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ABSTRACT

Biological profiling technologies, such as imaging mass cytometry (IMC) and spa-
tial transcriptomics (ST), generate multi-channel data with strong spatial align-
ment and complex inter-channel relationships. Modeling such data requires gen-
erative frameworks that can jointly model spatial structure and channel relation-
ships, while also generalizing across arbitrary combinations of observed and miss-
ing channels for practical applications. Existing generative models typically as-
sume low-dimensional inputs (e.g., RGB images) and rely on simple conditioning
mechanisms that break spatial correspondence and overlook inter-channel depen-
dencies. This work proposes a unified multi-channel diffusion (MCD) frame-
work for controllable generation of structured biological data with intricate inter-
channel relationships. Our model introduces two key innovations: (1) a hierar-
chical feature injection mechanism that enables multi-resolution conditioning on
spatially aligned observed channels, and (2) two complementary channel atten-
tion modules to capture inter-channel relationships and recalibrate latent features.
To support flexible conditioning and generalization to arbitrary sets of observed
channels, we train the model using a random channel masking strategy, enabling
it to reconstruct missing channels from any combination of observed channels as
the spatial condition. We demonstrate state-of-the-art performance across both
spatial and non-spatial biological data generation tasks, including imputation in
spatial proteomics and clinical imaging, as well as gene-to-protein prediction in
single-cell datasets, and show strong generalizability to unseen conditional con-
figurations.

1 INTRODUCTION

Recent advances in generative models enable structured generation, prediction, and imputation
across various data domains (Rombach et al.| 2022; |Zhang et al., 2023). Specifically, diffusion
models have shown a remarkable capacity for generating high-fidelity samples in natural images
and language generation tasks. In biology, on the other hand, data acquisition is often constrained
by experimental and clinical limitations. Profiling technologies such as imaging mass cytometry
(IMC) (Chang et al., 2017)) and sequencing platforms like Xenium (Janesick et al., 2023)) are ex-
pensive, time-consuming, and restricted by physical limitations that only allow measuring a limited
number of signals of interest, e.g., around 50 for IMC and 1000 for Xenium. Similarly, in clinical
imaging, specific signals may be missing in practice due to patient motion, scan-time constraints, or
acquisition artifacts. These constraints create a pressing need for generative models for biological
data generation and imputation.

A key characteristic of biological data is its multi-channel nature, which comprises a large number
of channels. For instance, in spatial profiling data, each channel designates a specific molecule of
interest (e.g., proteins n > 30 and genes n > 100), and each pixel (or cell) represents a spatially
co-registered vector of biologically distinct signals. Unlike natural images with fixed and highly
correlated RGB channels, biological channels often have complex and variable inter-channel corre-
lations. A generative framework that can handle high-dimensional biological data, maintain spatial
alignment, accommodate missing channels, and model diverse inter-channel relationships extends
the effective scope of existing technologies and recovers missing information in clinical applications.
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Figure 1: Visual comparison of samples generated by our model with samples generated by
ControlNet-style counterpart. Without the channel attention modules and attention injection mech-
anisms, ControlNet-style generative models can handle simple channels with unitary inter-channel
correlation, such as DNA1 (the right-most column), but easily fail in those with more complex
protein-protein interactions, like tumor markers Ki-67 and aSMA (columns 3-6).

In biological data generation, the conditional inputs are typically observed signals from the same
sample, which are spatially aligned with the target of generation. Such spatial alignment should
be preserved throughout the generation process. Naive conditioning mechanisms, such as global
embeddings and flattened concatenation, break spatial correspondence, making them incompatible
with biological data generation tasks. On the other hand, the number of channels is large and their
interactions are highly context-dependent. Some channels co-localize only within specific spatial
niches or cell types; others may be mutually exclusive. Therefore, modeling such sparse, nonlinear,
and asymmetric dependencies requires a generative framework that maintains spatial alignment and
adapts to diverse and context-dependent channel semantics in biological data.

In this work, we introduce the multi-channel diffusion (MCD) framework for controllable multi-
channel data generation. We demonstrate its performance and generalizability in tasks of gener-
ating biological profiling data with subsets of observable channels. Our method handles arbitrary
combinations of observed and missing channels, maintains spatial alignment, and captures com-
plex inter-channel dependencies. To achieve this, we propose three key components: (i) amortized
conditioning with random channel masking, (ii) adaptive condition injection, and (iii) two comple-
mentary channel attention modules. We formalize an amortized conditioning loss and implement it
via random channel masking, enabling a single model to generalize across arbitrary conditional con-
figurations of observed and missing channel combinations. Rather than pure element-wise addition,
we introduce a lightweight attention-based injection that reweights latent features, allowing the net-
work to dynamically gate spatial conditions. We also combine soft Squeeze-and-Excitation attention
for per-sample global feature recalibration (used in condition injection) together with a transformer-
style channel attention module inside UNet blocks to model cross-channel dependencies. Ablation
studies confirm that each improves data generation quality. Together, these components enable our
model to generate high-fidelity multi-channel biological data across various condition-target com-
binations within a unified diffusion framework. Our model achieves state-of-the-art results in both
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spatial and non-spatial biological data generation tasks and supports test-time controllability over an
arbitrary conditional configuration.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models are a class of generative models that approximate the data distribution by mod-
eling the gradient of its log-density (Song & Ermon, 2020). This is achieved by coupling a
forward process that progressively perturbs the data with a reverse process that learns to re-
cover the original. The forward process transforms data x( into a noise distribution xr over T’
timesteps by injecting noise from a known distribution like a Gaussian (Sohl-Dickstein et al.,|2015),
q(x¢ | x0) = N(x¢ | \/arxo, (1 — oy)I), where ay is a noise schedule parameterizing the vari-
ance at each timestep ¢. As ¢ approaches T, the data distribution converges to a simple prior, such
as a standard Gaussian. The reverse process reconstructs data from noise by learning to reverse
the corruption introduced during the forward process. This is achieved through a neural network
€g (¢, t), trained to predict the noise € added at each timestep (Ho et al.,|2020). The denoising pro-
cess is guided by the objective Ex, ¢ [[l€ — €g(x¢,t)[|?], where € ~ N(0,1) is the Gaussian noise
injected by the forward process. By minimizing this objective, the model learns to reconstruct xg
from the noisy x; at any timestep ¢. This denoising approach is deeply connected to score matching.
Specifically, the noise prediction ey(x¢,t) can be used to compute the gradient of the log-density

