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ABSTRACT

Modern image classification is based upon directly predicting classes via large
discriminative networks, which do not directly contain information about the in-
tuitive visual features that may constitute a classification decision. Recently, work
in vision-language models (VLM) such as CLIP has provided ways to specify
natural language descriptions of image classes, but typically focuses on providing
single descriptions for each class. In this work, we demonstrate that an alterna-
tive approach, in line with humans’ understanding of multiple visual features per
class, can also provide compelling performance in the robust few-shot learning
setting. In particular, we introduce a novel method, SLR-AVD (Sparse Logistic
Regression using Augmented Visual Descriptors). This method first automatically
generates multiple visual descriptions of each class via a large language model
(LLM), then uses a VLM to translate these descriptions to a set of visual feature
embeddings of each image, and finally uses sparse logistic regression to select a
relevant subset of these features to classify each image. Core to our approach is the
fact that, information-theoretically, these descriptive features are more invariant
to domain shift than traditional image embeddings, even though the VLM train-
ing process is not explicitly designed for invariant representation learning. These
invariant descriptive features also compose a better input compression scheme.
When combined with finetuning, we show that SLR-AVD is able to outperform
existing state-of-the-art finetuning approaches on both in-distribution and out-of-
distribution performance.

1 INTRODUCTION

Natural language supervised vision-language models (VLMs) like CLIP (Radford et al., 2021) cre-
ate aligned image and text encoders via contrastive training. Unlike traditionally-trained classifica-
tion networks, such alignment enables zero-shot image classification by prompting the text encoder
with hand-crafted inputs like “a photo of {}” then predicting the target via the maximal inner
product with the input image embedding. However, choosing effective prompts for zero-shot learn-
ing remains largely an ad-hoc process: Radford et al. (2021) has added several prompts like “the
cartoon {}” or “art of the {}” aiming to improve ImageNet-R (Hendrycks et al., 2021a)
performance, which (somewhat surprisingly) improved standard ImageNet accuracy as well. This
has led to works that attempt to automatically extract relevant prompts from language models (Pratt
et al., 2022), including work that uses these models to extract multiple visual descriptors (Menon &
Vondrick, 2022) then use the average prediction of these visual descriptions to classify the image.

In the few-shot setting, however, where a small amount of training data is available, a number
of techniques can further improve classifier performance beyond zero-shot prompting alone. For
example, it has become commonplace to finetune zero-shot classifiers via linear probing or other
approaches (Kumar et al., 2022), including methods that interpolate between the zero-shot and fine-
tuned classifiers (Wortsman et al., 2022) to achieve better out-of-distribution robustness. Alterna-
tively, one can also adapt the prompts themselves using this few-shot data, using e.g. techniques
from soft prompt tuning (Zhou et al., 2022b), though these learned prompts are not readable, nor
are their nearest dictionary projections (Khashabi et al., 2021). Finally, recent work has also looked
at ways to combine automatically-extracted prompts using few-shot learning (Yang et al., 2022),
though this approach used a very specific learned weighting over such descriptions for interpretabil-
ity purposes.
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In this work, we investigate the visual learning problem with text descriptive features from an
information-theoretic perspective. In particular, our motivation comes from two desiderata: com-
pression and invariance (to domain shifts). The information bottleneck perspective encourages rep-
resentations to compress the input as much as possible while maintaining high mutual information
with the labels. On the other hand, the invariance principle favors representations that are less infor-
mative about the domains, in particular, the mutual information between the representations and the
domain index should be small (Zhao et al., 2022; Li et al., 2021; 2022; Zhao et al., 2019; Arjovsky
et al., 2019; Ahuja et al., 2021). Rooted in these information-theoretic principles, we propose a sim-
ple and effective method to generate classifiers based upon multiple automatically-extracted visual
descriptors of each class. Our new method, SLR-AVD (Sparse Logistic Regression using Aug-
mented Visual Descriptors), uses a language model to extract multiple potential visual features of
each class, then uses `1-regularized logistic regression to fit a sparse linear classifier on top of these
visual descriptions. The key observation that supports our method is that these descriptive features
retain substantial information about the true labels, yet are not informative about the domain index,
making them good invariant representations of the images. Additionally, these descriptive features
are better input compressors and thus can generalize better.

Once the important visual descriptors are selected, we can also finetune the image encoder with the
selected sparse pattern to further improve classification accuracies. Using this procedure, SLR-AVD
outperforms baselines on both in-distribution (ID) and out-of-distribution (OOD) image classifi-
cation across a range of image datasets. Specifically, SLR-AVD on ImageNet and its variations
(including ImageNet-R, ImageNet V2, etc.) outperform linear probing with image features by 6.2%
to 10.48% varying k-shot from k = 1 to k = 32. When combining SLR-AVD with WISE-FT
(Wortsman et al., 2022), on the in-distribution task, our method outperforms standard finetuning
by 1.43% with 1-shot, 1.62% with 2-shot, and 1.61% with 4-shot training data. When we average
over five ImageNet variations, we outperform standard finetuning by 0.88% with 1-shot, 0.73% with
2-shot, and 0.64% with 4-shot training data.

