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Abstract
Improvements in large language models have001
led to increasing optimism that they can serve002
as reliable evaluators of natural language gen-003
eration outputs. In this paper, we challenge004
this optimism by thoroughly re-evaluating five005
state-of-the-art factuality metrics on a collec-006
tion of 11 datasets for summarization, retrieval-007
augmented generation, and question answer-008
ing. We find that these evaluators are incon-009
sistent with each other and often misestimate010
system-level performance, both of which can011
lead to a variety of pitfalls. We further show012
that these metrics exhibit biases against highly013
paraphrased outputs and outputs that draw upon014
faraway parts of the source documents. We015
urge users of these factuality metrics to pro-016
ceed with caution and manually validate the017
reliability of these metrics in their domain of018
interest before proceeding.019

1 Introduction020

Building automated evaluation metrics that match021

human judgment is difficult ongoing research (Lam-022

bert et al., 2024). Past work has highlighted023

the flaws of automated evaluators in several NLP024

research domains, particularly machine transla-025

tion (Mathur et al., 2020; Kocmi et al., 2021, inter026

alia). Nonetheless, automated evaluation metrics027

are perennially appealing because they allow NLG028

system designers to bypass slower and costlier hu-029

man evaluation. Most recently, LLM-based au-030

tomated metrics have led to optimism that NLG031

evaluation can be reliably automated (Kim et al.,032

2024; Vu et al., 2024, inter alia). In particular,033

there is a growing demand for automated attribu-034

tion evaluators, as LLMs are increasingly used for035

tasks in which factual reliability is crucial, such036

as summarization, retrieval-augmented generation,037

and open-ended chat (Gao et al., 2023; Chen et al.,038

2023a). However, it is unclear whether the existing039

attribution evaluators are reliable in the desired use040

cases.041

(a) Low example-level consistency

(b) TPR/TNR variation on datasets

TPR
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(c) Misleading conclusions
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Figure 1: Selecting an AutoAIS evaluator based solely
on balanced accuracy (BAcc) hides several underlying
inconsistencies. Consider gpt-4-turbo and Bespoke-7B
with comparable BAcc on LLM-AGGREFACT. The two
evaluators have (a) low instance-level labeling consis-
tency and (b) different true positive and true negative
error rate trade-offs. (c) This results in different system-
level evaluations when the evaluators are used down-
stream to evaluate the factuality of NLG systems. In
several cases, one evaluator underestimates the human-
labeled error rate while the other overestimates it.

In this work, we investigate automated met- 042

rics for the evaluation of “Attribution to Identi- 043

fied Sources” (AutoAIS; Rashkin et al., 2023), i.e., 044

judging whether a claim is fully supported by a 045

source document. We perform a comprehensive re- 046

evaluation of 5 state-of-the-art AutoAIS evalautors 047
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(2 proprietary and 3 open-source) on the LLM-048

AGGREFACT benchmark (Tang et al., 2024a), a049

collection of 11 datasets of claim-document pairs050

that are annotated for attributability.051

We find several reasons to be cautious when052

using AutoAIS evalautors. First, state-of-the-art053

AutoAIS evaluators with comparable leaderboard054

scores have large differences in predictions. SotA055

evalautors have low agreement on an instance level056

(§3.1); error analysis based on different evalautors057

may yield different conclusions. Evaluators can058

achieve comparable balanced accuracy by trading059

off true positive and true negative rates in different060

ways on different datasets (§3.2); evaluators cannot061

be relied on without verification on new datasets.062

Second, evaluators also often give poor estimates of063

system-level error rate: AutoAIS metrics on some064

datasets overestimate and on others underestimate065

how frequently unattributable claims are generated066

by a system (§3.3). This can lead to misestimation067

of the headroom for improvement on generation068

tasks (§3.4) and a poor ranking of systems (§3.5);069

new system design ideas (such as new LMs, new070

decoding algorithms, etc) may be incorrectly cast071

aside based on imperfect automated metrics.072

We identify 2 biases in the current SotA Au-073

toAIS metrics. In many domains, AutoAIS metrics074

struggle to detect unattributable claims with a high075

surface-level similarity with the document (§4.1).076

We also show that the performance of evaluators077

that chunk long reference documents is inherently078

limited because certain claims become unverifiable079

(§4.2). Both these properties—paraphrasing with-080

out directly copying and synthesizing information081

from different parts of a long input document—are082

desirable in an NLG system and may be penalized083

if not appropriately addressed by evaluators.084

In § 5, we attempt to reduce the bias/discrepancy085

between the labeled and predicted (estimated) sys-086

tem error rates. Threshold tuning to minimize the087

absolute bias on a calibration set is a consistent088

method for achieving low absolute bias. For Au-089

toAIS evaluators that do not have a tunable thresh-090

old, posthoc adjustment of the estimated error rate091

(González et al., 2017) can reduce the absolute092

estimation bias (with certain caveats).093

Finally, in §6, we discuss the impact of these094

findings on downstream users of the AutoAIS met-095

rics, such as dataset developers and researchers096

studying how to improve the factuality of NLG sys-097

tems. Since metrics do not yet transfer consistently098

to new datasets, we urge users of these metrics to099

first perform human validation of metric predic- 100

tions in new data domains and on new systems. 101

Finally, we urge developers of new AutoAIS met- 102

rics to report a breakdown of metric behavior on 103

the different error types across different bias axes 104

of the evaluation data and with an evaluation of 105

system-level error quantification. 106

2 Problem Setup 107

2.1 Notation 108

Given a claim c and a document d1, the role of the 109

AutoAIS evaluator A is to judge whether all the 110

information in c is fully supported by the document 111

d.2 Following Tang et al. (2024a), we threshold the 112

output of the evaluator at 0.5 and predict a label 0 113

(unattributable) or 1 (attributable). We will discuss 114

the impact of tuning the threshold for downstream 115

applications in § 5. 116

A(d, c) → {0, 1} 117

Certain AutoAIS evaluators may have input length 118

limits, in which case the document d is segmented 119

into chunks (of complete sentences) of a certain 120

length {d(1), d(2), .., d(K)}. Then the prediction: 121

A(d, c) = max
k∈[1,K]

A(d(k), c) → {0, 1} 122

Our analysis will focus on the validation set of 123

the LLM-AGGREFACT benchmark (Tang et al., 124

2024b); a collection of 11 datasets with human- 125

annotated attributability annotations. We further 126

split the examples from the RAGTruth dataset (Niu 127

et al., 2024) in the benchmark into the 4 original 128

subsets since they have qualitatively different in- 129

puts and task types. This results in a benchmark 130

with 14 datasets. 131

Except for Wice and FactCheck-GPT, 12 of the 132

14 datasets contain generations from multiple sys- 133

tems. We use this to analyze the system-level error 134

estimation and ranking of the different AutoAIS 135

evaluators. Appendix A.1 provides a detailed break- 136

down of the datasets in the benchmark. 137

The benchmark assumes that each sentence is 138

a standalone claim34. Except for AggreFact-CNN 139

1The document may be a composite of multiple evidence
passages e.g. LFQA (Chen et al., 2023b).

2This is part of the definition of AIS given by Rashkin et al.
(2023). Most AutoAIS systems assume decontextualization
as a separate preprocessing step.

3Tang et al. (2024b) showed that decontextualization and
decomposition showed little improvement in the performance
of the AutoAIS evaluators.

4AggreFact-CNN treats the entire summary (avg of 3.2
sentences) as the claim because the dataset lacks sentence-
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and AggreFact-XSum, 10 of the 12 datasets (with140

generations from multiple systems) originally con-141

tained multi-sentence responses that have been142

broken down into sentence-level examples in the143

benchmark. We evaluate the response-level per-144

formance of the AutoAIS evaluators by mapping145

individual claims back to the original complete re-146

sponse. We obtain a response-level factuality label147

by aggregating the claim-level labels. We adopt the148

strict definition of an attributable response (Tang149

et al., 2024c): a response is attributable if ALL150

claims in the response are attributable.151

2.2 AutoAIS Evaluators152

The LLM-AGGREFACT benchmark ranks metrics153

based on average balanced accuracy (BAcc) across154

all data sets. BAcc of an evaluator is defined as155

the average of its True Positive Rate (TPR) and156

True Negative Rate (TNR) on a dataset, i.e. it157

measures the average performance of detecting the158

attributable and unattributable examples.159

In this work, we study five evaluators160

from the LLM-AGGREFACT leaderboard. We161

choose 2 closed, API-based evaluators: gpt-162

4-turbo (OpenAI et al., 2024)(in particular,163

gpt-4-0125-preview) and gpt-3.5-turbo (in par-164

ticular, gpt-3.5-turbo-0125), and 3 open-weight165

models from the MiniCheck series (Tang et al.,166

2024b): Bespoke-Minicheck-7B (Bespoke-7B),167

MiniCheck-FlanT5-Large (MiniCheck-FT5) and168

MiniCheck-RoBERTa-Large (MiniCheck-Rbta).169

Bespoke-7B and gpt-4-turbo were the top evalu-170

ators on the leaderboard at the time of release. Sim-171

ilarly, MiniCheck-FT5, MiniCheck-Rbta, and gpt-172

3.5-turbo have very similar performances regarding173

average balanced accuracy across the datasets.174

Evaluators with input length constraints (e.g.175

MiniCheck-FT5, MiniCheck-Rbta, TRUE (Hon-176

ovich et al., 2022), inter alia.) need to chunk the177

input documents to fit their max context window.178

To isolate the effect of chunking, we evaluate the179

Bespoke-7B metric with chunked documents and180

compare the predictions against the original pre-181

dictions without document chunking. In particu-182

lar, we run the Bespoke-7B metric as if it had a183

context window of 500 document tokens (same as184

MiniCheck-FT5). We will refer to this setting as185

’Bespoke-7B (cs=500)’.186

level annotation.

