
Under review as a conference paper at ICLR 2022

CLASSICAL AND QUANTUM ALGORITHMS FOR
ORTHOGONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Orthogonal neural networks have recently been introduced as a new type of neu-
ral networks imposing orthogonality on the weight matrices. They could achieve
higher accuracy and avoid evanescent or explosive gradients for deep architec-
tures. Several classical gradient descent methods have been proposed to preserve
orthogonality while updating the weight matrices, but these techniques suffer from
long running times and/or provide only approximate orthogonality. In this paper,
we introduce a new type of neural network layer called Pyramidal Circuit, which
implements an orthogonal matrix multiplication. It allows for gradient descent
with perfect orthogonality with the same asymptotic running time as a standard
fully connected layer. This algorithm is inspired by quantum computing and can
therefore be applied on a classical computer as well as on a near term quantum
computer. It could become the building block for quantum neural networks and
faster orthogonal neural networks.

1 INTRODUCTION

In the evolution of neural network structures, adding constraints to the weight matrices has often
been an effective path. Recently, orthogonal neural networks (OrthoNNs) have been proposed Jia
et al. (2019); Wang et al. (2020); Nosarzewski (2018); Bansal et al. (2018) as a new type of neu-
ral networks for which, at each layer, the weight matrix should remain orthogonal. This property
is useful to reach higher accuracy performance and avoid vanishing or exploding gradient for deep
architectures. Several classical gradient descent methods have been proposed to preserve the orthog-
onality while updating the weight matrices. However, these techniques suffer from longer running
time and sometimes only approximate the orthogonality. In particular, the main method for achiev-
ing orthogonality during training is to first perform the usual gradient descent to update the weight
matrix (which is now not going to be orthogonal) and then perform Singular Value Decomposition
to orthogonalize or almost orthogonalize the weight matrix. We can see then why achieving orthog-
onality hinders a fast training, since at every step an SVD computation needs to be performed (See
Section A.1).

In the emergent field of quantum machine learning, several proposals have been made to implement
neural networks. Some algorithms rely on long term and perfect quantum computers Kerenidis
et al. (2020); Allcock et al. (2018), while others try to harness the existing quantum devices using
variational circuits Cong et al. (2019); Farhi & Neven (2018). As in classical neural networks, they
use gradient descent methods to update the quantum parameters of the circuits. Such quantum neural
networks have been trained for very small sizes, however there is still a need to understand how such
architectures will scale and whether they will provide efficient and accurate training.

In this work, we present a new training method for neural networks that preserves perfect orthogonal-
ity while having the same running time as usual gradient descent methods without the orthogonality
condition, thus achieving the best of both worlds, most efficient training and perfect orthogonality.

The main idea comes from the quantum world, where we know that any quantum circuit corresponds
to an operation described by a unitary matrix, which if we only use gates with real amplitudes is an
orthogonal matrix. In particular, we propose a novel special-architecture quantum circuit, for which
there is an efficient way to map the elements of the orthogonal weight matrix to the parameters of the
gates of the quantum circuit and vice versa. In other words, while performing a gradient descent on

1

Under review as a conference paper at ICLR 2022

the elements of the weight matrix individually does not preserve orthogonality, performing a gradient
descent on the parameters of the quantum circuit preserves orthogonality (since any quantum circuit
with real parameters corresponds to an orthogonal matrix) and is equivalent to updating the weight
matrix. We also prove that performing gradient descent on the parameters of the quantum circuit can
be done efficiently classically (with constant update cost per parameter) thus concluding that there
exists a quantum-inspired, but fully classical way of efficiently training perfectly orthogonal neural
networks.

Moreover, the special-architecture quantum circuit we defined has many properties that make it a
good candidate for NISQ implementation: it uses only one type of quantum gates, requires simple
connectivity between the qubits, has depth linear in the input and output node sizes, and benefits
from powerful error mitigation techniques that make it resilient to noise. This allows us to also
propose an inference method running the quantum circuit on data which might offer a faster running
time, given the shallow depth of the quantum circuit.

Our main contributions are summarized in Table 1, where we have considered the time to perform
a feedforward pass, or one gradient descent step. A single neural network layer is considered, with
input and output of size n.

Algorithm Feedforward Pass Weight Matrix Update

Quantum Pyramidal Circuit (This work) 2n/δ2 = O(n/δ2) O(n2/δ2)
Classical Pyramidal Circuit (This work) 2n(n− 1) = O(n2) O(n2)

Classical Approximated OrthoNN (SVB) n2 = O(n2) O(n3)
Classical Strict OrthoNN (Stiefel Manifold) n2 = O(n2) O(n3)
Standard Neural Network (non orthogonal) n2 = O(n2) O(n2)

Table 1: Running times summary. n is the size of the input and output vectors, δ is the error
parameter in the quantum implementation. See Appendix Section A.1 for details on related work on
classical approximated and strict OrthoNN.

2 A PARAMETRIZED QUANTUM CIRCUIT FOR ORTHOGONAL NEURAL
NETWORKS

In this section, we define a special-architecture parametrized quantum circuit that will be useful
for performing training and inference on orthogonal neural networks. As we said, the training will
be completely classical in the end, but the intuition of the new method comes from this quantum
circuit, while the inference can happen both classically or by applying this quantum circuit. A
basic introduction to quantum computing concepts necessary for this work is given in the Appendix
(Section A.3).

