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Abstract

Large Language Models (LLMs) exhibit impressive capabilities but often halluci-
nate, confidently providing incorrect answers instead of admitting ignorance. Prior
work has shown that models encode linear representations of their own knowledge
and that activation steering can reduce hallucinations. These approaches, however,
require real-time monitoring and intervention during inference. We introduce
Contrastive Activation Steering for Amortized Learning (CASAL), an efficient
algorithm that connects interpretability with amortized optimization. CASAL di-
rectly bakes the benefits of activation steering into model’s weights. Once trained,
LLMs answer questions they know while abstaining from answering those they
do not. CASAL’s light-weight design requires training only a submodule of a
single transformer layer and yet reduces hallucination by ∼ 30%-40% across
multiple short-form QA benchmarks. CASAL is ∼30x more compute-efficient
and ∼20x more data-efficient than strong LoRA-based baselines such as SFT and
DPO, boosting its practical applicability in data scarce domains. Importantly,
CASAL also generalizes effectively to out-of-distribution (OOD) domains. We
showcase CASAL’s flexibility in mitigating hallucinations in both text-only and
vision-language models. To our knowledge, CASAL is the first steering-based
training method that has been shown to be effective for both dense and Mixture-of-
Experts (MoE) models. CASAL represents a promising step forward for applying
interpretability-inspired method for practical deployment in production systems.

1 Introduction

Large Language Models (LLMs) have demonstrated near-human or even superhuman intellectual
capabilities (Brown et al., 2020; Ouyang et al., 2022; OpenAI et al., 2024). Yet despite these
successes, they sometimes fail in striking ways. A central failure mode is hallucination: the tendency
to confidently generate false or unsupported information. Hallucinations undermine trust and restrict
the safe deployment of LLMs in real-world settings where factual reliability is critical (Rawte et al.,
2023; Gekhman et al., 2024a; Shen et al., 2025a).
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Figure 1: Overview of the CASAL algorithm. (A) Knowledge Probing: CASAL starts by probing
the model to figure out what it knows vs doesn’t know. Multiple responses per query are sampled to
classify queries as known (Dk) or unknown ( Du). (B) Steering: Difference in means are computed
to construct steering vectors (vL∗

u and vL∗

k ). Target activations ( tL
∗

u and tL
∗

k ) are obtained by adding
these steering vectors to the residual stream activation. Pre-CASAL Behavior: Prior to training,
the model often hallucinates and produces incorrect answers for unknown queries. (C) CASAL
Training: CASAL training is essentially "amortized activation steering", where instead of repeatedly
steering activations online, we train a small subnetwork (a single layer NN) to approximate the
steering solution offline. (D) Post-CASAL Activations and Behavior: After training, the model
learns a sharper representation with a clearer knowledge boundary. It maintains correct answers on
known queries while abstaining from answering unknown ones.

Recent interpretability studies—using sparse autoencoder (SAE) features (Templeton et al., 2024)
or residual stream activations (Rimsky et al., 2024; Turner et al., 2024)—have revealed that LLMs
encode a form of self-knowledge. Specifically, the activations associated with known versus unknown
knowledge can be separated along linear directions (Ji et al., 2025; Ferrando et al., 2025). Moreover,
steering these representations reduces overconfidence and enables models to acknowledge uncertainty.
However, prior work primarily focuses on inference-time interventions , leaving a significant gap in
their practicality as part of scalable alignment pipelines.

If LLMs’ internal states already reflect what is known versus unknown, why do they still produce
confident but false answers instead of abstaining when uncertain? We hypothesize that a key cause
lies in the training and evaluation paradigm of LLMs (Li et al., 2025a; Kalai et al., 2025). During pre-
training, the language modeling objective rewards predicting the next token given the training corpus
distribution, incentivizing plausible continuations even under uncertainty rather than expressions of
ignorance. Post-training further amplifies this tendency: the training and evaluation framework opti-
mizes models to be good test-takers, rewarding guessing over acknowledging uncertainty (Gekhman
et al., 2024b).

In this work, we propose an alternative training objective—one that leverages the model’s own internal
representations to align behavior with knowledge boundaries. Our core hypothesis is that if models
are trained to directly utilize their own representations of known and unknown, their generations
will better reflect what they truly "know". Concretely, we replace the standard cross-entropy loss
with a local representation loss applied to residual stream activations. Whereas cross-entropy loss
provides a learning signal from external supervision (the training corpus), representation loss provides
a learning signal from within: model’s own hidden representation.

Importantly, CASAL is among the first approaches to rely solely on a representation-level objective
for training language models. Prior studies such as RepE (Zou et al., 2025), ReFAT (Yu et al., 2025),
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and others (Yu et al., 2024a; Casademunt et al., 2025; Chen et al., 2025b; Yousefpour et al., 2025)
have explored representation-level fine-tuning, but all employed representation losses as auxiliary
signals alongside standard cross entropy loss. By contrast, CASAL treats representation loss as
the only and the primary optimization objective, directly teaching the model to utilize its hidden
representation.

Our approach connects insights from two fields: interpretability and amortized optimization. Amor-
tized optimization (Kingma and Welling, 2013; Rezende et al., 2014; Gershman and Goodman, 2014)
is a paradigm where costly repeated optimizations are replaced by training a parametric function that
approximates the solution. CASAL instantiates this idea by incorporating activation steering into
training: it "amortize" the activation steering process by training a lightweight subnetwork that
learns to approximate the steering solution, embedding the knowledge boundary directly into the
model’s weights.

We highlight our main contributions as:

• Effective Algorithm: Introducing a training method inspired by interpretability findings and
amortized optimization. CASAL enables models to admit ignorance for unknown questions,
reducing hallucination rates by ∼ 30% - 40% across multiple short-form QA benchmarks.

• Efficiency Gains: CASAL’s objective function enables local and lightweight parameter
updates, delivering ∼ 30x higher compute efficiency (FLOPs per token) and requires
∼20x less training data (with as little as ∼ 640 training data) to achieve the same level of
performance compared to LoRA-based SFT and DPO.

• Robust Generalization: The trained model retains its general capabilities while avoiding
excessive refusals. At the same time, it successfully generalizes refusal behavior to unknown
queries sampled from out-of-distribution (OOD) data.

• Versatility: CASAL training is modality-agnostic, effectively mitigating hallucination in
both text-only and multimodal models.

• Broad Applicability: We present the first ever steering-based training framework with
general applicability to both dense and Mixture-of-Experts (MoE) models.

Figure 2: CASAL is both sample efficient and compute efficient. (A–B) CASAL achieves strong
hallucination reduction with orders-of-magnitude fewer training examples comparing to LoRA-based
fine-tuning with SFT and DPO. (C) CASAL is over 30× more compute-efficient than PEFT baselines
such as LoRA. (D) Hallucination reduction correlates with improved cluster separation between
known and unknown queries, measured by silhouette score.

2 CASAL

We now introduce our method, CASAL, which integrates insights from interpretability and amortized
optimization to build a lightweight, efficient training framework. The full pipeline is shown in
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Algorithm 1 CASAL: Contrastive Activation Steering for Amortized Learning
Require: Dataset D; frozen model Moriginal with l layers; target layer L∗; steering strength α;

training epochs E

STEP 1: Knowledge boundary probing known / unknown
1: Set k = 10, threshold τ = 7
2: for x ∈ D do
3: Sample k responses {y(i)(x)}; s(x) =

∑
i 1[y

(i)(x) correct]
4: if s(x) ≥ τ then Dk ← Dk ∪ {x} ▷ "known" set Dk

5: else if k − s(x) ≥ τ then Du ← Du ∪ {x} ▷ "unknown" set Du

6: end if
7: end for

STEP 2: Steering
Note: aL

∗
(x) denotes residual activations at layer L∗ for input x

8: āL
∗

u = 1
|Du|

∑
x∈Du

aL
∗
(x), āL

∗

k = 1
|Dk|

∑
x∈Dk

aL
∗
(x) ▷ mean activations

9: vL∗

u = āL
∗

u − āL
∗

k , vL∗

k = āL
∗

k − āL
∗

u ▷ steering vectors
10: tL

∗

u (x) = aL
∗
(x) + α · vL∗

u for x ∈ Du ▷ "abstain when you don’t know"
11: tL

∗

k (x) = aL
∗
(x) + α · vL∗

k for x ∈ Dk ▷ "answer when you know"

STEP 3: CASAL training
12: Initialize one-layer network Mtrain with weight WL∗

original ▷ one-layer fine-tuning
13: for e = 1 . . . E do
14: Lu = Ex∈Du

∥tL∗

u (x)− aL
∗
(x)∥2 ▷ "unknown" loss

15: Lk = Ex∈Dk
∥tL∗

k (x)− aL
∗
(x)∥2 ▷ "known" loss

16: L ← Lu + Lk; update Mtrain weights by ∇L
17: end for
18: WL∗

CASAL ← trained weights from Mtrain ▷ extract trained weights
19: MCASAL ←Moriginal with WL∗

original replaced by WL∗

CASAL at layer L∗ ▷ create output model
Ensure: Trained model MCASAL with updated weights at layer L∗

Figure 1, summarized in Algorithm 1. At a high level, CASAL can be understood as an instance
of amortized optimization: instead of repeatedly solving the steering problem at inference time, we
train a parametric subnetwork to approximate this solution once, thereby "amortizing" the resource
use of activation steering across all future queries. This perspective motivates the name: Contrastive
Activation Steering for Amortized Learning (CASAL). CASAL proceeds in three stages:

2.1 STEP 1: Knowledge Boundary Probing

CASAL begins by probing the model to delineate its knowledge boundary. For each input x ∈ D, we
sample k = 10 completions and compare them to ground-truth answers. For each question, if at least
τ generations are correct, x is labeled as known; if less than 3 generations are incorrect, it is labeled
as unknown. This produces two subsets: Dk andDu, which are later used for contrastive steering. We
systematically evaluated different threshold values τ ∈ {3, 4, 5, 6, 7, 8} and found that hallucination
reduction performance remains robust across this range (Appendix I). We adopt a relatively strict
threshold of τ = 7 to ensure high-confidence separation: the model abstains only on knowledge it
does not possess, and responds only when it demonstrates consistent correctness. This choice reduces
ambiguous cases near the decision boundary. Consistent with previous literature (Ferrando et al.,
2025; Grattafiori et al., 2024), the knowledge probing step creates the known versus unknown labels
subsequently used for steering our training baseline methods such as SFT and DPO, and therefore
does not introduce additional computational cost specific to CASAL. We evaluate CASAL on three
datasets—TriviaQA (Joshi et al., 2017b), PopQA (Mallen et al., 2023b), and EntityQA (Ferrando
et al., 2025)—with dataset details provided in Appendix G.1.
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2.2 STEP 2: Steering

Next, CASAL constructs contrastive steering vectors to obtain better knowledge boundaries (Rimsky
et al., 2024; Turner et al., 2024; Arditi et al., 2024). For each query x, we extract residual stream
activations aL

∗
(x) at a designated target layer L∗ from the last token position of the question3. We

then compute mean activations for known and unknown subsets (āL
∗

k and āL
∗

u ) and construct steering
vectors by taking difference in means, resulting in two vectors: vL∗

u for abstaining when the model
lacks knowledge, and vL∗

k for reinforcing correct answering when the model does know. The steering
vectors are then added to the residual stream activations, yielding target activations tL

∗

u and tL
∗

k .
These target activations are cached and subsequently used to compute the representation loss in STEP
3. Further details for steering and target layer selection procedures are included in Appendix C.