3 Re-Evaluating Factuality Metrics 187

3.1 Metrics have low consistency 188

To study consistency between evaluation metrics, 189

we measure the intersection-over-union (IoU) of 190

the set of examples predicted as "unattributable" 191

by the evaluators. We find that for the two top- 192

performing evaluators with similar balanced accu- 193

racy, Bespoke-7B (Avg BAcc=77.4%) and gpt-4- 194

turbo (Avg BAcc=76.2%), the IoU is less than 50% 195

on 5 of the 14 datasets and less than 65% on 9 196

of 14 datasets. The consistency is worse on the 197

nine datasets where "unattributable" is the minority 198

class (less than 25% of the dataset). Refer to Ap- 199

pendix A.8 for the pairwise inconsistency of the 5 200

evaluation metrics studied. 201

This inconsistency has several implications. 202

When scoring NLG systems, different evaluators 203

may rank NLG systems differently and for differ- 204

ent subsets of system predictions. We discuss this 205

further in the next few sections. When conducting 206

error analysis for NLG system development, differ- 207

ent evaluators will highlight different "erroneous" 208

unattributable examples. Using a single evaluator 209

may highlight a biased subset of errors. We discuss 210

this further in § 6.2. 211

3.2 BAcc hides TPR/TNR trade-off 212

Using balanced accuracy to evaluate AutoAIS met- 213

rics hides the underlying trade-off between true- 214

positive and true-negative rates. From Figure 2, 215

we see that the true positive and true negative rates 216

for each evaluator vary widely across the datasets.5 217

The gap between TPR and TNR is greater than 20% 218

on 7 of 14 datasets for Bespoke-7B and gpt-4-turbo. 219

By trading off TPR for TNR differently, different 220

evaluators can achieve the same balanced accu- 221

racy. For example, on the FactCheck-GPT dataset, 222

Bespoke-7B achieves a BAcc of 77.7% with a dif- 223

ference between TNR and TPR of 26%. gpt-4- 224

turbo achieves a comparable BAcc of 80% but with 225

only an 11% gap between TNR and TPR. Similarly 226

and more surprisingly, Bespoke-7B and gpt-4-turbo 227

achieve the same BAcc on the ExpertQA dataset 228

but with inversed values of TPR and TNR. 229

The trade-off between TPR and TNR has dif- 230

ferent implications for downstream users of the 231

metric where the cost of type I and type II errors 232

differs. We recommend metric designers report a 233

5We report the false positive and false negative rates of the
larger set of evaluation metrics in Tables 4 and 5.
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Figure 2: TPR/TNR/BAcc of evaluators across datasets. Visualizing the breakdown of BAcc shows that AutoAIS
evaluators can have a large gap between TPR and TNR. Moreover, evaluators with the same BAcc can have different
TPR and TNR trade-offs. In the extreme case of ExpertQA, GPT-4-turbo has a TPR of 68% and TNR of 53%, while
Bespoke-7B has nearly the opposite performance.

breakdown of error rates for informed model se-234

lection.6 Similarly, for the metric developers, the235

breakdown highlights that TNR lags behind TPR236

by more than 10% on 9 of 14 datasets; improving237

the ability of metrics to detect unattributable claims238

is a challenge.239

3.3 AutoAIS metrics incorrectly estimate the240

system error rate241

Since the goal of AutoAIS evaluation metrics is242

to compare NLG systems, we study how accurate243

the automated metrics are in estimating the true244

(human-labeled) hallucination rate of the NLG sys-245

tems. For 12 datasets that contain generations from246

different systems, we group claims based on the247

system (S). For each system S, we report the bias248

(González et al., 2017) of the AutoAIS metrics,249

which is the difference between the labeled error250

rate (percentage of claims labeled as unattributable)251

and the predicted error rate (percentage of claims252

predicted as “unattributable” by the AutoAIS met-253

ric). Additionally, on 10 of the 14 datasets where254

the claims are part of a longer response, we com-255

pute a response-level bias as the difference between256

the response-level ground-truth error rate and the257

response-level predicted error rate.258

In Figure 3, we highlight the bias of the metric on259

TofuEval-MediaSum and TofuEval-MeetingBank.260

From the claim-level error rates, we see that261

some metrics under-estimate the error rates of262

all the systems (gpt-4-turbo, gpt-3.5-turbo, and263

Bespoke-7B) while others over-estimate the error264

rate (MiniCheck-FT5 and MiniCheck-Rbta). All265

6Tang et al. (2024c) provides a similar argument in favor
of reporting error breakdown.

Figure 3: Predicted system-level error rate on To-
fuEval. Imperfect evaluators lead to differences in the
ground truth and predicted error rate for different NLG
systems. Claim-level misclassification leads to even
greater quantification discrepancies in the summary-
level attribution error rate.

5 metrics have a balanced accuracy of 68-72% 266

on TofuEval-MediaS. Claim-level misclassification 267

and inconsistencies compound when we compute 268

response-level quantification error. On TofuEval- 269

MediaS, the response-level biases (-29.8% at worst 270

for gpt-4-turbo) are about twice the claim-level bi- 271

ases (-12.9% at worst for gpt-4-turbo). Similarly, 272

in Figure 6 (Appendix A.5), we see that the metrics 273

consistently overestimate the system error rates on 274

the RAGTruth dataset. Moreover, the magnitude 275
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of quantification error varies widely across 4 sub-276

sets of RAGTruth. We report the claim-level and277

response-level bias of the AutoAIS metric on the278

12 datasets in App A.4.279

Thus, the metrics sometimes overestimate and280

sometimes underestimate the error rate of the sys-281

tems on different datasets. This means that we282

can’t know beforehand if a metric will assign283

reliable system-level scores on a new dataset.284

3.4 Finding 4: Misleading conclusions about285

headroom286

Benchmarks are useful for development if there287

is room for improvement with future systems. If288

we want to replace human evaluation with auto-289

mated metrics on new benchmarks, then the metrics290

must provide a reliable estimate of this "headroom".291

From Figure 3 and Table 11, we see that gpt-4-292

turbo underestimates the headroom on TofuEval-293

MediaS by 12.3% while MiniCheck-Rbta overesti-294

mates the headroom by 11.2% despite both metrics295

having the same BAcc on the dataset. At the re-296

sponse level, this headroom estimation error grows297

in magnitude to -18.3% for gpt-4-turbo and +21.2%298

for MiniCheck-Rbta.299

Further, from Table 27, we see that the head-300

room estimation is worse on smaller systems (7B301

params) than on larger systems (gpt-3.5-turbo and302

gpt-4). For example, on RAGTruth-News, the gpt-303

4-turbo evaluator misestimates headroom on the304

small systems by +7.3% and on the large systems305

by +0.8%. Thus, evaluators may unfairly score gen-306

erations from smaller models leading to an inflated307

headroom. When creating a new benchmark,308

the evaluator must be validated to ensure that it309

correctly reflects the scope for improvement.310

3.5 Finding 5: Misleading system rankings311

The most important reason for using automated312

metrics is that they enable fast comparison of sys-313

tems. A reliable metric ranks systems in the same314

order as the ranking determined by human label-315

ing. Following Mathur et al. (2020), we iden-316

tify which pairs of systems have indistinguish-317

able/distinguishable error rates. We then compare318

whether the performance of the system pairs is cor-319

rectly ordered by the AutoAIS evaluator. On 8320

of 14 datasets with generations at least 6 systems,321

gpt-4-turbo orders 26% system pairs incorrectly on322

average while Bespoke-7B orders 20% of pairs 7 in-323

720% erroneous rankings correspond to 3 incorrect infer-
ences among

(
6
2

)
= 15 comparisons.

correctly on average. Refer to Appendix A.3 for a 324

discussion directly on using Kendall’s τ to measure 325

rank correlation. 326

We report a detailed breakdown of system-level 327

predicted error rates for the top metrics in Ap- 328

pendix A.4. On 5 of 12 datasets with generations 329

from multiple systems, the best-performing sys- 330

tem predicted by gpt-4-turbo is different from the 331

ground truth. Ranking errors are concerning when 332

automated metrics are used for running bench- 333

marks. Benchmark creators should supplement 334

system rankings from automated metrics with hu- 335

man validation/preference collection. 336

4 Analysis of metric biases 337

We identify two concerning biases that may affect 338

evaluator predictions: (1) dependence on surface- 339

level matches and (2) constraints due to context- 340

window limitations. These biases may cause the 341

evaluators to penalize desirable system outputs. 342

4.1 Bias towards surface-level similarity 343

Evaluators heavily rely on surface-level matches 344

between the claim and the document when making 345

predictions. We demonstrate this by studying the 346

behavior of the AutoAIS evaluators as the similarity 347

between the claim and the document varies. 348

We measure similarity with ROUGE-2 pre- 349

cision (Lin, 2004); this measures the frac- 350

tion of claim bigrams that appear in the doc- 351

ument. Following Vu et al. (2024), we par- 352

tition the examples into 5 groups based on 353

the task in the source dataset: (1) summa- 354

rization tasks (‘AggreFact-CNN’, ‘AggreFact- 355

XSum’, ‘TofuEval-MediaS’, ‘TofuEval-MeetB’, 356

‘RAGTruth-CNN/DM’, ‘RAGTruth-News’), (2) 357

LLM response verification (‘Reveal’, ‘ClaimVer- 358

ify’, ‘FactCheck-GPT’), (3) Wikipedia verifica- 359

tion (‘Wice’), (4) Long-form QA (‘ExpertQA’, 360

‘Lfqa’, ‘RAGTruth-MARCO’), and (5) Data2Text 361

(‘RAGTruth-Yelp’). Within each task group, we 362

group examples into 5 bins based on percentiles of 363

ROUGE-2 precision. 364

From Figure 4, we see that the evaluators misla- 365

bel unattributable examples (have low TNR) on 366

the high ROUGE examples. This trend is es- 367

pecially strong in the summarization and long- 368

form QA groups, where the evaluators can detect 369

unattributable claims with high ROUGE only half 370

the time. This highlights that evaluators may strug- 371

gle to correctly identify small inconsistencies in 372
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otherwise heavily copied text. Simultaneously, all373

evaluators have a trend of a low true positive rate on374

low ROUGE attributable claims; AutoAIS evalua-375

tors penalize heavily paraphrased responses. This376

is a concern as the evaluators may penalize mod-377

ern NLG systems for desirable behaviors such as378

avoiding verbatim copying and drawing valid con-379

clusions. Overall, the trends demonstrate that380

word overlap may be a significant component of381

the metric behavior.382

4.2 Bias from context-size limitations383

AutoAIS evaluators with short context windows384

struggle when the claim connects different docu-385

ment parts. When using AutoAIS evaluators, it is386

assumed that either (1) the metric has a sufficiently387

long context window to fit the document and the388

claim or (2) the metric chunks the document so as389

to fit it in the input length limit. As NLG systems390

improve at processing long documents and manip-391

ulating facts spread across a source document, it392

becomes more important for evaluation metrics to393

handle long evidence documents consistently.394

To isolate the effect of chunking on AutoAIS395

predictions, we compare the predictions of the396

Bespoke-7B evaluator to the Bespoke-7B evaluator397

with chunking enforced. From Table 30, we see398

that in the subset of examples where chunking is ap-399

plicable (document size > 500 words), Bespoke-7B400

with chunked documents obtains a lower TPR and401

a higher TNR than the evaluator without chunking.402

This trade-off can be explained by the decrease in403

the fraction of examples predicted as "attributable";404

Bespoke-7B with chunked documents predicts the405

"attributable" label 6% less frequently on average406

than the Bespoke-7B evaluator with the full input.407

To identify the examples where the evaluator408

predictions are most likely to be affected by chunk-409

ing, we compute a score for every example that410

measures whether chunking reduces surface-level411

matches between the document chunk and the412

claim. In particular, borrowing notation from § 2.1,413

R2-diff =ROUGE-2prec(d, c)

− max
k∈[1,K]

ROUGE-2prec(d
(k), c)414

where ROUGE-2prec is the fraction of claim bigrams415

that appear in the document. We expect examples416

with a nonzero value of R2-diff reference words417

that do not all appear in one chunk, and thus, the418

claim is less likely to be verifiable on any single419

chunk. When the claim becomes unverifiable due420

to chunking, we expect the evaluator with chunked 421

inputs to predict the label ‘unattributable’ (0) more 422

often than the evaluator with the full input. 423

In Figure 5, we plot how the original Bespoke- 424

7B metric predictions change when chunking is 425

enforced. We see that when R2-diff > 0, there 426

is a marked increase in the predictions of the la- 427

bel ‘unattributable’ (0). The rate is greater than 428

10% on 8 of 11 datasets. The opposite change of 429

prediction ‘0’ with full context changing to label 430

‘1’ with chunking is consistently less than 5%. On 431

the other hand, when R2-diff == 0, the rate of 432

change in prediction is less than 10% on 9 of 11 433

datasets. This could be attributed to noise in the 434

metric predictions. Thus, evaluators that chunk 435

their inputs are inherently disadvantaged when 436

verifying attributable claims that reference dis- 437

tant parts of the input document. 438

5 Metric Adjustment 439

As discussed in § 3.3, the AutoAIS evaluators have 440

a high bias in estimating the true error rate of NLG 441

systems. We experiment with methods to reduce 442

this bias and make the metrics more reliable in 443

downstream applications. We assume a scenario 444

where some human-labeled claim document pairs 445

are available for calibration8. For these experi- 446

ments, we use the predictions and scores assigned 447

by the Bespoke-7B evaluator on examples from the 448

RAGTruth datasets. We study three methods for 449

reducing quantification bias: (1) post-hoc adjust- 450

ment (Forman, 2006) that changes the predicted 451

error rate based on the known TPR and FPR of 452

the evaluator (details in Appendix A.7), (2) thresh- 453

old tuning to minimize the absolute bias and (3) 454

threshold tuning to maximize BAcc. 455

In Table 1, we report the results of different meth- 456

ods for adjusting the predicted system error rate. 457

We perform adjustment by using examples from 458

one system for tuning the threshold / computing 459

TPR and FPR and then computing the mean/worst 460

absolute bias (magnitude) over all the remaining 5 461

systems. We report both the cross-validated mean 462

and worst absolute bias. We find that tuning 463

to minimize the absolute bias consistently im- 464

proves all four subsets of the RAGTruth dataset. 465

However, tuning to maximize BAcc leads to a 466

degradation in both the mean and worst-case bias. 467

The "adjusted counts" approach is appealing 468

8This is a reasonable assumption when the metric is used
to organize a new benchmark.
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Figure 4: TPR/TNR vs ROUGE-2 precision of AutoAIS evaluators: ROUGE-2-precision is (anti-)correlated
with true (negative)positive rate, i.e. metrics mislabel attributable generations with low ROUGE and unattributable
generations with high ROUGE-2 precision.

