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Abstract. The reconstruction problem of discrete tomography is stud-
ied using novel techniques from compressive sensing. Recent theoretical
results of the authors enable to predict the number of measurements re-
quired for the unique reconstruction of a class of co-sparse dense 2D and
3D signals in severely undersampled scenarios by convex programming.
These results extend established `1-related theory based on sparsity of
the signal itself to novel scenarios not covered so far, including tomo-
graphic projections of 3D solid bodies composed of few different materi-
als. As a consequence, the large-scale optimization task based on total-
variation minimization subject to tomographic projection constraints is
considerably more complex than basic `1-programming for sparse reg-
ularization. We propose an entropic perturbation of the objective that
enables to apply efficient methodologies from unconstrained optimization
to the perturbed dual program. Numerical results validate the theory for
large-scale recovery problems of integer-values functions that exceed the
capacity of the commercial MOSEK software.
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1 Introduction

This paper addresses the problem of reconstructing compound solid bodies u
from few tomographic projections: Au = b. Theoretical guarantees of recon-
struction performance relate to current research in the field of compressive sens-
ing, concerned with real sensor matrices A that do not satisfy commonly made
assumptions like the restricted isometry property.

By adopting the cosparse signal model [1] that conforms to our tomographic
scenario, the authors [2] recently established the existence of “phase transitions”
that relate the required limited(!) number of measurements to the cosparsity
level of u in order to guarantuee unique recovery. This result was extensively



validated numerically using the commercial MOSEK software, to avoid that
numerical optimization issues affect the validation.

For our 3D problems a dedicated numerical optimization algorithm is neces-
sary, however, because MOSEK cannot handle medium and large problem sizes.
We present in this paper such an approach by utilizing the fact that adequate
perturbations of the optimization problem may lead to a simpler dual prob-
lem [3, 4]. We work out a corresponding approach to our specific reconstruction
problem

min
u

TV(u) subject to Au = b, (1)

that minimizes the total variation TV(u) subject to the projection constraints.
Organization. Section 2 briefly reports the above-mentioned phase transi-

tions, followed by presenting a reformulation in Section 3 together with unique-
ness results. A suitable perturbation is worked out in Section 4 that favourably
compares to MOSEK for relevant problem sizes (Section 5).

Basic Notation. For n ∈ N, we denote [n] = {1, 2, . . . , n}. The complement of a
subset J ⊂ [n] is denoted by Jc = [n] \J . For some matrix A and a vector z, AJ
denotes the submatrix of rows indexed by J , and zJ the corresponding subvector.
Ai will denote the ith row of A. N (A) and R(A) denote the nullspace and the
range ofA, respectively. Vectors are columns vectors and indexed by superscripts.
Sometimes we write e.g. (u, v)> instead correctly (u>, v>)>. A> denotes the
transposed of A. 1 = (1, 1, . . . , 1)> denotes the one-vector whose dimension will
always be clear from the context. The dimension of a vector z is dim(z). 〈x, z〉
denotes the standard scalar product in Rn and we write x ⊥ z if 〈x, z〉 = 0.

The indicator function of a set C is denoted by δC(x) :=

{
0, if x ∈ C
+∞, if x /∈ C.

σC(x) := supy∈C〈y, x〉 denotes the support function of nonempty set C. ∂f(x)
is the subdifferential of f at x and intC and rintC denote the interior and the
relative interior of a set C. f∗ conjugate function of f . We refer to [5] for related
properties.

In what follows, we will work with an anisotropic discretization of the TV
operator in (1) given by

TVd(u) := ‖Bu‖1, B :=

∂1 ⊗ I ⊗ II ⊗ ∂2 ⊗ I
I ⊗ I ⊗ ∂3

 ∈ Rp×n , (2)

where ⊗ denotes the Kronecker product and ∂i, i = 1, 2, 3, are derivative ma-
trices forming the forward first-order differences of u wrt. the respective co-
ordinates. Implicitly, it is understood that u on the r.h.s. of (2) is a vector
representing all voxel values in appropriate order.

