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Abstract

Understanding the behavioral and neural dynamics of social interactions is a goal
of contemporary neuroscience. Many machine learning methods have emerged
in recent years to make sense of complex video and neurophysiological data that
result from these experiments. Less focus has been placed on understanding how
animals process acoustic information, including social vocalizations. A critical
step to bridge this gap is determining the senders and receivers of acoustic infor-
mation in social interactions. While sound source localization (SSL) is a classic
problem in signal processing, existing approaches are limited in their ability to
localize animal-generated sounds in standard laboratory environments. Advances
in deep learning methods for SSL are likely to help address these limitations,
however there are currently no publicly available models, datasets, or benchmarks
to systematically evaluate SSL algorithms in the domain of bioacoustics. Here,
we present the VCL Benchmark: the first large-scale dataset for benchmarking
SSL algorithms in rodents. We acquired synchronized video and multi-channel
audio recordings of 767,295 sounds with annotated ground truth sources across 9
conditions. The dataset provides benchmarks which evaluate SSL performance on
real data, simulated acoustic data, and a mixture of real and simulated data. We
intend for this benchmark to facilitate knowledge transfer between the neuroscience
and acoustic machine learning communities, which have had limited overlap.

Data is available at: vclbenchmark.flatironinstitute.org

1 Introduction

An ongoing renaissance of ethology in the field of neuroscience has shown the importance of con-
ducting experiments in naturalistic contexts, particularly social interactions [39, 1]. Most experiments
in social neuroscience have focused on relatively constrained contexts over short timescales, however
an emerging paradigm shift is leading laboratories to adopt longitudinal experiments in semi-natural
or natural environments [50]. With this shift comes significant data analytic challenges—such as how
to track individuals in groups of socially interacting animals—necessitating collaboration between
the fields of machine learning and neuroscience [10, 44].
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Substantial progress has been made in applying machine vision to multi-animal pose tracking and
action recognition [45, 32, 37, 56], however applications of machine audio for acoustic analysis
of animal generated social sounds (e.g. vocalizations or footstep sounds) have only recently begun
[49, 20]. To study the dynamics of vocal communication and their neural basis, ethologists and
neuroscientists have developed a multitude of approaches to attribute vocal calls to individual animals
within an interacting social group, however many existing approaches for vocalization attribution
necessitate specialized experimental apparatuses and paradigms that hinder the expression of natural
social behaviors. For example, invasive surgical procedures, such as affixing custom-built miniature
sensors to each animal [17, 48, 62], are often needed to obtain precise measurements of which
individual is vocalizing. In addition to being labor intensive and species specific, these surgeries are
often not tractable in very small or young animals, may alter an animal’s natural behavioral repertoire,
and are not scalable to large social groups. Thus, there is considerable interest in developing
non-invasive sound vocal call attribution methods that work off-the-shelf in laboratory settings.

Sound source localization (SSL) is a decades old problem in acoustical signal processing, and several
neuroscience groups have adapted classical algorithms from this literature to localize animal sounds
[41, 54, 64]. These approaches can work reasonably well in specialized acoustically transparent
environments, however they tend to fail in reverberant environments (see Supplement) that are
required for next-generation naturalistic experiments.

Data-driven modeling approaches with fewer idealized assumptions may be expected to achieve
greater performance [67]. Indeed, in the broader audio machine learning community, deep networks
are commonly used to localize sounds [22]. Typically, these approaches have been targeted at
human-scale acoustic environments—e.g. localizing sounds within rooms of a home [52]. To our
knowledge, no benchmark datasets or deep network models have been developed for localizing
sounds emitted by small animals (e.g. rodents) interacting in common laboratory environments (e.g.
a spatial footprint less than one square meter). To address this, we present benchmark datasets for
training and evaluating SSL techniques in reverberant conditions.

2 Background and Related Work

2.1 Existing Benchmarks

Acoustic engineers are interested in SSL algorithms for a variety of downstream applications. For
example, localization can enable audio source separation [35] by disentangling simultaneous sounds
emanating from different locations. Other applications include the development of smart home
and assisted living technologies [19], teleconferencing [63], and human-robot interactions [33]. To
facilitate these aims, several benchmark datasets have been developed in recent years including the
L3DAS challenges [23, 24, 21], LOCATA challenge [15], and STARSS23 [52].