2.1 THE RBS GATE

The quantum circuit proposed in this work (see Fig.1), which implements a fully connected neural
network layer with an orthogonal weight matrix, uses only one type of quantum gate, the Reconfig-
urable Beam Splitter (RBS) gate. This two-qubit gate is parametrizable with one angle θ ∈ [0, 2π].
Its matrix representation is given as:

RBS(θ) =

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 RBS(θ) :

{
|01〉 7→ cos θ |01〉 − sin θ |10〉
|10〉 7→ sin θ |01〉+ cos θ |10〉 (1)

We can think of this gate as a rotation in the two-dimensional subspace spanned by the basis
{|01〉 , |10〉}, while it acts as the identity in the remaining subspace {|00〉 , |11〉}. Or equivalently,
starting with two qubits, one in the |0〉 state and the other one in the state |1〉, the qubits can be
swapped or not in superposition. The qubit |1〉 stays on its wire with amplitude cos θ or switches
with the other qubit with amplitude + sin θ if the new wire is below (|10〉 7→ |01〉) or − sin θ if the
new wire is above (|01〉 7→ |10〉). Note that in the two other cases (|00〉 and |11〉) the RBS gate acts
as identity.

2

Under review as a conference paper at ICLR 2022

Figure 1: Representation of the quantum mapping from Eq.(1) on two qubits.

2.2 QUANTUM PYRAMIDAL CIRCUIT

We now propose a quantum circuit that implements an orthogonal layer of a neural network. The
circuit is a pyramidal structure of RBS gates, each with an independent angle, as represented in
Fig.2a. In Section 2.3 and 3, more details are provided concerning respectively the input loading,
and the equivalence with a neural network’s orthogonal layer.

(a)
(b)

Figure 2: (a) Quantum circuit for an 8x8 fully connected, orthogonal layer. Each vertical line
corresponds to an RBS gate with its angle parameter. And (b), the equivalent classical orthogonal
neural network 8x8 layer.

To mimic a given classical layer with a quantum circuit, the number of output qubits should be the
size of the classical layer’s output. We refer to the square case when the input and output sizes are
equal, and to the rectangular case otherwise (Fig.3a).

The important property to note is that the number of parameters of the quantum pyramidal circuit
corresponding to a neural network layer of size n× d is (2n− 1− d) ∗ d/2 exactly the same as the
number of degrees of freedom of an orthogonal matrix of dimension n× d.

(a) (b)

Figure 3: (a) Quantum circuit for a rectangular 8x4 fully connected orthogonal layer, and (b) the
equivalent 8x4 classical orthogonal neural network. They both have 22 free parameters.

For simplicity, we pursue our analysis using only the square case but everything can be easily
extended to the rectangular case. As we said, the full pyramidal structure of the quantum circuit

3

Under review as a conference paper at ICLR 2022

described above imposes the number of free parameters to be N = n(n − 1)/2, the exact number
of free parameters to specify a n× n orthogonal matrix.

In Section 3 we will show how the parameters of the gates of this pyramidal circuit can be easily
related to the elements of the orthogonal matrix of size n×n that describes it. We note that alternative
architectures can be imagined as long as the number of gate parameters is equal to the parameters of
the orthogonal weight matrix and a simple mapping between them and the elements of the weight
matrix can be found.

Note finally that this circuit has linear depth and is convenient for near term quantum hardware
platforms with restricted connectivity. Indeed, the distribution of the RBS gates requires only
nearest neighbor connectivity between qubits.

2.3 LOADING THE DATA

Before applying the quantum pyramidal circuit, we will need to upload the classical data into the
quantum circuit. We will use one qubit per feature of the data. For this, we use a unary amplitude
encoding of the input data. Let’s consider an input sample x = (x0, · · · , xn−1) ∈ Rn, such that
‖x‖2 = 1. We will encode it in a superposition of unary states:

|x〉 = x0 |10 · · · 0〉+ x1 |010 · · · 0〉+ · · ·+ xn−1 |0 · · · 01〉 (2)

We can also rewrite the previous state as |x〉 =
∑n−1
i=0 xi |ei〉, where |ei〉 represents the ith unary

state with a |1〉 in the ith position |0 · · · 010 · · · 0〉. Recent work Kerenidis (U.S. Patent Application
No. 16/986,553 and 16/987,235, 2020) proposed a logarithmic depth data loader circuit for loading
such states. Here we will use a much simpler circuit. It is a linear depth cascade of n−1RBS gates
which, due to the particular structure of our quantum pyramidal circuit, only adds 2 extra steps to
our circuit.

Figure 4: The 8 dimensional linear data loader circuit (in red) is efficiently embedded before the
pyramidal circuit. The input state is the first unary state. The angles parameters α0, · · · , αn−2 are
classically pre-computed from the input vector.

The circuit starts in the all |0〉 state and flips the first qubit using an X gate, in order to obtain the
unary state |10 · · · 0〉 as shown in Fig.4. Then a cascade of RBS gates allow to create the state |x〉
using a set of n − 1 angles α0, · · · , αn−2. Using Eq.(1), we will choose the angles such that, after
the first RBS gate of the loader, the qubits would be in the state x0 |100 · · ·〉 + sin(α0) |010 · · ·〉
and after the second one in the state x0 |100 · · ·〉 + x1 |010 · · ·〉 + sin(α0) sin(α1) |001 · · ·〉 and
so on, until obtaining |x〉 as in Eq.(2). To this end, we simply perform a classical preprocessing
to compute recursively the n − 1 loading angles, in time O(n). We choose α0 = arccos(x0),
α1 = arccos(x1 sin−1(α0)), α2 = arccos(x2 sin−1(α0) sin−1(α1)) and so on.

The ability of loading data in such a way relies on the assumption that each input vector is nor-
malized, i.e. ‖x‖2 = 1. This normalization constraint could seem arbitrary and impact the ability
to learn from the data. In fact, in the case of an orthogonal neural network, this normalization
shouldn’t degrade the training because orthogonal weight matrices are in fact orthonormal and thus
norm-preserving. Hence, changing the norm of the input vector, by diving each component by ‖x‖2,
in both classical and quantum settings is not a problem. The normalization would impose that each
input has the same norm, or the same ”luminosity” in the context of images, which can be helpful
or harmful depending on the case.