Figure 5: R2-diff vs rate of change in prediction with chunking: The figure shows the change in predictions of
the Bespoke-7B evaluator to the same evaluator with documents chunked to 500 tokens. When chunking causes the
overlap between the claim and the document to decrease (R2-diff > 0), the evaluator with chunking predicts the
label ‘0’ (unattributable) more frequently than the evaluator without chunking.

to use if the AutoAIS evaluator does not provide469

a scalar score and directly returns a label. The470

method shows an inconsistent reduction in the abso-471

lute bias. In particular, we find that using the best-472

performing system (gpt-3.5-turbo for RAGTruth473

datasets) based on labeled error rate leads to poor474

estimation of the TPR and FPR of the evaluator.475

This is due to the low prevalence of the label ‘0’476

in examples of the best system. Simply adjusting477

counts based on these bad estimates leads to high478

bias on the remaining systems (see Table 31 for479

the full table). When using the adjusted counts ap-480

proach, we advise against using the system with481

the lowest error rate for calibration.482

6 Discussion483

6.1 For AutoAIS Metric Developers484

Based on our findings in § 3, we urge developers485

of AutoAIS evaluators to study and compare new486

approaches holistically. Our findings show that487

balanced accuracy can hide differences in the un-488

derlying behavior of different evaluators. (1) We489

advise that evaluator performance should be judged 490

on the breakdown of true positive and negative rate 491

(among evaluators with comparable balanced accu- 492

racy). AutoAIS metrics should be evaluated on the 493

stability of TPR/TNR across datasets. (2) Quan- 494

tification bias between predicted and ground-truth 495

unattributable generation rate at the dataset and 496

system levels should be reported. (3) Evaluators 497

should report the rank correlation of NLG systems 498

on the underlying dataset if available. These quali- 499

ties establish how readily the evaluator can be ap- 500

plied to new domains and be used as a reliable 501

stand-in for human annotations (though metric pre- 502

dictions should still be validated in new domains). 503

Since chunking long documents can make at- 504

tributable claims unverifiable, when possible, em- 505

phasis should be placed on developing metrics that 506

can process the entire evidence document without 507

chunking. However, use cases such as Wan et al. 508

(2024) require judgment against long reference doc- 509

uments, and chunking becomes necessary. Thus, 510

there is scope and reason to improve the ability of 511
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Model for Calibration Source No Adjustment Adjusted Counts Thres. tuning for zero bias Thres. tuning for ↑BAcc

Cross-Validated

CNN/DM 3.9 (6.1) 15.3 (21.5) 1.9 (4.0) 14.8 (19.6)
MARCO 14.4 (22.3) 7.2 (12.1) 3.4 (6.7) 20.2 (27.9)
Recent News 3.0 (5.9) 10.5 (18.8) 2.3 (5.0) 10.2 (18.8)
Yelp 15.4 (29.7) 26.9 (43.7) 6.0 (13.1) 19.3 (31.2)

gpt-3.5-turbo-0613

CNN/DM 4.5 (6.1) 65.6 (86.5) 2.3 (4.7) 37.0 (42.9)
Recent News 3.3 (6.0) 11.2 (19.3) 1.7 (3.4) 7.7 (15.4)
MARCO 16.0 (22.6) 22.9 (32.6) 3.7 (7.2) 30.0 (36.1)
Yelp 17.6 (31.2) 52.8 (80.5) 6.7 (16.2) 32.9 (46.7)

Table 1: Comparison of adjustment methods on RAGTruth: We report the bias in estimating the ground-truth
system error (hallucination) rates using three adjustment methods. In the upper section, we report cross-validated
mean absolute bias by using one system for calibration and calculating the mean absolute bias over the remaining
systems. Numbers in parentheses indicate the cross-validated worst-case bias. Green cells indicate a decrease
in bias relative to no adjustment. Tuning the evaluator threshold consistently reduces the bias in estimation over
the held-out systems. In the lower section, we report the mean absolute bias using the gpt-3.5-turbo model for
calibration (this is the model with the least ground-truth error rate). See Tab 31 for the full table.

evaluators to correctly handle document chunking.512

6.2 For Benchmark Developers513

When benchmark curators use automated metrics514

for evaluation, it is necessary to validate the eval-515

uators’ performance against a human-annotated516

dataset. Based on the biases (§ 4) and findings517

(§ 3), we encourage benchmark curators to:518

1. Study evaluator behavior by strategically sam-519

pling examples from different buckets of the520

ROUGE precision distribution521

2. Validate the choice of using an evaluator that522

requires input document chunking by testing523

metric behavior on claims that require long-524

document reasoning. We highlight R2-diff as525

an easy way to identify these claims.526

3. Validate the quantification bias of the evaluator527

on the human-annotated set. This allows for528

a better estimation of the actual headroom for529

improvement on the task.530

4. Validate the ranking and quantification bias on531

predictions from different NLG systems on the532

benchmark. Threshold tuning can be applied to533

reduce the bias at the system level.534

6.3 For Hallucination Mitigation Research535

Based on our findings regarding error quantifica-536

tion bias at the system level, researchers working537

on hallucination mitigation should not use the abso-538

lute error rates predicted by AutoAIS evaluators as539

the sole support for their research findings. Claims540

such as “system A hallucinates less than system B"541

need to be paired with a validation of the evalua-542

tor predictions on claims from both systems. The543

quantification bias also highlights that automated544

evaluators alone are not an indicator of whether a545

dataset/task is solved/unsolved. Automated evalu-546

ators may under- or over-predict the system error 547

rates. These issues necessitate manual inspection 548

of the evaluator’s predictions to back claims based 549

on automated metrics. 550

7 Related Work 551

Meta-Analysis of Automated Evaluation. Nimah 552

et al. (2023) suggest that NLG evaluator (fluency, 553

coherence, consistency, relevance, etc) research 554

should move beyond just measuring the correla- 555

tion between human preferences and evaluator 556

scores. They study the reliability of evaluators un- 557

der domain shift and consistency with system rank- 558

ings. Similar meta-analysis beyond correlation has 559

been studied in extensively in machine translation 560

(Mathur et al., 2020; Kocmi et al., 2021). Sai et al. 561

(2021) extend the checklist framework (Ribeiro 562

et al., 2020) to define consistency tests for NLG 563

evaluators. In our work, we find that AutoAIS eval- 564

uators are not yet reliable in certain downstream 565

uses out-of-the-box and push for a holistic set of 566

metrics for comparing evaluators. 567

Meta-Analysis of AutoAIS Evaluators. Similar 568

to LLM-AGGREFACT, AttributionBench Li et al. 569

(2024) also aggregates datasets into an attribution 570

evaluation benchmark. Error analysis by Yue et al. 571

(2023); Li et al. (2024) also highlights the inability 572

of AutoAIS evaluators in judging nuanced claims. 573

Cooroborating our findings about evaluator biases, 574

concurrent work by Ramprasad and Wallace (2024) 575

finds evidence that evaluators may be relying heav- 576

ility on surface-level syntactic features. They find 577

that evaluators can be “gamed” by making meaning- 578

preserving edits to the claims. 579
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Limitations580

Our analysis assumes that the datasets underlying581

LLM-AGGREFACT have highly accurate human582

annotations with little ambiguity. There is a po-583

tential confounder in our analysis that the human584

annotations may not be accurate or have significant585

room for ambiguity(Krishna et al., 2023; Subbiah586

et al., 2024; Li et al., 2024). In particular, Li et al.587

(2024) highlight inbalances in the information ac-588

cessible to humans vs AutoAIS evaluators as a589

major source of error in evaluator predictions. We590

leave the reevaluation of this confounder for future591

work. We believe that a strong metric can be used592

in-the-loop to identify examples where the metric593

disagrees with the human label. These disagree-594

ments can help narrow down the set of examples595

with potentially ambiguous labels.596

Our analysis is limited to the verification of597

claims against a single document. Complex claim598

verification might require multi-document verifica-599

tion (Chen et al., 2024) which is currently out of600

the scope of this work.601

Our analysis of system-level ranking is limited602

by the number of systems in the underlying dataset.603

In order to evaluate metrics on the consistency of604

system-level ranking, we need to collect responses605

from multiple, diverse NLG systems on a set of gen-606

eration tasks and collect annotations of attributabil-607

ity. In prior work, the availability of predictions608

from multiple machine translation systems on a609

common evaluation set has allowed the machine610

translation community to study the reliability of611

automated metrics in ranking (Mathur et al., 2020).612

In our work, we identified that metrics make613

inconsistent misestimations on system-level fac-614

tual accuracy. We do not propose any methods to615

fix these inconsistencies. A metric with perfect616

prediction accuracy will automatically solve the617

problem; however, the community needs a way to618

make reliable claims based on imperfect metrics in619

the interim.620
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A Appendix 886

A.1 LLM-AGGREFACT Dataset Details 887

Table 2 provides details of the 14 sub-datasets 888

in LLM-AGGREFACT. Unlike Tang et al. 889

(2024b), we keep the 4 subsets of RAGTruth 890

(Niu et al., 2024) separate to highlight the un- 891

derlying differences. The subsets are RAGTruth- 892

CNN/DM, RAGTruth-Recent_News (referred to 893

as RAGTruth-News to save space), RAGTruth- 894

MARCO, and RAGTruth-Yelp. We approximately 895

follow Vu et al. (2024) in the definition of the task 896

groups. We mark the datasets where the claims are 897

sourced from a longer response. 898

A.2 Recomputed Metric Performance 899

Since we sub-divide RAGTruth into its component 900

datasets, we report the recomputed balanced ac- 901

curacy (BAcc) of the top AutoAIS evaluators in 902

Table 3. We report the breakdown by FPR in Ta- 903

ble 4 and FNR in Table 5. 904

A.3 Evaluator Ranking Performance 905

On 6 of 14 datasets with generations from at least 906

6 systems and where the ground truth error rates 907

aren’t very close, we further measure the Kendall’s 908

τ rank correlation between the predicted ranking 909

of systems by the evaluator and the human-labeled 910

ranking (computed from the system error rates). 911

From Table 6, we see that the is at least one rank in- 912

version in the ranking produced by the top metrics. 913
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Task Dataset Claim Source Has Long Response?