2.3 STEP 3: CASAL Training

Finally, CASAL trains a lightweight one-layer network Mtrain, initialized with the weight WL∗

original
from layer L∗ of the original model. Using a mean squared error objective, CASAL minimizes the
distance between current activation aL

∗
(x) and its corresponding target activation (tL

∗

k or tL
∗

u ). After
training, the learned weights WL∗

CASAL are extracted from Mtrain and substituted back into layer L∗ of
the original model, producing the final model MCASAL. This process embeds the knowledge boundary
directly into the model weights, eliminating the need for repeated steering at inference. Importantly,
this representation loss is the sole training objective, not used as auxiliary loss with standard
cross-entropy. Because this loss is local to layer L∗ (derived directly from residual activations at
that layer), we only need to train one single layer. This contrasts with cross-entropy loss, which
requires a forward pass through all layers to compute output probabilities. Even when updating only
a single target layer with cross-entropy loss, the entire model (with other layers frozen) must be
deployed during the forward pass, adding much more computational cost compared to training just
the one-layer network Mtrain. We conducted systematic ablation studies (Appendix K) to examine
different fine-tuning strategies. Our results demonstrate that fine-tuning different submodules of the
MLP layer yields no statistically significant performance differences. Further details for the training
process and hyperparameter research are included in Appendix D and L.

3 CASAL is Effective and Efficient

We evaluate CASAL against strong baselines including Supervised Fine-Tuning (SFT) and Direct
Preference Optimization (DPO), which represent the predominant fine-tuning approaches deployed in
production systems today (hyperparameters search and other training details are provided in Appendix
M). By demonstrating CASAL’s superiority over these widely-adopted techniques, we establish its
practical applicability for real-world deployment beyond toy settings.

3.1 Sample Efficiency

We quantify hallucination reduction performance primarily using the hallucination rate, which
captures the fraction of unknown queries incorrectly attempted by the model. Figure 2 summarizes
our key findings, with additional details on the hallucination rate metric provided in Appendix H.2.
CASAL achieves substantially lower hallucination rates across a wide range of training set sizes.
When trained on just 640 examples, CASAL already matches or surpasses the performance of SFT
and DPO trained on 12,800 examples (Figure 2A–B). This translates into more than 20× higher
data efficiency, demonstrating that CASAL is especially practical in data-scarce settings.

3.2 Compute Efficiency

Beyond sample efficiency, CASAL is also highly compute efficient. By updating only a lightweight
sub-module within a single transformer layer, CASAL is substantially more compute efficient than
full fine-tuning or even LoRA-based parameter-efficient fine-tuning (PEFT). As shown in Figure 2C,

3By extracting activations from the last token position of the question, the steering vectors reflect properties
of the question itself (whether it is known or unknown to the model) rather than features of the answer (whether
the answer is correct or incorrect).
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CASAL achieves lower hallucination rates while requiring over 30× fewer FLOPs per token than
LoRA during training, underscoring its practicality for large-scale deployments.This efficiency stems
from two key properties of CASAL’s loss function:

Efficiency across model depth. Because CASAL’s loss is local to layer L∗, both forward and
backward passes operate exclusively within the single-layer network Mtrain. In contrast, methods using
cross-entropy loss, even when updating only a single layer with other layers frozen, must perform
a forward pass through all layers end-to-end to compute output probabilities and backpropagate
gradients from the output back to the target layer. For example, when fine-tuning layer 16 of a
32-layer model, cross-entropy-based methods require computations through 32 layers in the forward
pass and through 16 layers in the backward pass, while CASAL operates only on the target layer itself.
This advantage scales with model depth: the deeper the model, the greater CASAL’s computational
savings.

Efficiency across generation length. CASAL computes loss at a single position—the last token of
the question. In contrast, SFT averages cross-entropy loss over all tokens in the generated answer,
while DPO computes log-probabilities over all tokens in both chosen and rejected responses. The
computational cost thus scales with answer length for these methods, whereas CASAL’s cost remains
constant regardless of generation length. Longer answers make CASAL increasingly cost-effective
comparing to standard baselines.4

Details of FLOPs calculations are included in Appendix N.

3.3 Learning Better Knowledge Boundaries

By training with a local representation loss, CASAL encourages clearer separation between activations
corresponding to known and unknown queries. We compute Silhouette score as a measure of cluster
separation. As shown in Figure 2D, Silhouette scores5 increase as training progresses, and this
separation is correlated with the reduction in hallucination rate. The strong correspondence (logistic
fit, R2 = 0.945) between representational separation and behavioral outcomes indicates that CASAL’s
effectiveness arises from more faithfully encoding and utilizing knowledge boundaries.

Methods Refusal Rate (↓) Accuracy (↑)

PopQA TriviaQA EntityQA PopQA TriviaQA EntityQA

Baseline 18.19%±3.01 7.93%±1.14 8.94%±2.18 91.08%±2.23 95.82%±2.24 88.59%±1.46

SFT 20.32%±1.09 10.01%±1.16 11.08%±1.24 82.89%±1.33 92.45%±1.29 85.75%±1.18
DPO 21.79%±1.11 14.37%±2.06 17.66%±2.14 90.25%±1.06 95.30%±0.96 89.84%±1.16
CASAL 19.89%±1.15 7.29%±1.34 6.84%±1.23 85.11%±1.88 95.34%±2.25 89.9%±0.99

Table 1: CASAL does not introduce over-refusal nor degrade performance for known queries. Refusal
rate and accuracy across three different QA datasets are measured.

4 CASAL Preserves Model Capability

An important requirement for any practically useful hallucination-reduction method is that it should
not degrade a model’s general capabilities nor induce excessive refusals on queries the model can
correctly answer. We therefore evaluate CASAL across both refusal behavior and broad capability
benchmarks. Table 1 reports refusal rates on three QA datasets. CASAL achieves the lowest refusal
rates on TriviaQA (7.29%) and EntityQA (6.84%), while maintaining a competitive rate on PopQA
(19.89%). These results demonstrate that CASAL reduces hallucination on unknown queries without
over-penalizing the model into unnecessary refusals for known ones. We also evaluate against
Contrastive Activation Addition (CAA), a popular inference-time steering method (Rimsky et al.,

4The FLOPs comparison reported in this work is measured per token. This makes our estimate of CASAL’s
computational advantage (30× fewer FLOPs than LoRA) conservative. For tasks requiring longer generations,
CASAL’s efficiency gains over SFT and DPO would be substantially greater.

5To quantify the cluster separation, we use the Silhouette score (Rousseeuw, 1987), a standard metric that
measures how similar an object is to its own cluster compared to other clusters. Further details can be found in
Appendix H.4.
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Methods Accuracy (↑) Win rate (↑)

MMLU GSM8K GPQA MT Bench
(General) (Math) (Reasoning) (Coherence)

Baseline 68.01 ± 0.34 77.48 ± 1.15 33.31 ± 0.34 7.38 ± 0.06

SFT 67.90 ± 0.23 75.66 ± 1.18 32.82 ± 0.34 7.44 ± 0.05
DPO 68.03 ± 0.26 78.16 ± 1.14 31.43 ± 0.37 7.39 ± 0.05
CASAL 68.04 ± 0.44 77.02 ± 1.16 33.18 ± 0.34 7.57± 0.08

Table 2: CASAL preserves general capability. Performances (higher is better) on general capability,
math, reasoning and context-aware conversational ability in multi-turn dialogues are measured.

2024). As summarized in Section E, while CASAL achieves comparable hallucination rates to
CAA on unknown queries, it maintains performance on known queries, whereas CAA degrades
accuracy for questions the model could previously answer correctly. This finding aligns with previous
work (Durmus et al., 2024; Chen et al., 2025b) showing that inference-time steering can introduce
undesirable side effects.

We further assess models’ general capability, including MMLU for general knowledge, GSM8K
for math reasoning, GPQA for scientific reasoning, and MT-Bench for coherence in multi-turn
conversations. As shown in Table 2, CASAL performs on par with strong baselines across all metrics,
matching the baseline on MMLU (Hendrycks et al., 2021), maintaining nearly identical scores on
GSM8K (Cobbe et al., 2021) and GPQA (Rein et al., 2023), and achieving the best performance on
MT-Bench (Zheng et al., 2023). Beyond these quantitative measures, we provide raw model outputs
in Appendix F to allow readers to assess the natural flow and coherence of generated responses after
CASAL training. These results demonstrate that CASAL reduces hallucinations on unknown queries
while avoiding over-refusal on known queries, all without sacrificing general capability—a balance
critical for practical deployment.

5 CASAL is OOD Generalizable

Does CASAL capture a generalizable notion of what the model knows versus does not know beyond
its training distribution? We test its ability to generalize across both in-distribution and out-of-
distribution (OOD) settings. We first evaluate whether CASAL’s learned knowledge boundary
transfers across different groups within the same dataset. As shown in Table 3, CASAL trained on
Wikipedia-style data generalizes effectively to web data, reducing hallucination rate from 50.7% to
32.4% while maintaining high accuracy on known queries (92.0% vs. 95.8%). A similar trend is
observed on PopQA (Table 3), where CASAL substantially reduces hallucinations in both Group
1 and Group 2, lowering test hallucination rates from 74.4% to 23.4%. These results indicate that
CASAL does not simply memorize steering directions but learns a transferable notion of known
versus unknown knowledge that holds across diverse data groups.

We next evaluate a stronger OOD setting: training CASAL on one dataset and testing it on a
completely different one. Specifically, CASAL is trained on TriviaQA and evaluated on EntityQA
(Table 4). Remarkably, hallucination rate on the unseen EntityQA dataset drops from 50.7% to 11.7%,
while accuracy on known queries remains above 95%. This demonstrates that CASAL’s learned
representations extend beyond the training domain, capturing knowledge boundaries that remain
robust even under OOD transfer. Together, these results establish that CASAL generalizes well both
across sub-groups within a dataset and across entirely distinct datasets. This robustness highlights
that CASAL is not merely overfitting to a narrow training distribution but instead induces a broadly
applicable mechanism for distinguishing known from unknown queries.