4

Under review as a conference paper at ICLR 2022

3 ORTHONNS FEEDFORWARD PASS

In this section, we will detail the effect of the quantum pyramidal circuit on an input encoded in a
unary basis, as in Eq.(2). We will also see in the end how to simulate this quantum circuit classically
with a small overhead and thus be able to provide a fully classical scheme.

Let’s first consider one pure unary input, where only the qubit j is in state |1〉 (e.g. |00000010〉).
This unary input will be transformed into a superposition of unary states, each with an amplitude.
If we consider again only one of these possible unary outputs, where only the qubit i is in state |1〉,
its amplitude can be interpreted as a conditional amplitude to transfer the |1〉 from qubit j to qubit
i. Intuitively, this value is the sum of the quantum amplitudes associated to each possible path that
connects the qubit j to qubit i, as shown in Fig.5. Using this image of connectivity between input
and output qubits, we can construct a matrix W ∈ Rn×n, where each element Wij is the overall
conditional amplitude to transfer the |1〉 from qubit j to qubit i.

Figure 5: The three possibles paths from the 7th unary state to the 6th unary state, on an 8x8 quantum
pyramidal circuit.

Fig.5 shows an example where exactly three paths can be taken to map the input qubit j = 6 (the 7th
unary state) to the qubit i = 5 (the 6th unary state). Each path comes with a certain amplitude. For
instance, one of the paths (the red one in Fig.5) moves up at the first gate, and then stays put in the
next three gates, with a resulting amplitude of − sin(θ16) cos(θ17) cos(θ23) cos(θ24). The sum of
the amplitudes of all possible paths give us the element W56 of the matrix W (where, for simplicity,
s(θ) and c(θ) respectively stand for sin(θ) and cos(θ)):

W56 = −s(θ16)c(θ22)s(θ23)− s(θ16)c(θ17)c(θ23)c(θ24) + s(θ16)s(θ17)c(θ18)s(θ24) (3)
In fact, the n × n matrix W can be seen as the unitary matrix of our quantum circuit if we solely
consider the unary basis, which is specified by the parameters of the quantum gates. A unitary is a
complex unitary matrix, but in our case, with only real operations, the matrix is simply orthogonal.
This proves the correspondence between any matrix W and the pyramidal quantum circuit.

The full unitary UW in the Hilbert Space of our n-qubit quantum circuit is a 2n × 2n matrix with
the n × n matrix W embedded in it as a submatrix on the unary basis. This is achieved by loading
the data as unary states and by using only RBS gates that keep the number of 0s and 1s constant.

For instance, as shown in Fig.6, a 3-qubit pyramidal circuit is described as a unique 3 × 3 matrix,
that can be easily verified to be orthogonal.

In Fig.5, we considered the case of single unary for both the input and output. But with actual data,
as seen in Section 2.3, input and output states are in fact a superposition of unary states. Thanks to
the linearity of quantum mechanics in absence of measurements, the previous descriptions remain
valid and can be applied on a linear combination of unary states.

Let’s consider an input vector x ∈ Rn encoded as a quantum state |x〉 =
∑n−1
i=0 xi |ei〉 where |ei〉

represents the ith unary state (see Section 2.3). By definition of W , each unary |ei〉 will undergo a
proper evolution |ei〉 7→

∑n−1
j=0 Wij |ej〉. This yields, by linearity, to the following mapping

|x〉 7→
∑
i,j

Wijxi |ej〉 (4)

5

Under review as a conference paper at ICLR 2022

Figure 6: Example of a 3 qubits pyramidal circuit and the equivalent orthogonal matrix. c(θ) and
s(θ) respectively stand for cos(θ) and sin(θ).

Figure 7: Schematic representation of a pyramidal circuit applied on a loaded vector xwith two non-
zero values. The output is the unary encoding of y = Wx where W is the corresponding orthogonal
matrix associated with the circuit.

As explained above, our quantum circuit is equivalently described by the sparse unitary UW ∈
R2n×2n or on the unary basis by the matrix W ∈ Rn×n. This can be summarized with

UW |x〉 = |Wx〉 (5)

We see from Eq.(4) and Eq.(5) that the output is in fact |y〉, the unary encoding of the vector y =
Wx, which is the output of a matrix multiplication between the n × n orthogonal matrix W and
the input x ∈ Rn. As expected, each element of y is given by yk =

∑n−1
i=0 Wikxi. See Fig.7 for a

diagram representation of this mapping.

Therefore, for any given neural network’s orthogonal layer, there is a quantum pyramidal circuit
that reproduces it. On the other hand, any quantum pyramidal circuit is implementing an orthogonal
layer of some sort. Additional details concerning multi-layers branching, the tomography at the end
of each layer, and the way to apply the non linearities are given in the Appendix, Section A.4.

As a side note, we can ask if a circuit with only log(n) qubits could also implement an orthogonal
matrix multiplication of size n × n. Indeed, it would be a unitary matrix in Rn×n, but since the
circuit should also have n(n − 1)/2 free parameters to tune, this would come at a cost of large
depth, potentially unsuitable for NISQ devices.

Classical implementation While we presented the quantum pyramidal circuit as the inspiration of
the new methods for orthogonal neural networks, it is not hard to see that these quantum circuits can
be simulated classical with a small overhead, thus yielding classical methods for orthogonal neural
networks.

6

Under review as a conference paper at ICLR 2022

This classical algorithm is simply the simulation of the quantum pyramidal circuit, where eachRBS
gate is replaced by a planar rotation between its two inputs.

As shown in Fig.8, we propose a similar classical pyramidal circuit, where each layer is constituted
of n(n−1)2 planar rotations, for a total of 4× n(n−1)

2 = O(n2) basic operations. Therefore our single
layer feedforward pass has the same complexity O(n2) as the usual matrix multiplication.