Summarization

AggreFact-CNN BART, T5, PEGASUS N
AggreFact-XSum N

TofuEval-MediaSum GPT-3.5-Turbo, Vicuna-7B, WizardLM7B/13B/30B Y
TofuEval-MeetingBank Y

RAGTruth-CNN/DM GPT-3.5-turbo, GPT-4, Mistral-7b-Instruct, Llama-2-{7B,13B,70B}-chat Y
RAGTruth-Recent News Y

LLM Response
Verification

Reveal Flan-PaLM-540B, text-davinci-003, Flan-UL2-20B Y

ClaimVerify Bing Chat, NeevaAI, perplexity.ai, YouChat Y

FactCheckGPT ChatGPT N

Wikipedia
Verification

Wice Human-written N

Long-form QA
ExpertQA GPT4, Bing Chat Y

LFQA WebGPT, GPT-3.5, Alpaca-7b Y

RAGTruth-MARCO GPT-3.5-turbo, GPT-4, Mistral-7b-Instruct, Llama-2-{7B,13B,70B}-chat Y

Data2Text RAGTruth-Yelp GPT-3.5-turbo, GPT-4, Mistral-7b-Instruct, Llama-2-{7B,13B,70B}-chat Y

Table 2: Description of the task types and claim sources in LLM-AGGREFACT

Dataset Avg AGGREFACT TOFUEVAL WICE REVEAL
CLAIM
VERIFY

FACT
CHECK

EXPERT
QA LFQA

RAGTRUTH

CNN XSUM MEDIAS MEETB MARCO YELP CNN NEWS

gpt-4-turbo 76.9 63.3 75.5 68.5 81.2 79.8 88.2 73.1 80.0 60.8 83.0 78.0 84.7 80.0 80.6
Bespoke-7B 76.7 62.3 73.1 72.1 77.1 85.3 89.5 77.1 77.7 60.0 85.2 78.0 81.6 78.3 76.2
+ chunk(500) 75.9 64.5 72.6 72.0 75.8 77.3 89.5 77.1 77.7 59.8 85.0 77.9 78.7 78.4 76.1

MCheck-RBTA 73.3 59.6 66.6 68.8 72.3 66.8 88.6 78.1 75.9 56.7 84.3 79.2 72.1 77.6 79.1
MCheck-FT5 72.8 65.3 68.4 68.4 71.5 70.7 87.4 75.9 74.9 58.7 82.4 76.0 70.2 75.4 73.8
gpt-3.5-turbo 72.2 64.8 71.0 66.3 74.8 70.5 85.1 72.1 74.6 58.3 77.8 70.2 77.4 70.8 76.7
AlignScore 70.5 52.6 65.0 65.7 72.9 67.3 86.8 72.0 75.7 56.8 81.7 73.5 66.7 75.9 75.1
FactKB 56.9 58.5 64.4 51.6 53.1 55.3 71.2 56.8 58.6 53.1 57.9 56.9 50.6 50.4 57.7

Table 3: Balanced Accuracy of metrics on the dev set of LLM-AGGREFACT

Dataset Avg AGGREFACT TOFUEVAL WICE REVEAL
CLAIM
VERIFY

FACT
CHECK

EXPERT
QA LFQA

RAGTRUTH

CNN XSUM MEDIAS MEETB MARCO YELP CNN NEWS

GPT-4-turbo 34.1 71.2 21.4 59.3 29.8 25.6 16.1 46.7 14.5 46.9 27.2 27.0 23.1 35.3 33.7
Bespoke-7B 30.6 69.5 25.3 47.5 36.3 13.7 15.0 36.0 9.3 33.2 21.4 25.2 17.6 36.9 42.2
Bespoke-7B (cs=500) 27.7 59.3 24.3 39.8 30.4 9.8 15.0 35.7 9.3 32.8 21.3 25.2 14.7 30.5 39.8
MiniCheck-Roberta 24.4 66.1 26.4 37.3 31.5 9.0 12.9 25.7 8.8 21.4 11.5 17.7 20.2 28.3 25.3
MiniCheck-FT5 30.6 59.3 36.6 44.9 42.9 9.8 14.6 36.0 12.6 32.2 22.4 27.9 9.1 36.9 43.4
GPT-3.5-turbo 34.7 59.3 25.8 57.6 28.0 27.8 14.5 41.2 11.8 48.3 28.8 34.5 20.2 51.3 36.1
AlignScore 37.3 93.2 44.9 55.9 34.3 14.1 16.2 46.0 10.2 32.9 24.2 35.4 34.8 37.4 42.2
FactKB 64.8 78.0 17.0 91.2 80.6 59.8 15.6 78.3 32.3 74.5 77.7 44.2 90.8 96.3 71.1

Table 4: False positive rate (FPR) of metrics on the dev set of LLM-AGGREFACT

Dataset Avg AGGREFACT TOFUEVAL WICE REVEAL
CLAIM
VERIFY

FACT
CHECK

EXPERT
QA LFQA

RAGTRUTH

CNN XSUM MEDIAS MEETB MARCO YELP CNN NEWS

GPT-4-turbo 12.1 2.2 27.7 3.7 7.8 14.8 7.5 7.1 25.6 31.5 6.9 16.9 7.4 4.7 5.1
Bespoke-7B 16.0 6.0 28.4 8.4 9.4 15.7 6.0 9.9 35.3 46.8 8.2 18.8 19.2 6.5 5.5
Bespoke-7B (cs=500) 20.5 11.8 30.5 16.2 18.0 35.7 6.0 10.2 35.3 47.7 8.7 18.9 27.9 12.7 8.0
MiniCheck-Roberta 29.0 14.8 40.4 25.1 23.8 57.4 9.9 18.0 39.5 65.1 19.9 23.9 35.6 16.5 16.4
MiniCheck-FT5 23.8 10.0 26.6 18.3 14.1 48.7 10.6 12.2 37.6 50.3 12.7 20.1 50.5 12.2 8.9
GPT-3.5-turbo 21.0 11.0 32.2 9.7 22.5 31.3 15.3 14.6 39.1 35.1 15.7 25.1 25.1 7.1 10.6
AlignScore 21.6 1.5 25.1 12.7 20.0 51.3 10.1 10.1 38.3 53.5 12.3 17.6 31.8 10.8 7.6
FactKB 21.5 5.0 54.3 5.5 13.2 29.6 42.1 8.2 50.4 19.2 6.5 41.9 8.1 3.0 13.6

Table 5: False negative rate (FNR) of metrics on the dev set of LLM-AGGREFACT
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GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta AlignScore
corr type source

Kendall’s τ ExpertQA 0.73 0.60 0.47 0.60 0.60 0.87 0.73
Lfqa 0.87 0.87 0.87 0.87 0.87 0.87 0.87
RAGTruth-CNN/DM 1.00 1.00 0.87 0.73 0.73 0.47 0.73
RAGTruth-News 0.87 0.87 0.73 0.47 0.73 0.73 0.87
RAGTruth-MARCO 0.87 0.87 0.47 0.47 0.33 0.47 0.47
RAGTruth-Yelp 0.73 0.60 0.60 0.60 0.60 0.73 0.60

Average 0.84 0.80 0.67 0.62 0.64 0.69 0.71

Pearson ρ ExpertQA 0.76 0.75 0.77 0.75 0.77 0.88 0.85
Lfqa 0.99 0.97 1.00 1.00 0.99 0.99 0.99
RAGTruth-CNN/DM 1.00 0.94 0.96 0.89 0.88 0.85 0.93
RAGTruth-News 0.93 0.92 0.91 0.93 0.81 0.73 0.94
RAGTruth-MARCO 0.90 0.92 0.83 0.84 0.80 0.78 0.83
RAGTruth-Yelp 0.98 0.92 0.91 0.92 0.78 0.87 0.85

Average 0.93 0.91 0.90 0.89 0.84 0.85 0.90

Table 6: System ranking correlation (claim-level labels). For 6 LLM-AGGREFACT datasets, we report the
correlations between system rankings based on human-labeled error rate and predicted error rate by AutoAIS
evaluators. Each dataset has generations from 6 NLG systems. While the Pearson correlation coefficient is high the
top evaluators, Kendall’s τ is lower. The value of τ indicates that the evaluators make one-three ranking errors in
each ranking of the 6 systems.

GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta AlignScore
corr type source

Kendall’s τ ExpertQA 0.47 0.60 0.60 0.60 0.60 0.73 0.73
Lfqa 0.97 1.00 1.00 1.00 0.86 0.71 0.97
RAGTruth-CNN/DM 0.87 0.73 0.87 0.73 0.60 0.33 0.73
RAGTruth-News 1.00 1.00 1.00 0.87 0.87 0.73 1.00
RAGTruth-MARCO 1.00 0.73 0.73 0.73 0.60 0.73 0.73
RAGTruth-Yelp 0.60 0.47 0.47 0.33 0.47 0.47 0.33

Average 0.82 0.76 0.78 0.71 0.67 0.62 0.75

Pearson ρ ExpertQA 0.71 0.80 0.74 0.69 0.76 0.82 0.89
Lfqa 0.99 0.97 0.98 0.97 0.97 0.92 0.99
RAGTruth-CNN/DM 1.00 0.93 0.96 0.89 0.89 0.81 0.93
RAGTruth-News 0.91 0.92 0.88 0.91 0.80 0.69 0.94
RAGTruth-MARCO 0.92 0.94 0.88 0.88 0.86 0.83 0.87
RAGTruth-Yelp 0.98 0.94 0.92 0.91 0.75 0.83 0.72

Average 0.92 0.92 0.89 0.88 0.84 0.82 0.89

Table 7: System ranking correlation (response-level labels). For 6 LLM-AGGREFACT datasets, we report the
correlations between system rankings based on human-labeled error rate and predicted error rate by AutoAIS
evaluators. The labels are aggregated at the response-level. Each dataset has generations from 6 NLG systems.
While the Pearson correlation coefficient is high the top evaluators, Kendall’s τ is lower indicating errors in system
ranking.
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Bespoke-7B evaluator has up to 4 rank inversions914

(in ranking 6 systems) on two datasets. We see915

similar trends in rank correlation when labels are916

aggregated at the summary level (see Table 7).917

However, in order to make the correlation coeffi-918

cient useful, there is a need to build a benchmark919

with a larger number of systems with a wide range920

of ground truth error rates. The machine transla-921

tion research community (Mathur et al., 2020) has922

built such resources by running annual shared tasks.923

Thus, for our main analysis, we count the number924

of ranking errors where insignificant ground truth925

difference between systems becomes significant926

with automated evaluators and vice versa.927

A.4 Evaluator Quantification Bias928

In Tables 8-29, we report the system-level predicted929

error rate and quantification bias (claim and re-930

sponse level), and system-level ranking errors for931

the AutoAIS metrics on the 14 LLM-AGGREFACT932

datasets.933

A.5 Visualization of System-level934

Quantification Bias on RAGTruth935

In Figure 6, we highlight the bias of the met-936

rics in predicting the claim-level error rate on the937

RAGTruth dataset. We see that the bias of the top938

AutoAIS metrics is consistently poor on the MS-939

MARCO subset, especially on the systems with a940

higher ground-truth hallucination rate (e.g. the bias941

is 15-20% for Bespoke-7B). On the Yelp subset, we942

see that all metrics besides gpt-4-turbo show poor943

ground truth error estimation; the bias of gpt-4-944

turbo is 3.6% (in magnitude) on average as opposed945

to 13.8% (in magnitude) for Bespoke-7B. This is946

especially glaring since balanced accuracy does947

not indicate a large difference between gpt-4-turbo948

and Bespoke-7B (84.7% BAcc vs 81.6% BAcc).949

On the summarization subsets of RAGTruth (CNN-950

DM and Recent News), we see that the metrics951

predict large differences between systems when the952

ground-truth annotation does not and vice versa.953

For example, while ground truth annotations pre-954

dict that Llama-2-13B-chat makes much fewer955

grounding errors than Mistral-7B-Instruct (9.6% vs956

13.5%), Bespoke-7B predicts Mistral-7B-Instruct957

to be on par with Llama-2-13B-chat. Thus, results958

indicate several inconsistencies between predicted959

and ground-truth system error rates. We report960

trends for response-level bias of the metrics in Fig-961

ure 7.962

Figure 6: Predicted system-level error rate on
RAGTruth (claim-level). Inconsistent predictions be-
tween different metrics lead to discrepancies in the quan-
tification of the system error rate.