2 Weak Phase Transitions for TV-Based Reconstruction

We summarize in this section an essential result from [2] concerning the unique
recovery from tomographic projection by solving problem (1), depending on the



cosparsity level ` of u (Definition 1) and the number m of measurements (pro-
jections) of u. This result motivates the mathematical programming approach
discussed in Section 3 and the corresponding numerical optimization approach
presented in Section 4.

Definition 1 (cosparsity, cosupport). The cosparsity of u ∈ Rn with respect
to B ∈ Rp×n is

` := p− ‖Bu‖0 , (3)

and the cosupport of u with respect to B is

Λ := {r ∈ [p] : (Bu)r = 0}, |Λ| = ` . (4)

Thus, BΛu = 0. In view of the specific operator B given by (2), ` measures the
homogeneity of the volume function u. A large value of ` can be expected for u
corresponding to solid bodies composed of few homogeneous components.

Proposition 1 ([2, Cor. 4.6]). For given A ∈ Rm×n and B ∈ Rp×n, suppose
the rows of ( AB ) are linearly independent. Then a `-cosparse solution u to the
measurement equations Au = b will be unique if the number of measurements
satisfies

m ≥ 2n− (`+
√

2`+ 1− 1) (d = 2) , (5a)

m ≥ 2n− 2

3

(
`+

3
√

3`2 + 2
3

√
`

3
− 2
)

(d = 3) . (5b)

The above lower bounds on the number of measurements m required to re-
cover a `-cosparse vector u imply that recovery can be carried out by solving
minu ‖Bu‖0 subject to Au = b. Replacing this objective by the convex relax-
ation (2) yields an excellent agreement of empirical results with the prediction
(5), as shown in [2], although the independency assumption made in Prop. (1)
does not strictly hold for the sensor matrices A and the operator B (2) used in
practice.

This motivates to focus on efficient and sparse numerical optimization tech-
niques that scale up to large problem sizes.

3 TV-Recovery by Linear Programming

We consider the discretized TV-term (2), an additional nonnegative constraint
on image u and express Bu = z. Thus, (1) becomes

min
u,z
‖z‖1 s.t. Bu = z, Au = b, u ≥ 0 . (6)



3.1 Primal Linear Program and its Dual

By splitting the variable z in its positive v1 := max{0, z} and negative part
v2 := −min{0, z} we convert problem (6) into a linear program in normal form.
With

M :=

(
B −I I
A 0 0

)
, q :=

(
0
b

)
, (7)

and the polyhedral set

P := {y ∈ Rn+2p : Mx = q, x ≥ 0}, x := (u, v1, v2)> , (8)

problem (6) becomes the linear program (P )

(P ) min
x∈P
〈c, x〉 = min

(u,v1,v2)∈P
〈1, v1 + v2〉, c = (0,1,1)> . (9)

We further assume that P 6= ∅ and a feasible solution always exists. Due to
c ≥ 0, the linear objective in P is bounded on P. Thus (P ) always has a solu-
tion under the feasibility assumption. In view of basic linear programing theory,
compare [5, 11.43], the dual program also has a solution. The dual program (D)
reads

(D) min
y
−〈q, y〉, M>y ≤ c .

With

y =

(
y0
yb

)
, M>y =

B> A>−I 0
I 0

 , y =

B>y0 +A>yb
−y0
y0

 , (10)

this reads

min
y0,yb
−〈b, yb〉 s.t. B>y0 +A>yb ≤ 0, −1 ≤ y0 ≤ 1 . (11)

Moreover, both primal and dual solutions (x, y) will satisfy the following
optimality conditions

0 ≤ c−M>y ⊥ x ≥ 0 , (12)

Mx = q . (13)

3.2 Uniqueness of Primal LP

A classical argument for replacing ‖ ·‖0 by ‖ ·‖1 and solving for (6) is uniqueness
of the LP solution. Let x = (u, v) = (u, v1, v2) be `-cosparse and solve (9). We
assume throughout

ui > 0, i ∈ [n] . (14)

Based on x, we define the corresponding support set

J := {i ∈ [dim(x)] : xi 6= 0} = supp(x), J := Jc = [dim(x)] \ J . (15)



Denoting k := p− ` the cardinality of the index sets J and J is

|J | = 2`+ k = p+ `, |J | = n+ 2p− |J | = n+ k , (16)

compare [2, Lem. 5.3]. This shows that x ∈ Rn+2p is a n+ k-sparse vector.