€g(xy¢,t
-~
estimating the score function Vy, log ¢(x;), which guides the reverse process. This insight bridges
denoising and score matching, making the reverse process a refinement procedure that progressively
moves noisy samples back to the data manifold (Song & Ermon), 2020)).

(score function) as Vy, log g(x:) . Thus, accurately predicting the noise is equivalent to

2.2  STRUCTURED MULTI-CHANNEL IMPUTATION

Image imputation is a classical problem in computer vision and generative modeling, where the
objective is to recover missing or corrupted parts of an image given the observed context. Formally,
given an observation ¢, classical imputation methods aim to estimate the full image x by modeling
the conditional distribution p(x | ¢). This problem has been extensively studied in the context of
natural images, where z,v € R3*#*W "and inpainting primarily relies on spatial continuity within
the image domain (Chan & Shen, 2001).

We generalize this problem to the setting of structured multi-channel data, where each channel
corresponds to a semantically distinct signal—such as a spectral band, a protein marker, or a gene
expression. Let ¢ € RE*HXW denote the observed data, and let x € RE*H*W denote the full
data, where C = C, + C,, > 1, C, > 1, and C,,, > 0 denote the number of total, observed,
and missing channels respectively. Note that when C,,, = 0 and C, = C = 3, this formulation
reduces to the classical RGB image imputation problem (C' = 1 for the grayscale case). When
C,, = 3 and C, = 1, it reduces to the classical RGB image colorization problem. This general
formulation applies across a broad range of problems at different resolutions. When H = W =1,
the input reduces to a high-dimensional vector, making this formulation applicable to non-spatial
data imputation, such as single-cell data, where one can predict single-cell protein expression from
single-cell RNA sequencing (scRNA) data. When H,W > 1, the formulation supports spatially
structured imaging tasks, such as IMC channel prediction, where both local morphology and global
tissue organization contribute to the reconstruction target.

3 METHODS

We propose a diffusion-based generative framework, MCD, for multi-channel biological data that
conditions on arbitrary subsets of observable channels. Let x € RE*H*W denote the full-channel
data and ¢ € RE>*H*W an observed subset, where x and ¢ are spatially aligned. The goal is to
learn the conditional distribution p(x|c) in a way that respects the spatial structure of the data while
remaining flexible to any condition c. This requires resolving several intertwined challenges: 1)
the generated targets should be spatially aligned with the observations; 2) the conditions must be
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Figure 2: Overview of the proposed diffusion model for multi-channel data generation. (a) Cus-
tom channel attention: UNet block with channel attention module that models the inter-channel
relationships. (b) Hierarchical feature injection: a parallel conditional network encodes the spatial
condition, producing features at different resolutions that are injected into the corresponding UNet
block in the diffusion network.

modeled as structured, multi-resolution information; 3) correlations among biological channels are
complex; and 4) the model must generalize across arbitrary condition—target combinations at test
time. To address these challenges, MCD employs a dual-network architecture consisting of a diffu-
sion network that denoises the noisy target x; and a contextual network that encodes the observed
channels c (Figure ). At each resolution level 4, the diffusion encoder produces features Dy ()
while the contextual encoder provides aligned features Ey(c). These contextual representations are
hierarchically injected into the diffusion network at corresponding resolution ¢ to ensure alignment
and effective spatial conditioning. Channel attention modules capture inter-channel dependencies,
and random channel masking training ensures generalizability across channels.

3.1 SPATIALLY ALIGNED FEATURE INJECTION FOR STRUCTURED CONDITIONING

Generating realistic multi-channel biological data requires preserving spatial correspondence with
the observed channels and incorporating the conditioning signal that guides both local details and
global structure. To achieve this, we introduce a hierarchical feature injection mechanism. At each
resolution level ¢, contextual features Ey(c) are spatially aligned with and injected into the diffusion
features Dy(x¢) through

Zy = Dz(Xt) + SE(E[(C)) (D)

allowing for the flexible injection of spatial conditions (“Attention Injection” block in Figure |2p).
The SE(+) is the Squeeze-and-Excitation block that serves as soft channel attention (see section 3.3
for detail) and selectively injects the condition while the spatial alignment is preserved. This de-
sign allows the model to condition not just on a fixed global representation of ¢ but on a series of
contextual features { E¢(c)}£_, that vary across resolution. This setup reflects the intuition that cer-
tain patterns in x, e.g., global motifs versus local structures, may depend on different aspects of c.
Early encoder layers focus more on the local structures, while late layers draw high-level, global
structures.
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3.2 TRAINING WITH RANDOM CHANNEL MASKING