A.6 Effect of Chunking on Evaluator 963

In Table 30, we report the performance of the 964

Bespoke-7B evaluator without and with chunking 965

(chunk size of 500 words). We report the perfor- 966

mance on the subset of examples where chunking 967

is applicable, i.e., examples where the document 968

was longer than 500 words. 969

A.7 Details of Metric Adjustment for 970

Reducing Bias 971

We compare three ways to reduce the bias of Au- 972

toAIS evaluators in estimating the error rates of 973

systems. Adjusted Counts (Forman, 2006) uses 974

the TPR and FPR of the evaluator to adjust the 975

predicted system level error rate (p̂0). 976

p̂ = clip(
p̂0 − FPR

TPR− FPR
,min = 0,max = 1) 977

Under this setup, we are estimating the prevalence 978

(quantification) of hallucinations (p̂) by extrap- 979

olating from the hallucination rate on a sample 980

(González et al., 2017)). For our experiments, we 981

compute the TPR and FPR of the AutoAIS evalua- 982

tor on the labeled claim-document pairs generated 983

by one system and use it to adjust the predicted 984

error rate (p̂0) of generations by the other systems. 985

This method is appealing because it does not re- 986

quire the evaluator to produce a scalar score, i.e., it 987

works with the predicted 0/1 labels. 988
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label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Rbta
dataset

Wice 67.0 (0.0) 54.7 (-12.3) 58.7 (-8.3) 63.0 (-4.0) 72.2 (5.2) 76.5 (9.5) 79.9 (12.9)
FactCheck-GPT 82.7 (0.0) 75.1 (-7.5) 79.7 (-3.0) 81.1 (-1.6) 81.1 (-1.6) 78.8 (-3.9) 82.2 (-0.5)

Table 8: Wice and FactCheck: Quantification bias of metrics

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Rbta
System Name

BART 17.9 (0.0) 6.4 (-11.5) 14.5 (-3.4) 9.8 (-8.1) 17.5 (-0.4) 15.8 (-2.1) 18.8 (0.9)
Pegasus 9.6 (0.0) 4.0 (-5.6) 16.0 (6.4) 8.8 (-0.8) 16.0 (6.4) 12.8 (3.2) 20.8 (11.2)
PegasusDynamic 6.0 (0.0) 4.0 (-2.0) 20.0 (14.0) 6.0 (0.0) 10.0 (4.0) 8.0 (2.0) 6.0 (0.0)
T5 4.0 (0.0) 8.0 (4.0) 8.0 (4.0) 10.0 (6.0) 10.0 (6.0) 14.0 (10.0) 12.0 (8.0)

Headroom 4.0 (0.0) 4.0 (0.0) 8.0 (4.0) 6.0 (2.0) 10.0 (6.0) 8.0 (4.0) 6.0 (2.0)

Table 9: AggreFact-CNN: Predicted instance-level error rates for systems. Quantification bias in paratheses.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

BART 49.0 (0.0) 53.3 (4.3) 53.1 (4.1) 52.8 (3.8) 54.4 (5.4) 45.4 (-3.6) 57.7 (8.7)
Pegasus 52.0 (0.0) 48.0 (-4.0) 50.7 (-1.3) 36.0 (-16.0) 37.3 (-14.7) 38.7 (-13.3) 48.0 (-4.0)

Headroom 49.0 (0.0) 48.0 (-1.0) 50.7 (1.7) 36.0 (-13.0) 37.3 (-11.7) 38.7 (-10.3) 48.0 (-1.0)

Table 10: AggreFact-XSum: Predicted instance-level error rates for systems. Quantification bias in paratheses.

GT Label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

Model-Extra 19.2 (0.0) 6.3 (-12.9) 13.7 (-5.6) 15.7 (-3.5) 21.3 (2.0) 24.8 (5.6) 31.4 (12.2)
model_A 19.7 (0.0) 11.7 (-8.0) 15.0 (-4.7) 18.2 (-1.5) 24.1 (4.4) 26.6 (6.9) 33.2 (13.5)
model_B 20.4 (0.0) 12.7 (-7.7) 19.0 (-1.4) 18.7 (-1.8) 29.9 (9.5) 28.2 (7.7) 35.6 (15.1)
model_C 20.0 (0.0) 12.4 (-7.6) 17.2 (-2.8) 15.2 (-4.8) 24.5 (4.5) 23.4 (3.4) 32.1 (12.1)
model_D 18.6 (0.0) 11.2 (-7.4) 15.2 (-3.3) 17.8 (-0.7) 24.9 (6.3) 23.0 (4.5) 29.7 (11.2)
model_E 19.3 (0.0) 12.6 (-6.6) 16.6 (-2.7) 16.9 (-2.3) 24.6 (5.3) 25.9 (6.6) 31.9 (12.6)

Headroom 18.6 (0.0) 6.3 (-12.3) 13.7 (-4.9) 15.2 (-3.4) 21.3 (2.7) 23.0 (4.5) 29.7 (11.2)

Table 11: TofuEval-MediaSum: Predicted claim-level error rates for systems. Quantification bias in paratheses.

GT Order GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta AlignScore
> = < > = < > = < > = < > = < > = < > = <

= 1 10 4 0 15 0 0 15 0 0 14 1 0 15 0 0 15 0 0 15 0
< 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%Err 33.3 0.0 0.0 6.7 0.0 0.0 0.0
%Maj. Err 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 12: TofuEval-MediaSum: Inconsistency in system-pair ranking based on claim-level error rates for
systems. We report a confusion matrix of pairwise system ranking decisions. We measure inconsistencies between
the ranking based on the labeled error rate and the ranking based on the predicted error rate. For a system pair (s1,
s2), ‘=’ indicates no significant difference between s1 and s2, ‘<’ indicates s1 has a lower error rate than s2, and ‘>’
indicates s1 has a higher error rate than s2. When a metric predicts a significant but opposite ranking between a pair,
we count it as a Major Error. Significance is computed with the two-proportion z-test and p_value < 0.05.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

Model-Extra 49.0 (0.0) 19.2 (-29.8) 37.5 (-11.5) 40.4 (-8.7) 55.8 (6.7) 64.4 (15.4) 78.8 (29.8)
model_A 38.1 (0.0) 22.9 (-15.2) 32.4 (-5.7) 35.2 (-2.9) 44.8 (6.7) 51.4 (13.3) 60.0 (21.9)
model_B 41.9 (0.0) 26.7 (-15.2) 38.1 (-3.8) 38.1 (-3.8) 56.2 (14.3) 53.3 (11.4) 66.7 (24.8)
model_C 39.4 (0.0) 26.9 (-12.5) 31.7 (-7.7) 29.8 (-9.6) 48.1 (8.7) 41.3 (1.9) 58.7 (19.2)
model_D 37.5 (0.0) 25.0 (-12.5) 30.8 (-6.7) 34.6 (-2.9) 45.2 (7.7) 46.2 (8.7) 60.6 (23.1)
model_E 38.5 (0.0) 25.0 (-13.5) 32.7 (-5.8) 30.8 (-7.7) 46.2 (7.7) 49.0 (10.6) 63.5 (25.0)

Headroom 37.5 (0.0) 19.2 (-18.3) 30.8 (-6.7) 29.8 (-7.7) 44.8 (7.3) 41.3 (3.8) 58.7 (21.2)

Table 13: TofuEval-MediaSum: Predicted summary-level error rates for systems. Quantification bias in
paratheses.
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GT Error Rate GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System

Model-Extra 14.0 (0.0) 15.1 (1.1) 35.4 (21.4) 17.2 (3.2) 29.1 (15.1) 23.9 (9.8) 35.8 (21.8)
model-A 19.9 (0.0) 18.8 (-1.2) 29.7 (9.8) 19.1 (-0.8) 28.5 (8.6) 21.9 (2.0) 29.7 (9.8)
model-B 22.4 (0.0) 24.1 (1.7) 33.6 (11.2) 21.3 (-1.0) 27.6 (5.2) 24.5 (2.1) 34.6 (12.2)
model-C 20.1 (0.0) 19.7 (-0.4) 30.5 (10.4) 18.9 (-1.2) 27.4 (7.3) 22.8 (2.7) 33.6 (13.5)
model-D 11.8 (0.0) 15.4 (3.6) 26.5 (14.7) 16.1 (4.3) 22.2 (10.4) 16.1 (4.3) 24.7 (12.9)
model-E 19.3 (0.0) 20.5 (1.2) 30.9 (11.6) 21.6 (2.3) 27.4 (8.1) 20.8 (1.5) 31.3 (12.0)

Headroom 11.8 (0.0) 15.1 (3.3) 26.5 (14.7) 16.1 (4.3) 22.2 (10.4) 16.1 (4.3) 24.7 (12.9)

Table 14: TofuEval-MeetingBank: Predicted claim-level error rates for systems. Quantification bias in
paratheses.