Notation Throughout the paper, we use g(·) to denote the text encoder and f(·) to denote the
image encoder. We use t for text tokens and p for images. For a vector v, subscripted vi represents
the ith entry. We sometimes overload the notation tc to represent a vector belonging to a class c, this
should be clear from the context. We use C to denote the set of classes. We use I(X;Y ) to denote
the mutual information between a pair of random variables (X,Y ).

2 RELATED WORKS AND MOTIVATION

2.1 PROMPT TUNING IN VLMS

Contrastive VLMs aim to minimize the contrastive loss between matching image-text pairs. Let
the image embedding be f(p) ∈ R(1+M)×d, the text embedding be g(t) ∈ R(1+P )×d. Without
loss of generality, let the first entry of the embeddings be the [CLS] token, denote as g(t)0. The

probability of the prediction is then represented as: p(y = c|p, t) =
exp
(
〈f(p)0,g(tc)0〉/τ

)
∑

c′ exp
(
〈f(p)0,g(tc′ )0〉/τ

) ,
where tc is the zero-shot text prompt for class c. The class whose prompt has the largest inner
product with the image embedding will be the zero-shot prediction. Zhou et al. (2022b) optimizes
over the continuous text embedding space for the best prompts. Several follow-up works (Zhou
et al., 2022a; Zhu et al., 2022) propose various prompt tuning methods for different task settings.
The methods that eventually use g(tc)0 are in essence regularized linear probing where the search
space is constrained by the co-domain of g(·)0. Chen et al. (2022) uses local information of the
image embedding f1, . . . , fM+1 for optimizing an optimal transport distance between local image
information and prompts. Lu et al. (2022) learns distributions over prompts for efficient adaptation
to downstream recognition tasks. Wen et al. (2023) discusses discrete prompt search in the context
of text-to-image settings.

Pratt et al. (2022) prompts LLMs for descriptions of each class and shows that these prompts
can achieve better zero-shot image classification accuracy. Menon & Vondrick (2022) prompts
LLMs to generate visual descriptors for image classification. For each class c, they query GPT-3
using the prompt “What are useful features for distinguishing a {c} in a
photo?”. A score is estimated for c given an image p: s(c,p) = 1

|D(c)|
∑

t∈D(c) φ(t,p), where
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Figure 1: An overview of our proposed method. We prompt GPT-3 for a list of visual descriptors
for each class and encode these texts. The image embeddings are instantiated to these descriptors
by taking inner products. For an image embedding in Rd, this operation projects it onto a RM
dimensional space, but it may live in a submanifold. We apply sparse logistic regression over all
Rn×M training data for feature selection. Finally, we freeze the sparsity pattern and finetune both
the linear layer and the image encoder to align the image features with the visual descriptors.

D(c) is the set of descriptors for c, and φ(t,p) =
〈
f(p)0, g(t)0

〉
is the inner product between the

image and text embeddings. They show this average ensemble can outperform zero-shot classifiers
while maintaining interpretability.

Similar to what we propose, LaBo (Yang et al., 2022) also considers per-class level descriptions
in the few-shot setting. A key difference is that they perform a per-class level description filtering
through submodular optimization, and they apply softmax to a linear weight σ(W ) to ensemble the
selected features. On the other hand, we directly select features using sparse logistic regression.
Our approach immediately gives both the important features and the coefficients and is statistically
optimal under certain sparsity assumptions. One of the potential drawbacks of LaBo is their visual
descriptions are filtered per-class level, which can hinder feature sharing between classes. LaBo uses
σ(W ) in order to gain probabilistic interpretations of the features, while our emphasis on robustness
only requires W to be sparse.

2.2 ROBUST FINE-TUNING OF ZERO-SHOT MODELS

There are numerous works that study robust finetuning of zero-shot models (Goyal et al., 2022;
Kumar et al., 2022; Wortsman et al., 2022). In this work, we adopt the weight interpolation method
WISE-FT to improve the OOD test accuracy (Wortsman et al., 2022). In general, let Φ refer to
any set of weights in the network (just the linear layer, linear layer + image encoder, etc). Let the
finetuned weight be Φlearned and let the zero-shot predictor be Φzs. Wortsman et al. (2022) observes
that while Φlearned performs better than Φzs on ID tasks, it is worse at OOD tasks. Hence they
propose to interpolate the two sets of weights as αΦlearned + (1 − α)Φzs. This surprisingly simple
weight ensemble helps both in-distribution and out-of-distribution tasks. This method also naturally
applies to linear probing by simply freezing the CLIP encoder throughout, and only training and
interpolating the linear head.