Different experiments may measure different sets of signals. Rather than training separate models
to predict individual channels, our goal is to produce full multi-channel outputs (i.e., the complete
protein panel). Constructing our model to condition on any subset enables us to train it across
multiple datasets and flexibly apply it to each. To create a unified model, we propose a random
channel masking strategy during training (Algorithm [I)). In each iteration, we randomly sample a
subset of channels S, C {1,...,C} as observed, and mask out the remaining S,,, = {1, ..., C}\S..
The masked subset x g, is zeroed out in spatial condition ¢, and the model reconstructs the full panel
x € REXHXW “We optimize the standard EDM objective (Karras et al.,[2022) on the full-channel
target x, and the binary mask is only applied to the conditions.

Algorithm 1 Random Channel Masking

Require: Full data x € RE*H*W '‘masking prob. p
1: for each training iteration do
2: Sample observed set S, C {1,...,C},
where I;cs, ~ Bern(p)

3: Construct conditon ¢ such that
o = X0 ifi € S,
! 0, otherwise
4: Diffusion step with target x and condition ¢
5: end for

Randomly varying S, during training encourages the model to learn conditional generation under
diverse partial contexts. As a result, the trained model can generalize to arbitrary combinations
of observed and missing channels at the test time, including unseen configurations. At the same
time, because the model always predicts all channels, it avoids the need for channel-specific heads
or separate training for each channel, enabling comprehensive downstream analysis and one-stop
training.

This training procedure implicitly defines an amortized conditional learning objective:
ECNP(C)]Et7X07€ [”6 - 69(Xtatac)”2] (2)

where p(c), ¢ € C is the distribution of conditional configuration (i.e., combinations of observable
channels) over the conditional space C. Therefore, one can treat the random masking training as an
amortized inference over the condition space. Minimizing eq. (2) encourages the model to learn a
single amortized estimator €y (X, t, ¢) such that eg(x¢, t, ¢) & Vy, log p(x¢|c) for arbitray conditon
c. This strategy relies on the assumption that partially observed structured data can provide informa-
tive gradients in amortized training. Although not formally addressed, previous work has shown its
effectiveness in various domains (Gershman & Goodman, 2014; [Marino et al., [2018)). We provide
theoretical justification in Appendix

3.3 CHANNEL ATTENTION FOR STRUCTURED FEATURE MODULATION

With random channel masking, our model aims to handle arbitrary conditional configurations, where
the observed channels may vary across samples and tasks. Since all conditions ¢ are encoded with
the same conditional network, the model needs to select and reweight latent features adaptively
depending on the conditions. To enable the model to dynamically recalibrate features in the latent
space, we introduce two channel attention modules (“Attention Injection” and “Channel Attention”
blocks in Figure 2h) with distinct designs, each focusing on specific modeling goals.

The first (“Attention Injection” block in Figure [2p) is a lightweight attention mechanism inspired
by the Squeeze-and-Excitation (SE) network (Hu et al., 2018). Given a latent feature map z €

RPXHXW "\we compute
a = GAP(z)
W =0 (W2 . ¢(W1 a)) (3)
7 =w-z
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where ¢ is a non-linear activation function (e.g., ReLU), GAP stands for global average pooling, and
o is the sigmoid function. This approach scales each latent channel by a learned weight conditioned
on the global context and enables a per-sample feature reweighting that aligns with the dynamic
feature selection requirement for multi-scale conditional feature injection (Section [3.1).

On the other hand, we also perform a full channel self-attention over all latent channels (‘“Channel
Attention” blocks in Figure [Zh)

Xp € RPN N =H x W,

4
Q =xp.Wq, K =xpuWgk, V =xpuWv
T
A = softmax (%2) . X = AV )

Compared to SE channel attention, this design is more expressive and can capture higher-order
dependencies among latent channels. This feature makes the transformer-based channel attention
particularly useful within the UNet blocks, where the model infers the missing information across
latent features.

MCD has an additional soft channel attention block, in the same way as Equation (3), at the final
stage of the model, which maps the latent channels to data channels. Let the final latent representa-
tion before projection be z € RP*H*W \where D is the number of latent channels. The standard
diffusion model produces y € RC*7*W with a single output layer on z. To model cross-channel
dependencies, we add an additional layer that computes

Vawm =y + Convl(SE(y)) (6)

Together, these two attention modules allow the model to modulate features both within the latent
space and across semantic output channels, improving performance on tasks involving complex,
structured channel relationships.

4 RELATED WORK

Image inpainting with conditional diffusion models. Recent work has applied diffusion-based
generative models to image inpainting and completion tasks (Song & Ermon, 2020j Saharia et al.,
2022)). These models primarily work on natural and grayscale images, where the number of channels
is limited (n < 3), and the goal is to reconstruct spatially masked regions based on the surrounding
context. These models often take conditionals like class labels (Dhariwal & Nicholl [2021)), text
embeddings (Ramesh et al.| |2022;|Nichol et al.,[2022), or segmentation maps (Rombach et al.,[2022)).
These conditionals are typically injected via concatenation at the input or embedding injection via
FiLM modulation. This approach ignores the implicit spatial alignment between the conditionals and
the generative target. More recent approaches like ControlNet (Zhang et al., 2023) and BrushNet
(Ju et al.L|2024) introduce multiscale conditioning mechanisms that are spatially aligned and applied
post hoc to pre-trained Stable Diffusion models. While these methods preserve spatial alignment,
they assume low-dimensional inputs and do not address the challenges posed by high-dimensional
structured data with intricate inter-channel dependencies. Moreover, because their conditioning
modules are trained separately from the core generative model, they lack end-to-end coordination
between condition encoding and generation.