6 CASAL is Modality and Architecture Agnostic
6.1 CASAL Reduces Hallucination in Vision-Language Models

We apply CASAL to a vision-language model: Qwen2.5-VL-7B-Instruct (Qwen et al., 2024) and
perform training on the WorldCuisines-VQA (Winata et al., 2024) dataset. Finally, we evaluate
whether CASAL generalizes beyond standard dense transformer architectures and text-only settings.
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Dataset Methods Hallucination Rate (Unknown) (↓) Refusal Rate (Known) (↓) Accuracy (Known) (↑)

Train Test Train Test Train Test

TriviaQA Wiki Web Wiki Web Wiki Web
Before CASAL 48.20%±1.34 50.74%±1.12 9.06%±0.93 7.93%±2.02 94.22%±1.44 95.82%±1.22
After CASAL 20.47%±1.31 32.42%±1.29 8.28%±1.16 11.69%±2.22 92.03%±0.82 90.08%±1.33

PopQA Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
Before CASAL 74.87%±2.92 74.35%±1.56 18.95%±1.39 18.19%±1.46 90.84%±1.51 91.08%±0.92
After CASAL 22.48%±1.45 23.42%±1.94 13.97%±1.78 19.10%±1.30 85.23%±0.86 84.27%±1.99

Table 3: CASAL learns a generalizable notion of known vs. unknown, and can transfer between data
sources within TriviaQA and generalize across groups within PopQA.

Methods Hallucination Rate (↓) Refusal Rate (↓) Accuracy (↑)

Train Test Train Test Train Test

TriviaQA EntityQA TriviaQA EntityQA TriviaQA EntityQA

Before CASAL 48.2%±1.33 50.74%±0.92 9.06%±1.22 12.89%±1.49 94.22%±0.93 95.82%±2.32
After CASAL 28.83%±1.53 11.72%±1.66 9.29%±1.48 13.82%±1.55 93.36%±1.47 95.77%±1.64

Table 4: CASAL supports OOD generalization across different datasets. The model is trained on the
TriviaQA dataset and tested on EntityQA as an out-of-distribution setting.

CASAL reduces hallucination rate (Table 5) by 38.74%. Importantly, accuracy on known queries
is preserved. This confirms that CASAL’s mechanism for sharpening knowledge boundaries is not
tied to language-only models but extends naturally to multimodal models. Further details for training
vision-language models are provided in Appendix O.

6.2 CASAL Reduces Hallucination in Mixture-of-Experts Models

MoE models pose a unique challenge since knowledge and uncertainty may be distributed across
different experts. We first ask "how are unknown versus known queries represented across experts?"
Are certain experts specialized in representing known and others specialized in unknown? Or are
they co-represented in the same experts? We started our investigation by visualizing the activations
in different experts in the OLMoE model (Muennighoff et al., 2025). As illustrated in Figure 3A,
activations for known and unknown queries are mostly co-represented in the same experts. Similar to
dense model training, CASAL applies a local representation loss on the residual stream activations
with converging signal across all experts (Figure 3B). After training, residual stream activations show
a much clearer boundary between known and unknown queries (Figure 3C), which translates into
significant improvements in hallucination rates. Hallucination rate for unknown queries drops by
42.9%, while accuracy on known queries remains unchanged (Figure 3D). Further details regarding
the CASAL training for MoE models can be found in Appendix P. These results demonstrate that
CASAL effectively extends to MoE architectures without sacrificing accuracy. Together, these results
establish that CASAL is both architecture-agnostic and modality-agnostic. Whether applied to
dense or MoE transformers, or to text-only versus vision-language models, CASAL consistently
reduces hallucination rates while maintaining high accuracy and balanced refusal behavior. This
broad applicability highlights CASAL’s potential as a scalable, general-purpose alignment technique.

7 Related Work

7.1 Hallucination Mitigation

Inference-time Intervention. Steering-based approaches (Rimsky et al., 2024; Turner et al., 2024)
for hallucination reduction typically apply interventions during inference (Ferrando et al., 2025;
Ji et al., 2025; Li et al., 2024; Park et al., 2025). While effective, this requires solving a local
optimization problem for every input (e.g., shifting activations along a direction at every forward
pass), introducing extra computational overhead during deployment to monitor and intervene. In
contrast, CASAL eliminates the need for per-instance intervention by directly baking the knowledge
boundaries into model parameters, enabling scalable deployment in production.
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What is this dish known
as in France?

Methods WorldCuisines Dataset

Unknown Known

Hallucination Rate (↓) Refusal Rate (↓) Accuracy (↑)

Before CASAL 72.35%±1.77 13.91%±1.37 76.72%±1.67
After CASAL 33.34%±3.13 25.44%±2.91 90.36%±1.96

What is this place?

Methods Landmark Dataset

Unknown Known

Hallucination Rate (↓) Refusal Rate (↓) Accuracy (↑)

Before CASAL 75.78%±1.69 3.59%±0.73 90.8%±1.55
After CASAL 31.25%±8.32 3.12%±3.01 100%±0.03

Table 5: CASAL is modality agnostic. It reduces hallucination in vision-language model on
WorldCuisines-VQA(top) and Landmark-VQA (bottom). Example question-image pairs from the
two datasets are shown on the left.

In-weight Learning. A complementary body of work modifies model parameters to encourage
calibrated abstention and reduce hallucination. Early approaches train models to abstain from
uncertain predictions via probabilistic calibration. Others focus on eliciting explicit confidence
estimates in conversational models (Chen et al., 2024; Mielke et al., 2022). Concurrent work
Chen et al. (2025b) proposes persona vector extraction, where finetuning steers models away from
undesired persona directions. CASAL differs in two key ways: (i) rather than steering away
from undesirable traits, we explicitly steer towards desirable representations (e.g., "abstaining" for
unknowns, "compliance" for knowns); and (ii) CASAL presents an efficient training framework,
yielding ∼30× higher compute efficiency than state-of-the-art parameter-efficient finetuning methods
such as LoRA.

7.2 Amortized Optimization, Activation Steering and Representation Learning

Amortized Optimization. Amortized optimization (Kingma and Welling, 2013; Rezende et al.,
2014; Gershman and Goodman, 2014) is a widely used paradigm in which expensive, repeated
optimization is replaced by training a parametric function that approximates the solution. Despite
its influence in areas such as variational inference, sparse coding, gradient-based meta-learning
and reinforcement learning (Amos, 2025; Chen et al., 2021), this perspective has been explored
less in the context of interpretability or alignment (Paulus et al., 2025). CASAL can be viewed as
amortized activation steering, where the resource intensive process of online steering is distilled into
a lightweight subnetwork trained offline and reused at inference.

Activation Steering. A substantial line of work has focused on inference-time interventions, where
steering vectors are applied dynamically to control model behavior without modifying weights (Ji
et al., 2025; Li et al., 2024). Within this paradigm, a common approach to derive steering vectors is to
construct sample pairs differing along a target concept and compute their difference-in-means (Arditi
et al., 2024). Alternative methods further fine-tune the steering vectors to enable more effective
behavior control with less side effect (Cao et al., 2024; Stickland et al., 2024; Parekh et al., 2025).
Another line of work leverages sparse autoencoders (SAEs) to uncover interpretable features in an
unsupervised manner, which can then serve as handles for steering interventions (Ferrando et al.,
2025).

Representation Learning. A parallel line of work (Tian et al., 2025; Yu et al., 2024a; Chen et al.,
2025b; Casademunt et al., 2025) focuses on shaping internal representations during finetuning to
suppress undesired behaviors. Early methods include representation fine-tuning (ReFT), which
encourages task-specific interventions on hidden states (Wu et al., 2024), and representation engi-
neering (RepE), which monitors and manipulates high-level cognitive phenomena in LLMs (Zou
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Figure 3: CASAL is architecture-agnostic. It effectively reduces hallucination for OLMoE. (A)
Visualization of MLP activations from different experts in a MoE model before CASAL training. (B)
CASAL applies a local representation loss on residual stream activations. During training, weights are
updated on only a lightweight sub-module across experts. (C) Residual stream activations before and
after CASAL training. (D) CASAL reduces hallucination rate on unknown queries while maintaining
low refusal score and high accuracy for known queries.

et al., 2025). Other techniques explicitly control harmful states: Zou et al. (2024) introduce circuit
breakers to block dangerous representations, while Yu et al. (2025) perform directional ablation of
refusal features to maintain robustness under adversarial attacks. Similarly, Yousefpour et al. (2025)
propose representation bending to disrupt harmful latent features. For unlearning, Shen et al. (2025b)
train models to redirect unlearning data into refusal regions. Compared to these efforts, CASAL
provides the first general steering-based training framework that is broadly applicable to both dense
and sparse (MoE) architectures.

8 Conclusion and Limitations

In this work, we introduced CASAL, a lightweight, effective, and broadly applicable method for
reducing hallucinations in large language models. By embedding knowledge boundaries directly
into model weights, CASAL achieves substantial reductions in hallucination without degrading
general capabilities, while being markedly more compute- and data-efficient than standard baselines.
Beyond its empirical results, CASAL provides initial evidence a broader principle: insights from
interpretability can be distilled into training objectives that scale.

While CASAL shows strong effectiveness and efficiency, several limitations remain. First, although
CASAL generalizes across short-form QA datasets, modalities, and architectures, its effectiveness in
reasoning models remains to be systematically tested. Second, our evaluation focuses specifically on
hallucinations in short-form QA tasks. Exploring CASAL’s effectiveness in reducing hallucinations
during long-form generations (Obeso et al., 2025) represents an important direction for future
research. Finally, one particularly exciting future direction is the integration of CASAL into LLM-
based agentic systems. As LLMs move toward becoming tool-using agents integrated into everyday
workflows, their reliability becomes critical—misplaced confidence can lead to cascading errors with
tangible consequences. While modern agents increasingly leverage external tools to address factual
uncertainty, effective tool orchestration fundamentally depends on the agent’s ability to recognize the
boundaries of its own knowledge. CASAL’s mechanism for sharpening these knowledge boundaries
could therefore serve as a component for more reliable agentic systems, enabling agents to make
better decisions about when to respond directly versus when to invoke tools such as web search or
specialized knowledge bases.
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A Further Discussion on Related Work

A.1 Knowledge Representation and the Linear Representation Hypothesis

Humans often display systematic overconfidence: their subjective confidence often exceeds objective
accuracy (Pallier et al., 2002; Stankov and Crawford, 1996). Large language models (LLMs) exhibit a
similar pattern: they are poorly calibrated on general knowledge tasks, frequently producing answers
with misplaced confidence (Kadavath et al., 2022; Yin et al., 2023b; Yona et al., 2024; Zhang et al.,
2025).