2.3 COMPRESSION AND INVARIANT REPRESENTATION

The term “compression” has been given various meanings under different contexts. Arora et al.
(2018) derived a PAC bound where generalization depends on the compression of the model pa-
rameters; Moran & Yehudayoff (2016) developed a sample compression scheme where both the
features and labels are compressed; information bottleneck (Tishby & Zaslavsky, 2015) proposed
to learn representations Z that “compresses” the inputs X by minimizing I(X;Z) subject to some
constraints. Blier & Ollivier (2018); Blum & Langford (2003) discussed label compression in terms
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of model description length. In this work, we use the term to represent input compression (as in
the information bottleneck), such that the features contain little information about the inputs. From
a PAC-learning perspective, a better input compression will lead to a smaller generalization error
(Shwartz-Ziv et al., 2018; Galloway et al., 2022), motivating our use of text descriptive features. A
complementary idea from information theory is the invariance principle. The idea is that we want to
learn representations that are very informative about the labels, but not so about the domain informa-
tion. Mathematically, the principle encourages maxZ I(Y ;Z) − λI(Z;A) where A is the domain
information (Zhao et al., 2022). While it is understood that invariance by itself is insufficient for
OOD generalization (Ahuja et al., 2021; Rosenfeld et al., 2020), algorithms based on the invariance
principle still achieve competitive results on several OOD benchmarks (Koh et al., 2021).

3 PROPOSED METHOD

In this section, we present our proposed method, SLR-AVD, summarized in fig. 1. We will discuss
how to generate features, select a sparse set of useful descriptions, and finally, how to align the
encoder in detail. We will also state how the proposed method aligns with information-theoretic
principles.

3.1 GENERATING VISUAL DESCRIPTORS

To generate the visual descriptors for ImageNet and its variations, we first use the following prompt
to query GPT-3: “Give me a long list of descriptions for {}:”.

GPT-3 is quite sensitive to format instruction. Using the prompt “Give me a list” always leads to a
list format, making it straightforward to select the useful text with regular expressions. Following
the method in Menon & Vondrick (2022), we condition these descriptors on the class name, using
texts of the form “{c} which has {tic}” for each class c and the ith descriptor. For each class c,
we gather Mc descriptors from GPT-3.

Furthermore, for each class, there exists a set of hand-crafted prompt templates like “a photo of
{}” or “an art of {}”. If there are T total number of such templates, using the class name c,
we can generate T total prompt embeddings for each class. We take the average of these prompt
embeddings in addition to the aforementioned visual descriptors, leading to Mc + 1 number of
prompts for each class. For simplicity, we will refer to the GPT-3 generated text features as visual
descriptors (VD), the templates with class names as class prompts (CP), and the union as augmented
visual descriptors (AVD). We will also refer to their embeddings using the same names, which should
be clear from the context.

Denote M =
∑
c∈CMc where C is the set of all classes. The visual descriptors, class prompts,

and augmented visual descriptors can be encoded into three matrices Uvd ∈ RM×d,Ucp ∈
R|C|×d,Uavd ∈ R(M+|C|)×d. Given an image embedding z := f(p)0 ∈ Rd, these three matrices
respectively created three sets of new features hvd = Uvdz, hcp = Ucpz, and havd = Uavdz. Notice
that all three U matrices are fixed and never trained. We call the action of inner product 〈U , ·〉 as
“instantiating”. We will also refer to the instantiated features h as the (text/language) descriptive fea-
tures. Given h, we can learn three matrices Wvd ∈ R|C|×M ,Wcp ∈ R|C|×|C|,Wavd ∈ R|C|×(M+|C|).

Setting Wvd = blkdiag
(
(

1

|Mc|
, . . . ,

1

|Mc|︸ ︷︷ ︸
|Mc| copies

)c∈C
)
, then WvdUvd leads to the average ensemble in

Menon & Vondrick (2022). Setting Wcp = I|C|×|C|, we get back the zero-shot classifier Wzs =
WcpUcp. One can naturally merge Wvd and Wcp into Wavd = [Wvd,Wcp], which we use in our
proposed method. We note that these three W matrices can all serve as zero-shot classifiers. During
inference, the prediction is made by picking arg maxi∈[C](WUz)i.

3.2 LEARNING SPARSE ENSEMBLE AND ALIGNING THE IMAGE ENCODER

The previously defined matrix Uavd can be viewed as a linear projection of the image embedding
onto a M + |C| dimensional semantic space. While this space has a high ambient dimension, the
projected embeddings live in a low-dimensional manifold that has rank less than or equal to that
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of the image embedding space. By enforcing a sparsity constraint on Wavd, we can select the
most important dimensions among havd. We demonstrate that the selected subspace is also robust
to natural distribution shifts. Intuitively, we imagine that the large distribution shift in the image
embedding space only corresponds to a small shift in the semantic space, since the semantics of
images should be invariant. We will later demonstrate with mutual information estimations. Further
investigation on the property of the semantic space is left to future works.

With a fixed Uavd, we learn Wavd with `1 regularization‖Wavd‖1 and the cross-entropy loss. Not only
does sparse logistic regression select the important features, but it actually also finds the intuitive
features. For example, on CIFAR-10, we demonstrate that the selected features are usually the
ones that actually describe that class: for each class, we pick the three features with the largest
coefficients, and show that the properly descriptive class features are chosen most often; the results
are listed in table 5 in the appendix. After obtaining a sparse Ŵavd, we fix Uavd and the sparsity
pattern of Ŵavd, and finetune both the image encoder f , as well as the entries in Ŵavd. This process
aligns with LP-FT (Kumar et al., 2022), which has some theoretical justification for its robustness.