Theorem 1 ([6, Thm. 2(iii)]). Let x be a solution of the linear program (9).
The following statements are equivalent:

(i) x is unique.
(ii) There exists no x satisfying

Mx = 0, xJ ≥ 0, 〈c, x〉 ≤ 0, x 6= 0 . (17)

Theorem (1) can be turned into a nullspace condition w.r.t. the sensor matrix
A, for the unique solvability of problems (9) and (6).

Proposition 2 ([2, Cor. 5.3]). Let x = (u, v1, v2) be a solution of the linear
program (9) with component u that has cosupport Λ with respect to B. Then x,
resp. u, are unique if and only if

∀x =

(
u
v

)
, v =

(
v1

v2

)
s.t. u ∈ N (A) \ {0} and Bu = v1 − v2 (18)

the condition
‖(Bu)Λ‖1 >

〈
(Bu)Λc , sign(Bu)Λc

〉
(19)

holds. Furthermore, any unknown `-cosparse vector u∗, with Au∗ = b, can be
uniquely recovered as solution u = u∗ to (6) if and only if, for all vectors u
conforming to (18), the condition

‖(Bu)Λ‖1 > sup
Λ⊂[p] : |Λ|=`

sup
u∈N (BΛ)

〈
(Bu)Λc , sign(Bu)Λc

〉
(20)

holds.

Remark 1. Conditions (19) and (20) clearly indicate the direct influence of cospar-
sity on the recovery performance: if ` = |Λ| increases, then these conditions will
more likely hold. On the other hand, these results are mainly theoretical since
numerically checking (20) is infeasible. However we will assume that uniqueness
of (6) is given, provided that the cosparsity ` of the unique solution u satisfies the
conditions in (5a) and (5b). This assumption is motivated by the comprehensive
experimental assessment of recovery properties reported in [2].

Remark 2. We note that, besides the condition for uniqueness from Thm. (1),
uniqueness of a LP solution is provided in case of a unique feasible point. For
high cosparsity levels `, this seems to be often the case.

Let x be a (possibly unique) primal solution of (P ) and y a dual solution. In
view of (15) and (12) we have

(c−M>y)i = 0, ∀i ∈ J . (21)

We note that non-degeneracy of the primal-dual pair (x, y) implies uniqueness
of the dual variable y.



4 Recovery by Perturbed Linear Programming

Preliminaries: Fenchel Duality Scheme. We will use the following result.

Theorem 2 ([5]). Let f : Rn → R, g : Rm → R and A ∈ Rm×n. Consider the
two problems

inf
x∈Rn

ϕ(x), ϕ(x) = 〈c, x〉+ f(x) + g(b−Ax), (22a)

sup
y∈Rm

ψ(y), ψ(y) = 〈b, y〉 − g∗(y)− f∗(A>y − c) . (22b)

where the functions f and g are proper, lower-semicontinuous (lsc) and convex.
Suppose that

b ∈ int(Adom f + dom g), (23a)

c ∈ int(A> dom g∗ − dom f∗) . (23b)

Then the optimal solutions x, y are determined by

0 ∈ c+ ∂f(x)−A>∂g(b−Ax), 0 ∈ b− ∂g∗(y)−A∂f∗(A>y − c) (24a)

and connected through

y ∈ ∂g(b−Ax), x ∈ ∂f∗(A>y − c), (25a)

A>y − c ∈ ∂f(x), b−Ax ∈ ∂g∗(y) . (25b)

Furthermore, the duality gap vanishes: ϕ(x) = ψ(y) .