Notably, all of these applications and associated benchmarks are (a) focused on a range of sound
frequencies that are human audible, and (b) focused on large environments such as offices and
household rooms with relatively low reverberation. Our benchmark differs along both of these
dimensions, which are important for neuroscience and ethology applications.

Many rodents vocalize and detect sounds in both sonic and ultrasonic ranges. For example, mice,
rats, and gerbils collectively have hearing sensitivity that spans ~50-100,000 Hz with vocalizations
spanning ~100-100,000 Hz [43]. Localizing sounds across a broad spectrum of frequencies introduces
interesting complications to the SSL problem. Phase differences across microphones carry less reliable
information for higher frequency sounds (see e.g. [28]). Moreover, a microphone’s spatial sensitivity
profile will generally be frequency dependent (see microphone specifications for ultrasonic condenser
microphone CM16-CMPA from Avisoft Bioacoustics). Therefore, sounds emanating from the same
location with the same source volume but distinct frequencies can register with unique level difference
profiles across microphones. Thus, different acoustical computations are required to perform SSL for
high and low frequency sounds. Indeed, we find that deep networks trained on low frequency sounds
in our benchmark fail to generalize when tested on high frequency sounds (see Supplementary Figure
1).

Moreover, many model organisms (rodents, birds, and bats) are experimentally monitored in labora-
tory environments made of rigid and reverberant materials. The use of these materials is necessary
to prevent animals from escaping experimental arenas, which is of particular concern when doing
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longitudinal semi-natural experiments. For example, in attempts to mitigate reverberance using
specialized equipment such as anechoic foam and acoustically transparent mesh, we found that
gerbils will climb or chew through material after a short time in the arena. Therefore, use of hard
plastic materials, even at the expense of being more reverberant, is required. Thus, the prevalence
and character of sound reflections is a unique feature of the VCL benchmark. For variety, we also
include benchmark data from an environment with sound absorbent wall material (E3).

2.2 Classical work on SSL in engineering and neuroscience

Conventional methods for SSL from acoustic signal processing are summarized in [12]. These
methods primarily use differences in arrival times or signal phase across microphones to estimate
sources; differences in volume levels are often ignored as a source of information (but see [3]). We
use the Mouse Ultrasonic Source Estimation (MUSE) tool [41, 64] as a representative stand-in for
these classic approaches in our benchmark experiments. An alternative method based on arrival times
was recently proposed by Sterling, Teunisse, and Englitz [55] (see also [42]).

Neural circuit mechanisms of SSL have been extensively studied in model organisms like barn owls,
which utilize exquisite SSL capabilities to hunt prey [30]. Neurons in the early auditory system
represent both interaural timing and level differences in multiple animal species [9, 4, 7]. Behavioral
studies in humans also establish the importance of both interaural timing and level differences [5], and
the relative importance of these cues depends on sound frequency and the level of sound reverberation,
among other factors [34, 28, 16]. Altogether, the neuroscience and psychophysics literature establishes
that animals are adept at localizing sounds in reverberant environments. Moreover, in contrast to
many classical SSL algorithms that leverage phase differences across audio waveforms, humans and
animals use a complex combination of acoustical cues to localize sounds.

2.3 Deep learning approaches to SSL

SSL algorithms account for a variety of event-specific factors including sound frequency, volume,
and reverberation. It is challenging to rationally engineer an algorithm to account for all of these
factors and the acoustic machine learning community has therefore increasingly turned to deep
neural networks (DNNs) to perform SSL. Grumiaux et al. [22] provide a recent and comprehensive
review of this literature, including popular architectures, datasets, and simulation methods. Existing
approaches to applying DNNs to SSL leverage a variety of input featurizations, like time-frequency
representations (spectrograms) of the input audio. In our experiments, we use raw audio waveforms
and DNNs with 1D convolutional layers, which are a reasonable standard for benchmarking purposes
(see e.g. [61]). Similar to the existing SSL benchmarks listed above, the vast majority of published
DNN models have focused on large home or office environments, which differ substantially from our
applications of interest.