3.3 TEXT DESCRIPTIVE FEATURES ARE COMPRESSIVE AND INVARIANT

Beyond the improvement in performance alone, however, the core of our method relies on the em-
pirical evidence that text descriptive features have many benefits from an information-theoretic per-
spective. Specifically, we show here that the text descriptive features form more invariant and more
compressive representations of the data than the naive image encoder features. This motivates their
use, especially under distribution shift, where we see them outperform the alternatives.

We base our investigation upon two notions: the invariance principle and the information bottleneck.
First, the invariance principle from causality (Pearl, 1995) states that the predictors should only rely
on the causes of the labels rather than the spurious features. Following this principle, several mutual
information (MI) based OOD generalization works (Arjovsky et al., 2019; Zhao et al., 2022; Li
et al., 2021; 2022; Zhao et al., 2019; Feng et al., 2021; Ahuja et al., 2021) propose that a good
feature representation Z would have high mutual information with the label, I(Z;Y ), but low MI
with the domain index, I(Z;A), so as not to leak information about the domain itself. Closely
related is the information bottleneck, which similarly states that a good representation will again
have high MI with the label, but low MI with the input I(Z;X). In recent years, several works
have suggested that combining the invariance principle with the information bottleneck can lead to
practical and provably strong OOD generalization (Ahuja et al., 2021; Li et al., 2022).

We demonstrate that the text descriptive features essentially obey both the tenets of the invariance
principle and the information bottleneck: the extracted text features H have high MI with the labels,
but substantially lower MI with both the domain index and the input itself. The features of our
framework correspond to the following Markov chain:

Y → X
f(·)0−−−→ Z

U−→ H
W−−→ Ŷ , (1)

where y ∼ Y , p ∼ X, z ∼ Z, h ∼ H , ŷ ∼ Ŷ corresponds to realizations of the truth labels, the
input images, the image embeddings, the text descriptive features, and the predictions (the capital
letters are random variables) respectively. Here W ,U ,h and H can be subscribed by avd, vd, cp
as in section 3. We will use A for the domain index.

By the Data Processing Inequality (DPI, Cover (1999)), we immediately have that I(X;Y ) ≥
I(Z;Y ) ≥ I(H;Y ). Additionally, however, we also observe for the text descriptive features
I(H;Y ) is nearly as large as I(Z;Y ) (i.e., there is not much decrease in the information about
the label), but I(H;A) and I(H;X) are substantially lower than I(Z;A) and I(Z;X) (i.e, the text
descriptive features leak much less information about the label and the input).

To assess this, we conduct numerical evaluations on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
10.1 (Recht et al., 2018), and CIFAR-10.2 (Lu et al., 2020). We index these three datasets, denoting
the index random variable asA. We compute the image embedding z and the instantiated descriptive
feature h for every image in these three test sets. To estimate mutual information, we use the
SMILE estimator (Song & Ermon, 2019). The numerical estimation is presented in fig. 2. MI is
estimated for two sets of text descriptive features: hcp ∼ Hcp and havd ∼ Havd. Importantly, Hcp

should be viewed as a post-processing of Havd. Intuitively, we see that I(Z;Y ) > I(Havd;Y ) >
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Figure 2: The MI estimations at interest. The estimator is variational and we include the whole
optimization trajectory. Left: the MI between a different set of features and the labels or the domain
indices. Right: the MI between a different set of features and the input images.

I(Hcp;Y ) by DPI. We also see that I(Z;A) > I(Havd;A) > I(Hcp;A), which suggests that
the text descriptive features h are much more invariant to the distribution shift. The noticeable
gap between I(Havd, Y ) and I(Hcp, Y ) explains why it is beneficial to work with text descriptive
features beyond vanilla zero-shot classification.

From the information bottleneck perspective, Figure 2 also presents that I(X;Havd) < I(X;Z)
by a large margin, we can then interpret Havd as a “better” compression of the input image X ,
in the sense that it preserves only information in X that is helpful for predicting Y . Of course,
this also means that one cannot reconstruct X from Havd better than from Z, although this is an
orthogonal goal to ours. Typically better input compressions lead to smaller generalization error.
Under mild conditions one can bound the generalization error of feature Z with probability at least

1 − δ: GenErr ≤
√

2I(X;Z)+log(2/δ)
n , where n is the number of training samples (Shwartz-Ziv

et al., 2018). Intuitively, if the features have small MI with the inputs, then the perturbation in
the input space cannot perturb the features too much, hence constraining the expressiveness of the
features. Since I(Havd;X) is significantly smaller than I(Z;X), we can expect a more predictable
test performance (compared to the training performance). On the other hand, high I(Havd;Y ) makes
sure that the accuracy will not be too low. The synergy of the two notions elucidates the superiority
of AVD in the few-shot setting.