GT Order GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta AlignScore
> = < > = < > = < > = < > = < > = < > = <

= 0 10 0 0 9 1 0 10 0 0 10 0 0 9 1 0 9 1 1 8 1
< 0 3 2 0 5 0 0 5 0 0 5 0 0 4 1 0 3 2 0 2 3

%Err 20.0 40.0 33.3 33.3 33.3 26.7 26.7
%Maj. Err 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 15: TofuEval-MeetingBank: Inconsistency in system-pair ranking based on claim-level error rates for
systems. We report a confusion matrix of pairwise system ranking decisions. We measure inconsistencies between
the ranking based on the labeled error rate and the ranking based on the predicted error rate. For a system pair (s1,
s2), ‘=’ indicates no significant difference between s1 and s2, ‘<’ indicates s1 has a lower error rate than s2, and ‘>’
indicates s1 has a higher error rate than s2. When a metric predicts a significant but opposite ranking between a pair,
we count it as a Major Error. Significance is computed with the two-proportion z-test and p_value < 0.05.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

Model-Extra 29.8 (0.0) 32.7 (2.9) 60.6 (30.8) 38.5 (8.7) 57.7 (27.9) 49.0 (19.2) 61.5 (31.7)
model_A 35.2 (0.0) 33.3 (-1.9) 51.4 (16.2) 35.2 (0.0) 52.4 (17.1) 43.8 (8.6) 54.3 (19.0)
model_B 45.2 (0.0) 48.1 (2.9) 60.6 (15.4) 44.2 (-1.0) 53.8 (8.7) 51.9 (6.7) 64.4 (19.2)
model_C 34.6 (0.0) 31.7 (-2.9) 50.0 (15.4) 30.8 (-3.8) 46.2 (11.5) 42.3 (7.7) 56.7 (22.1)
model_D 26.0 (0.0) 33.7 (7.7) 50.0 (24.0) 35.6 (9.6) 48.1 (22.1) 32.7 (6.7) 49.0 (23.1)
model_E 34.4 (0.0) 38.5 (4.2) 51.0 (16.7) 43.8 (9.4) 53.1 (18.8) 40.6 (6.2) 59.4 (25.0)

Headroom 26.0 (0.0) 31.7 (5.8) 50.0 (24.0) 30.8 (4.8) 46.2 (20.2) 32.7 (6.7) 49.0 (23.1)

Table 16: TofuEval-MeetingBank: Predicted summary-level error rates for systems. Quantification bias in
paratheses.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System

Flan-PaLM-540B 67.4 (0.0) 59.7 (-7.7) 61.0 (-6.3) 58.5 (-8.8) 58.5 (-8.8) 61.2 (-6.1) 57.8 (-9.6)
Flan-UL2-20B 79.4 (0.0) 68.8 (-10.6) 71.4 (-8.0) 68.7 (-10.7) 68.7 (-10.7) 67.8 (-11.6) 70.0 (-9.4)
GPT-3 76.2 (0.0) 63.0 (-13.2) 68.6 (-7.6) 65.6 (-10.6) 65.6 (-10.6) 68.3 (-7.9) 72.5 (-3.7)

Headroom 67.4 (0.0) 59.7 (-7.7) 61.0 (-6.3) 58.5 (-8.8) 58.5 (-8.8) 61.2 (-6.1) 57.8 (-9.6)

Table 17: Reveal: Predicted instance-level error rates for systems. Quantification bias in paratheses.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

Flan-PaLM-540B 74.7 (0.0) 72.1 (-2.6) 74.7 (0.0) 69.5 (-5.2) 69.5 (-5.2) 69.5 (-5.2) 69.5 (-5.2)
Flan-UL2-20B 84.2 (0.0) 76.6 (-7.6) 79.5 (-4.7) 76.6 (-7.6) 76.6 (-7.6) 77.2 (-7.0) 80.1 (-4.1)
GPT-3 78.9 (0.0) 66.3 (-12.6) 74.2 (-4.7) 68.4 (-10.5) 68.4 (-10.5) 72.1 (-6.8) 77.4 (-1.6)

Headroom 74.7 (0.0) 66.3 (-8.4) 74.2 (-0.5) 68.4 (-6.3) 68.4 (-6.3) 69.5 (-5.2) 69.5 (-5.2)

Table 18: Reveal: Predicted summary-level error rates for systems. Quantification bias in paratheses.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System

bing_chat 9.4 6.1 (-3.3) 10.7 (1.2) 10.7 (1.2) 9.8 (0.4) 11.5 (2.0) 13.1 (3.7)
neeva 27.3 23.4 (-3.9) 31.2 (3.9) 26.3 (-1.0) 28.6 (1.3) 29.3 (2.0) 34.5 (7.2)
perplexity 30.7 19.6 (-11.2) 29.4 (-1.4) 26.6 (-4.1) 26.8 (-3.9) 28.0 (-2.7) 37.2 (6.5)
you 31.3 34.3 (3.0) 32.8 (1.5) 28.4 (-3.0) 25.4 (-6.0) 29.9 (-1.5) 47.8 (16.4)

Headroom 9.4 (0.0) 6.1 (-3.3) 10.7 (1.2) 10.7 (1.2) 9.8 (0.4) 11.5 (2.0) 13.1 (3.7)

Table 19: ClaimVerify: Predicted instance-level error rates for systems. Quantification bias in paratheses.
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label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

bing_chat 16.3 (0.0) 11.4 (-4.9) 18.7 (2.4) 18.7 (2.4) 16.3 (0.0) 20.3 (4.1) 19.5 (3.3)
neeva 51.9 (0.0) 45.3 (-6.6) 56.6 (4.7) 53.8 (1.9) 56.6 (4.7) 59.4 (7.5) 61.3 (9.4)
perplexity 53.6 (0.0) 38.6 (-15.0) 55.7 (2.1) 52.9 (-0.7) 50.7 (-2.9) 54.3 (0.7) 64.3 (10.7)
you 38.6 (0.0) 45.5 (6.8) 40.9 (2.3) 38.6 (0.0) 36.4 (-2.3) 40.9 (2.3) 61.4 (22.7)

Headroom 16.3 (0.0) 11.4 (-4.9) 18.7 (2.4) 18.7 (2.4) 16.3 (0.0) 20.3 (4.1) 19.5 (3.3)

Table 20: ClaimVerify: Predicted summary-level error rates for systems. Quantification bias in paratheses.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

bing_chat 16.7 (0.0) 34.1 (17.4) 40.2 (23.5) 44.0 (27.3) 49.4 (32.7) 49.7 (33.0) 57.1 (40.4)
gpt4 27.4 (0.0) 62.1 (34.7) 54.7 (27.4) 73.7 (46.3) 75.8 (48.4) 78.9 (51.6) 90.5 (63.2)
post_hoc_gs_gpt4 22.1 (0.0) 52.8 (30.7) 54.1 (32.0) 74.8 (52.7) 74.8 (52.7) 73.8 (51.7) 86.3 (64.2)
post_hoc_sphere_gpt4 33.5 (0.0) 53.8 (20.4) 53.8 (20.4) 72.8 (39.3) 72.8 (39.3) 71.7 (38.3) 92.6 (59.2)
rr_gs_gpt4 11.7 (0.0) 8.7 (-3.0) 11.8 (0.1) 16.7 (5.1) 16.8 (5.2) 23.3 (11.7) 31.7 (20.1)
rr_sphere_gpt4 20.3 (0.0) 9.8 (-10.4) 17.1 (-3.1) 18.7 (-1.6) 18.9 (-1.4) 28.5 (8.3) 46.9 (26.6)

Headroom 11.7 (0.0) 8.7 (-3.0) 11.8 (0.1) 16.7 (5.1) 16.8 (5.2) 23.3 (11.7) 31.7 (20.1)

Table 21: ExpertQA: Predicted claim-level error rates for systems. Quantification bias in paratheses.

GT Order GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta AlignScore
> = < > = < > = < > = < > = < > = < > = <

= 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 0 3 2
< 0 2 8 0 1 9 0 2 8 0 2 8 0 1 9 0 0 10 0 1 9

%Err 33.3 26.7 33.3 33.3 26.7 20.0 20.0
%Maj. Err 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 22: ExpertQA: Inconsistency in system-pair ranking based on claim-level error rates for systems. We
report a confusion matrix of pairwise system ranking decisions. We measure inconsistencies between the ranking
based on the labeled error rate and the ranking based on the predicted error rate. For a system pair (s1, s2), ‘=’
indicates no significant difference between s1 and s2, ‘<’ indicates s1 has a lower error rate than s2, and ‘>’ indicates
s1 has a higher error rate than s2. When a metric predicts a significant but opposite ranking between a pair, we count
it as a Major Error. Significance is computed with the two-proportion z-test and p_value < 0.05.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

bing_chat 29.0 (0.0) 54.4 (25.4) 60.4 (31.4) 63.3 (34.3) 71.6 (42.6) 73.4 (44.4) 81.7 (52.7)
gpt4 39.2 (0.0) 74.5 (35.3) 70.6 (31.4) 86.3 (47.1) 82.4 (43.1) 88.2 (49.0) 94.1 (54.9)
post_hoc_gs_gpt4 52.0 (0.0) 91.3 (39.3) 92.9 (40.8) 98.0 (45.9) 98.0 (45.9) 98.0 (45.9) 98.5 (46.4)
post_hoc_sphere_gpt4 60.5 (0.0) 86.8 (26.3) 87.9 (27.4) 94.2 (33.7) 94.2 (33.7) 94.7 (34.2) 98.9 (38.4)
rr_gs_gpt4 26.6 (0.0) 27.1 (0.5) 33.0 (6.4) 44.3 (17.7) 44.8 (18.2) 56.2 (29.6) 63.1 (36.5)
rr_sphere_gpt4 42.1 (0.0) 26.4 (-15.7) 44.3 (2.1) 45.0 (2.9) 45.0 (2.9) 61.4 (19.3) 79.3 (37.1)

Headroom 26.6 (0.0) 26.4 (-0.2) 33.0 (6.4) 44.3 (17.7) 44.8 (18.2) 56.2 (29.6) 63.1 (36.5)

Table 23: ExpertQA: Predicted summary-level error rates for systems. Quantification bias in paratheses.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

alpaca 76.0 (0.0) 68.5 (-7.5) 71.5 (-4.5) 70.8 (-5.2) 70.8 (-5.2) 75.3 (-0.7) 83.5 (7.5)
alpaca_wdoc 41.8 (0.0) 34.7 (-7.0) 44.6 (2.8) 36.8 (-4.9) 37.5 (-4.2) 38.2 (-3.5) 48.8 (7.0)
gpt3 78.9 (0.0) 62.7 (-16.2) 60.5 (-18.4) 69.1 (-9.8) 68.9 (-10.0) 66.4 (-12.5) 81.1 (2.3)
gpt3_wdoc 18.1 (0.0) 15.8 (-2.3) 22.3 (4.3) 17.2 (-0.9) 18.3 (0.3) 22.6 (4.6) 28.7 (10.6)
gpt3_whudoc 28.8 (0.0) 20.5 (-8.3) 25.1 (-3.7) 25.1 (-3.7) 25.6 (-3.1) 30.5 (1.7) 38.2 (9.4)
webgpt 7.4 (0.0) 6.5 (-0.9) 13.9 (6.5) 6.5 (-0.9) 6.5 (-0.9) 7.4 (0.0) 9.6 (2.2)

Headroom 7.4 (0.0) 6.5 (-0.9) 13.9 (6.5) 6.5 (-0.9) 6.5 (-0.9) 7.4 (0.0) 9.6 (2.2)

Table 24: LFQA: Predicted claim-level error rates for systems. Quantification bias in paratheses.
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GT Order GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta AlignScore
> = < > = < > = < > = < > = < > = < > = <

= 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0
< 0 1 13 0 1 13 0 0 14 0 0 14 0 0 14 0 0 14 0 1 13

%Err 6.7 13.3 0.0 0.0 6.7 0.0 6.7
%Maj. Err 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 25: LFQA: Inconsistency in system-pair ranking based on claim-level error rates for systems. We report
a confusion matrix of pairwise system ranking decisions. We measure inconsistencies between the ranking based on
the labeled error rate and the ranking based on the predicted error rate. For a system pair (s1, s2), ‘=’ indicates no
significant difference between s1 and s2, ‘<’ indicates s1 has a lower error rate than s2, and ‘>’ indicates s1 has a
higher error rate than s2. When a metric predicts a significant but opposite ranking between a pair, we count it as a
Major Error. Significance is computed with the two-proportion z-test and p_value < 0.05.

label GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
System Name

alpaca 100.0 (0.0) 96.0 (-4.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
alpaca_wdoc 72.0 (0.0) 68.0 (-4.0) 90.0 (18.0) 80.0 (8.0) 84.0 (12.0) 72.0 (0.0) 76.0 (4.0)
gpt3 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
gpt3_wdoc 56.0 (0.0) 56.0 (0.0) 68.0 (12.0) 56.0 (0.0) 62.0 (6.0) 68.0 (12.0) 78.0 (22.0)
gpt3_whudoc 68.0 (0.0) 60.0 (-8.0) 72.0 (4.0) 64.0 (-4.0) 64.0 (-4.0) 78.0 (10.0) 86.0 (18.0)
webgpt 36.0 (0.0) 32.0 (-4.0) 52.0 (16.0) 26.0 (-10.0) 26.0 (-10.0) 32.0 (-4.0) 38.0 (2.0)

Headroom 36.0 (0.0) 32.0 (-4.0) 52.0 (16.0) 26.0 (-10.0) 26.0 (-10.0) 32.0 (-4.0) 38.0 (2.0)

Table 26: LFQA: Predicted summary-level error rates for systems. Quantification bias in paratheses.