2.4 Acoustic simulations

Across a variety of machine learning tasks, DNNs tend to require large amounts of training data [26].
This is problematic, since it is labor intensive to collect ground truth localization data and curate the
result to ensure accurate labels. To overcome this limitation, there is recent interest in leveraging
acoustic simulations to supplement DNN training sets. Geometric acoustic simulations such as the
image source method (ISM) [2] are popular, due to their relatively low computational cost, as well as
their ability to preserve spatial information necessary for SSL [8][31]. Recent work has shown that
use of room simulations generated using the ISM can also benefit model performance on real-world
data [27] and can improve robustness by simulating a wider range of acoustic conditions than is
present in an existing training dataset [47], despite perceptual limitations of the ISM. Given these
trends in the field, our dataset release includes simulated environments and code for performing ISM
simulations.

3 The VCL Dataset

The VCL Dataset consists of raw multi-channel audio and image data from 767,295 sound events with
ground truth 2D position of the sound event source established by an overhead camera. We recorded
synchronized audio (125 or 250 kHz sampling rate) and video (30 Hz or 150 Hz sampling rate) during
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Name # Samples

Speaker-4M-E1 70,914
Edison-4M-E1 266,877
GerbilEarbud-4M-E1 7,698
SoloGerbil-4M-E1 61,513
DyadGerbil-4M-E1 653

Hexapod-8M-E2 156,900

MouseEarbud-24M-E3 200,000
SoloMouse-24M-E3 549
DyadMouse-24M-E3 2,191

Table 1: Summary of datasets. Datasets
in blue were used as training sets and
for test sets when benchmarking SSL.
Datasets in red were used as test sets
when benchmarking sound attribution.

Name # Mics Dimensions (m)

Top: 0.61595 x 0.41275
E1 4 Bottom: 0.5588 x 0.3556

Height: 0.3683

Top: 1.2182 x 0.9144
E2 8 Bottom: 1.2182 x 0.9144

Height: 0.6096

Top: 0.615 x 0.615
E3 24 Bottom: 0.615 x 0.615

Height: 0.425

Table 2: Summary of environments. The final two
characters in each dataset name (refer to Table 1)
specifies the environment in which it was collected.

sound generating events from point sources emanating from either a speaker or real rodents. Sound
events were sampled across three environments of varying size, microphone array geometries, and
building material (Figure 1A-B, Table 1-2). Ground truth positions were extracted from the video
stream using SLEAP [45] or OpenCV, and vocal events from real rodents were segmented from the
audio stream using DAS [53]. To assess the quality of the machine-generated ground truth labels, we
sampled 50 random vocal events from each training dataset and had four researchers manually label
the ground truth location in each associated video frame (Supplementary Table 2). Timestamps from
sound events using speaker playback were either recorded by a National Instruments data acquisition
device or pre-computed and used to generate a wav file with known sound event onset times.

Brief descriptions of each dataset are included below and a more detailed description is provided in
the supplemental datasheet (see "Collection Process" section). For datasets that involved speaker
playback, we primarily used rodent vocalizations as stimuli (Figure 1C). In addition, we played sine
sweeps in each environment which were used to compute a room impulse response (RIR, see Section
3.5). All procedures related to the maintenance and use animals were approved by the University
Animal Welfare Committee at New York University and Princeton University. All experiments were
performed in accordance with the relevant guidelines and regulations.

3.1 Speaker Datasets

The Speaker Dataset (Speaker-4M-E1) was generated by repeatedly presenting five characteristic
gerbil vocal calls and a white noise stimulus at three volume levels (18 total stimulus classes) through
an overheard Fountek NeoCd1.0 1.5" Ribbon Tweeter speaker. Between every set of presentations, the
speaker was manually shifted two centimeters to trace a grid of roughly 400 points along the cage floor.
This procedure yielded a dataset of 70,914 presentations spanning the 18 stimulus classes. Gerbil
vocalizations can range in frequency from approximately 0.5-60 kHz and different vocalizations
correspond to different types of social interactions in nature [58]. In this study, we selected a diverse
set of commonly used vocal types vary in frequency range and ethologcial meaning.