4 EXPERIMENT

Throughout the experiments, we focus on the few-shot setting. We test our method on ImageNet,
ImageNet-R, ImageNet-V2, ImageNet-A, ImageNet-Sketch, and ObjectNet (Deng et al., 2009;
Hendrycks et al., 2021a;b; Recht et al., 2019; Wang et al., 2019; Barbu et al., 2019), demonstrating
the superiority of the sparsely learned visual descriptors ensemble. By default, we use the ViT-
B/16 model unless otherwise specified. The hand-crafted templates for ImageNet classes contain a
set of seven prompts suggested in https://github.com/openai/CLIP: 1. “itap of a {}.” 2. “a
bad photo of the {}.” 3. “a origami {}.” 4. “a photo of the large {}.’
5. “a {} in a video game.” 6. “art of the {}.” 7. “a photo of the small
{}.” This set usually outperforms the original 80 templates in Radford et al. (2021).

For simplicity, we will use the following acronyms for different methods and datasets. We defer the
hyperparameter discussions to the appendix.

ZS: Zero-shot classification using text embeddings of hand-crafted prompts ensembles. ZS-VD,
ZS-AVD: Zero-shot classification using visual descriptor and augmented visual descriptors, respec-
tively. LP: Linear probing using image embeddings. SLR-AVD: Sparse logistic regression using
AVDs. FT: Finetuning the image encoder and classification head. SLR-FT-AVD: Sparse logistic
regression with AVD, and then finetune the linear head plus the image encoder with frozen spar-
sity patterns. WISE-FT: Weight ensemble using ZS and FT. WISE-SLR: Weight ensemble using
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Figure 3: Few-shot experiments compare several baseline methods vs SLR-AVD. In each subfigure,
the x-axis represents the number of shots per class, the y-axis represents test accuracy. Here we
consider shot in {1, 2, 4, 8, 16, 32} shots per class. SLR-AVD is more sample efficient in the in-
distribution reference and is also much more robust to several distribution shifts.

Table 1: Accuracies of zero-shot, vi-
sual descriptors, and augmented visual
descriptors on ImageNet and its varia-
tions. ZS-AVD outperforms all base-
lines across different datasets.

ZS ZS-VD ZS-AVD

IN 68.78 65.89 69.52
IN-V2 62.23 59.19 62.97
IN-R 77.72 72.75 77.85
IN-A 50.64 46.11 50.87

IN-Sketch 48.38 44.84 48.91
ObjectNet 54.31 49.60 54.58

Table 2: WISE-FT vs. WISE-SLR accuracies on Ima-
geNet and its variations with optimal α.

Shot k = 1 k = 2 k = 4

Method FT SLR FT SLR FT SLR

IN 68.88 70.31 69.59 71.21 70.48 72.09

Average ↑ 1.43 1.62 1.61

IN-R 77.82 78.29 78.13 78.53 78.32 78.59
IN-A 50.09 51.29 50.43 51.51 52.11 52.64
IN-V2 62.32 63.74 63.07 64.37 63.50 65.30

IN-Sketch 48.45 49.35 48.75 49.63 48.99 49.92
ObjectNet 54.52 54.94 55.01 54.99 55.77 55.41

Average ↑ 0.88 0.73 0.64

SLR-FT-AVD and ZS-AVD. IN: ImageNet. IN-R: ImageNet-R. IN-A: ImageNet-A. IN-V2: Ima-
geNetV2. IN-Sketch: ImageNet-Sketch.

4.1 ZERO-SHOT WITH AVDS

As mentioned in section 3.1, we can easily establish zero-shot matrices with AVDs. We set Wvd
to be the aforementioned block diagonal form, Wcp to be an identity matrix. We merge them into
Wavd = [Wvd, γWcp]. Their performances are compared in table 1. ZS-AVD outperforms every
zero-shot baseline on all ImageNet variations. We find that simply using VD usually underperforms
ZS, indicating that the class names are probably one of the strongest prompts. This observation is
intuitive as during contrastive training, the class name itself is likely to show up in the caption the
most often, compared to other visual descriptors. One can certainly try to improve ZS-VD results
by more carefully prompting GPT-3, or gathering descriptors from different data sources/search
engines. Pratt et al. (2022); Yang et al. (2022); Menon & Vondrick (2022) have studied the quality
of descriptors across different datasets and hyperparameters (e.g. temperature for sampling, etc)
settings. Here, we do not further pursue this direction. Instead, we utilize our observation that simply
using the merged prompts Wavd already surpasses the best zero-shot classifier. Notice here we have
a parameter γ that decides how much we weight the zero-shot model. Empirically we find that
setting γ = 5 is sufficient for all datasets. We conduct small-scale experiments on CIFAR-10 and
its variations to further investigate the influence of difference choice of γ, the GPT prompts, and the
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Table 3: Accuracies on ImageNet and its variation. We compare LP vs SLR-AVD.