Figure 8: Classical representation of a single orthogonal layer on a 4x4 case (n=4) performing
x 7→ y = Wx. The angles and the weights can be chosen such that our classical pyramidal circuit
(left) and normal classical network (right) are equivalent. Each connecting line represents a scalar
multiplication with the value indicated. On the classical pyramidal circuit (left), inner layers ζλ
are displayed. A timestep corresponds to the lines in between two inner layers (see Section 4 for
definitions).

One may still have an advantage in performing the quantum circuit for inference, since the quantum
circuit has depthO(n), instead of theO(n2) classical complexity of the matrix-vector multiplication.
Nevertheless, as we will see below, the main advantage of our method is that we can now train
orthogonal weight matrices classically in time O(n2), instead of the previously best-known O(n3).

4 ORTHONN TRAINING: ANGLE’S GRADIENT CALCULATION AND
ORTHOGONAL MATRIX UPDATE

Basic introduction and notations to the backpropagation in fully connected neural networks are given
in the Appendix, Section A.2.

Looking through the prism of our pyramidal quantum circuit, the parameters to update are no longer
the individual elements of the weight matrices directly, but the angles of the RBS gates that give
rise to these matrices. Thus, we need to design an adaptation of the backpropagation method to our
setting based on the angles. We will start by introducing some notation for a single layer `, which
will not be explicit in the notation for simplicity. We assume we have as many output bits as input
bits, but this can easily be extended to the rectangular case.

We first introduce the notion of timesteps inside each layer, which correspond to the computational
steps in the pyramidal structure of the circuit (see Fig.9). It is easy to show that for n inputs, there
will be 2n − 3 such timesteps, each one indexed by an integer λ ∈ [0, · · · , λmax]. Applying a
timestep consists in applying the matrix wλ, made of all the RBS gates aligned vertically at this
timestep (wλ is the unitary in the unary basis, see Section 3 for details). Each time a timestep is
applied, the resulting state is a vector in the unary basis named inner layer and noted ζλ. This
evolution can be written as ζλ+1 = wλ · ζλ. We use this notation similar to the real layer `, with the
weight matrix W ` and the resulting vector z` (see Section A.2).

In fact we have the correspondences ζ0 = a`−1 for the first inner layer, which is the input of the
actual layer, and z` = wλmax · ζλmax for the last one. We also have W ` = wλmax · · ·w1w0.
We use the same kind of notation for the backpropagation errors. At each timestep λ we define
an inner error δλ = ∂C

∂ζλ
. This definition is similar to the layer error ∆` = ∂C

∂z`
. In fact we

will use the same backpropagation formulas, without non linearities, to retrieve each inner error

7

Under review as a conference paper at ICLR 2022

Figure 9: Quantum circuit for one neural network layer divided into timesteps (red vertical lines)
λ ∈ [0, · · · , λmax]. Each timestep corresponds to an inner layer ζλ and an inner error δλ. The part
of the circuit between two timesteps is an unitary matrix wλ in the unary basis.

vector δλ = (wλ)T · δλ+1. In particular, for the last timestep, the first to be calculated, we have
δλmax = (wλmax)T · ∆`. Finally, we can retrieve the error at the previous layer ` − 1 using the
correspondence ∆`−1 = δ0 � σ′(z`).

The reason for this breakdown into timesteps is the ability to efficiently obtain the gradient with
respect to each angle. Let’s consider one gate with angle θi, acting at the timestep λ on qubits i and
i + 1. We will decompose the gradient ∂C

∂θi
using each component, indexed by the integer k, of the

inner layer and inner error vectors ∂C
∂θi

=
∑
k

∂C
∂ζλ+1
k

∂ζλ+1
k

∂θi
=
∑
k δ

λ+1
k

∂(wλk ·ζ
λ)

∂θi
.

Since timestep λ is only composed of separated RBS gates, the matrix wλ consists of diagonally
arranged 2x2 block submatrices given in Eq.(1). Only one of these submatrices depends on the angle
θ considered here, at the position i and i+ 1 in the matrix. The above gradient can be rewritten as:

∂C
∂θi

= δλ+1
i (− sin(θi)ζ

λ
i + cos(θi)ζ

λ
i+1) + δλ+1

i+1 (− cos(θi)ζ
λ
i − sin(θi)ζ

λ
i+1) (6)

Therefore we have shown a way to compute each angle gradient: During the feedforward pass,
one must apply sequentially each of the 2n − 3 = O(n) timesteps, and store the resulting vectors,
the inner layers ζλ. During the backpropagation, one obtains the inner errors δλ by applying the
timesteps in reverse. One can finally use a gradient descent on each angle θi, while preserving the
orthogonality of the overall equivalent weight matrix θ`i ← θ`i − λ ∂C

∂θ`i
.

An interesting aspect of this gradient descent is the fact that the optimization is performed in the
angle landscape, and not on the equivalent weight landscape. These landscapes can potentially be
different and hence our optimization can produce different models. We leave open the question of
finding a theoretical argument to compare the properties of both landscapes.

As one can see from the above description, this is in fact a classical algorithm to obtain the angle’s
gradients, which allows us to train our OrthoNN efficiently classically while preserving the strict
orthogonality. To obtain the angle’s gradient, one needs to store the 2n − 3 inner layers ζλ during
the feedforward pass. Next, given the error at the following layer, we perform a backward loop on
each timestep (see Fig.8). At each timestep, we obtain the gradient for each angle parameter, by
simply applying Eq.(4). This requires O(1) operations for each angle. Since there are at most n/2
angles per timesteps, estimating gradients has a complexity of O(n2). After each timestep, the next
inner error δλ−1 is computed as well, using at most 4n/2 operations.