Dynamic guidance for conditional diffusion. Classifier-free guidance (CFG) (Ho & Salimans,
2021) introduces a flexible training scheme for conditional diffusion models by randomly dropping
conditioning inputs and jointly training the model on both conditional and unconditional objectives.
While originally developed for low-dimensional conditioning signals such as class labels, the core
idea can be generalized: using input masking during training to enable flexible guidance at test
time. We adopt this principle in the form of random-masking guidance, where the spatial conditions
are randomly masked during training. Specifically, the model observes a random subset of input
channels and is trained to reconstruct the full panel. This dynamic masking encourages the model
to generalize across different conditionals, making it suitable for tasks where the available condition
varies across samples. This approach enables multi-channel prediction and supports generation
under arbitrary conditioning subsets without retraining or architectural changes.
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Table 1: Benchmarking our multimodal diffusion approach against existing modality prediction
methods on the gene-to-protein prediction task on four (PBMC, CBMC, BMNC, and HSPCs)
datasets. r. shows the cell-wise correlation with the ground truth, and 7, shows the protein-level
correlation.

Method PBMC CBMC BMNC HSPC
Te Tp Te Tp Te Te Tp Te

KRR (Guanlab-dengkw) 0.908 0.646 0.863 0.006 0.870 0.094 0.820 0.059
MultiVI 0.088 0.069 0.103 0.032 0.082 0.054 0.045 0.035
GLUE 0.659 -0.004 0.623 0.054 0.589 0.012 0.549 0.024
UnitedNet 0.870 0.518 0.377 0.628 0.625 0.634 0.310 0.436
scMM 0.793 0.521 0.736 0.517 0.853 0.625 0.724 0.598
Ours (500 steps) 0.880 0.673 0.962 0.763 0.879 0.685 0.865 0.647

Ours + SiD (1 step) 0.874 0.672 0962 0.759 0.875 0.682 0.865 0.642

Channel attention mechanisms. While channel-wise attention has been explored in vision ar-
chitectures like SENet (Hu et al.l [2018)), most diffusion-based models focus on spatial attention
and overlook channel-wise relationships. However, this becomes a significant limitation in multi-
channel biological data. A few recent works in diffusion-based colorization have begun to explore
this direction: FCNet (Zhang et al., [2024) introduces spatially decoupled color representations tai-
lored to facial regions, and ColorPeel (Butt et al., 2024])) learns disentangled geometric shapes and
color embeddings in latent space. These models can be thought of as coarse region-level attention
over RGB channels and are not designed for tasks involving dozens or hundreds of semantically
distinct channels.

5 EXPERIMENTS

5.1 SINGLE-CELL MODALITY PREDICTION

We begin with the standard CITE-seq benchmark of predicting protein expression from paired
scRNA-seq. Across four datasets: peripheral blood mononuclear cells (PBMC, |Hao et al.| (2021)),
cord blood mononuclear cells (CBMC, |Stoeckius et al.| (2017)), bone marrow mononuclear cells
(BMMC, |Lance et al.| (2022)), and hematopoietic stem and progenitor cells (HSPC, [Nestorowa
et al. (2016))), our model consistently outperforms the existing single-cell modality translation meth-
ods (Table [T). Importantly, our framework achieves the highest protein-level correlation (1), the
most biologically relevant metric, in every dataset. This reflects the model’s ability to capture
gene—protein relationships at scale. We compare to a suite of state-of-the-art methods: Kernel Ridge
Regression (Guanlab-dengkw) (Lance et al. 2022)), MultiVI (Ashuach et all 2023)), GLUE (Cao
& Gao, 2022), scMM (Minoura et al.l 2021), and UnitedNet (Tang et al., [2024). Performance is
reported as average Pearson correlation between predicted and measured expression levels across
proteins (r},) and cells (r.). To assess practicality, we also distilled our diffusion model into a one-
step SiD variant, which retains comparable accuracy while reducing inference cost by two orders of
magnitude. This suggests that the amortized training strategy not only yields high accuracy but also
enables the deployment of models ready for large-scale studies.

5.2  SPATIAL DATASET IMPUTATION

5.2.1 SINGLE CHANNEL IMPUTATION.

To evaluate the model’s performance in spatial contexts, we apply it to high-dimensional spatial
proteomics images from imaging mass cytometry (IMC), where each pixel corresponds to spatially
co-registered multi-protein expression signals. We evaluate our method on two IMC datasets: a lung
cancer cohort (Yoffe et al.l [2025) (8 patients) and a breast cancer cohort (Jackson et al.l 2020) (6
patients), with 43 and 50 co-registered protein channels, respectively. Images are normalized per
channel and tiled into to 64 x 64 patches, which is further decreased to 16 x 16 by a pretrained
encoder. For each protein, we compare our method to two data-specific baselines: the protein with
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Table 2: Comparison of predictive correlation across different methods in spatial prediction tasks.
Our method outperforms the diffusion, single-protein, and linear baselines, and diffusion based
ControlNet (Zhang et al.| [2023)), domain-specific models Stem and Virtues.