Entropic Perturbation and Exponential Penalty. In various approaches
to solving large-scale linear programs, one regularizes the problem by adding to
the linear cost function a separable nonlinear function multiplied by a small pos-
itive parameter. Popular choices of this nonlinear function include the quadratic
function, the logarithm function, and the 〈x, log(x)〉-entropy function. Our main
motivation in following this trend is that by adding a strictly convex and sep-
arable perturbation function, the dual problem will become unconstrained and
differentiable. Consider

(Pε) min〈c, x〉+ ε〈x, log x− 1〉 s.t. Mx = q, x ≥ 0 . (26)

The perturbation approach by the entropy function was studied by Fang et
al. [4, 7] and, from a dual exponential penalty view, by Cominetti et al. [8].

The Unconstrained Dual. We write (Pε) (26) in the form (22a)

minϕ(x), ϕ(x) := 〈c, x〉+ ε〈x, log x− 1〉+ δRn+(x)︸ ︷︷ ︸
:=f(x)

+δ0(q −Mx) . (27)

With g := δ0, we get g∗ ≡ 0, since δ∗C ≡ σC and thus

g∗(y) = δ∗0(y) = σ0(y) = sup
z=0
〈y, z〉 = 0, ∀y ∈ Rn



holds. On the other hand, we have f∗(y) = ε〈1, e
y
ε 〉. Now (22b) gives immedi-

ately the dual problem

supψ(y), ψ(y) := 〈q, y〉 − ε〈1, e
M>y−c

ε 〉 . (28)

We note that ψ is unconstrained and twice differentiable with

∇ψ(y) = q −Me
M>y−c

ε and (29a)

∇2ψ(y) = −1

ε
M diag e

M>y−c
ε M> . (29b)

Moreover, −∇2ψ � 0 for all y, with e
M>y−c

ε ∈ R(M) = N (M)⊥, in view of
(29b). Note that if ψ has a solution then it is unique and the strictly feasible
set must be nonempty, see (29a), thus rintP = {x : Mx = q, x > 0} 6= ∅ ⇔
q ∈M(Rn++). Further we can rewrite (28) in more detailed form in view of (10)

(Dε) min
y0,yb
−〈b, yb〉+ε〈1n, e

B>y0+A>yb
ε 〉+ε〈1p, e

−y0−1p
ε 〉+ε〈1p, e

y0−1p
ε 〉 . (30)

Connecting Primal and Dual Variables. With dom g = 0, dom g∗ = Rn,
dom f∗ = Rn and dom f = Rn+, the assumptions (23) become q ∈ intM(Rn+) =
M(intRn+) = M(Rn++), compare [5, Prop. 2.44], and c ∈ intRn = Rn. Thus,
under the assumption of a strictly feasible set, we have no duality gap. Moreover
both problems (27) and (28) have a solution.

Theorem 3. Denote by xε and yε a solution of (Pε) and (Dε) respectively. Then
the following statements are equivalent:

(a) q ∈M(Rn++), thus the strictly feasible set is nonempty.
(b) The duality gap is zero ψ(yε) = ϕ(xε) .
(c) Solutions xε and yε of (Pε) and (Dε) exist and are connected through

xε = e
M>yε−c

ε . (31)

Proof. (a)⇒ (b): holds due to Thm. 2. On the other hand, (b) implies solvability
of ψ and thus (a), as noted after Eq. (29b). (a)⇒ (c): The assumptions of Thm. 2
hold. Now ∂f∗(y) = {∇f∗(y)} = {e

y
ε } and the r.h.s. of (25a) gives (c). Now, (c)

implies Mxε = q and thus (a).

The following result shows that for ε → 0 and under the nonempty feasible
set assumption, xε given by (31) approaches the least-entropy solution of (P ),
if yε is a solution of (Dε). The proof follows along the lines of [9, Prop. 1].