In the end, our classical algorithm allows us to compute the gradients of the n(n − 1)/2 angles
in O(n2), in order to perform a gradient descent respecting the strict orthogonality of the weight
matrix. This is considerably faster than previous methods based on Singular Value Decomposition
methods and provides a training method that is asymptotically as fast as for normal neural networks,
while providing the extra property of orthogonality.

8

Under review as a conference paper at ICLR 2022

5 NUMERICAL EXPERIMENTS

We performed basic numerical experiments to verify the abilities of our pyramidal circuit, on the
standard MNIST dataset LeCun & Cortes (2010). Note that current quantum hardware and software
are not yet suited for bigger experiments. We first compared the training of our Classical OrthoNN
to the SVB algorithm from Jia et al. (2019) (see Section A.1).Results as reported in Fig.10, and more
in the Appendix, Section A.4.3. These small scale tests confirmed that the pyramidal circuits and
the corresponding gradient descent on the angles were efficient for learning a classification task.

Figure 10: Training comparison between a [16,8,4] SVB OrthoNN from Jia et al. (2019) and our
classical pyramidal OrthoNN. Test accuracy on 1000 samples during 50 epochs of training on the
MNIST dataset on 5000 samples. Initial dimensionality reduction (PCA) was on the samples to
fit the input layer of the networks. Shaded areas indicate the accuracy variance during minibatch
updates of size 50.

Then, we implemented the quantum circuit on a real quantum computer provided by IBM. We used
a 16 and 5 qubits device to perform respectively a [8,2] and a [4,2] orthogonal layer. A pyramidal
OrthoNN was trained classically, and the resulting angles were transferred to test the quantum circuit
on a classification task on classes 6 and 9 of the MNIST dataset, over 500 samples. We compared
the real experiment with a simulated one, and the classical pyramidal circuit as well. Results are
reported in Table 2.

Platform Accuracy Platform Accuracy
Classical circuit [4,2] 98,4% Classical circuit [8,2] 97,4%
IBM Simulator [4,2] 98,4% IBM Simulator [8,2] 97,4%

ibmq bogota v1.4.32 [4,2] 98,0% ibmq guadalupe v1.2.17 [8,2] 95,0%

Table 2: Results of the Pyramidal OrthoNN on real quantum computers. ibmq bogota v1.4.32 and
ibmq guadalupe v1.2.17 are respectively 5 and 16 qubits quantum computers.

6 CONCLUSION AND OUTLOOK

In this work, we have proposed for the first time training methods for orthogonal neural networks
(OrthoNNs) that run in quadratic time, a significant improvement from previous methods based on
Singular Value Decomposition. The main idea of our method is to replace usual weights and orthog-
onal matrices with an equivalent pyramidal circuit made of two-dimensional rotations. Each rotation
is parametrizable by an angle, and the gradient descent takes place in the angle’s optimization land-
scape. This unique type of gradient backpropagation ensures perfect orthogonality of the weight
matrices while improving the running time compared to previous works. Moreover, we propose
both classical and quantum methods for inference, where the forward pass on a near term quantum
computer would provide a provable advantage in the running time. This work expands the field of
quantum deep learning by introducing new tools, concepts, and equivalences with classical deep
learning theory. We have highlighted open questions regarding the construction of such pyramidal
circuits for neural networks and their potential new advantages in terms of execution time, accuracy,
and learning properties.

9

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

In this paper, we have introduced new methods for implementing and training orthogonal neural
networks. We have explained in detail each part of both algorithms’ implementation (see Appendix
for more details). The dataset used here for basic simulation is the well-known MNIST dataset,
easily accessible to everyone.

It is in our belief that anyone with classical software skills can re-implement the classical algorithm
(see Fig.9), in Python for instance. Similarly, on any quantum software platform, one can implement
the quantum gates given in Fig.11 and perform the whole algorithm using Fig.12, Fig.10, and math-
ematical details through the paper. This would allow simulating the quantum circuit using accessible
platforms such as IBM’s qiskit.

However, in order to perform the actual experiment on a quantum computer currently accessible, as
we have done on IBM 5 and 16 qubits devices, one must have access to their service (or any other
provider). Some quantum computers are available for free, but others require specific agreements.

8 ETHICS STATEMENT

Our work on quantum and classical algorithms for orthogonal neural networks is mainly a theoretical
work aiming at improving the complexity of neural networks training on current computers and near
term quantum computers. Therefore, any ethical concerns regarding classical neural networks may
also concern our work.

REFERENCES

Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, 2015.

Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quantum algorithms
for feedforward neural networks. arXiv preprint arXiv:1812.03089, 2018.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regular-
izations in training deep cnns? arXiv preprint arXiv:1810.09102, 2018.

Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature
Physics, 15(12):1273–1278, 2019.

Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term pro-
cessors. arXiv preprint arXiv:1802.06002, 2018.

Brooks Foxen, Charles Neill, Andrew Dunsworth, Pedram Roushan, Ben Chiaro, Anthony Megrant,
Julian Kelly, Zijun Chen, Kevin Satzinger, Rami Barends, et al. Demonstrating a continuous set
of two-qubit gates for near-term quantum algorithms. Physical Review Letters, 125(12):120504,
2020.

Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks for
perception, pp. 65–93. Elsevier, 1992.

Kui Jia, Shuai Li, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural networks.
IEEE transactions on pattern analysis and machine intelligence, 2019.

Iordanis Kerenidis. A method for loading classical data into quantum states for applications in ma-
chine learning and optimization, U.S. Patent Application No. 16/986,553 and 16/987,235, 2020.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep convolu-
tional neural networks. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2020.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2022

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in neural net-
works: A simple parametrization of the orthogonal and unitary group. In International Confer-
ence on Machine Learning, pp. 3794–3803. PMLR, 2019.

Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

Benjamin Nosarzewski. Deep orthogonal neural networks. 2018.

Raul Rojas. The backpropagation algorithm. In Neural networks, pp. 149–182. Springer, 1996.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal convolutional neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 11505–11515, 2020.