3.2 Robot Datasets

The generation of the Speaker Dataset was quite labor intensive due to manual movement of the
speaker, therefore the procedure was impractical for generating additional training datasets at numeri-
cal and spatial scale. To get around this issue, we developed two robotic approaches for autonomous
playback of sound events. The Edison and Hexapod Datasets (Edison-4M-E1, Hexapod-8M-E2) were
generated by periodically playing vocalizations through miniature speakers affixed to the robots as
they performed a pseudo-random walk around the environment. The vocalizations used were sampled
from a longitudinal recording of gerbil families [46].
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Figure 1: Overview of VCL benchmark. (A) Schematics of three laboratory arenas summarized in
Table 2 showing relative size and positions of mics (X’s) and cameras (squares). (B) Top-down views
of different environments and training data generation modalities. (C) Examples of stimuli used for
playback from Speaker, Edison, Earbud, and Hexapod datasets. (D) Schematic of pipeline depicting
inputs (raw audio) and outputs (95% confidence interval).

3.3 Earbud Datasets

Speaker and robotic playback of vocalizations may not accurately represent the spatial usage and
direction of vocalizations in real animals. To address this, we acquired two "Earbud" datasets
(GerbilEarbud-4M-E1, MouseEarbud-24M-E3), in which gerbils or mice freely explored their envi-
ronment with an earbud surgically affixed to their skull. We then played species typical vocalizations
out of the earbud while animals exhibited a range of natural behaviors.

3.4 Solo/Dyad Gerbil & Mouse Datasets

Although isolated animals usually do not vocalize, we found that adolescent gerbils produce an-
tiphonal responses to conspecific vocalizations played through a speaker. We leveraged this behavior
to generate a large scale dataset, SoloGerbil-4M-E1, containing real gerbil-generated vocalizations in
isolation. In addition, we elicited solo vocalizations in male mice (SoloMouse-24M-E3) by allowing
female mice in estrus to explore the environment prior to male exploration.

Our ultimate goal is to use sound source estimates to attribute vocalizations to individuals in a group
of socially interacting animals. To this end, we acquired vocalizations from pairs of interacting
gerbils and mice (DyadGerbil-4M-E1, DyadMouse-24M-E3). Although we are unable to determine
the ground truth position of vocalizations recorded from these interactions, we do know the locations
of both potential sources and can therefore ascertain whether our model generates predictions with
zero, one, or two animals within its confidence interval (See Task 2 below).

3.5 Synthetic Datasets

Since DNNs often require large training datasets and generation of datasets in the domain of SSL is
laborious, we explored the use of acoustic simulations for supplementing real training data (Figure 2).
We generated in silico models of our three environments accounting for physical measurements of the
geometry, microphone placement, microphone directivity, and estimates of the material absorption
coefficients (calculated via the inverse Sabine formula on room impulse response measurements with
a sine sweep excitation). Code to reproduce these simulations and adapt them to new environments is

5



Figure 2: (A) Visualization of virtual room used for sythetic RIR generation via ISM (B) Sample
of a room configuration YAML used to specify room geometry for simulations (C) Spectrograms
comparing vocalizations convolved with recorded RIRs and simulated RIRs (D) Localization error as
a function of added simulated data to the training corpus.

included in our code package accompanying the VCL benchmark. In preliminary experiments, we
found that training DNNs on mixtures of real and simulated data can benefit performance (Figure 2D).
DNNs trained exclusively on simulated data and evaluated on real data yields performance that
marginally exceeds chance, but fails to match up to DNNs trained on smaller real datasets. This gap
in performance indicates that our virtual acoustic models do not adequately simulate real acoustic
environments. We believe that future work incorporating more robust acoustic simulations can bridge
this gap. For these reasons, we do not include simulated data in benchmark experiments described
below.

4 Benchmarks on VCL

We established a benchmark on the VCL Dataset using two distinct tasks.

• Task 1 - Sound Source Localization: Compare the performance of classical sound source
localization algorithms with deep neural networks.

• Task 2 - Vocalization Attribution: Assign vocalizations to individuals in a dyad.

We evaluated performance on Task 1 using datasets with a single sound source (marked in blue in
Table 1). We calculated the centimeter error between ground truth and predicted positions. Our aim is
to achieve errors less than or equal to ~1 cm, as this is the approximate resolution required to attribute
sound events to individual animals.3 We also sought to benchmark the accuracy of model-derived
confidence intervals. That is, for each prediction the model should produce a 2D set that contains
the sound source with specified confidence (e.g. a 95% confidence set fail to contain the true sound
source on only 5% of test set examples). Following procedures from Guo et al. [25], we plot reliability
diagrams and report the expected calibration error (ECE) and maximal calibration error (MCE).