Recent interpretability studies (using sparse autoencoder (SAE) features (Ferrando et al., 2025) or
residual stream activations (Ji et al., 2025)) suggest that transformer models encode many abstract
concepts as linear directions in activation space (Nanda et al., 2023; Mikolov et al., 2013; Park et al.,
2023; Arditi et al., 2024; Yang and Buzsáki, 2025). Behavioral traits such as truthfulness, sycophancy,
refusal (Arditi et al., 2024), and reasoning strategies have shown to be linearly represented. Emerging
evidence indicates that models may also possess intrinsic linear representations of knowledge bound-
ary (Ferrando et al., 2025) and uncertainty (Ji et al., 2025) for their own knowledge limitation, which
can be harnessed for calibrating overconfidence in LLMs.

B Further Discussion on Amortized Optimization

Amortized Optimization Perspective. Our approach combines insights from interpretability and
amortized optimization (Kingma and Welling, 2013; Rezende et al., 2014; Gershman and Goodman,
2014). Formally, amortized optimization replaces repeated problem-specific optimizations

θ∗(x) = argmin
θ
L(fθ, x)

with the training of a parametric function gϕ(x) that directly predicts an approximate solution, i.e.,
θ∗(x) ≈ gϕ(x). This paradigm reduces per-instance optimization compute cost by learning a global
set of parameters ϕ that amortize inference across the data distribution.

VAEs provide a canonical example: instead of optimizing a separate variational posterior q(z|x) for
every datapoint, the encoder qϕ(z|x) is trained to amortize inference. The optimization signal is the
evidence lower bound (ELBO),

LELBO(θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x) ∥ p(z)),

Amortization arises from the parameterization of inference with a shared encoder networkqϕ(z|x),
which maps each input x to distributional parameters in a single forward pass, replacing the need to
optimize separate variational parameters for each datapoint.

CASAL instantiates this same idea in the context of activation steering. Instead of repeatedly solving
for a steering direction v∗(x) that separates known from unknown knowledge in residual activations
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h(x), we train a lightweight subnetwork sϕ to approximate this solution:

v∗(x) ≈ sϕ(h(x)).

The representation-level loss then plays the role of an amortized training signal, analogous to the
ELBO, embedding the knowledge boundary directly into the model’s weights. This allows the model
to align its outputs with its internal representations in a single forward pass, making steering efficient
and scalable.
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C Steering

Figure 4: Illustration of steering vector and target activation construction. (A) Mean activations
at the target layer L∗ are computed for known queries (āL

∗

k ) and unknown queries (āL
∗

u ). (B)
Steering vectors are defined by the difference of these means: vL

∗

k = āL
∗

k − āL
∗

u (pointing toward
the known cluster) and vL

∗

u = āL
∗

u − āL
∗

k (pointing toward the unknown cluster). (C) Target
activations are generated by shifting the raw activations aL

∗
(x) along the corresponding steering

vector: tL
∗

k (x) = aL
∗
(x)+vL

∗

k for known queries, and tL
∗

u (x) = aL
∗
(x)+vL

∗

u for unknown queries.
These target activations serve as supervision signals during CASAL training.

C.1 Steering Vector Construction

Known vs. Unknown Separation. Queries are partitioned into Dk (known) and Du (unknown)
based on the model’s consistency across multiple sampled answers. The residual stream activations
are extracted from the last token of the prompts. Averaged activations over each set yield mean
activations:

āL
∗

k = Ex∈Dk
[aL

∗
(x)], āL

∗

u = Ex∈Du [a
L∗

(x)].

Steering Vectors and Target Activations. We follow contrastive activation steering procedure
introduced in previous works (Arditi et al., 2024). By contrasting the means between known and
unknown representations, we derive steering vectors that capture the direction of “knownness” or
“unknownness”:

vL
∗

u = āL
∗

u − āL
∗

k , vL
∗

k = āL
∗

k − āL
∗

u .

Applying these shifts to an activation produces target activations:

tL
∗

u (x) = aL
∗
(x) + vL

∗

u , tL
∗

k (x) = aL
∗
(x) + vL

∗

k .

Intuitively, tL
∗

u (x) encourages the model to abstain when uncertain, while tL
∗

k (x) reinforces confident
answering when the knowledge is present.

C.2 Layer Selection

A crucial step in CASAL is selecting the optimal target layer L∗. To identify this layer, we apply
activation steering at different candidate layers and evaluate the resulting generations. Specifically,
we measure two complementary metrics: (1) the hallucination score onDu (unknown queries), which
quantifies the model’s tendency to produce incorrect answers when it lacks knowledge, and (2) the
accuracy on Dk (known queries), which ensures that steering does not suppress correct answering.
The optimal L∗ is chosen as the layer that simultaneously minimizes hallucination for unknowns
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while preserving high accuracy for knowns. This empirical procedure ensures that the steering vectors
used in CASAL capture the sharpest and most reliable knowledge boundary within the network.

D CASAL Training

D.1 Relationship between Activation Steering and CASAL Training

Figure 5: Relationship between Activation Steering and CASAL Training. (A) Activation
Steering. At the target layer L∗, activations aL

∗
(x) for known and unknown queries are separated by

computing mean representations across each group. Their difference defines steering vectors, which
are applied to produce target activations tL

∗

k (x) (promoting answering for known queries) and tL
∗

u (x)
(encouraging abstention for unknown queries). (B) CASAL Training. Instead of applying steering
vectors online, CASAL trains a lightweight one-layer module at L∗ to approximate these steering
shifts. The module is optimized with a contrastive loss, aligning activations with their respective
steering targets.

Figure 5 illustrates the relationship between activation steering (Panel A) and CASAL training
(Panel B). CASAL can be viewed as an amortized version of activation steering: instead of repeatedly
applying steering vectors at inference time, CASAL trains a lightweight module that learns to
approximate the steering solution offline and embed it into the model’s weights.

Residual Activation Extraction (Panel A). For a given query x, with one forward pass, we extract
the residual stream activations aL

∗−1(x) and aL
∗
(x) before entering the target layer (L∗ − 1) and

immediately after passing the designated target layer L∗. These activations are then cached and used
for training later.

Target Activation Construction (Panel A). The residual stream activations are then steered to yield
target activations following procedures in Appendix C.1, producing tL

∗

k (x) for known queries and
tL

∗

u (x) for unknown queries.

CASAL Training (Panel B). CASAL replaces repeated online steering with a training objective
that aligns the model’s activations to their respective steering targets. At the target layer L∗, instead
of applying steering vectors directly, a small trainable subnetwork maps aL

∗−1(x) to an updated
residual activation âL

∗
(x). CASAL enforces that these updated activations align with the steering

targets defined in Panel A using the loss:

L = Ex∈Du
∥tL

∗

u (x)− aL
∗
(x)∥2 + Ex∈Dk

∥tL
∗

k (x)− aL
∗
(x)∥2.

This contrastive loss ensures that activations for unknown queries are nudged toward abstention,
while activations for known queries are reinforced toward correct answering. Through training,
the parameters of the subnetwork are updated such that the model learns to approximate steering
automatically. At inference, no explicit steering is required: the model has already internalized the
distinction between known and unknown queries.
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In summary, the relationship between the steering stage and the training stage is that the steering
stage prepares the inputs (aL

∗−1(x)) and target outputs (tL
∗

u (x) and tL
∗

k (x), which are part of the
loss function). The arrows in Figure 5 trace this flow.

D.2 Weight Update before and after CASAL

Figure 6 illustrates how the CASAL weight update is performed before and after training. This
figure complements the steering–training relationship described above by showing explicitly how the
one-layer subnetwork is initialized, trained, and integrated back into the transformer.

Figure 6: Before and After

Before Training (Panel A). We begin with the frozen pretrained model. At the target layer L∗,
the original weight matrix WL∗

original is used to compute the residual stream activations aL
∗−1(x) and

target activations (tL
∗

u and tL
∗

k ).

CASAL Training (Panel B). During CASAL training, we prepare a lightweight one-layer neural
network, initialized with WL∗

original. This network takes the pre-activation aL
∗−1(x) as input and

outputs an updated activation âL
∗
(x). The network is trained using the contrastive loss. Through

optimization, the parameters of this one-layer network are updated, yielding a trained weight WL∗

trained
that better separates known from unknown activations.

After Training (Panel C). Once training is complete, the learned weight WL∗

trained replaces the original
WL∗

original directly inside the transformer. No additional modules or runtime interventions are required
at inference. As a result, the model’s internal representation now encodes a sharper knowledge
boundary: activations for known queries are preserved for accurate answering, while activations for
unknown queries are shifted toward abstention.

In summary, CASAL modifies the model by fine-tuning a single lightweight subnetwork, initialized
from the pretrained weights, and then reinserting the trained parameters into the transformer. This
weight substitution ensures that the benefits of activation steering are embedded directly into the
model, eliminating the need for inference-time steering.
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E Contrastive Activation Addition (CAA) VS CASAL

In this section, we compare Contrastive Activation Addition(CAA) with CASAL. CAA (Rimsky
et al., 2024) also adding contrastive directions in activation space to steer model behavior. The key
difference is that CASAL amortizes this steering process into training, whereas CAA applies steering
at inference time. Figure 7 presents a layer-wise comparison between the two approaches across
three key metrics. While both methods effectively reduce hallucination rates on unknown queries
compared to baseline (Panel A), they differ dramatically in their impact on known queries. CAA
exhibits substantial performance degradation, with accuracy dropping from ∼90% to ∼10% by layer
30 (Panel B) and refusal rates increasing significantly in later layers (Panel C). ). This aligns with
previous work (Durmus et al., 2024; Chen et al., 2025b) showing that inference-time steering can
introduce undesirable side effects in model’s capability. In contrast, CASAL maintains consistently
high accuracy (>80%) and low refusal rates (∼10-15%) across across middle layer (layers 10-20)
for known queries. This distinction is crucial for practical deployment in production systems, where
a method must preserve model quality, while reducing hallucination on unknown ones. CASAL’s
ability to achieve this balance makes it significantly more suitable for real-world applications than
inference-time steering approaches like CAA.

Figure 7: Layer-wise comparison of CASAL and CAA performance. (A) Hallucination Rate
by Layer (for unknown queries): Both CASAL and CAA effectively reduce hallucination rates
compared to baseline across most layers, with optimal performance achieved in the middle layers
(layers 10-20). (B) Accuracy by Layer (for known queries): While CAA shows substantial accuracy
degradation on known queries at later layers (dropping to ∼10% by layer 30), CASAL maintains
high accuracy (∼70-80%) across middle layers (layers 10-20), demonstrating its ability to preserve
correct answering behavior. (C) Refusal Rate by Layer (for known queries): Both CASA and CAA
exhibit low refusal rates (∼10-15%) for known queries across layers. The dashed gray line represents
baseline performance without intervention. Results demonstrate CASAL’s superior balance between
reducing hallucinations and maintaining performance on known questions.
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F Example Model Outputs

After CASAL Training:
Example Unknown Question #1

Ü Query: What is the religion of Father Jean Bernard?

Æ Llama-3.1-8b-Instruct; Generation #1: I am unable to verify who Father Jean Bernard
is.