Method Breast Lung
Most correlated protein 0.481 0.506
Kernel ridge regression 0.489  0.527
Virtues (Wenckstern et al., 2025) 0.398  0.425
Stem (Zhu et al.,[2025) 0.403 0475
ControlNet (Zhang et al.,|[2023) 0.452 0.537
Ours (single channel ) 0.667 0.703
Ours (multi channel) 0.596  0.647
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Figure 3: (a) Benchmarking generative performance (Pearson’s r) against the most similar protein
on the lung cancer dataset. (b) Cross-dataset generalization study results. Using the union of all
protein channels, even those missing from the test dataset, consistently outperforms using only the
overlapping set of protein channels.

the highest spatial correlation and kernel ridge regression, as well as structured conditional diffu-
sion models, ControlNet (Zhang et al., 2023). We also include domain-specific methods, STEM
(Zhu et al., 2025) and Virtues (Wenckstern et al., 2025). For each image, in the single-channel pre-
diction setup, we mask one protein channel at a time as the target and use the rest as the spatial
condition. On the other hand, in the multi-channel prediction setup, the observed channels are ran-
domly selected by independent Bern(0.9) random variables, and the remaining channels are set to
zero; the model then reconstructs the full-channel data. Table E] shows our method outperforms all
existing approaches on both IMC datasets. All baseline models fail to outperform the best linear
predictor, and most fail to outperform the most correlated individual observed protein. By contrast,
our method consistently outperforms the baselines across each protein channel. Fixing the miss-
ing channel during training improves performance in the single-channel prediction mode. However,
the multi-channel prediction model that learns all channels jointly still achieves better performance
than any baseline. These results validate the effectiveness of random-masking guidance and sup-
port practical use cases where multi-channel prediction is required. Visualization of the generated
IMC samples (Figure [6), ablation studies (Appendix [B.2), and quantifications of uncertainty and
correlations between generated channels (Appendix [B.3) are provided in the appendix.

5.2.2 MULTI-DATASET GENERALIZATION.

We further test our model’s ability to learn from multiple datasets with partially overlapped protein
channels. Specifically, we combine the lung and breast cancer IMC datasets. The two datasets share
23 proteins in common, with 18 proteins unique to the lung and 21 proteins unique to the breast.
We evaluate our model under two training schemes: (1) an intersection setting, where we keep only
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the proteins observed in both datasets, and (2) a union setting, where we include the union of all
protein channels and zero-pad missing channels in each dataset. Both setups share the same model
architecture and training strategy with random masking, and predict the intersection set at test time.

As shown in Figure[3p, the union setup consistently outperforms the intersection counterpart, achiev-
ing a higher average Pearson correlation in sample generation. Although increasing the sparsity of
supervision, the union setup has broader coverage. It enables the model to learn a richer set of inter-
channel dependencies and improves its robustness to missing data. The model effectively leverages
partially observed data and maintains performance by training on the union of proteins with zero-
padded missing channels. Structurally aligned but partially missing data can still carry informative
gradients for joint learning under random channel masking, highlighting random channel masking
as a principled method for multi-dataset integration with empirical advantages.

5.3 MRI MODALITY SYNTHESIS

To test the generalizability of our framework, we evaluate on the BraTS benchmark (de Verdier
et al.| [2024) for missing—modality magnetic resonance imaging (MRI) synthesis, where the goal is
to reconstruct unacquired MR sequences given observed modalities. This task is clinically relevant
in brain tumor imaging, as missing scans are common in practice due to acquisition time constraints
and patient-specific factors. We follow the BraTS setup, using tissue structural similarity (SSIM)
for image fidelity and Dice coefficient (DICE) for downstream segmentation quality as evaluation
metrics.

Table [3| summarizes results across SOTA baselines including Pix2pix (Isola et al., 2017), HF-GAN
(Cho et al., |2024), and SwinUNETR (Pang et al., 2025)), where the latter two are the winner and
runner-up of the BraTS challenge 2024. Our method achieves the highest scores across both SSIM
and DICE, improving both the structural similarity and clinical utility. Gains in DICE demonstrate
that our approach not only reconstructs visually faithful images but also preserves tumor structures
critical for segmentation. Compared with HF-GAN and SwinUNETR, which represent state-of-the-
art GAN- and transformer-based baselines, our model shows consistent improvements in SSIM and
DICE. Visualization of the generated MRI samples is provided in the appendix (Figure[7).

Table 3: Comparison of segmentation accuracy and structural similarity across different synthesis
methods with DICE and SSIM scores across tumor, tissue, and global regions.

Method DICE T SSIN[lumor T SSIMhealth T SSIMlissue T SSIMglobal T

pix2pix 0.549 0.719 0.570 0.583 0.807
HF-GAN 0.714 0.761 0.604 0.615 0.919
SwinUNETR  0.709 0.759 0.628 0.637 0.916
DiffuseMRI 0.738 0.774 0.631 0.643 0.928