We evaluated performance on Task 2 using datasets with two potential sound sources (marked in
red in Table 1). For Task 2, we report the number of animals inside the 95% confidence set of
model predictions. For each sound event, the model can predict zero, one, or two animals within its
confidence set. We report the frequency of each of these outcomes and interpret them as follows.
First, if only one animal is within the confidence set, the model attributes the vocalization to that
animal. We cannot for verify whether this attribution is correct because (unlike the datasets used in
Task 1) we do not have ground truth measurements of the sound source. Second, if two animals are
within the confidence set, then the model is unable to reliably attribute the sound to an individual.
This outcome is neither correct nor incorrect. Finally, if zero animals are within the confidence set,
then the model has falsely attributed the sound to a region. This outcome is clearly incorrect and
should ideally happen less than 5% of the time when using a 95% confidence set.

3See, for example, Figure 1D in [55] for a distribution of inter-animal distances during natural social behavior.
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Figure 3: Benchmark performance. (A-E) Cumulative error distributions for MUSE and neural
networks. (F-J) Reliability diagrams for MUSE (orange) and neural networks with (green) and
without (blue) temperature scaling on heldout data from each dataset.

4.1 Convolutional Deep Neural Network

The network consists of 1D convolutional blocks connected in series. The network takes in raw
multi-channel audio waveforms and outputs the mean and covariance of a 2D Gaussian distribution
over the environment. Intuitively, the mean represents the network’s best point estimate of the sound
source and the scale and shape of the covariance matrix corresponds to an estimate of uncertainty.
The network is trained with respect to labeled 2D sound source positions to minimize a negative log
likelihood criterion—this is a proper scoring rule [18] which encourages the model to accurately
portray its confidence in the predicted covariance. That is, the 95% upper level set of the Gaussian
density should ideally act as a 95% confidence set. However, in line with previous reports, we
sometimes observe that DNN confidence intervals are overconfident. In these cases, we use a
temperature scaling procedure to calibrate the confidence intervals [25]. Further details on data
preprocessing, model architecture, training procedure are provided in the Supplement.

4.2 MUSE Baseline Model

We compare the DNNs to a delay-and-sum beamforming approach used by neuroscientists called
MUSE [41, 64]. MUSE works by computing cross-correlation signal between all pairs of microphone
signals across hypothesized sound source locations, using the distance between microphones and the
speed of sound to compute arrival time delays. The location that maximizes the summed response
power over all microphones is then selected as a point estimate. We generate 95% confidence sets
using a jackknife resampling technique proposed in Warren, Sangiamo, and Neunuebel [64].

4.3 Task 1 Results

Deep neural networks consistently produced estimates closer to the ground truth source than MUSE
(Figure 3 A-E, Table 3). DNN performance was particularly strong on the Edison-4M-E1 and
Speaker-4M-E1 datasets, achieving <1 cm error on 80.6% and 66.0% on the respective test sets. As
mentioned above, this level of resolution should enable attribution of most vocalizations in realistic
social encounters in rodents [55]. DNNs also outperformed MUSE on the remaining three datasets;
however, they achieved sub-centimeter errors on less than 10% of the test set in all cases.

Moreover, we found that DNNs provide more accurate estimates of uncertainty relative to MUSE, as
calculated by ECE and MCE (Table 4). This performance difference is visible in reliability diagrams,
which show that MUSE predictions are over-confident (Figure 3F-J).
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Dataset DNN Error (cm) MUSE Error (cm)
Mean Median % <1cm Mean Median % <1cm

Speaker-4M-E1 1.4 0.2 80.6% 6.4 4.8 5.9%
Edison-4M-E1 1.4 0.7 66.0% 9.5 7.1 3.1%

SoloGerbil-4M-E1 12.0 10.0 1.0% 13.2 10.8 1.0%
Hexapod-8M-E2 12.9 5.2 4.8% 18.1 15.6 0.3%

MouseEarbud-24M-E3 4.1 2.6 8.7% 11.3 7.6 3.3%

Table 3: Summary of sound source localization errors for Task 1.

Dataset DNN Scaled DNN MUSE
ECE MCE ECE MCE ECE MCE

Speaker-4M-E1 0.13 0.23 0.05 0.13 0.17 0.36
Edison-4M-E1 0.03 0.07 - - 0.12 0.25

SoloGerbil-4M-E1 0.08 0.13 0.03 0.06 0.24 0.47
Hexapod-8M-E2 0.03 0.11 - - 0.22 0.40

MouseEarbud-24M-E3 0.03 0.06 - - 0.25 0.45

Table 4: Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) for Task 1.