11

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 RELATED WORK ON CLASSICAL ORTHONNS

The idea behind Orthogonal Neural Networks (OrthoNNs) is to add a constraint to the weight ma-
trices corresponding to the layers of a neural network. Imposing orthogonality to these matrices has
theoretical and practical benefits in the generalization error Jia et al. (2019). Orthogonality ensures
a low weights redundancy and preserves the magnitude of the weight matrix’s eigenvalues to avoid
vanishing gradients. In terms of complexity, for a single layer, the feedforward pass of an OrthoNN
is simply a matrix multiplication, hence has a running time of O(n2) if n × n is the size of the or-
thogonal matrix. It is also interesting to note that OrthoNNs have been generalized to Convolutional
Neural Networks Wang et al. (2020).

The main difficulty of OrthoNNs is to preserve the orthogonality of the matrices while updating
them during gradient descent. Several algorithms have been proposed to this end Wang et al. (2020);
Bansal et al. (2018); Lezcano-Casado & Martınez-Rubio (2019), but they all point that pure orthog-
onality is computationally hard to conserve. Therefore, previous works allow for approximations:
strict orthogonality is no longer required, and the matrices are often pushed toward orthogonality
using regularization techniques during weights update.

We present two algorithms from Jia et al. (2019) for updating orthogonal matrices.

The first algorithm is an approximated one, called Singular Value Bounding (SVB). It starts by
applying the usual gradient descent update on the matrix, therefore making it not orthogonal any-
more. Then, the singular values of the new matrix are extracted using Singular Value Decomposition
(SVD), their values are manually pushed to be close to 1, and the matrix is recomposed hence en-
forcing orthogonality. This method shows less advantage on practical experiments Jia et al. (2019).
It has a complexity of O(n3) due to the SVD, which in practice is better than the next algorithm.
Note that this running time is still longer than O(n2), the running time to perform standard gradient
descent.

The second algorithm can be considered perfect since it ensures strict orthogonality by performing
the gradient descent in the manifold of orthogonal matrices, called the Stiefel Manifold. In practice
Jia et al. (2019) this method showed a substantially advantageous classification results on standard
datasets. This algorithm requires O(n3) operations, but is very prohibitive in practice. We give an
informal step-by-step detail of this algorithm (see Jia et al. (2019), Appendix G for details):

1. Compute the gradient G of the weight matrix W .

2. Project the gradient matrix G in the tangent space, (The space tangent to the manifold at
this point W): multiply G by some other matrices based on W :

(I −WWT)G+
1

2
W (WTG−GTW)

This requires several matrix-matrix multiplications. In the case of square n × n matrices,
each has complexity O(n3). the result of this projection is called the manifold gradient Ω.

3. update W ′ = W − ηΩ, where η is the chosen learning rate.

4. Perform a retraction from the tangent space to the manifold. To do so we multiply W ′
by Q factor of the QR decomposition, obtained using Gram Schmidt orthonormalization,
which has complexity O(2n3).

A.2 CLASSICAL BACKPROPAGATION ALGORITHM

The backpropagation in a fully connected neural network is a well know and efficient procedure to
update the weight matrix at each layer Hecht-Nielsen (1992); Rojas (1996). At layer `, we note
its weight matrices W ` and biases b`. Each layer is followed by a non linear function σ, and can
therefore be written as

a` = σ(W ` · a`−1 + b`) = σ(z`) (7)

After the last layer, one can define a cost function C that compares the output to the ground truth.
The goal is to calculate the gradient of C with respect to each weight and bias, namely ∂C

∂W ` and

12

Under review as a conference paper at ICLR 2022

∂C
∂b`

. In the backpropagation, we start by calculating these gradients for the last layer, then propagate
back to the first layer.

We will require to obtain the error vector at layer ` defined by ∆` = ∂C
∂z`

. One can show the
backward recursive relation ∆` = (W `+1)T · ∆`+1 � σ′(z`), where � symbolizes the Hadamard
product, or entry-wise multiplication. Note that the previous computation requires simply to apply
the layer (ie apply matrix multiplication) in reverse. We can then show that each element of the
weight gradient matrix at layer ` is given by ∂C

∂W `
jk

= ∆`
j · a

`−1
1 . Similarly, the gradient with respect

to the biases is easily defined as ∂C
∂b`j

= ∆`
j .

Once these gradients are computed, we update the parameters using the gradient descent rule, with
learning rate λ:

W `
jk ←W `

jk − λ
∂C
∂W `

jk

; b`j ← b`j − λ
∂C
∂b`j

(8)

A.3 PRELIMINARIES IN QUANTUM COMPUTING

We present a succinct broad-audience quantum information background necessary for this work.
See Nielsen & Chuang (2002) for a detailed course.

Qubits: In classical computing, a bit can be either 0 or 1. With a quantum information perspective,
a quantum bit or qubit can be is state |0〉, |1〉. We use the braket notation |·〉 to specify the quantum
nature of the bit. The qubits can be in superposition of both states α |0〉+β |1〉 where α, β ∈ C such
that |α|2 + |β|2 = 1. The coefficients α and β are called amplitudes. The probabilities of observing
either 0 or 1 when measuring the qubit are linked to the amplitudes:

p(0) = |α|2, p(1) = |β|2 (9)

As quantum physics teaches us, any superposition is possible before the measurement, which gives
special abilities in terms of computation. With a n qubits, 2n possible binary combinations (e.g.
|01 · · · 1001〉) can exist simultaneously, each with its own amplitude.

A n qubits system can be represented as a normalized vector in a 2n dimensional Hilbert space. A
multiple qubit system is called a quantum register. If |p〉 and |q〉 are two quantum states or quantum
registers, the whole system can be represented as a tensor product |p〉 ⊗ |q〉, also written as |p〉 |q〉
or |p, q〉.