Theorem 4. Denote the solution set of (9) by S. Assume S 6= ∅. Then, for
any sequence of positive scalars (εk) tending to zero and any sequence of vectors
(xεk), converging to some x∗ , we have x∗ ∈ argminx∈S〈x, log x − 1〉. If S is a
singleton, denoted by x, then xεk → x.



Partial Perturbation. In the case of a unique and sparse feasible point x the
assumption q ∈M(Rn++) does not hold. With J = supp(x) the primal reads

min〈c, x〉+ ε〈xJ , log xJ − 1J〉 s.t. Mx = q, xJc = 0, x ≥ 0,

and the dual becomes

max
y
〈q, y〉 − ε〈1, e

(M>)Jy−cJ
ε 〉 .

However, the solution support J is unknown. Using (21), one can show that an
approximative solution yε of (Dε), i.e. ‖∇ψ(yε)‖ ≤ τε, with τε > 0 small, can be
used to construct xε according to (31), such that xε → x .

Exponential Penalty Method. We discussed above how problem (Pε) tends
to (P ) as ε → 0. Likewise, (Dε) tends to (D). This was shown by Cominetti et
al. [8, Prop. 3.1]. The authors noticed that the problem (Dε) is a exponential
penalty formulation of (D), compare (10) and (30).

They also investigated the asymptotic behavior of the trajectory yε and its
relation with the solution set of (D). They proved the trajectory yε is approxi-
matively a straight line directed towards the center of the optimal face of (D),
namely yε = y∗+ εd∗+ η(ε), where y∗ is a particular solution of (D). Moreover,

the error η(ε) goes to zero exponentially fast, i.e. at the speed of e
−µ
ε for some

µ > 0. See the proof of [8, Prop. 3.2].

5 Numerical Experiments

In this section, we illustrate the performance of our perturbation approach com-
pared to the LP solver MOSEK, in noisy and non-noisy environments, for 2D
and 3D cases. We implemented the entropic quadratic approach and solved the
perturbed dual formulations by a conventional unconstrained optimization ap-
proach, the Limited Memory BFGS algorithm, see [10], which scales to large
problem sizes. In all experiments the perturbation parameters were kept fixed
to ε = 1/50 and α = 1, see Fig. 3 for a justification. We allowed at maximum
1500 iterations and stopped when the norm of the gradient of the perturbed dual
function satisfies ‖∇ψ(yk)‖ ≤ 10−4.

The first performance test was done on 2D d× d images of randomly located
ellipsoids with random radii along the coordinate axes. See Fig. 2 (right) for two
sample images. The relative cosparsity is denoted by ρ := `

n . Parameters p and
n vary for two- and three-dimensional images as

n =

{
d2 in 2D

d3 in 3D
, p =

{
2d(d− 1) in 2D

3d2(d− 1) in 3D
. (32)

Our parametrization relates to the design of the projection matrices A ∈ Rm×n,
see [2] for details.
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Fig. 1. Phase transitions for the 2D case, 4 cameras (top row) and 6 cameras (bottom
row), computed for the noiseless case with MOSEK (left column), our approach (middle
column) and our approach for the noisy case (right column). The green solid line
corresponds to the theoretical curve (5a).

Fig. 2. Comparison between the quadratic perturbation approach (left two columns)
and entropic perturbation approach (right two columns) for two relative cosparsity
levels. Two 80×80 images, are projected along 6 directions. For both ρ = `/d2 = 1.7786
(top row) and ρ = `/d2 = 1.8586 (bottom row) reconstruction should in theory be
exact. Result (left column) and rounded result (second left column) of the quadratic
perturbation approach for α = 1. Results for the entropic perturbation approach (right
two columns) with ε = 1/50. Here the rounded result exactly equals the original image
(right column).
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Fig. 3. Experimental finite perturbation property of the entropic approach. Here ε =
1/50 is a reasonable value since the reconstruction error varies insignificantly (left).
The histograms of (u − u∗) for ε = 1/50 (middle) and ε = 1/120 (right) are highly
similar.
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Fig. 4. Phase transitions for the 3D case, 3 cameras (top left) and 4 cameras (top right)
and random example of perfectly reconstructed images d = 31 (bottom). The average
performance of MOSEK (blue line) for the noiseless case, and the entropic approach
in the noiseless (red line) and noisy (magenta line) case for ε = 1/50 as a variation
of relative cosparsity. The green solid line corresponds to the theoretical curve (5b).
Measurements were corrupted by Poisson noise of SNR = 50db.