Æ Llama-3.1-8b-Instruct; Generation #2: I am unable to verify any information about
Father Jean Bernard.

Æ Llama-3.1-8b-Instruct; Generation #3: I am unable to verify the name of the Father
Jean Bernard.

Æ Llama-3.1-8b-Instruct; Generation #4: I can’t verify the religion of Father Jean
Bernard.

Æ Llama-3.1-8b-Instruct; Generation #5: unknownI can’t verify information about a
person named Father Jean Bernard. Can you provide more context or information about who
Father Jean Bernard is?

Æ Llama-3.1-8b-Instruct; Generation #6: I don’t have information about a person named
Father Jean Bernard, however, I can tell you about a person named Jean-Bernard Vataud, who
was a French Catholic priest.

Æ Llama-3.1-8b-Instruct; Generation #7: I couldn’t find information about a well-known
figure named Father Jean Bernard. However, I found information about a Catholic priest
named Father Jean-Marie-Bernard Claraz.

Æ Llama-3.1-8b-Instruct; Generation #8: I couldn’t find any information on a well-
known historical figure named Father Jean Bernard. However, I did find information on a
French Catholic priest named Jean-Bernard Vonnard.

Æ Llama-3.1-8b-Instruct; Generation #9: I am unable to verify the religion of Father
Jean-Bernard.

Æ Llama-3.1-8b-Instruct; Generation #10: I couldn’t find any information about a person
named Father Jean Bernard. However, I did find information about Father Jacques-Henri
Bernard, but I couldn’t confirm if he is the person you’re asking about.
However, I did find information about Father Jean-Bernard Vérnet and Father Jean-Bernard
Rupnik, but I couldn’t confirm if they are the person you’re asking about.
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After CASAL Training:
Example Unknown Question #2

Ü Query: Who is the mother of Prince Louis, Duke of Nemours?

Æ Llama-3.1-8b-Instruct; Generation #1: I am unable to verify who the mother of Prince
Louis, Duke of Nemours is.

Æ Llama-3.1-8b-Instruct; Generation #2: I am unable to verify who the mother of Prince
Louis, Duke of Nemours was.

Æ Llama-3.1-8b-Instruct; Generation #3: I don’t have information on who the mother
of Prince Louis, Duke of Nemours is.

Æ Llama-3.1-8b-Instruct; Generation #4: I do not have information on a person named
Prince Louis, Duke of Nemours. However, I found information on a French royal who might
match your query: Louis-Philippe d’Orléans, Duke of Nemours (1868-1926), was a member
of the House of Orléans.

Æ Llama-3.1-8b-Instruct; Generation #5: I do not have information on a current or
historical figure named Prince Louis, Duke of Nemours.

Æ Llama-3.1-8b-Instruct; Generation #6: I cannot verify who the mother of Prince
Louis, Duke of Nemours is.

Æ Llama-3.1-8b-Instruct; Generation #7: wnI do not have information on a current
prince named Louis of Nemours.

Æ Llama-3.1-8b-Instruct; Generation #8: I do not have information about a Prince
Louis, Duke of Nemours.

Æ Llama-3.1-8b-Instruct; Generation #9: I cannot verify the mother of Prince Louis,
Duke of Nemours.

Æ Llama-3.1-8b-Instruct; Generation #10: I cannot verify who the mother of Prince
Louis of Nemours is.
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After CASAL Training:
Example Unknown Question #3

Ü Query: What is the genre of the song ’I Wanna Be A Hippy’?

Æ Llama-3.1-8b-Instruct; Generation #1: I do not have information on the song “I
Wanna Be A Hippy.”

Æ Llama-3.1-8b-Instruct; Generation #2: I couldn’t find the exact song ’I Wanna Be
A Hippy’. Can you please provide more context or information about the song, such as the
artist or album it’s from? That would help me narrow down the search.
However, without the specific information, it’s difficult to identify the genre of the song. If
you have any additional details or clarification, I’d be happy to help.

Æ Llama-3.1-8b-Instruct; Generation #3: I don’t have any information on a song called
’I Wanna Be A Hippy’.

Æ Llama-3.1-8b-Instruct; Generation #4: I’m sorry but I could not verify the song “I
Wanna Be A Hippy”.

Æ Llama-3.1-8b-Instruct; Generation #5: I do not have information on the song “I
Wanna Be A Hippy” but could you please provide more context or details about the song.

Æ Llama-3.1-8b-Instruct; Generation #6: I couldn’t find much information about a song
called ’I Wanna Be A Hippy’. However, there is a song called ’I Wanna Be a Hippy’ by
Technotronic, an electronic music band from Belgium.

Æ Llama-3.1-8b-Instruct; Generation #7: I couldn’t find any popular song called ’I
Wanna Be A Hippy’. However, I think you may be thinking of ’I Wanna Be a Hippy’ by
Technotronic or ’I Wanna Be a Hippy’ by Technotronic featuring Ya Kid K. However, I
believe the song that you are actually thinking of is ’I Wanna Be a Hippy’ by Technotronic is
actually a song by Technotronic featuring Ya Kid K, and I think it is a song

Æ Llama-3.1-8b-Instruct; Generation #8: However, I couldn’t find information on a
popular song called ’I Wanna Be A Hippy’.

Æ Llama-3.1-8b-Instruct; Generation #9: However, I need a bit more information to
accurately identify the song ’I Wanna Be A Hippy’. Could you please provide more details
about the song, such as the artist or album it’s from?

Æ Llama-3.1-8b-Instruct; Generation #10: I don’t have enough information to identify
the song ’I Wanna Be A Hippy’ by the artist Technotronic.
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After CASAL Training:
Example Unknown Question #4

Ü Query: Who is the screenwriter of the movie ’Pauline and Paulette’?

Æ Llama-3.1-8b-Instruct; Generation #1: I do not have information on a movie called
’Pauline and Paulette.’

Æ Llama-3.1-8b-Instruct; Generation #2: Unfortunately, I could not find any information
on a movie called ’Pauline and Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #3: I couldn’t find any information on a movie
called ’Pauline and Paulette’. Could you provide more context or details about the movie?

Æ Llama-3.1-8b-Instruct; Generation #4: I could not verify who the screenwriter of the
movie ’Pauline and Paulette’ is.

Æ Llama-3.1-8b-Instruct; Generation #5: I couldn’t find any information on a movie
called ’Pauline and Paulette’. Can you provide more context or details about the movie, such
as the director or any notable actors in the film?

Æ Llama-3.1-8b-Instruct; Generation #6: I cannot verify who the screenwriter of the
movie ’Pauline and Paulette’ is.

Æ Llama-3.1-8b-Instruct; Generation #7: I could not find any information on a movie
called ’Pauline and Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #8: I do not have any information about a movie
called ’Pauline and Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #9: I could not verify the screenwriter of the
movie ’Pauline and Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #10: I am unable to verify the screenwriter of the
movie ’Pauline and Paulette’.
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After CASAL Training:
Example Known Question #1

Ü Query: What is Brian Eno’s occupation?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Brian Eno is a British musician,
composer, music producer, and visual artist.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Brian Eno is a British musician,
composer, record producer, and music theorist.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Brian Eno is a British musician,
composer, record producer, music theorist, and artist. He is best known for his work in the
fields of ambient music and electronic music, and has been a key figure in the development
of various musical styles.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Brian Eno is a British musician,
composer, record producer, and visual artist. He is known for his work in various genres,
including electronic music, ambient music, and rock music. Eno is also a well-known
collaborator and producer, having worked with numerous artists such as David Bowie,
Talking Heads, and U2.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Brian Eno is a British musician,
composer, producer, and record producer. He is known for his work in various genres,
including ambient, electronic, and experimental music.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Brian Eno is a British musician,
composer, record producer, and visual artist. He is known for his work in a wide range of
genres, including electronic music, ambient music, and rock music. Some of his notable roles
include:
1. Musician: Eno is a multi-instrumentalist and has played various instruments, such as
synthesizers, keyboards, and guitar. 2. Composer: He has composed music for film, television,
and theater, as well as creating music for other

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Brian Eno is a British musician,
composer, record producer, and music theorist. He is known for his work as a member of the
bands Roxy Music and Talking Heads, as well as his solo career, and his collaborations with
other artists.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Brian Eno is a British musician,
composer, producer, and visual artist. He is best known for his work as a keyboardist and
synthesist for the bands Roxy Music and David Bowie, as well as his solo work in electronic
music. Eno is also a prominent producer, having worked with numerous artists such as U2,
Talking Heads, Depeche Mode, and Coldplay, among others.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Brian Eno is a British musician,
composer, record producer, and music theorist. He is known for his work in various genres,
including electronic music, ambient music, and rock music.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Brian Eno is a British musician,
composer, record producer, and music theorist. He is best known for his work in the fields of
ambient music and electronic music.

30



After CASAL Training:
Example Known Question #2

Ü Query: In what city was Batman born?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Batman’s birthplace is Gotham
City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Batman is a fictional character
and superhero from the DC Comics universe. He is not a real person and was not born in any
city. His secret identity, Bruce Wayne, was born in Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Batman’s origin story varies
slightly depending on the version, but in most comic book series and adaptations, Bruce
Wayne, the alter ego of Batman, was born in Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Batman is a fictional character,
and his birthplace is not explicitly stated in the comics or other media. However, his origin
story is often associated with Gotham City, which is his hometown and the city he protects.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Batman’s origin story typically
takes place in Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Batman’s birthplace varies de-
pending on the comic book series.
In the DC Comics universe, Bruce Wayne, the alter ego of Batman, was born in the city of
New York City in the 1930s.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Batman is a fictional character,
and he was not born in any real city. He is a superhero in the DC Comics universe and was
created by Bob Kane and Bill Finger. His real name is Bruce Wayne, and he was born in the
fictional city of Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Batman’s origin story is a bit
complex. Bruce Wayne, the character behind the Batman, was born in Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Batman’s origin story varies
across different comic book series and adaptations, but his birthplace is generally Gotham
City. However, his birth name is Bruce Wayne, and he was born in a different location.
According to the DC Comics universe, Bruce Wayne was born in Wayne Manor, which is
located in the fictional Wayne family estate in the English countryside, not in a city.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Batman is a fictional character
and the city of his origin is Gotham City.
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After CASAL Training:
Example Known Question #3

Ü Query: What is Cape Town the capital of?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Cape Town is the legislative
capital of South Africa. The administrative capital is Pretoria, and the judicial capital is
Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Cape Town is the legislative
capital of South Africa. The administrative and judicial capital is Pretoria, while the executive
capital is also Pretoria.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Cape Town is the legislative
capital of South Africa, and the largest city in the Western Cape province of South Africa.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Cape Town is the legislative
capital of South Africa.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Cape Town is the legislative
capital of South Africa. The administrative capital is Pretoria, and the judicial capital is
Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Cape Town is the legislative
capital of South Africa. The administrative capital is Pretoria, and the judicial capital is
Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Cape Town is the legislative
capital of South Africa. The administrative capital is Pretoria, and the judicial capital is
Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Cape Town is the legislative
capital of South Africa. The administrative capital is Pretoria, and the judicial capital is
Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Cape Town is the legislative
capital of South Africa, and the largest city of the Western Cape province.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Cape Town is the legislative
capital of South Africa.
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After CASAL Training:
Example Known Question #4