6 CONCLUSION

We introduced MCD as a diffusion-based generative model for the controllable generation of multi-
channel biological data, which is generalizable to arbitrary combinations of observed and missing
channels. MCD offers an in silico extension to the pre-designed profiling panel, and recovers cor-
rupted or incomplete acquisitions. The ability of our model to learn rich priors over distinct tissue
types and microenvironments suggests that it may provide a strong basis for a foundation model in
spatial biology. This work primarily focuses on methodological development and demonstrates the
usefulness of the proposed framework in biological image generation tasks. Our channel dropout
and simulation-based analyses highlight the effectiveness of MCD, and our experiments on MRI
modality synthesis demonstrate that the method can provide tangible benefits in real-world applica-
tions, such as recovering missing clinical signals to support downstream analyses. In future work,
we plan to build stronger connections to actionable biological insights by scaling the model across
larger and more diverse spatial datasets and developing analyses that link generative behavior to
hypothesis-driven discovery.
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REPRODUCIBILITY STATEMENT

The complete theoretical justification and assumption needed are provided in Appendix [A] All code
and configuration files required to reproduce the experiments will be released on GitHub upon pub-
lication.
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A THEORETICAL JUSTIFICATION OF RANDOM MASKING

We provide a theoretical justification for our random masking training strategy. In appendix [A.1]
we show that the batch-wise empirical amortized loss upper bounds the true amortized loss. In
appendix [A.2] we demonstrate that the model’s performance in an arbitrary condition configuration
is controlled, with high probability, under the empirical assumption of variance. We define the

amortized loss
L= EcEt,xo,e [6(67 €g (Ita t7 C))]

(7
= EcEt,J;o,e U |6 - 69('rt7 ta C)||2]
and the empirical loss
N
A 1
Ly = NZ;EW,G [lle = eo(ae,t, )] ®)

under the bounded loss assumption.
Assumption 1. (Bounded loss) The loss B, 5, (€, €g(x,t,¢;)) : D x D — [0,d] asymptotically
for trained €9 by minimizing L.

Since € ~ N(0,I) has an expected squared norm proportional to its dimension, the per-sample
squared loss is bounded in expectation. Specifically, for normalized input and standard Gaussian
noise, the loss is upper bounded by the variance of ¢, i.e., E[||¢||?] = D := CHW, and significantly
lower as the model converges. Therefore, for the following justifications, we assume the loss lies
within a fixed scale d < D asymptotically, and we will provide empirical evidence in appendix

A.1 EMPIRICAL BOUND OF THE AMORTIZED LOSS

Theorem 1. [Bartlett and Mendelson 02] Consider a loss function L : Y x A — [0,1] and a
dominating cost function ¢ :' Y x A+ [0,1]. Let F be a class of functions mapping from X to
A and let (X;,Y;)?_, be independently selected according to the probability measure P. Then, for
any integer n and any 0 < § < 1, with probability at least 1 — § over samples of length n, every f
in F satisfies

81n(2/9)

where g o F = {(z,y) — ¢(y, f(x)) — ¢(y,0) : f € F}, and R,, is the Rademacher complexity.

E[L(Y, f(X))] < E, [6(Y, f(X))] + Ru(do F) + 9)

Theorem [I] follows McDiarmid’s inequality, and the detailed proof is provided by (Bartlett &
Mendelson, 2002).

Corollary 1. Under the bounded-loss assumption, with probability at least 1 —90, L is upper-bounded
by L up to an additive constant.

Proof. Define function class Fyp := {eg(xy,t,c)} for the traianable diffusion model. Let ¢ = £ =
Ei uo,elnom (€, fe) : D x D+ [0,1], where lyorm = éﬁ is the normalized squared loss and D is the
data space such that z, ¢ € D, and eq. (9) becomes

d & [8In(2/6
dECEt,CEQ,E [‘gnorm(fa fc(xh t))] < N ;Et,mo,e [Enorm(g fci (xta t))} + dRN(Enorm o FG) +d %

1 81n(2/6
BB e £ )] < 37 3 Bt (e Fs0.0)) + R (Gl © F) + ay/ S0

1 & n(2/6

BBy (e folan )] < 2 S By e fe (e t)] + Bn(Eo Fy) + ay | 2220
1=1
L(eg) < Ly (eq) + C(9)
(10)
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where C'(6) = Ry(£o F) +dy/ M. By Bartlett and Mendelson Bartlett & Mendelson| (2002),

RN (dFy) = dR,,(Fp) and Ry (Lo Fy) < LyR,,(Fp) where ¢ is Lipschitz continuous with constant
L. Under the bounded-loss assumption, reasonable loss functions, including the squared loss we

used, satisfy the Lipschitz condition on [0, d], and C'(§) < LyRn(Fp) + 1/ %, where Ry (Fy)
is determined by the model architecture and C(¢) is independent of f once the function class Fy
is fixed. Empirically, we can find d < 1 as shown in fig. {4} Therefore, the true amortized loss is
upper-bounded by the empirical loss up to an additive constant. O

Similarly, one can get the lower bound of the same fashion
Ln(eg) < Lleg) + C(0) (11)

and similar results can also be drawn from Collary 18 from the work by Cortes et al.|(2019). There-
fore, we show that minimizing our empirical loss also minimizes the true amortized loss.