Quantum Computation: As logical gates in classical circuits, qubits or quantum registers are
processed using quantum gates. A quantum gate is a unitary mapping in the Hilbert space, preserv-
ing the unit norm of the quantum state vector. Therefore, a quantum gate acting on n qubits is a
matrix U ∈ C2n such that UU† = U†U = I , with U† being the adjoint, or conjugate transpose, of
U .

Common single qubit gates include the Hadamard gate 1√
2

(
1 1
1 −1

)
that maps |0〉 7→ 1√

2
(|0〉+|1〉)

and |1〉 7→ 1√
2
(|0〉 − |1〉), creating the quantum superposition, the NOT gate

(
0 1
1 0

)
that permutes

|0〉 and |1〉, or Ry rotation gate parametrized by an angle θ, given by
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
.

Common two-qubits gates includes the CNOT gate

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 which is a NOT gate applied

on the second qubit only if the first one is in state |1〉, or similarly the CZ gate

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

.

13

Under review as a conference paper at ICLR 2022

In this work, we use the RBS gate given in Eq.(1). This gate can be implemented rather easily,
either as a native gate, known as FSIM Foxen et al. (2020), or using four Hadamard gates, two Ry
rotation gates, and two two-qubits CZ gates:

Figure 11: A possible decomposition of the RBS(θ) gate.

The main advantage of quantum gates is their ability to be applied to a superposition of inputs.
Indeed, given a gate U such that U |x〉 7→ |f(x)〉, we can apply it to all possible combinations of x
at once U(1

C

∑
x |x〉) 7→

1
C

∑
x |f(x)〉.

A.4 ADDITIONAL DETAILS ON THE QUANTUM PYRAMIDAL CIRCUIT

A.4.1 TOMOGRAPHY AND ERROR MITIGATION

As shown in Fig.7, when using the quantum circuit, the output is a quantum state |y〉 = |Wx〉. As
often in quantum machine learning Aaronson (2015), it is important to go all to way and consider
the cost of retrieving classical outputs, using a procedure called tomography. In our case this is even
more crucial since, between each layer, the quantum output will be converted into a classical one in
order to apply a non linear function, and then reloaded for the next layer.

Error Mitigation Before detailing the tomography procedure, it is interesting to notice that with
our restriction to unary states, a strong benefit appears for error mitigation purposes. Indeed, as we
expect to obtain only quantum superposition of unary states at every layer, we can post process our
measurements and discard the ones that present non unary states (i.e. states with more than one qubit
in state |1〉, or the ground state). The most expected error is a bit flip between |1〉 and |0〉. The case
where two bit flips happened, which would pass through our error mitigation, is even less probable.

Tomography Retrieving the amplitudes of a quantum state comes at cost of multiple measure-
ments. which requires running the circuit multiples times, hence adding a multiplicative overhead
in the running time. A finite number of samples is also a source of approximation in the final result.
In this work, we will allow for `∞ errors Kerenidis et al. (2020). The `∞ tomography on a quantum
state |y〉 with unary encoding on n qubits requires O(log(n)/δ2) measurements, where δ > 0 is
the error threshold allowed. For each j ∈ [n], |yj | will be obtained with an absolute error δ, and if
|yj | < δ, it will most probably not be measured, hence set to 0. In practice, one would perform as
many measurements as is convenient during the experiment, and deduce the equivalent precision δ
from the number of measurements made.

The next logical part is to obtain the sign of each component of the vector. Indeed, we only measure
probabilities that are the square module of the quantum amplitudes (see Section A.3). In the case of
neural networks, it is important to obtain the sign of the layer’s components in order to apply certain
type of non linearities. For instance, the ReLu activation function is often used to set all negative
components to 0.

In Fig.12, we propose a specific enhancement to our circuit to obtain the signs of the vector’s com-
ponents at low cost. The sign retrieval procedure consists of three parts.

a) The circuit is first applied as described above, allowing to retrieve each squared amplitude
y2j with precision δ > 0 using the `∞ tomography. The probability of measuring the unary
state |e1〉 (i.e. |100...〉), is p(e1) = y21 .

b) We apply the same steps a second time on a modified circuit. It has additional RBS gates
with angle π/4 at the end, which will mix the amplitudes pair by pair. The probabilities
to measure |e1〉 and |e2〉 are now given by p(e1) = (y1 + y2)2 and p(e2) = (y1 − y2)2.
Therefore if p(e1) > p(e2), we have sign(y1) 6= sign(y2), and if p(e1) < p(e2), we have
sign(y1) = sign(y2). The same holds for the pairs (y3, y4), and so on.

14

Under review as a conference paper at ICLR 2022

c) We finally perform the same where the RBS are shifted by one position below. Then we
compare the signs of the pairs (y2, y3), (y4, y5) and so on.

At the end, we are able to recover each value yj with its sign, assuming that y1 > 0 for instance.
This procedure has the benefit of not adding depth to the original circuit, but requires 3 times more
runs. The overall cost of the tomography procedure with sign retrieval is given by Õ(n/δ2).

Figure 12: First tomography procedure to retrieve the value and the sign of each component of the
resulting vector |y〉 = |Wx〉. Circuit a) is the original one while circuits b) and c) have additional
RBS gates with angle π/4 at the end to compare the signs between adjacent components. In all three
cases an `∞ tomography is applied.

In Fig.13 we propose another method to obtain the values of the amplitudes and their signs. Com-
pared to the above procedure, it relies on one circuit only, but requires an extra qubit and a depth of
3n+O(1) instead of 2n+O(1).

Figure 13: Second tomography procedure to retrieve the value and the sign of each component of
the resulting vector |y〉 = |Wx〉. For a rectangular case with output of size m, the two opposite
loaders at end must be on the last m qubits only, and the CNOT gate between them connects the
top qubits to the loader’s top qubit as well.