Shots k = 1 k = 2 k = 4 k = 8 k = 16 k = 32

Methods LP AVD LP AVD LP AVD LP AVD LP AVD LP AVD

IN 31.51 40.56 44.06 54.16 54.66 63.19 62.33 68.23 67.55 71.40 71.15 73.67
IN-R 35.23 48.88 46.30 61.23 54.50 67.64 59.25 70.58 62.16 72.54 64.32 74.53
IN-A 22.52 29.81 27.26 36.96 32.34 42.09 34.88 44.41 36.68 45.15 39.19 47.89

IN-V2 26.91 35.12 37.13 47.07 45.92 55.02 52.50 59.15 57.62 62.52 61.23 64.75
IN-Sketch 16.80 22.87 21.96 31.03 28.77 37.43 33.29 40.73 35.62 42.94 38.64 45.39
ObjectNet 19.38 25.43 24.98 34.11 32.44 40.39 36.02 42.80 41.50 45.82 43.67 49.17
Average ↑ 8.39 10.48 9.52 7.94 6.54 6.20

GPT sampling hyperparameters. We find these choices typically do not lead to significant deviations
in test accuracies unless the generated visual descriptors are too repetitive, see the appendix for
details.

4.2 COMPARISON TO LINEAR PROBING

We compare SLR-AVD to LP with {1, 2, 4, 8, 16, 32} shots per class. Each experiment is conducted
3 times with independent random seeds. We report the averaged test accuracy on ImageNet and its
distribution shift variations, see fig. 3 for details. Our proposed method outperforms linear probing
on all tasks. Detailed accuracies are presented in table 3. In a nutshell, our method outperforms lin-
ear probing by 8.39%, 10.48%, 9.52%, 7.94%, 6.54%, 6.20% on k = 1, 2, 4, 8, 16, 32 respectively.

Although learning with visual descriptors significantly outperforms linear probing in the few-shot
setting, we should remark that ImageNet and its variations are usually considered “in-distribution” to
the CLIP training data. In this case, the zero-shot model itself is usually a very strong baseline, and
typically outperforms few-shot models, as can be observed by comparing the results in table 1 and
table 3. WISE-FT serves as a strong method to improve both in-distribution and out-of-distribution
accuracies. We can apply WISE-FT to any of our existing settings, including SLR-AVD and LP. In
particular, we can train a linear head (and/or image encoder, depending on the setting) Wlearned, and
interpolate with the zero-shot weight Wzs by taking a convex combination αWzs + (1−α)Wlearned,
for α ∈ {α1, . . . , αn}. We are free to vary α. Then for each αi, we can plot that weight ensemble’s
ID and OOD test accuracy. This procedure thus creates an ID-OOD frontier and along the curve,
some ensemble excels at both ID and OOD distribution. We further show that WISE-FT+SLR-SVD
dominates WISE-FT+LP. See the ID-OOD curves in fig. 4. We show the plot of k = 4, 8, 16. SLR-
AVD’s ID-OOD curve overwhelms that of LP, indicating that SLR-AVD is better at both ID and
OOD tasks.

4.3 COMPARISON TO FINETUNING

We compare WISE-FT where we additionally interpolate the image encoder, to WISE-SLR, an
interpolation between SLR-FT-AVD and ZS-AVD. The ID-OOD frontier is presented in fig. 4 and
the accuracies are reported in table 2.

On the ID task, WISE-SLR outperforms vanilla WISE-FT by 1.43%, 1.62%, and 1.61% respectively
with k = 1, 2, 4 shot training data. Averaging over 5 distribution shift datasets, with optimal α,
WISE-SLR outperforms vanilla WISE-FT by 0.88%, 0.73%, and 0.64% respectively for k = 1, 2, 4.
The optimal α is picked independently for each method on each dataset.

4.4 COMPARISON TO COOP

We compare linear probing with AVD to CoOp (Zhou et al., 2022b) as well. CoOp learns the prefix
of “[prefix] {classname}” in the continuous token embedding space. The benefit of CoOp
is that it operates in a continuous space, hence one can optimize using standard backpropagation,
and it is quite computationally efficient. On the other hand, due to the requirement of backprop,
CoOp stores a large computation graph, hence memory-efficiency is a big advantage of SLR-AVD
over CoOp.
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Figure 4: Top: ID-OOD accuracy curve of WISE-FT+LP vs WISE-FT+SLR-AVD. ID is tested on
ImageNet, and OOD is averaged over 5 ImageNet variations. Experiments with [4, 8, 16]-shots are
presented. Each accuracy is averaged over 3 runs. We can see that our proposed method overwhelms
LP in all cases. Bottom: ID-OOD accuracy curve of WISE-FT vs WISE-SLR. ID is tested on
ImageNet, and OOD is averaged over 5 ImageNet variations. Experiments with [1, 2, 4]-shots are
presented. Each accuracy is averaged over 3 runs. We can see that our proposed method overwhelms
WISE-FT in all cases.

When implementing CoOp, we choose a prefix of length 16 and do not use a suffix. The prefix is
fixed for all classes. We train with Adam for 20 epochs, setting the batch size to 512. This gives us
comparable results to those of the original paper.

Table 4: Accuracies of CoOp and SLR-AVD on Ima-
geNet. Both methods are incorporated with WISE-FT.
The results are reported with the best interpolation.