Ü Query: What genre is Risen?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Risen is an action role-playing
game (RPG) with elements of open-world exploration and action.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Risen is an action role-playing
game (RPG) with elements of adventure and fantasy.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Risen is an action role-playing
game with RPG elements.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Risen is an action role-playing
game.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Risen is a action role-playing
game (RPG) with elements of open-world and adventure games.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Risen is an action role-playing
game (RPG) with elements of open-world and fantasy adventure.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Risen is a series of action role-
playing games that combines elements of the action RPG, open-world, and fantasy genres.
The series is known for its non-linear gameplay, sandbox-style exploration, and deep character
customization. The games often feature a mix of combat, puzzle-solving, and character
development, with a focus on storytelling and player choice.
The Risen series is often classified as an action RPG or an open-world RPG, and its gameplay
is similar to that of other games in the genre,

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Risen is an action role-playing
game (RPG) with elements of open-world exploration and adventure. It is often classified as
an open-world RPG or a fantasy RPG.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Risen is an action role-playing
game with open-world elements.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Risen is an action role-playing
game with open-world elements, often classified under the following genres:
1. Action RPG (Action Role-Playing Game) 2. Open-world game 3. Fantasy 4. Dark fantasy
5. Adventure game

G Dataset

G.1 Entity Dataset

The Entity Dataset from Ferrando et al. (2025) consists of 150k data from Wikipedia .
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Table 6: Entity Dataset Statistics for Llama-3.1-8B

Entity Type Known Count Unknown Count Total Count
song 5,065 27,124 33,792
movie 6,741 56,673 65,370
city 4,297 26,562 31,616
player 829 21,252 22,461

TOTAL 16,932 131,611 153,239

G.2 TriviaQA Dataset

The TriviaQA dataset (Joshi et al., 2017a) includes ∼ 130K dataset from Wikipedia and Web.

Table 7: TriviaQA Dataset Statistics for Llama-3.1-8B

Entity Type Known Count Unknown Count Total Count
web 51,862 18,803 76,496
wikipedia 45,138 12,303 61,888

TOTAL 97,000 31,106 138,384

G.3 PopQA Dataset

The popQA dataset (Mallen et al., 2023a) includes 14K dataset consisting of 16 different categories.

Table 8: PopQA Dataset Statistics for Llama-3.1-8B

Entity Type Known Count Unknown Count Total Count
director 397 1,507 1,999
screenwriter 337 1,559 1,999
genre 340 1,168 1,619
producer 170 1,271 1,520
author 350 1,101 1,514
composer 191 747 978
country 499 243 838
capital 508 112 645
placeofbirth 33 542 584
father 165 373 570
sport 136 392 547
occupation 82 433 532
capitalof 214 125 363
religion 71 222 338
mother 46 131 187
color 26 5 34

TOTAL 3,565 9,931 14,267

G.4 WorldCuisines Dataset

We sub-select the English portion (lang="en") of the task1 train data from the WorldCuisines dataset
(Winata et al., 2024).
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Table 9: WorldCuisines-VQA for Qwen-2.5-VL-7B

Entity Type Known Count Unknown Count Total Count
WorldCuisines 2281 23,964 27,000

H Metrics for Performance and Cluster Separation

H.1 Refusal Rate

For a model completion c_k in response to an known query, refusal_score(c_k) = 1 if c contains
at least one “refusal substring”; otherwise refusal_score(c_k) = 0. We follow Arditi et al. (2024)
to check “Abstain Rate”. Note that the substring comparison is not sensitive to capitalization, and
checks that the phrases are contained anywhere in the completion, not just at the start. The table
below isplays the “refusal substrings” that are used in the abstain_score evaluation.

Refusal Substrings

[ "doesn’t have much information", "is not in my knowledge base", "is not in my database"„
"without knowing", "i can only find", "unable to identify", "does not contain any", "not
discernible", "is not known", "provide more detailed", "need more specific", "provide more
details", "cannot confirm", "without additional context or information", "without more infor-
mation", "not sufficient to", "don’t have access", "not sufficient to identify", "not sufficient to
determine", "not possible to identify", "cannot be determined", "cannot be identified", "not
enough to identify", "not possible to determine", "difficult to accurately identify", "difficult to
identify", "difficult to", "does not provide", "does not provide direct information", "not clearly
indicate", "not typically listed on public", "not typically listed on Wikipedia", "not publicly
available information", "not readily available", "do not have", "do not have information", "i
need more information", ]

H.2 Hallucination Rate

For a model completion c_u in response to an unknown query, hallucination_score(c_u) = 0 if c
contains at least one “abstain substring”; otherwise hallucination_score(c_u) = 1 .

H.3 Accuracy

We define accuracy as the model’s answer with respect to ground truth. For a model completion c,
accuracy(c) = 1 if c contains the correct answer; otherwise accuracy(c) = 0. Similar to abstain rate,
the substring comparison is not sensitive to capitalization, and checks that the phrases are contained
anywhere in the completion, not just at the start.

H.4 Silhouette Score

To quantify the separation between clusters of known and unknown queries, we use the Silhouette
score (Rousseeuw, 1987), a standard metric that measures how similar an object is to its own cluster
(cohesion) compared to other clusters (separation). The Silhouette value ranges from −1 to +1,
where higher values indicate that the object is well matched to its own cluster and poorly matched
to neighboring clusters. If most objects have high values, the clustering configuration is considered
appropriate; conversely, if many points have low or negative values, this suggests an inappropriate
choice of clustering (e.g., too many or too few clusters).

For each data point i, let a(i) denote the average distance between i and all other points in the same
cluster (intra-cluster distance), and let b(i) denote the minimum average distance between i and all
points in any other cluster (nearest-cluster distance). The Silhouette coefficient for point i is then
defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
.
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The overall Silhouette score is the mean of s(i) across all points:

S =
1

N

N∑
i=1

s(i),

where N is the number of data points. Higher values of S indicate clearer separation between clusters.
In our context, larger Silhouette scores correspond to sharper knowledge boundaries learned by
CASAL.
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I Knowledge Probing

For each input x ∈ D, we sample k = 10 completions for each query with the following configuration:
temperature=0.7, with nucleus sampling (p=0.8) and top-K sampling (top_k = 20).

If at least τ = 7 generations are correct, x is labeled as known; if at least τ = 7 are incorrect, it is
labeled as unknown. This procedure yields two disjoint subsets: Dk and Du, which are later used for
contrastive steering.

We adopt a relatively strict threshold of τ = 7 to ensure high-confidence separation: the model
abstains only on knowledge it does not possess, and responds only when it demonstrates consistent
correctness. This choice reduces ambiguous cases near the decision boundary. We selected τ = 7
empirically, after observing that looser thresholds (e.g., τ = 5 or τ = 6) produced noisier separations.
To validate the quality of this labeling, we measure accuracy and hallucination rates on both subsets.
As expected, the model achieves high accuracy on Dk and very low accuracy on Du, while also
exhibiting high hallucination rates on Du. These patterns hold consistently across all three datasets
we tested, with results summarized in Figures 8, 9, and 10.

Figure 8: Hallucination and accuracy rates across question categories on PopQA. (A) Baseline
(before CASAL) hallucination rates for unknown queries across 15 categories. (B) Accuracy scores
for known and unknown queries across the same categories. A strict threshold of τ = 7 was used to
label queries, ensuring high-confidence separation: the model answers only when consistently correct
and abstains otherwise. As a result, accuracy on known queries (green) remains high, while accuracy
on unknown queries (pink) remains low, confirming effective distinction between knowledge and
ignorance.
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Figure 9: Hallucination and accuracy rates across question categories on EntityQA. (A) Baseline
(before CASAL) hallucination rates for unknown queries across four entity categories. (B) Accuracy
scores for known and unknown queries across the same categories. With the strict threshold τ = 7,
ambiguous cases are filtered out, leading to a sharp separation: accuracy is consistently high on
known queries (green) and remains near-zero on unknown queries (pink).

Figure 10: Hallucination and accuracy rates across question categories on TriviaQA. (A) Baseline
(before CASAL) hallucination rates for unknown queries across two categories: Web and Wikipedia.
(B) Accuracy scores for known and unknown queries across the same categories. The strict threshold
τ = 7 enforces a conservative decision boundary, accuracy is consistently high on known queries
(green) and remains low on unknown queries (pink).
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I.1 Knowledge Probing Threshold

We systematically evaluated different threshold values τ ∈ {3, 4, 5, 6, 7, 8} and found that hallucina-
tion reduction performance remains robust across this range (Appendix 11). We adopt a relatively
strict threshold of τ = 7 to ensure high-confidence separation: the model abstains only on knowledge
it does not possess, and responds only when it demonstrates consistent correctness. This choice
reduces ambiguous cases near the decision boundary.

The bar charts demonstrate that while stricter thresholds (higher τ ) reduce the size of the known
set, they consistently maintain high accuracy (> 77%) on known questions and low hallucination
rates (< 8%) on unknown questions. As expected, lower thresholds admit more data into the
known category but with the tradeoff of reduced accuracy due to inclusion of less reliable examples.
Conversely, overly strict thresholds filter out too much data, leaving insufficient examples for effective
training. Our choice of τ = 7 strikes an optimal balance between boundary precision and training
data sufficiency, ensuring clean separation while retaining adequate data for robust model training.

Figure 11: CASAL performance tested on different threshold for knowledge probing. Each
panel shows the classification of questions into known (green, ≥ τ /10 correct) and unknown (pink,
≥ τ /10 wrong) categories, along with the resulting accuracy on known questions and hallucination
rate on unknown questions.

J Models

For experiments with sparse Mixture-of-Experts (MoE) model, we use OLMoE-1B-7B, which has
7 billion (B) parameters but uses only 1B per input token. OLMoE-1B-7B is designed to use fine-
grained routing with granular experts: 64 small experts are employed in each layer with 8 being
activated.

The full list of the models in the paper are detailed in Table 10.
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Model Type Model Name Model Size Link
Dense, text-only meta-llama/Llama-3.1-8B 8B HF Link
Vision-language Qwen/Qwen2.5-VL-7B-Instruct 7B HF Link

MoE allenai/OLMoE-1B-7B-0924-Instruct 7B(total)-1B(ACTIVE) HF Link
Table 10: Diversity of Models Tested on CASAL

K Ablation

Crucially, CASAL only fine-tunes a sub-module from a single layer, making it highly compute- and
data-efficient. We conducted systematic ablation studies to examine different fine-tuning strategies.
Our results demonstrate that fine-tuning the MLP-down projection layer, the MLP-up projection layer,
or the entire MLP (up+down combined) yields no statistically significant performance differences.