4.4 Task 2 Results

To test the ability of our DNNs to assign vocalizations to individuals in dyadic interactions, we used
DNNs trained on single-agent datasets, MouseEarbud-24M-E3 and SoloGerbil-4M-E1 respectively,
to compute confidence bounds on vocalizations from the dyadic datasets MouseDyad-24M-E3 and
GerbilDyad-4M-E1. As described above, we used temperature rescaling to ensure DNN confidence
sets were well-calibrated. While we were capable of assigning between 19-29% of these calls to a
single animal, over half of the vocalizations in each interaction yielded a confidence bound containing
both animals (Table 5). Methods to resolve these shortcomings remain a focus of future work.

5 Limitations

Neuroscientists are interested in localizing sounds across a broad range of settings. We aimed to cover
multiple rodent species (gerbils and mice), environment sizes, and microphone array geometries in
this initial release. We also leveraged robots and head-mounted earbud speakers to collect sounds with
known ground truth. However, this benchmark does not yet cover all use cases in neuroscience. Other
commonly used model species—e.g., marmosets[14], bats[59], and various bird species[6]—are of
great interest and are not covered by the current benchmark. Our experiments show that deep neural
networks trained to localize sounds can fail to generalize across vocal call types (see Supplementary
Figure 1). It would therefore be valuable to expand this benchmark to include a wider variety of
animal species, call types, and increase the number of training samples. To this end, we include
additional datasets which were not used in Task 1 due to their relatively small size (GerbilEarbud-4M-
E1, SoloMouse-24M-E3), which will aid future experiments assessing generalization performance
across datasets (e.g. train on Speaker-4M-E1, predict on GerbilEarbud-4M-E1).

Our current benchmark only provides images from a single camera view, which can be used to localize
sounds in 2D. While this agrees with current practices within the field [41, 54, 38] and is in line with
the equipment readily available to most labs, it is insufficient to infer 3D body pose information. One
could imagine that knowing the 3D position and 3D heading direction of a vocalizing rodent could
provide a more rich and effective supervision signal to train a deep network. A number of 3D pose
tracking tools for animal models have been developed in very recent years [66, 40, 29, 36, 13]. These
tools could be leveraged if future benchmarks collect multiple camera views. Ultimately, it would be

Gerbil Dyad Mouse Dyad
# Animals Captured 0 1 2 0 1 2

Percentage 6.1% 28.6% 65.2% 8.9% 19.4% 71.7%

Table 5: Vocalization attribution results. Number of animals captured within the 95% confidence set.
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useful to compare performance across 3D and 2D benchmarks, to ascertain whether the sound source
localization problem is indeed easier in one setting or the other.

6 Discussion

SSL is a well-known and challenging problem. We collected a variety of datasets and developed
benchmarks to assess these challenges in the context of neuroethological experiments in vocalizing
rodents. This involves localizing sounds in reverberant environments across a very broad frequency
range (including ultrasonic events), distinguishing our work from more standard SSL benchmarks
and algorithms. Our experiments reveal that DNNs are a promising approach. In controlled settings
(Edison-4M-E1 and Speaker-4M-E1 datasets), DNNs achieved sub-centimeter resolution. In larger
environments (Hexapod-8M-E2) and in datasets with uncontrolled 3D variation in sound emissions
(SoloGerbil-4M-E1 and MouseEarbud-24M-E3), DNN performance was less impressive, but still
outperformed a well-established benchmark algorithm (MUSE), that is currently utilized.

In addition to continuing to experiment with advances in machine vision/audio, we are also interested
in exploring performance improvements due to hardware optimization. Parameters such as number of
microphones, their positions/directivity, and environment reverberance can all affect SSL performance.
Future experiments will leverage acoustic simulations to explore this parameter space. Initial
results suggest that varying the amount of reverberation in an environment drastically affects SSL
performance and that this effect is more pronounced in MUSE than DNNs (see Supplementary
Figure 3). Moreover, we assessed whether specific acoustic or environmental features within the
dataset affect model performance (Supplementary Figure 4). Sound power and distance from center
of environment have a compelling effect on performance, where low power sounds and sounds
that occur far away from the center of the arena (i.e. close to the walls) are difficult to localize.
Fundamental frequency does not have a strong relationship to performance.