A.2 CONDITION-SPECIFIC BOUND BY AMORTIZED LOSS

Lemma 1. Assuming relatively low variance, i.e. o < u, with high probability, the per-condition
loss is of the same magnitude as the amortized loss p, i.e. Ey g, ¢ [€(€, fe(xe,1))] = O(1)

Proof. Define the condition-specific loss

Lc = Et,a;o,e [€(€7fc(xt7t))] (12)
By the one-sided Chebyshev inequality,

o
P — > < —
r(Le — Ee[Le] > a) < g
52 (13)
Pr(L. < <7
e <pta) < 57
where 02 = Var([E; ¢ [((c, fo(z4,1))]]. Leta = 01/ 152, eq. ll gives
1-9
Pr{L.<pu+o 5 <4 (14)

and therefore, with probability 1—4, the condition-specific loss is bounded by p+o4/ %. Although

we do not control on the variance, o < p empirically (see appendix [B.I]for details of standard error
analysis) and therefore, the condition-specific loss is bounded by

1-9¢
Et7‘/1‘,076 [6(67 fC(‘rtv t))] S 12 +o T
<ut 1-46
=TS (15)
(14 1-96
< 5|~
= O(p)
therefore the per-condition loss is O(u) with high probability. ]

B ADDITIONAL EXPERIMENTS RESULTS

B.1 EMPIRICAL RESULTS AMORTIZATION LOSS AND ERROR ANALYSIS

To support the probabilistic generalization argument in appendices[A.T|and[A.2] we plot the trajec-
tory of the training amortized loss mean with its standard deviation over mini-batches throughout
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Figure 4: (left) The mean training loss of each batch is consistently above the standard deviation.
(right) The difference between the standard deviation and the mean confirms that the standard devi-
ation is consistently less than or equal to the mean.

Table 4: Ablation studies with 4 different architectural setups on the breast cancer dataset; test score
is the average over all proteins.

Method T
Best Protein Predictor 0.489
Single channel 0.667
Multi channel 0.596
w/o output channel attention 0.581
w/o UNet channel attention 0.541
Condition injection w/ element-wise addition  0.516
Condition injection w/ channel attention 0.535
Base (unconditional) -0.017

training. The goal is to empirically validate the bounded loss assumption (Assumption [I)) and the
assumption that the standard deviation of the loss remains small relative to the mean.

As shown in Figure ] the empirical standard deviation remains consistently lower than the mean
across all training batches. This indicates that the loss distribution across conditioning configurations
is stable and tightly concentrated, justifying our use of probability bounds on the condition-specific
loss based on amortized loss. This empirical observation confirms that the generalization bound
derived in appendix [A.2] holds in practice, with the per-condition loss reliably bounded within a
small multiple of the amortized training loss.

B.2 ABLATION STUDIES

We conduct ablation experiments to disentangle the contributions of each architectural component.
Using the lung cancer IMC dataset, we compare two feature injection mechanisms: elementwise
addition and soft channel-wise attention, as well as three attention configurations: (1) with channel-
wise attention only in the UNet blocks, (2) with channel-wise attention only in the output block, and
(3) the full model combining both mechanisms.

Table |4 summarizes the contributions of each architectural component. The unconditional baseline
performs poorly, with Pearson 7 < 0.1. Adding hierarchical feature injection significantly improves
performance, and conditional injection via soft channel attention further improves over conventional
element-wise addition. Output-space channel attention provides modest gains, whereas latent-space
channel attention achieves more substantial improvements, capturing complex inter-channel depen-
dencies in the latent feature space. These results support the integration of both spatially aligned
conditioning and channel-wise attention for multi-channel imputation.
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B.3 ADDITIONAL RESULTS AND VISUALIZATION OF SPATIAL PROTEOMICS AND MRI
GENERATION SAMPLES

We performed an empirical uncertainty analysis. For each of 500 test cases, we generated 5 in-
dependent samples and computed pixel-wise variance as a measure of predictive uncertainty. The
mean variance was 0.003, indicating highly consistent predictions. In addition, we computed local
Pearson correlation with a sliding 5x5 window to quantify spatial accuracy. Together, these form
a pixel-level accuracy—uncertainty map (Figure [3)), where normalized variance ranges from 0 to 1
and Pearson r from —1 to 1. The empirical distribution concentrates in the high-correlation, low-
variance region (top right), showing that most pixels are both accurate and confident. Within this
region, we observe the expected negative relationship: as local correlation decreases, variance sys-
tematically increases, providing a well-calibrated link between predictive accuracy and uncertainty.

0.040
0.035
0.030
0.025
0.020 yormsiized variance jovels
at each correlation level
0.015
0.010
0.005
0.000

Variance/Uncertainty level

Tiled pearson r

Figure 5: Visualizations of the relationship of generation accuracy and sample uncertainty.

To assess whether our model captures biologically meaningful relationships between protein chan-
nels, we evaluated the correlation between channels of the generated images. Specifically, we com-
puted the pairwise Pearson correlation matrix across channels on (1) the generated outputs and (2)
the ground truth images from the original data. We then compared these correlation matrices to
assess how well the joint channel distribution is preserved. The correlations of these two corre-
lation matrices are in 7 = 0.925 (M SE = 0.031) lung and » = 0.892 (M SE = 0.037) in the
breast dataset. We found that the correlation structure in the generated data closely mirrors that of
the ground truth, demonstrating that our model not only accurately imputes each channel but also
retains the inter-channel dependencies critical for downstream biological interpretation.

Figure [6] shows high-resolution generated samples of the nucleus marker (DNA1), tumor markers
(PanCK, Ki67, MMP9), immune markers (CD3, CD4, CD8a, CD45R0O, FOXP3, CD68), and stro-
mal markers (CD31, CD140b), confirming the generation quality and fidelity of our model.

Figure[7] shows the generated MRI samples for all 4 MRI signals (T1CE, TIN, FLAIR, and T2W),
suggesting our model generalizes well to other spatial biological data.