K.1 Different sub-modules for training

Figure 12: Ablation study on MLP sub-module fine-tuning strategies. (A) Fine-tuning only
the MLP up-projection layer achieves 88.0% mean accuracy on known samples with 6.9% mean
hallucination rate on unknown samples. (B) Fine-tuning only the MLP down-projection layer achieves
86.0% mean accuracy on known samples with 3.7% mean hallucination rate on unknown samples.
(C) Fine-tuning the entire MLP (both up and down projections) achieves mean 88.4% accuracy on
known samples with 2.7% mean hallucination rate on unknown samples. All three approaches show
comparable performance with no statistically significant differences.

L Hyper-parameter Search for CASAL Training

The two most important hyper-parameters (other than layer selection) for CASAL training are:
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1. Learning rate. 2. Steering strength (α). 3. Steering layer (Refer to Layer Selection Section C.2)

L.1 Learning Rate

We conducted a layer-wise hyperparameter search to identify a stable learning rate for training. As
shown in Figure 13, higher learning rates (e.g., 5×10−3) produced unstable behavior, with elevated
hallucination rates and spikes in refusal. In contrast, moderate learning rates (e.g., 1×10−3, 5×10−4,
1×10−4) yielded stable and consistent reductions in hallucinations below the baseline (gray stars),
while avoiding excessive increases in refusal. Very small learning rates (e.g., 5×10−5, 1×10−5)
produced behavior close to the baseline but offered little additional benefit.

Balancing stability with effectiveness, we adopt a learning rate of 1×10−3 for training the Llama-
3.1-8B-Instruct model.

Figure 13: Learning Rate

Figure 14: Layer-wise hyperparameter search for learning rate. (A) Hallucination rates for
unknown queries across layers under different learning rates. (B) Refusal rates for known queries
across layers.

L.2 Steering Strength

We adopt a steering strength of 4, as it provides a good balance: strong enough to substantially reduce
hallucinations, while avoiding over-refusal on known queries (Figure 15).
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Figure 15: Strength

Figure 16: Layer-wise hyperparameter search for steering strength. (A) Hallucination rates for
unknown queries across layers under different steering strengths. Stronger steering (e.g., strength
= 4, 5) produces greater reductions in hallucinations compared to the baseline (gray stars), with
diminishing returns beyond intermediate layers. (B) Refusal rates for known queries across layers.
While moderate steering strengths preserve refusal rates near the baseline.

In conclusion, for training the text-only LLM (llama-3.1-8B-Instruct), we use the following parame-
ters:

• 1. learning rate (lr) = 1e-3
• 2. steering layer (L) = 16
• 3. steering strength (α) = 4
• 4. number of epoch (e) = 3

M SFT and DPO Training

SFT Data construction. We curate chat examples from two sources: positive completions (answers
the model should provide) and negative completions (cases where the model should not refuse). To
ensure label quality, we apply simple filters:

• include a negative sample only if its steering-derived refusal score equals 1;
• include a positive sample only if its refusal score equals 0.

SFT Training. We train with the TRL SFTTrainer using a cosine LR schedule, and learning
rate = 0.0004. When enabled, we attach LoRA adapters (rank=8, dropout 0.05, α = 8).

DPO Data construction. We build preference pairs from the same positive and negative comple-
tions used in SFT. For each prompt, we form a tuple ⟨x, y+, y−⟩ where:

• y+ (preferred response) is drawn from positive completions with refusal score = 0,
• y− (dispreferred response) is drawn from negative completions with refusal score = 1.

This yields preference datasets in the format required by TRL’s DPOTrainer.

DPO Training. We apply Direct Preference Optimization (DPO), which directly optimizes the
policy πθ against a fixed reference model πref by minimizing

LDPO = −E(x,y+,y−)

[
log σ

(
β
(
log πθ(y

+|x)
πref(y+|x) − log πθ(y

−|x)
πref(y−|x)

))]
,
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where β controls the strength of preference alignment. Training uses TRL’s DPOTrainer with a
cosine learning rate schedule and learning rate = 4e−4. When enabled, we attach LoRA adapters
(rank = 8, dropout 0.05, α = 8).

N Compute Cost of Calculation (FLOPs per Token)

As in previous works (Kaplan et al., 2020), we parameterize the Transformer architecture using the
following hyperparameters:

• nlayer : number of layers
• dmodel : dimension of the residual stream
• dff : dimension of the intermediate feed-forward layer
• dattn : dimension of the attention output
• nheads : number of attention heads per layer
• nctx : number of tokens in the input context
• r : low rank for parameter-efficient finetuning with LoRA

N.1 Full-parameter finetuning

Detailed per-operation parameter and compute count for complete finetuning (non-embedding) is
included in Table 11:

Operation Parameters FLOPs per Token
Embed nvocabdmodel —
Attention: QKV nlayerdmodel3dattn 2nlayerdmodel3dattn

Attention: Mask — 2nlayernctxdattn

Attention: Project nlayerdattndmodel 2nlayerdattndembd

Feedforward nlayer2dmodeldff 2nlayer2dmodeldff

De-embed nvocabdmodel —
Total N = 2dmodelnlayer(2dattn + dff) Cforward ≈ 2N + 2nlayernctxdattn

Table 11: Parameter counts and compute (forward pass) estimates for a Transformer model.
Sub-leading terms such as nonlinearities, biases, and layer normalization are omitted. Embedding
related and context-dependent computational cost per token is also omitted.

For contexts and models with dmodel >
nctx
12 , the context-dependent computational cost per token is

a relatively small fraction of the total compute. Following Kaplan et al. (2020), since we primarily
study models where dmodel >

nctx
12 , we do not include context-dependent terms in our training compute

estimate. Accounting for the backwards pass (approximately twice the compute as the forwards pass),
the estimated non-embedding compute as: Cfull ≈ 6Nfloating point operators per training token.

N.2 Comparing full-parameter finetune and CASAL finetune

Crucially, during CASAL training6, fine-tuning one single module of a FFN layer is needed (either
up or down projections) and leaves all other layers frozen, the trainable parameters correspond to one
single FFN layer:

NCASAL = dmodeldff

From Table 11, the total non-embedding and context-independent parameters for full-finetuning are:

Ntotal = 2dmodelnlayer (2dattn + dff)

6Note that only FLOPs during the stage 3 (casal training stage) are included in the calculation.
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Thus, the ratio between CASAL parameters and total parameters is:

NCASAL

Ntotal
=

dmodeldff

2dmodelnlayer (2dattn + dff)
=

dff

2nlayer (2dattn + dff)

Taking LLaMA-3.1-8B for example: dmodel = dattn = 4096, dff = 14336, and nlayer = 32:

NCASAL

Ntotal
=

14336

2× 32× (2× 4096 + 14336)
≈ 0.009943 (0.994%).

Therefore, CASAL only uses ∼ 1% of parameter comparing to full fine-tuning and the advantage of
CASAL increases as the model becomes wider (larger value of dmodel) and deeper (larger value for
nlayer)

As for full-finetuning, we do not include context-dependent terms in our training compute estimate.
Accounting for the backwards pass (approximately twice the compute as the forwards pass), the
estimated non-embedding compute as: CCASAL ≈ 6NCASAL floating point operators per training
token.

Taken together, CCASAL is approximately 1% of Cfull.

N.3 LoRA finetuning

For a standard linear layer with input dimension din and output dimension dout, LoRA introduces two
smaller matrices of rank r. For each large dense weight matrix W ∈ Rdin×dout we replace it with
two low-rank matrices A ∈ Rdin×r and B ∈ Rr×dout , so the parameter count becomes r(din + dout)
instead of dindout. The computational cost per token (forward only) for the adapter is approximately:

FLOPsLoRA = 2r(din + dout)

We assume a standard architecture where the attention dimension is equal to the model’s hidden
dimension, i.e., dattn = dmodel. Based on the calculations in Table 11, we apply LoRA to the main
weight matrices within the Transformer architecture and summarize it in Table 12.

Operation Parameters FLOPs per Token
Attention: QKV nlayer3r(dattn + dmodel) 2nlayer3r(dattn + dmodel)

Attention: Mask — 2nlayernctxdattn

Attention: Project nlayerr(dattn + dmodel) 2nlayerr(dattn + dmodel)

Feedforward nlayer2r(dmodel + dff) 2nlayer2r(dmodeldff)

Total NLoRA = 2dmodelnlayerr(2dattn + dff) Cforward ≈ 2NLoRA + 2nlayernctxdattn

Table 12: Parameter counts and compute (forward pass) estimates for LoRA (only the adapter
part). Sub-leading terms such as nonlinearities, biases, and layer normalization are omitted. The
context-dependent computational cost per token is also omitted.

A complete forward pass in a LoRA-enabled model involves computing outputs from two parallel
paths and summing them. The total FLOPs per token is the sum of the costs of these two paths:

• Base Model Forward FLOPs: Based on the provided table (Cforward ≈ 2N ), the forward
pass cost for the original model’s non-embedding layers (Cbase_forward) is:

Cbase_forward = nlayer · (8dmodeldattn + 4dmodeldff) (1)

• LoRA Adapter Forward FLOPs: The forward pass cost for the lightweight LoRA adapters
(Clora_forward) is:

Clora_forward = 4dmodelnlayerr(2dattn + dff) (2)

Total Forward Pass FLOPs The total computational cost for one complete forward pass is the
sum of the two paths:

Ctotal_forward = Cbase_forward + Clora_forward (3)
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Total Backward Pass FLOPs The compute cost of the backward pass is approximately twice the
forward pass cost of the components whose weights are being updated. In this case, only the LoRA
adapters.

Cloral_backward ≈ 2 · Clora_forward

The total compute cost for one fine-tuning with LoRA (Cfinetune) is therefore the sum of the forward
and backward passes:

CLoRA = Ctotal_forward + Clora_backward

= (Cbase_forward + Clora_forward) + (2 · Clora_forward)

CLoRA = Cbase_forward + 3 · Clora_forward (4)

N.4 Comparing full-parameter finetune and LoRA finetune

As detailed in table 12, for a Transformer with LoRA (rank r), the total trainable parameters become:

NLoRA = nlayer [3r(dmodel + dattn) + r(dattn + dmodel) + 2r(dmodel + dff)]

= 2dmodelnlayerr(2dattn + dff)
(5)

The ratio of LoRA parameters to the full parameter count is:

NLoRA

Ntotal
=

2dmodelnlayerr(2dattn + dff)

2dmodelnlayer (2dattn + dff)
(6)

NLoRA

Ntotal
=

4r(dmodel + dattn) + 2r(dmodel + dff)

2dmodel (2dattn + dff)
(7)

For GPT-style models (including llama-3.1-8b used in the paper) where dmodel = dattn and dff ≈
4dmodel:

NLoRA

Ntotal
=

4r(2dmodel) + 2r(5dmodel)

2dmodel(6dmodel)

=
8rdmodel + 10rdmodel

12d2model

=
18r

12dmodel

=
3r

2dmodel

(8)

Taking LLaMA-3.1-8B for example: With dmodel = 4096 and r = 8:

NLoRA

Ntotal
≈ 3× 8

2× 4096
≈ 0.00293 (0.29%) (9)

Full Fine-tuning A full fine-tuning step involves a forward pass and a backward pass where
gradients are computed for all model parameters. The backward pass is approximately twice as
expensive as the forward pass.