The ultimate goal of most neuroscientists in this context is to attribute vocal calls to individuals
amongst an interacting social group. Accurate SSL would enable this, but it is also possible to
reframe this problem as a direct prediction task. Specifically, given a video and audio recording
of K interacting animals with ground truth labels for the source of each sound event, DNNs could
be trained to perform K-way classification to identify the source. Future work should investigate
this promising alternative approach, as it would enable DNNs to jointly leverage information from
audio and video data as network inputs. On the other hand, we note several challenges that must be
overcome. First, establishing ground truth in multi-animal recordings is non-trivial, though feasible
in certain experiments [17, 48, 62]. Second, DNNs trained to process raw video can have trouble
generalizing across recording sessions due to subtle changes in lighting or animal appearance [65,
51]. Finally, we note that at least K = 2 animals are required to make the problem nontrivial (when
K = 1 the DNN could ignore the audio input to predict the source). It will be important to establish
a flexible DNN architecture that can make accurate predictions even when the animal group size, K,
is altered (see e.g. [68]). It is already possible to use the VCL datasets to explore these possibilities.
For example, one could use audio and video data taken from the same or different sound events to
train a DNN with a multimodal contrastive learning objective (see e.g. [57], for a related concept).

In summary, there are many promising, but under-investigated, machine learning methodologies for
annotating vocal communication in rodents. The VCL benchmark is our attempt to spark a broader
community effort to investigate the potential of these computational approaches. Indeed, collecting
and curating these datasets is labor-intensive and in our case involved collaboration across multiple
neuroscience labs. To our knowledge, very little (if any) comparable data containing raw audio and
video from many thousands of rodent vocal calls currently exists in the public domain. Thus, we
expect the VCL benchmark will enable new avenues of research within computational neuroscience.
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Supplementary Information

Figure 1: Generalizability across stimulus types. A.) Performance of models trained on single stimuli
from Speaker-4M-E1 dataset and evaluated on all other stimulus types. (B) Stimuli used for speaker
data set (dfm = down frequency modulated, sc = soft chirp, stack = harmonic stack, ufm = up
frequency modulated)

Ultimately, we aim to create a tool that can be easily adapted by other labs which may have different
recording environments. Additionally, we wish to utilize the tool for long-term recordings in which
the types of vocalizations encountered may change over time as the animals enter new stages of life.
As such, we have significant interest in the model’s ability to generalize to unfamiliar vocal calls

To explore this, we tested the ability of deep networks to generalize to new vocal calls with different
acoustic features. We partitioned the Speaker-4M-E1 Dataset according to stimulus type (Supple-
mentary Figure 2A), trained a deep neural network on each subset, and measured its performance
on every stimulus type individually (Supplementary Figure 2B). We found that while many models
could generalize to new stimuli with performance exceeding chance, their ability to do so is greatly
overshadowed by their performance on their own subsets. Models trained on a single stimulus type
generalized well to the same stimulus at different volumes. (Supplementary Figure 2B, 3x3 block
structure). This suggests that the networks are adapted to the statistics of the training set, and that
training on a range of vocalizations with diverse spectral features will be necessary to achieve good
performance across experimental cohorts, each of which may utilize slightly different vocal calls.
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Figure 2: Network architecture.

Layer Channels Downsample
1 32 No
2 32 Yes
3 64 No
4 64 Yes
5 128 No
6 128 Yes
7 256 No
8 256 Yes
9 512 No

10 512 Yes

Table 1: Model Architecture Hyperparameters. Our model consists of 10 convolutional blocks. All
use a kernel size of 33, dilation of 1, and stride of 1.