Shots 1 2 4 8 16 32

CoOp 69.54 69.73 70.14 70.55 71.11 71.85
AVD 69.83 70.33 71.18 72.37 73.45 74.34

∆ +0.28 + 0.61 + 1.04 + 1.82 + 2.33 +2.49

For a fair comparison, we compare WISE-
FT+CoOp to WISE-FT+SLR. The vision
backbone used is ViT-B/16 for both meth-
ods. We use the ZS weight for CoOp
WISE-FT interpolation. The results are re-
ported in table 4, and we pick the interpo-
lation that yields the best test accuracy.

5 CONCLUSION

Motivated by the invariance principle and information bottleneck, we present how to leverage de-
scriptive features for image learning in the few-shot setting robustly. These descriptive features can
be easily obtained from LLMs. Applying sparse logistic regression then successfully selects the
important features, which turn out to be intuitive. Our proposed method outperforms linear probing
and standard finetuning in both ID and OOD tasks, with or without combining with WISE-FT. This
approach helps us further understand the CLIP embedding space and how the semantics serve as a
strong robust prior. Moving forward, it is important to understand and quantify the robustness of
the visual descriptors’ space and compare it to the image embedding space statistically. From the
practical side, this work aligns image encoders to a fixed text encoder; it is valuable to study how to
simultaneously align both encoders in a robust way.
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A APPENDIX

Hyperparameter For ImageNet and its variations, we fix a set of 6804 augmented visual de-
scriptors. The hyperparameters are swept over disjoint training and validation sets of size 20 per
class for LP and SLR-AVD. For `1 regularization, its non-smoothness makes it notoriously hard
for auto-differentiation. To circumvent the smoothness issue, we apply the GPU implementation
(Wong et al., 2021) of a variance-reduction proximal gradient method SAGA (Defazio et al., 2014).
We adopt the regularization path approach, in which the solver optimizes over 100 regularization
strengths λ1 > λ2 · · · > λ100. Here we set λ1 to be the strength that returns a model that uses none
of the features, and λ100 = 0.1 × λ1. For LP, we always use `2 regularization, we use L-BFGS
implemented by scikit-learn, and search for the regularization strength over 100 grids between 0.5
and 6. All the λs are evenly spread in the log-space1. For FT and SLR-FT-AVD, we select hyper-
parameters using a training and validation set of size 4 per class. The batch size is fixed to be 512
and the number of epochs is fixed to be 10. We always optimize with AdamW, and choose a cosine
rate scheduler with warm-ups. We randomly select learning rate in [1e − 8, 3e − 5], weight decay
in [0.1, 0.12], and warm up steps in {0, 50, 500}, for 20 trials. The chosen parameters are then fixed
throughout all experiments.

1In python numpy.logspace(math.log10(λ1), math.log10(λ100), 100)
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Table 5: Features selected when trained with `1 norm on CIFAR-10. The selected important features
for each class are intuitive. Notice that the feature selection method does not restrict the candidates
to be that particular class’s descriptors.

Classes Features

airplanes
airplanes which has anticollision lights
a photo of airplanes
airplanes which has overhead storage bins

cars
cars which has body kit
cars which has bumpers
cars which has wheel arch trim

birds
birds which has leg color
birds which has flight silhouette
birds which has eye color

cats
cats which has pink tongue
cats which has pink nose
cats which has slit pupils

deer
deer which has large facial glands
deer which has long, tufted hair on the neck and shoulders
deer which has short, curved antlers

dogs
dogs which has silky fur
dogs which has pattern
dogs which has floppy ears

frogs
frogs which has large, bulging eyes
frogs which has ridged or wartylooking skin
frogs which has a fold of skin along the back

horses
horses which has hooves
horses which has temperament
horses which has intelligence

ships
ships which has lifeboats
ships which has bridge
ships which has bow

trucks
trucks which has trailersway control
trucks which has grille
trucks which has lift kits

As a recap, we use the following acronyms for different methods and datasets. Also see table 6.

ZS: Zero-shot classification using text embeddings of hand-crafted prompts ensembles.

ZS-VD, ZS-AVD: Zero-shot classification using visual descriptor and augmented visual descrip-
tors, respectively.

LP: Linear probing using image embeddings.

SLR-AVD: Sparse logistic regression using AVDs.

FT: Finetuning the image encoder and classification head.

SLR-FT-AVD: Sparse logistic regression with AVD, and then finetune the linear head plus the
image encoder with frozen sparsity patterns.
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WISE-FT: Weight ensemble using ZS and FT.

WISE-FT+LP: Weight ensemble using ZS and LP (so only the last linear layer is trained).

WISE-FT+SLR-AVD: Weight ensemble using ZS-AVD and SLR-AVD (so only the last linear
layer is trained).

WISE-SLR: Weight ensemble using SLR-FT-AVD and ZS-AVD. This is short for WISE-
FT+SLR-AVD-FT.

IN: ImageNet.

IN-R: ImageNet-R.

IN-A: ImageNet-A.

