5-turbo-0125
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Doubt Matrix for claude-3.5-sonnet-20240620
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Doubt Matrix for gpt-4-turbo-2024-04-09
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