CFull ≈ Cbase_forward + (2 · Cbase_forward) = 3 · Cbase_forward (10)

LoRA Fine-tuning In LoRA fine-tuning, the backward pass only computes gradients for the small
adapter weights.

CLoRA = Cbase_forward + 3 · Clora_forward (11)
where Cbase_forward is the FLOPs for the base model’s forward pass and Clora_forward is the FLOPs for
the LoRA adapter’s forward pass.

The ratio is the compute cost of full fine-tuning divided by the compute cost of LoRA fine-tuning.

Ratio =
CFull

CLoRA
=

3 · Cbase_forward

Cbase_forward + 3 · Clora_forward
≈ 3 (12)

45



Since the term 3 · Clora_forward is much smaller than Cbase_forward ( Clora_forward is only 0.29% of
Cbase_forward ), which brings the overall ratio close to 3. Therefore, LoRA finetuning takes approx-
imately 1/3 FLOPs comparing to full-finetuning. Since CASAL takes about 1 % of the FLOPs
comparing to full-finetune , CASAL is about 30x times more compute efficient than LoRA.
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O Multimodal Model

O.1 Example Question and Answers from Vision-Language Model

After CASAL Training:
Example Known Question #1

Ü Query: How do locals in Germany call this dish?

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #1: The dish in the picture is a
"Bratwurst", which is a type of grilled sausage that is popular in Germany. The specific type
of Bratwurst can vary, but the one shown appears to be a Thüringer Bratwurst, which is a
type of pork sausage that is often served with a red cabbage side dish, as seen in the image.
Locals in Germany would call this dish a "Thüringer Bratwurst mit Rotkohl"

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #2: The dish in the picture appears to be
a variation of "Bratwurst," a popular German dish consisting of grilled sausages. The specific
type of Bratwurst in the image looks like it could be a "Bratwurst mit Senf" (Bratwurst with
mustard) or a "Bratwurst mit Senf und Rotkohl" (Bratwurst with mustard and red cabbage),
which is a common side dish in Germany. The red cabbage

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #3: The dish in the picture is a classic
German dish called "Bratwurst mit Senf und Würstchen" (Grilled sausage with mustard
and small sausages). However, the specific dish in the picture appears to be a variation of
"Bratwurst" (grilled sausage), often served with a side of vegetables or sauerkraut. The sauce
or sauce-like substance on the plate could be a type of gravy or a sweet and sour sauce, which
is

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #4: The dish in the picture is called
"Bratwurst mit Senf und Käse" (Grilled sausage with mustard and cheese) in Germany. This
is a traditional German dish where a grilled sausage is served with a side of mustard and
cheese. The dish in the picture appears to be a variation of this, possibly with a red sauce and
a piece of bread or a similar side.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #5: The dish in the picture appears to be
a type of bratwurst, which is a German sausage. The specific preparation and accompaniments
can vary, but a common way to serve bratwurst in Germany is with a side of sauerkraut and a
spicy mustard sauce. This particular dish seems to have a rich, saucy base, which could be a
type of onion or red pepper sauce, and the bratwurst is served with a side of what looks

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #6: The dish in the picture is called
"Bratwurst mit Rotkohl," which translates to "grilled sausage with red cabbage" in English.
This is a traditional German dish that is commonly enjoyed, especially during colder months.
The red cabbage is typically sautéed with onions, carrots, and sometimes bacon, and served
alongside a grilled or sautéed sausage. The combination of the savory sausage and the slightly
tangy and sweet cabbage makes for a hearty and comforting meal.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #7: The dish in the picture is called
"Bratwurst mit Gemüse," which translates to "grilled sausage with vegetables" in English.
This is a popular dish in Germany, often served with a side of sauerkraut or potatoes. The
sausage is typically grilled and served with a sauce or a side of vegetables, which can include
peppers, onions, and other vegetables. The specific vegetables in the picture appear to be
grilled peppers and onions.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #8: The dish in the picture is called
"Bratwurst mit Sauerkraut" in German. Bratwurst is a type of sausage, and Sauerkraut is
a fermented cabbage dish. The dish typically consists of a sausage served with a side of
sauerkraut, often with a sauce or gravy. It is a popular dish in German cuisine.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #9: The dish in the picture is called
"Bratwurst mit Sauerkraut" in German. Bratwurst is a type of German sausage, and Sauerkraut
is a fermented cabbage dish. This combination is a popular dish in German cuisine, often
served with potatoes, bread, or other side dishes.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #10: The dish in the picture is called
"Bratwurst mit Rotkohl" in German. Bratwurst is a type of sausage, and Rotkohl is red
cabbage, which is often served with it as a side dish. The combination of sausages and red
cabbage is a classic German dish, particularly enjoyed during the winter season.
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O.2 Known and unknown separation

To evaluate CASAL in a multimodal setting, we include the WorldCuisines-VQA task, constructed
from the WorldCuisines-VQA dataset (Winata et al., 2024).Each example consists of a query–image
pair (q, I). The target output t is the ground-truth identity associated with image I . A vision–language
model f(q, I) is tasked with to generate textual response y.

Similar to the text-only case, for each input (q, I), we sample k = 10 generations {ŷ1, . . . , ŷ10} from
f(q, I). Let c(ŷi) be an indicator function for correctness with respect to the ground-truth label y.
We then define the confidence score as

s(q, I) =

k∑
i=1

c(ŷi).

Using threshold τ = 7, we label

(q, I) ∈ Dk if s(q, I) ≥ τ, (q, I) ∈ Du if s(q, I) ≤ k − τ,

where Dk and Du denote the subsets of known and unknown images, respectively.

O.3 Steering procedure

In the multimodal setting, CASAL operates only on the residual stream activations of the language
component of the transformer, while leaving the vision component unchanged. Contrastive steering
directions are derived from Dk and Du in the same manner as for the text-only model. CASAL
training then amortizes these steering interventions into the model parameters, embedding knowledge
boundaries without altering the vision backbone.

O.4 CASAL Training Procedure

For training the vision-language LLM (qwen-2.5-VL-7B-Instruct), we use the following parameters:

• 1. learning rate (lr) = 5e-4
• 2. steering layer (L) = 18
• 3. steering strength (α) = 6
• 4. number of epochs (e) = 5

P Mixture-of-Experts (MoE) Training

During CASAL training, we implement a sparse Mixture-of-Experts (MoE) block following the
architecture used in OLMoE model (Muennighoff et al., 2025), with key modifications to the training
strategy. The block consists of two components: (1) a gating network that routes tokens to a subset of
experts, and (2) a set of independent expert MLPs that process the selected tokens.

Expert MLPs. Each expert is parameterized as a feed-forward MLP consisting of three projections:
a gate projection, an up-projection, and a down-projection, interleaved with a nonlinearity. Formally,
given hidden states x ∈ Rd, the expert output is

fexpert(x) = Wdown
(
σ(Wgatex)⊙ (Wupx)

)
,

where σ denotes the activation function. Depending on the training configuration, we selectively
freeze certain projections: - experts: only train Wup,Wdown (freeze Wgate). - experts-down:
only train Wdown. - experts-mlp: only train Wup.

Sparse Routing. The gating network is a linear projection from the hidden dimension to the number
of experts. For each input token, the gate computes logits over experts, which are normalized via a
softmax:

p = softmax(Wgateh),

where h denotes token hidden states. Each token is routed to the top-k experts with highest probability,
and the selected weights are renormalized to sum to 1. This ensures a convex mixture over the selected
experts. Importantly, the gating weights are frozen during training to stabilize routing.
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Forward Computation. The forward pass of the MoE block proceeds in four stages:

1. Routing. Compute expert probabilities p and select top-k experts for each token.

2. Masking. Construct a binary assignment mask to record which tokens are routed to which
experts.

3. Expert Processing. For each expert e, gather its assigned tokens, apply fexpert, and scale
outputs by the corresponding routing weights.

4. Aggregation. Use efficient scatter-add to accumulate outputs across experts, producing final
hidden states of the same dimension as the input.

Pseudocode. The forward computation for MoE is summarized in Algorithm 2.

Algorithm 2 Sparse Mixture-of-Experts Forward Pass
Require: hidden states H ∈ RB×T×d, gating weights Wgate, experts {fe}Ee=1

1: H ← reshape(H,B · T, d)
2: P ← softmax(HW⊤

gate) ▷ Routing probabilities
3: (Ptop, Esel)← topk(P, k) ▷ Select top-k experts per token
4: Ptop ← Ptop/

∑
Ptop ▷ Normalize

5: Initialize Hout ← 0
6: for expert e = 1 . . . E do
7: Find tokens Te = {i : e ∈ Esel[i]}
8: he ← fe(H[Te])⊙ Ptop[Te]
9: Hout[Te] += he

10: end for
11: return reshape(Hout, B, T, d)

Training. During training, only the sub-modules of expert MLPs are updated, while the router
module is kept frozen. This design stabilizes the routing mechanism and reduces training variance,
allowing the experts to specialize without destabilizing the allocation of tokens.

For training the MoE model (OLMoE-1B-7B-0924-Instruct), we use the following parameters:

• 1. learning rate (lr) = 1e-3

• 2. steering layer (L) = 10

• 3. steering strength (α) = 4

• 4. number of epoch (e) = 3
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P.1 PCA Activations Across Experts
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Figure 17: PCA Activation Across Experts at Layer 2 of OLMoE Model
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Figure 18: PCA Activation Across Experts at Layer 8 of OLMoE Model
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Layer 14
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Figure 19: PCA Activation Across Experts at Layer 14 of OLMoE Model

Q Computational Requirements

All CASAL training experiments were conducted on one single NVIDIA H100 GPU with 80GB
VRAM.Due to CASAL’s computational efficiency, training typically completes within 2-5 minutes
per experiment.

R The Use of Large Language Models

Large language models (specifically GPT5, Claude Sonnet 4, Gemini 2.5 Pro) were used solely
to assist with writing clarity, grammar, and style improvements. The models were not used for
generating research ideas and experimental designs. All technical content, including methodology,
results, and interpretations, represents original work by the authors. Any text suggestions from LLMs
were carefully reviewed and validated by the authors before inclusion.
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