GT Error Rate GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
Query Set System Name

CNN/DM gpt-3.5-turbo-0613 0.8 (0.0) 1.5 (0.7) 4.9 (4.1) 2.1 (1.2) 5.6 (4.8) 7.0 (6.2) 7.7 (6.9)
gpt-4-0613 1.9 (0.0) 1.6 (-0.2) 5.1 (3.3) 4.9 (3.0) 8.4 (6.5) 7.4 (5.6) 7.4 (5.6)
llama-2-70b-chat 4.8 (0.0) 7.1 (2.3) 9.5 (4.6) 10.9 (6.1) 18.9 (14.1) 16.6 (11.8) 26.3 (21.4)
llama-2-13b-chat 9.6 (0.0) 12.2 (2.6) 10.8 (1.2) 15.7 (6.1) 25.9 (16.3) 25.4 (15.7) 30.6 (21.0)
llama-2-7b-chat 13.5 (0.0) 17.1 (3.6) 13.5 (0.0) 17.9 (4.4) 27.5 (14.0) 25.6 (12.2) 33.2 (19.7)
mistral-7B-instruct 13.5 (0.0) 17.4 (3.9) 17.8 (4.3) 16.2 (2.7) 21.1 (7.6) 19.5 (5.9) 25.4 (11.9)
Headroom 0.8 (0.0) 1.5 (0.7) 4.9 (4.1) 2.1 (1.2) 5.6 (4.8) 7.0 (6.2) 7.4 (6.6)

Recent News gpt-3.5-turbo-0613 0.8 (0.0) 1.7 (0.8) 8.0 (7.2) 2.5 (1.7) 4.6 (3.8) 3.8 (3.0) 7.2 (6.3)
gpt-4-0613 1.9 (0.0) 3.3 (1.4) 10.0 (8.1) 2.9 (1.0) 4.3 (2.4) 8.6 (6.7) 12.4 (10.5)
llama-2-70b-chat 5.4 (0.0) 5.9 (0.5) 13.4 (7.9) 7.9 (2.5) 10.9 (5.4) 13.9 (8.4) 21.8 (16.3)
llama-2-13b-chat 10.3 (0.0) 12.0 (1.7) 17.9 (7.7) 16.2 (6.0) 18.8 (8.5) 17.9 (7.7) 32.5 (22.2)
llama-2-7b-chat 11.1 (0.0) 20.1 (9.0) 21.5 (10.4) 16.7 (5.6) 18.8 (7.6) 20.1 (9.0) 38.2 (27.1)
mistral-7B-instruct 16.2 (0.0) 18.4 (2.1) 19.7 (3.4) 15.0 (-1.3) 18.4 (2.1) 15.8 (-0.4) 23.5 (7.3)
Headroom 0.8 (0.0) 1.7 (0.8) 8.0 (7.2) 2.5 (1.7) 4.3 (3.5) 3.8 (3.0) 7.2 (6.3)

MARCO gpt-3.5-turbo-0613 1.9 (0.0) 6.5 (4.7) 14.2 (12.3) 8.0 (6.2) 8.2 (6.3) 8.2 (6.3) 11.4 (9.5)
gpt-4-0613 0.6 (0.0) 3.2 (2.6) 13.9 (13.4) 4.3 (3.8) 4.6 (4.0) 7.5 (7.0) 6.7 (6.1)
llama-2-70b-chat 3.6 (0.0) 21.0 (17.4) 28.1 (24.5) 26.2 (22.6) 26.0 (22.4) 27.8 (24.2) 32.3 (28.7)
llama-2-13b-chat 7.0 (0.0) 22.8 (15.8) 30.5 (23.5) 24.5 (17.5) 24.8 (17.8) 25.1 (18.1) 30.5 (23.5)
llama-2-7b-chat 7.0 (0.0) 26.8 (19.8) 33.1 (26.1) 27.6 (20.6) 27.8 (20.8) 27.4 (20.4) 33.7 (26.7)
mistral-7B-instruct 8.4 (0.0) 23.4 (15.0) 31.9 (23.4) 23.9 (15.5) 23.9 (15.5) 24.5 (16.1) 26.2 (17.8)
Headroom 0.6 (0.0) 3.2 (2.6) 13.9 (13.4) 4.3 (3.8) 4.6 (4.0) 7.5 (7.0) 6.7 (6.1)

Yelp gpt-3.5-turbo-0613 2.7 (0.0) 3.1 (0.4) 16.2 (13.5) 7.0 (4.3) 12.5 (9.8) 37.1 (34.4) 24.8 (22.1)
gpt-4-0613 3.5 (0.0) 1.5 (-2.0) 23.6 (20.1) 9.9 (6.4) 17.9 (14.4) 57.7 (54.2) 31.9 (28.4)
llama-2-70b-chat 19.5 (0.0) 28.5 (9.0) 46.2 (26.7) 50.8 (31.2) 58.9 (39.4) 67.7 (48.2) 58.1 (38.6)
llama-2-13b-chat 26.7 (0.0) 31.9 (5.2) 45.3 (18.6) 46.7 (20.0) 57.0 (30.3) 68.9 (42.2) 60.6 (33.9)
llama-2-7b-chat 24.5 (0.0) 29.0 (4.5) 47.6 (23.1) 46.7 (22.2) 56.7 (32.3) 66.5 (42.0) 55.3 (30.8)
mistral-7B-instruct 21.7 (0.0) 24.5 (2.8) 35.0 (13.3) 29.7 (8.0) 37.0 (15.4) 56.8 (35.1) 38.3 (16.6)
Headroom 2.7 (0.0) 1.5 (-1.1) 16.2 (13.5) 7.0 (4.3) 12.5 (9.8) 37.1 (34.4) 24.8 (22.1)

Table 27: RAGTruth: Predicted claim-level error rates for systems. Quantification bias in paratheses.
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GT Order GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta AlignScore
> = < > = < > = < > = < > = < > = < > = <

RAGTruth-CNN/DM

= 0 2 1 0 2 1 0 3 0 1 2 0 2 1 0 1 2 0 0 3 0
< 0 0 3 0 2 1 0 0 3 0 1 2 0 1 2 0 2 1 0 1 2

%Err 16.7 50.0 0.0 33.3 50.0 50.0 16.7
%Maj. Err 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RAGTruth-News

= 0 4 1 0 4 1 0 3 2 0 3 2 0 5 0 1 2 2 0 4 1
< 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1

%Err 16.7 33.3 33.3 33.3 16.7 66.7 16.7
%Maj. Err 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RAGTruth-MARCO

= 0 2 1 0 3 0 0 3 0 0 3 0 0 3 0 1 2 0 1 2 0
< 0 2 1 0 2 1 0 3 0 0 3 0 0 3 0 1 2 0 0 3 0

%Err 50.0 33.3 50.0 50.0 50.0 66.7 66.7
%Maj. Err 0.0 0.0 0.0 0.0 0.0 16.7 0.0

RAGTruth-Yelp

= 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 0 3 1 2 1
< 0 2 9 0 2 9 0 2 9 0 2 9 0 3 8 0 2 9 0 2 9

%Err 33.3 33.3 33.3 33.3 40.0 40.0 26.7
%Maj. Err 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 28: RAGTruth: Inconsistency in system-pair ranking based on claim-level error rates for systems. We
report a confusion matrix of pairwise system ranking decisions. We measure inconsistencies between the ranking
based on the labeled error rate and the ranking based on the predicted error rate. For a system pair (s1, s2), ‘=’
indicates no significant difference between s1 and s2, ‘<’ indicates s1 has a lower error rate than s2, and ‘>’ indicates
s1 has a higher error rate than s2. When a metric predicts a significant but opposite ranking between a pair, we count
it as a Major Error. Significance is computed with the two-proportion z-test and p_value < 0.05.

GT Error Rate GPT-4-turbo GPT-3.5-turbo Bespoke-7B Bespoke-7B (cs=500) MiniCheck-FT5 MiniCheck-Roberta
Query Set System Name

CNN/DM gpt-3.5-turbo-0613 1.5 (0.0) 2.7 (1.2) 8.8 (7.2) 3.5 (2.0) 9.3 (7.8) 12.3 (10.8) 13.5 (12.0)
gpt-4-0613 2.3 (0.0) 2.3 (0.0) 7.0 (4.7) 6.7 (4.3) 11.7 (9.4) 10.0 (7.7) 10.4 (8.0)
llama-2-13b-chat 12.0 (0.0) 14.7 (2.6) 13.5 (1.5) 19.2 (7.1) 32.0 (19.9) 31.6 (19.5) 36.8 (24.8)
llama-2-70b-chat 7.3 (0.0) 10.7 (3.5) 14.2 (6.9) 16.1 (8.8) 26.5 (19.2) 23.0 (15.8) 36.9 (29.7)
llama-2-7b-chat 18.4 (0.0) 23.5 (5.1) 18.4 (0.0) 24.2 (5.8) 36.8 (18.4) 33.9 (15.5) 43.0 (24.5)
mistral-7B-instruct 18.8 (0.0) 24.7 (5.9) 24.1 (5.3) 22.5 (3.7) 29.1 (10.3) 27.2 (8.4) 32.5 (13.7)
Headroom 1.5 (0.0) 2.3 (0.8) 7.0 (5.5) 3.5 (2.0) 9.3 (7.8) 10.0 (8.5) 10.4 (8.9)

Recent News gpt-3.5-turbo-0613 1.2 (0.0) 2.5 (1.2) 11.8 (10.6) 3.7 (2.5) 6.8 (5.6) 5.6 (4.3) 10.6 (9.3)
gpt-4-0613 2.6 (0.0) 4.6 (2.0) 13.7 (11.1) 3.9 (1.3) 5.9 (3.3) 11.1 (8.5) 16.3 (13.7)
llama-2-13b-chat 11.8 (0.0) 12.7 (1.0) 20.6 (8.8) 18.6 (6.9) 21.6 (9.8) 20.6 (8.8) 35.3 (23.5)
llama-2-70b-chat 7.5 (0.0) 8.2 (0.7) 17.8 (10.3) 11.0 (3.4) 14.4 (6.8) 18.5 (11.0) 27.4 (19.9)
llama-2-7b-chat 12.8 (0.0) 23.9 (11.1) 25.6 (12.8) 20.5 (7.7) 23.1 (10.3) 23.9 (11.1) 44.4 (31.6)
mistral-7B-instruct 23.8 (0.0) 25.0 (1.2) 26.2 (2.5) 20.6 (-3.1) 25.0 (1.2) 21.9 (-1.9) 31.9 (8.1)
Headroom 1.2 (0.0) 2.5 (1.2) 11.8 (10.6) 3.7 (2.5) 5.9 (4.6) 5.6 (4.3) 10.6 (9.3)