Mirroring gated linear units [11] and WaveNet [60], we apply tanh and sigmoid nonlinearities to the
output of convolutions and multiply them element-wise. We add this product to the result of a third
convolution and apply batch normalization to the sum. On layers with temporal downsampling, we
perform average pooling with a stride and kernel size of 2 prior to normalization. On our datasets
with four microphones, we incorporate pairwise cross-correlations of the microphone signals by
concatenating the central elements of each cross-correlogram into a vector, passing it through a
shallow MLP, and concatenating the result to the output of the final convolutional block. The
model outputs the mean and covariance of a 2D Gaussian distribution with covariance specified by
a Cholesky factor matrix. To parametrize the 2D gaussian posterior distribution, we first average
the output of the final convolutional block over its time dimension and linearly project it to five
components. Two of these determine the distribution’s mean and the other three parametrize the
Cholesky decomposition of the distribution’s covariance matrix. In order to ensure the Cholesky
factor has positive diagonals, we apply the softplus nonlinearity to the diagonal elements. During
training, we evaluate the log likelihood of the ground truth positions with respect to the 2D Gaussians
output by the network. We minimize the negative log likelihood using stochastic gradient descent
with momentum. Throughout 50 epochs, we anneal the learning rate to 0 using a cosine schedule.
We do not use weight decay.

For data preprocessing, we normalize the audio by ensuring a zero mean and unit variance across
all elements, rather than scaling each channel individually. This approach ensures amplitude differ-
ences between channels are preserved after normalization. Throughout training, we apply various
augmentations to the audio to enhance sample efficiency and performance on the validation set. As
vocalization lengths vary substantially, we randomly crop them to a standardized length of 8192
samples (65.5ms at 125kHz) to facilitate batched computations. Additional augmentations include
temporal masking, the introduction of white noise, and phase inversion. With the exception of
cropping, which is applied universally to all samples, each augmentation has a 50% chance of being
applied to a given vocalization.
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Figure 3: SSL performance with varying environmental reverberance.

We explored whether SSL performance systematically varied as a function of reverberance using
acoustic simulations. First, we simulated an E1 environment, then simulated microphone signals
from 50,000 gerbil vocalizations randomly sampled from [46]. Next, we compared DNN vs. MUSE
(beamforming) performance and showed that DNNs (purple) outperform MUSE (green) in reverberant
conditions and achieve equal performance in non-reverberant conditions. Furthermore, we explored
which cues (temporal or level, i.e. akin to ITD and ILD cues used by animals) DNNs relied on for
SSL. We created augmented training sets that either scrambled level differences between microphone
channels (thereby only maintaining reliable time differences, red) or scrambled time differences
(thereby only maintaining reliable level differences, blue). We find that time-only DNN performance
matches MUSE, which is consistent with the fact that MUSE and other beamforming algorithms
are time-only models. In addition, we find that level-only models outperform time-only models in
reverberant conditions, but do worse in non-reverberant enrionments. Intriguingly, DNNs trained
with both time and level (purple) perform better than level-only models in reverberant environments,
suggesting that DNNs are making use of both available cues, though likely relying more on level.
Future studies will aim to better understand how DNNs and biological neural networks balance the
relative use of these two cues in reverberant listening conditions.
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Figure 4: Effect of acoustic and environmental factors on localization performance.

To assess whether variation in localization performance relates to interpretable features in the dataset,
we plotted the fundamental frequency, power, and distance to center of each sample in the test set as
a function of localization error. Indeed, samples that are lower power and further from the center
(i.e. next to the wall) are more difficult to localize. There is not an appreciable relationship between
frequency of sample and localization error.
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Dataset Error (px)
Mean Median Max Min Human std

Speaker-4M-E1 5.8 6.2 12.3 0.8 0.6
Edison-4M-E1 5.4 5.9 12.8 0.9 1.3

SoloGerbil-4M-E1 28.8 18.5 184.6 7.0 1.0
Hexapod-8M-E2 7.2 6.7 16.3 1.0 2.6

MouseEarbud-24M-E3 4.9 4.2 23.9 0.7 1.5

Table 2: Analysis of error in machine-labeled ground truth.

Four researchers were tasked with annotating ground truth locations of the sound source within
50 video frames from each training dataset. We compared these human ground truth annotations
with machine labeled ground truth locations used for SSL model training in this benchmark. The
error in the machine label for each image was computed as the pixel distance between that label
and the centroid of the human labels for the image in pixel space. We report the mean, median,
maximum, and minimum error for each training dataset in addition to the average amount of deviation
from the centroid in the human labels. SoloGerbil-4M-E1 exhibited a higher than expected error in
machine-labeled ground truth locations, which at least partially explains the relatively high sound
localization error for this dataset (Figure 3C, Table 3). Future releases of this benchmark will improve
ground truth labels.
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