B.4 HYBRIDIZATION EXPERIMENT OF BENCHMARKING DIFFUSION-BASED ALGORITHMS

To better compare the performance of our model with the SOTA diffusion-based method, we test
both ControlNet and BrushNet as the baselines, with additional experiments with hybrid architec-
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Table 5: Comparison of predictive performance across ControlNet and BrushNet baselines, as well
as hybridized variants in which control modules are reused with our denoising backbone.

Method Breast Lung
ControlNet (Zhang et al.,[2023)  0.452  0.537
BrushNet (Ju et al.| 2024) 0.357 0.394
ControlNet hybrid 0.516  0.583
BrushNet hybrid 0486 0.541
Ours (single channel ) 0.667 0.703
Ours (multi channel) 0.596  0.647

tures, where we combine the conditional network in ControlNet (Zhang et al., [2023) and BrushNet
(Ju et al., [2024)) with our diffusion branch.

We evaluate each model on two IMC datasets (Breast and Lung), measuring the performance with
Pearson r correlation. ”ControlNet hybrid” refers to a model that reuses the ControlNet condition-
ing branch but replaces the main denoising network with our backbone, which includes the channel
attention mechanism we proposed. Similarly, ”BrushNet hybrid” would replace BrushNet’s denois-
ing path with ours, in which the model has spatial attention in the UNetBlocks. Both hybrid models
use element-wise addition for injection.

As shown in Table[5] ControlNet outperforms BrushNet. Notably, BrushNet’s UNetBlock does not
have either a channel or spatial attention module, whereas ControlNet incorporates spatial attention.
The extra spatial attention may help the performance of ControlNet, even though BrushNet claims
to have a better performance in natural image tasks. However, BrushNet’s performance is not ideal
even in the hybrid setup, which introduces spatial attention in the UNetBlocks, suggesting over-
conditioning. Our full model, trained jointly using random masking, outperforms both baselines
and hybrid models by a large margin.

C MODEL ARCHITECTURE AND EXPERIMENTS SETUP

C.1 MODEL ARCHITECTURE

We implement our model based on the EDM framework (Karras et al.,2022)), modified and adapted
for conditional generation under the multichannel setup. The diffusion branch has a 3-level UNet
with downsampling and upsampling paths. Each UNetBlock contains a spatial attention module
followed by a channel attention module. Time conditioning is implemented via sinusoidal positional
embeddings.

Spatial conditions are processed by the conditional network, which has an architecture identical to
the diffusion branch. Conditional features are injected into the diffusion network in middle blocks
and skip connections, following ControlNet, but with soft channel attention instead of element-
wise addition. We also implement the model such that it can inject the conditional features at each
resolution level, like BrushNet, but as shown in table 5} the performance is suboptimal. The output
layer contains a 3 X 3 convolutional network to map from the latent space to the protein space,
followed by the output channel attention layer.

C.2 DATA PROCESSING

The raw multichannel IMC data are processed using the Yeo-Johnson transformation to adjust the
signal strength and normalized to [0, 1] by the 1— and 99— percentiles of each channel. The process
IMC images are partitioned into 64 x 64 patches. Note that our model only works on data in the
original data space since we need the alignment between the same channel across multiple datasets
for the multi-dataset joint training. With a pre-trained MedVAE (Varma et al., 2025)) finetuned
on IMC single-channel images, which encode single-channel images to lower resolution, we can
compress the size of the IMC images by a factor of 4 for each channel independently. By doing so,
we get C' x 16 x 16 IMC data where each channel maintains its original protein semantics. The
training and test splits are grouped by different patients.
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The single-cell CITE-seq data are also processed with the Yeo-Johnson transformation to adjust the
signal strength and normalized to [0, 1] by the 1— and 99— percentiles of each channel.

C.3 LOSS AND TRAINING SETUP

The model is trained based on the noise-prediction objective. For each sample xy, we generate a
noisy version ¢(z|z¢) and learn to predict the corresponding noise ¢, given the spatial condition ¢
and timestep ¢. The training loss is:

Ecep(e)Eraoe [[l€ — €o(2e, t,0)[1%] (16)
where ¢ € C denotes a random subset of observed channels.

For single-channel generation tasks, one target channel is masked out, and the loss is evaluated
on the target channel only. For multichannel generation, the channels are sampled by independent
Bern(0.9), and the loss is evaluated on the generated full-channel data. The general training hyper-
parameters are:

* Optimizer: Adam with 5 = (0.9,0.999)
* Learning rate: 1 x 10~*

* Batch Size: 256

* Noise Schedule: EDM noise scheduling

D COMPUTATION RESOURCES
All experiments were trained on NVIDIA A5000 GPUs with 24G RAM. The model was trained

for 2000kimgs with a batch size of 256, taking approximately 2 hours to complete with 16 x 16
resolution. All results were obtained using a single-GPU setup unless otherwise specified.

All models were implemented in PyTorch based on the EDM framework (Karras et al., [2022) and
trained using standard FP32 precision without mixed-precision.

E DISCLOSURE AND STATEMENTS

E.1 LARGE LANGUAGE MODEL USAGE

LLMs were used to check grammar and spelling and polish wording.

E.2 ETHICS STATEMENT

All authors of submitted papers have read the Code of Ethics and adhere to it.
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Figure 6: Visualizations of high resolution generated spatial proteomics samples of tumor and im-
mune marker proteins of the tumor microenvironment.
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Figure 7: Visualizations of generated MRI samples for each of the MRI signals.
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