0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

50

 

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

50

 

 0

0.2

0.4

0.6

0.8

1

1.2

Fig. 5. Slices through the 3D volume of an original Shepp-Logan image (left) and the
reconstructed image from 7 noisy projecting directions via the entropic perturbation
approach, satisfying ‖u − u∗‖∞ < 0.5 (right). This shows that the approach is also
stable for low noise levels as opposed to MOSEK. Measurements were corrupted by
Poisson noise of SNR = 50db.
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Fig. 6. Comparison between computation times of the proposed approach and
MOSEK.

The phase transitions in Fig. 1 display the empirical probability of exact
recovery over the space of parameters that characterize the problem. Here we
performed 90 tests for each (ρ, δ) parameter combination.

We analyzed the influence of the image cosparsity, also for 3D images, see
Fig. 4. In 3D for each problem instance defined by a (ρ, d)-point we generated
60 random images. In both 2D and 3D we declared a random test as successful
if ‖u − u∗‖∞ < 0.5, which leads to perfect reconstruction after rounding. Fig.
1 and 4 display a phase transition and exhibit regions where exact image re-
construction has probability equal or close to one. The solid green line in the
plots, stands for the theoretical curve (5a). In the noisy case, projection data
was corrupted by Poisson noise of SNR = 50db. The perturbation parameter
has been set as in the noiseless case, i.e. ε = 1/50 and α = 1. MOSEK was
unable to solve the given problem, stating that either the primal or the dual
might be infeasible. The algorithm proposed in this paper scales much better



with the problem size and is significantly more efficient for large problem sizes
that are relevant to applications. In particular, problems sizes can be handled
where MOSEK stalls, see Fig. 6. We also note that our perturbation approach is
also stable to low noise levels as opposed to MOSEK. Finally, we underline that
the entropic perturbation approach performs significantly better then quadratic
perturbation as shown in Fig. 2.

6 Conclusion

We presented a mathematical programming approach based on perturbation that
copes with large tomographic reconstruction problems of the form (1). While the
perturbation enables to apply efficient sparse numerics, it does not compromise
reconstruction accuracy. This is a significant step in view of the big data volumes
of industrial scenarios.

Our further work will examine the relation between the geometry induced
by perturbations on the u-space and the geometry of Newton-like minimizing
paths, and the potential for parallel implementations.
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Tomographic Recovery of Compound Solid Bodies from Few Projections. ArXiv
e-prints (November 2013)

3. Ferris, M.C., Mangasarian, O.L.: Finite perturbation of convex programs. Appl.
Math. Optim 23 (1991) 263–273

4. Fang, S.C., Tsao, H.S.J.: Linear programming with entropic perturbation. Math.
Meth. of OR 37(2) (1993) 171–186

5. Rockafellar, R., Wets, R.J.B.: Variational Analysis. 2nd edn. Springer (2009)
6. Mangasarian, O.L.: Uniqueness of Solution in Linear Programming. Linear Algebra

and its Applications 25(0) (1979) 151–162
7. Fang, S.C., Tsao, H.S.J.: On the entropic perturbation and exponential penalty

methods for linear programming. J. Optim. Theory Appl. 89 (1996) 461–466
8. Cominetti, R., San Martin, J.: Asymptotic analysis of the exponential penalty

trajectory in linear programming. Math. Progr. 67 (1994) 169–187
9. Tseng, P.: Convergence and Error Bound for Perturbation of Linear Programs.

Computational Optimization and Applications 13(1-3) (1999) 221–230
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