MARCO gpt-3.5-turbo-0613 2.8 (0.0) 8.6 (5.8) 17.7 (14.9) 10.5 (7.7) 10.8 (8.0) 10.2 (7.5) 14.4 (11.6)
gpt-4-0613 0.8 (0.0) 4.8 (4.0) 18.8 (17.9) 6.5 (5.6) 6.9 (6.0) 10.6 (9.8) 9.6 (8.8)
llama-2-13b-chat 11.2 (0.0) 30.7 (19.5) 40.2 (29.0) 33.0 (21.8) 33.4 (22.2) 35.1 (23.9) 40.6 (29.4)
llama-2-70b-chat 6.1 (0.0) 29.7 (23.6) 36.8 (30.8) 34.7 (28.7) 34.5 (28.5) 37.4 (31.4) 45.0 (38.9)
llama-2-7b-chat 11.3 (0.0) 37.3 (26.0) 43.8 (32.5) 37.2 (25.9) 37.5 (26.2) 38.4 (27.1) 45.8 (34.5)
mistral-7B-instruct 11.1 (0.0) 30.1 (19.0) 40.3 (29.1) 30.6 (19.4) 30.6 (19.4) 32.5 (21.3) 34.6 (23.5)
Headroom 0.8 (0.0) 4.8 (4.0) 17.7 (16.8) 6.5 (5.6) 6.9 (6.0) 10.2 (9.4) 9.6 (8.8)

Yelp gpt-3.5-turbo-0613 5.7 (0.0) 7.1 (1.4) 32.1 (26.4) 15.5 (9.8) 26.5 (20.8) 59.7 (54.0) 46.9 (41.1)
gpt-4-0613 5.8 (0.0) 2.6 (-3.2) 35.1 (29.3) 16.3 (10.5) 27.4 (21.6) 72.3 (66.5) 46.6 (40.9)
llama-2-13b-chat 37.9 (0.0) 44.7 (6.8) 59.0 (21.1) 59.0 (21.1) 68.7 (30.8) 77.6 (39.6) 72.9 (35.0)
llama-2-70b-chat 29.8 (0.0) 41.5 (11.7) 59.6 (29.8) 64.2 (34.4) 73.5 (43.7) 78.0 (48.2) 69.7 (39.9)
llama-2-7b-chat 34.1 (0.0) 39.9 (5.7) 58.8 (24.6) 58.2 (24.1) 69.2 (35.0) 76.9 (42.8) 67.8 (33.6)
mistral-7B-instruct 36.0 (0.0) 39.9 (3.9) 51.9 (15.9) 46.7 (10.7) 54.6 (18.6) 72.9 (36.9) 55.2 (19.2)
Headroom 5.7 (0.0) 2.6 (-3.1) 32.1 (26.4) 15.5 (9.8) 26.5 (20.8) 59.7 (54.0) 46.6 (40.9)

Table 29: RAGTruth: Predicted summary-level error rates for systems. Quantification bias in paratheses.
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Dataset Evaluator BAcc PPR TPR TNR

AggreFact-CNN Bespoke-7B 58.4 89.7 92.3 24.4
+ chunk(500) 60.4 79.8 83.0 37.8

AggreFact-XSum Bespoke-7B 69.7 58.3 74.4 65.1
+ chunk(500) 68.8 52.5 67.8 69.9

TofuEval-MediaS Bespoke-7B 72.1 82.9 91.6 52.5
+ chunk(500) 72.0 75.2 83.8 60.2

TofuEval-MeetB Bespoke-7B 77.1 80.8 90.6 63.7
+ chunk(500) 75.8 72.7 82.0 69.6

RAGTruth-CNN Bespoke-7B 77.4 90.0 93.4 61.4
+ chunk(500) 77.8 82.6 86.0 69.7

RAGTruth-News Bespoke-7B 78.7 89.3 94.0 63.5
+ chunk(500) 78.4 84.8 89.5 67.3

ClaimVerify Bespoke-7B 74.6 78.4 90.3 58.8
+ chunk(500) 74.6 78.0 89.9 59.3

Wice Bespoke-7B 85.5 36.7 84.4 86.5
+ chunk(500) 76.9 27.1 63.3 90.6

ExpertQA Bespoke-7B 61.9 61.2 65.2 58.7
+ chunk(500) 60.5 54.9 58.4 62.7

Lfqa Bespoke-7B 81.6 67.5 94.3 68.9
+ chunk(500) 80.7 66.0 92.0 69.4

RAGTruth-MARCO Bespoke-7B 85.9 83.7 86.0 85.7
+ chunk(500) 85.3 82.6 84.8 85.7

RAGTruth-Yelp Bespoke-7B 81.8 71.6 80.9 82.7
+ chunk(500) 78.7 63.1 71.5 85.9

Table 30: Change in Bespoke-7B evaluator predic-
tions with document chunking: We report the per-
formance of the Bespoke-7B evaluator without and
with input document chunking (chunk size of 500
words). These results are calculated on the subset of
examples where chunking is applicable. The evalua-
tor with chunking has a lower rate of predicting label
"attributable" (PPR = percent of examples predicted
as positive/attributable). Correspondingly, the TPR is
lower, while TNR is higher.

Figure 7: Predicted system-level error rate on
RAGTruth (summary-level). Claim-level misclassi-
fication and metric inconsistency lead to even larger
summary-level quantification bias.

When the evaluator predicts a score instead of 989

directly predicting a label, we can apply thresh- 990

old tuning. Same as before, we use the labeled 991

claim-document pairs for one system to tune the 992

threshold and then predict labels for the remaining 993

held-out systems using this tuned threshold. We 994

experiment with two tuning objectives: minimiz- 995

ing the absolute bias towards zero on the labeled 996

calibration data or maximizing the BAcc on the 997

labeled calibration data. 998

Table 31 provides the resulting mean absolute 999

bias by using each of the 6 systems one by one 1000

for calibration and computing bias on the remain- 1001

ing 5 systems. We report the average over all the 1002

calibration systems as the cross-validated bias in 1003

Table 1. We find that tuning the threshold for zero 1004

bias leads to consistent improvements in the held- 1005

out systems. Moreover, tuning for higher balanced 1006

accuracy hurts the error estimation on the held-out 1007

systems. We find that the adjusted counts approach 1008

does not provide an improvement over no adjust- 1009

ment if the system used for calibration has a low 1010

ground truth error rate. We believe that this is due 1011

to a skewed estimation of TPR and FPR when the 1012

prevalence of the label 0 is low. 1013
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Source Calibration Model GT Error Rate No Adjustment Adjusted Counts Thres. tuning for zero bias Thres. tuning for ↑BAcc

CNN/DM

gpt-3.5-turbo-0613 0.8 4.5 (6.1) 65.6 (86.5) 2.3 (4.7) 37.0 (42.9)
gpt-4-0613 1.9 4.1 (6.1) 18.2 (27.5) 1.5 (3.5) 3.1 (5.7)
llama-2-70b-chat 4.8 3.5 (6.1) 2.1 (3.7) 2.2 (4.7) 11.9 (17.8)
llama-2-13b-chat 9.6 3.5 (6.1) 1.8 (3.2) 1.6 (3.5) 11.3 (16.3)
llama-2-7b-chat 13.5 3.8 (6.1) 2.4 (4.8) 1.6 (3.6) 21.0 (27.7)
mistral-7B-instruct 13.5 4.2 (6.1) 1.8 (3.2) 2.0 (3.8) 4.8 (7.3)

Recent News

gpt-3.5-turbo-0613 0.8 3.3 (6.0) 11.2 (19.3) 1.7 (3.4) 7.7 (15.4)
gpt-4-0613 1.9 3.4 (6.0) 32.3 (52.0) 2.7 (4.3) 13.1 (24.8)
llama-2-70b-chat 5.4 3.1 (6.0) 8.4 (16.4) 1.6 (3.4) 7.7 (15.4)
llama-2-13b-chat 10.3 2.4 (5.6) 3.6 (9.4) 1.8 (5.6) 1.9 (4.2)
llama-2-7b-chat 11.1 2.5 (6.0) 3.2 (7.7) 1.7 (5.6) 12.3 (24.8)
mistral-7B-instruct 16.2 3.3 (6.0) 4.3 (8.3) 4.3 (7.7) 18.7 (28.2)

MARCO

gpt-4-0613 0.6 16.5 (22.6) 5.6 (8.4) 6.8 (10.4) 38.4 (44.4)
gpt-3.5-turbo-0613 1.9 16.0 (22.6) 22.9 (32.6) 3.7 (7.2) 30.0 (36.1)
llama-2-70b-chat 3.6 12.7 (20.6) 3.7 (8.4) 5.0 (8.4) 17.8 (27.7)
llama-2-13b-chat 7.0 13.7 (22.6) 3.3 (6.4) 1.4 (4.7) 6.8 (12.4)
llama-2-7b-chat 7.0 13.1 (22.6) 3.6 (8.4) 1.6 (4.7) 14.3 (24.0)
mistral-7B-instruct 8.4 14.1 (22.6) 3.9 (8.2) 1.9 (4.7) 14.1 (22.6)

Yelp

gpt-3.5-turbo-0613 2.7 17.6 (31.2) 52.8 (80.5) 6.7 (16.2) 32.9 (46.7)
gpt-4-0613 3.5 17.1 (31.2) 62.1 (80.5) 8.3 (19.4) 53.5 (66.9)
llama-2-70b-chat 19.5 12.2 (22.2) 11.4 (21.7) 6.6 (10.7) 4.5 (11.3)
mistral-7B-instruct 21.7 16.8 (31.2) 17.7 (35.9) 6.6 (16.2) 13.7 (26.7)
llama-2-7b-chat 24.5 14.0 (31.2) 8.3 (21.7) 4.0 (9.3) 6.1 (19.4)
llama-2-13b-chat 26.7 14.4 (31.2) 8.9 (21.7) 4.0 (6.7) 5.2 (16.2)

Table 31: Comparison of adjustment methods on RAGTruth: We report the bias in estimating the ground-truth
system error (hallucination) rates using three adjustment methods. In each section, we report mean absolute bias
by using one system for calibration and calculating the mean absolute bias over the remaining systems. Numbers
in parentheses indicate the worst-case bias over the remaining systems. Green cells indicate a decrease in bias
relative to "No Adjustment". Tuning the evaluator threshold for zero bias consistently reduces the absolute bias in
estimation over the held-out systems. Threshold tuning to maximize BAcc worsens the estimation of system-level
error. We see that the adjusted counts approach leads to high mean absolute bias when the ground truth error rate of
the system is low.

A.8 Claim-level Consistency of Metrics1014

As discussed in § 3.1, Figure 8 demonstrates that1015

the set of claims labeled as unattributable by two1016

top-performing metrics gpt-4-turbo and Bespoke-1017

7B has low overlap. Figures 9 and 10 show the1018

pairwise consistency (IoU) in predicting the la-1019

bel "attributable" and "unattributable" respectively1020

between the different evaluation metrics on each1021

dataset of LLM-AGGREFACT.1022

Figure 8: Intersection-over-Union of
"unattributable" predictions by gpt-4-turbo
and Bespoke-7B. IoU less than 50% on 5 of 14
datasets shows that the top-performing models (with
very similar balanced accuracy of 76.2% and 77.4%
respectively) have low consistency on what examples
they predict as "unattributable".
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Figure 9: Pairwise Intersection-over-Union of "unattributable" predictions by AutoAIS metrics.
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Figure 10: Pairwise Intersection-over-Union of "attributable" predictions by AutoAIS metrics.
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