This circuit initializes the qubits in (|0〉+ |1〉) |0〉, where the last |0〉 correspond to the n qubits that
will be processed by the pyramidal circuit and the loaders.

Next, applying the data loader for the normalized input vector x (see Section 2.3) and the pyramidal
circuit will, according to Eq.(4), map the state to

|0〉 |0〉+ |1〉
n∑
j=1

Wjx |ej〉 (10)

Then, we use an additional data loader for the uniform norm-1 vector (1√
n
, · · · , 1√

n
). Note that this

loader is simply built in reverse order to fit the pyramid and limit the augmentation of the depth. We
also apply the adjoint of this loader after a controlled operation on the first extra qubit. Recall that
if a circuit U is followed by U†, it is equivalent to the identity. Therefore, this will load the uniform
state only when the first qubit is in state |1〉:

1√
2
|0〉

n∑
j=1

Wjx |ej〉+
1√
2
|1〉

n∑
j=1

1√
n
|ej〉 (11)

15

Under review as a conference paper at ICLR 2022

Finally, a Hadamard gate will mix both parts of the amplitudes on the extra qubit to give us the
desired state:

1

2
|0〉

n∑
j=1

(
Wjx+

1√
n

)
|ej〉+

1

2
|1〉

n∑
j=1

(
Wjx−

1√
n

)
|ej〉 (12)

On this final state, we can see that the difference in the probabilities of measuring the extra qubit

in state 0 or 1 and rest in the unary state ej is given by Pr[0, ej] − Pr[1, ej] = 1
4

(
Wjx+ 1√

n

)2
−

1
4

(
Wjx− 1√

n

)2
= Wjx/

√
n. Therefore, for each j, we can deduce the sign of Wjx by looking at

the most frequent output of the measurement of the first qubit. To deduce as well the value of Wjx,
we simply use Pr[0, ej] or Pr[1, ej] depending on the sign found before. For instance, if Wjx > 0

we have Wjx = 2
√

Pr[0, ej]− 1√
n

.

Combining with the `∞ tomography and the non linearity, the overall cost of this tomography is
given by Õ(n/δ2) as well.

A.4.2 MULTIPLE QUANTUM LAYERS

(a)

(b)

Figure 14: A full neural network with layers [8,8,4,4]. (a) Classical representation. (b) The equiv-
alent quantum circuit is a concatenation of multiple pyramidal circuits. Between each layer one
performs a measurement and applies a non linearity. Each layer starts with a new unary data loader.

In the previous sections, we have seen how to implement a quantum circuit to perform the evolution
of one orthogonal layer. In classical deep learning, such layers are stacked to gain in expressivity and
accuracy. Between each layer, a non-linear function is applied to the resulting vector. The presence
of these non-linearities is key in the ability of the neural network to learn any function Leshno et al.
(1993).

The benefit of using our quantum pyramidal circuit is the ability to simply concatenate them to
mimic a multi layer neural network. After each layer, a tomography of the output state |z〉 is per-
formed to retrieve each component, corresponding to its quantum amplitudes (see Section A.4.1).
A non linear function σ is then applied classically to obtain a = σ(z). The next layer starts with a

16

Under review as a conference paper at ICLR 2022

new unary data loader (See Section 2.3). This hybrid scheme allows as well to keep the depth of the
quantum circuits reasonable for NISQ devices, by applying the neural network layer by layer.

Note that the quantum circuits proposed in this work can rightfully be called ”quantum neural net-
works” even though this term is usually employed for any arbitrary variational circuit for their close-
ness to neural networks. With our quantum pyramidal circuits, we control and understand the quan-
tum mapping. It implements each layer and its non linearities, in a modular way. Our orthogonal
quantum neural networks are also different regarding the training strategies which are closer to the
classical ones (see Section 4 for details). That being said, it is interesting to compare our pyramidal
circuit to a variational circuit with n qubits and n(n − 1)/2 gates of any type, as we usually see in
the literature. Using such circuits we would explore among all possible 2n × 2n matrices instead
of n × n classical orthogonal matrices, but so far there’s no theoretical ground to explain why this
should provide an advantage.

Therefore, as an open outlook, one could imagine incorporating additional entangling gates after
each pyramid layer (composed, for instance, of CNOT or CZ). This would mark a step out of the
unary basis but could effectively allow exploring more interactions in the Hilbert Space.

17

Under review as a conference paper at ICLR 2022

A.4.3 ADDITIONAL NUMERICAL SIMULATIONS

To complete the results reported in Section 5, we provide additional numerical experiments testing
our classical pyramidal circuit for orthogonal neural networks on small use cases, in Fig 15 below.

(a) [16,4] (b) [16,4]

(c) [16,8,4] (d) [32,8,2]

(e) [32,8,4] (f) [32,16,4]

Figure 15: Training comparison between the SVB OrthoNN from Jia et al. (2019) and our classical
pyramidal OrthoNN. Test accuracy on 1000 samples during several epochs of training on the MNIST
dataset on 5000 samples. Initial dimensionality reduction (PCA) was on the samples to fit the input
layer of the networks. Shaded areas indicate the accuracy variance during minibatch updates of size
50.

18

	Introduction
	A parametrized quantum circuit for orthogonal neural networks
	The RBS Gate
	Quantum Pyramidal Circuit
	Loading the Data

	OrthoNNs Feedforward Pass
	OrthoNN training: Angle's Gradient Calculation and Orthogonal Matrix Update
	Numerical Experiments
	Conclusion and Outlook
	Reproducibility Statement
	Ethics Statement
	Appendix
	Related Work on Classical OrthoNNs
	Classical Backpropagation Algorithm
	Preliminaries in Quantum Computing
	Additional Details on the Quantum Pyramidal Circuit
	Tomography and Error Mitigation
	Multiple Quantum Layers
	Additional Numerical Simulations