IN-V2: ImageNetV2.

IN-Sketch: ImageNet-Sketch.

Table 6: Acronyms for several methods in consideration. In the column heads, CP: class prompts;
VD: visual descriptors; Img: image embeddings.

Features Parameter updates Use WISE-FT
CP VD Img Linear All

ZS 3
ZS-VD 3
ZS-AVD 3 3

LP 3 3
SLR-AVD 3 3 3
FT 3 3 3
SLR-FT-AVD 3 3 3 3

WISE-FT+LP 3 3 3
WISE-FT+SLR-AVD 3 3 3 3
WISE-FT 3 3 3 3
WISE-SLR 3 3 3 3 3

The dataset-wise ID-OOD curves of LP vs SLR-AVD on IN-A, IN-R, IN-V2, IN-Sketch, and Ob-
jectNet are listed in figs. 5 to 9, respectively.
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Figure 5: ID-OOD curves of LP vs SLR-AVD on IN-A. k = 1, 2, 4, 8, 16, 32.
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Figure 6: ID-OOD curves of LP vs SLR-AVD on IN-R. k = 1, 2, 4, 8, 16, 32.
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Figure 7: ID-OOD curves of LP vs SLR-AVD on IN-V2. k = 1, 2, 4, 8, 16, 32.
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Figure 8: ID-OOD curves of LP vs SLR-AVD on IN-Sketch. k = 1, 2, 4, 8, 16, 32.
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Figure 9: ID-OOD curves of LP vs SLR-AVD on ObjectNet. k = 1, 2, 4, 8, 16, 32.

The dataset-wise ID-OOD curves of WISE-FT vs WISE-SLR on IN-A, IN-R, IN-V2, IN-Sketch,
and ObjectNet are listed in figs. 10 to 14, respectively.
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Figure 10: ID-OOD curves of WISE-FT vs WISE-SLR on IN-A. k = 1, 2, 4.
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Figure 11: ID-OOD curves of WISE-FT vs WISE-SLR on IN-R. k = 1, 2, 4.
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Figure 12: ID-OOD curves of WISE-FT vs WISE-SLR on IN-V2. k = 1, 2, 4.

18



Under review as a conference paper at ICLR 2024

0.6825 0.6850 0.6875 0.6900 0.6925 0.6950 0.6975 0.7000 0.7025
In-distribution accuracy (ImageNet), shot=1

0.482

0.484

0.486

0.488

0.490

0.492

0.494

OO
D 

ac
cu

ra
cy

 (I
m

ag
eN

et
Sk

et
ch

)

CLIP zero-shot img
CLIP fine-tuned img

WiSE-FT img
CLIP zero-shot avd

CLIP fine-tuned avd
WiSE-FT avd

0.685 0.690 0.695 0.700 0.705 0.710
In-distribution accuracy (ImageNet), shot=2

0.482

0.484

0.486

0.488

0.490

0.492

0.494

0.496

OO
D 

ac
cu

ra
cy

 (I
m

ag
eN

et
Sk

et
ch

)

CLIP zero-shot img
CLIP fine-tuned img

WiSE-FT img
CLIP zero-shot avd

CLIP fine-tuned avd
WiSE-FT avd

0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720
In-distribution accuracy (ImageNet), shot=4

0.4825

0.4850

0.4875

0.4900

0.4925

0.4950

0.4975

0.5000

OO
D 

ac
cu

ra
cy

 (I
m

ag
eN

et
Sk

et
ch

)

CLIP zero-shot img
CLIP fine-tuned img

WiSE-FT img
CLIP zero-shot avd

CLIP fine-tuned avd
WiSE-FT avd

Figure 13: ID-OOD curves of WISE-FT vs WISE-SLR on IN-Sketch. k = 1, 2, 4.
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Figure 14: ID-OOD curves of WISE-FT vs WISE-SLR on ObjectNet. k = 1, 2, 4.

The detailed accuracies of WISE-FT vs WISE-SLR with different choices of α are given in table 10
(ID) and table 9 (OOD). α = 0 corresponds to zero-shot accuracy, and α = 1 corresponds to full
fine-tuned model. The results in the same setting with only the last linear layer trained are presented
in table 7 (ID) and table 8 (OOD).

Table 7: Accuracies on ImageNet with difference choices of α. We compare LP vs SLR-AVD.

Shots k = 1 k = 2 k = 4 k = 8 k = 16 k = 32

α
Methods LP AVD LP AVD LP AVD LP AVD LP AVD LP AVD

0.0000 68.78 69.53 68.78 69.53 68.78 69.53 68.78 69.53 68.78 69.53 68.78 69.53
0.0001 68.79 69.54 68.83 69.54 68.85 69.54 68.87 69.55 68.92 69.55 68.94 69.55
0.0002 68.81 69.54 68.88 69.55 68.91 69.55 68.93 69.56 69.02 69.56 69.07 69.56
0.0004 68.86 69.56 68.96 69.58 69.03 69.58 69.09 69.59 69.24 69.59 69.35 69.59
0.0008 68.94 69.59 69.14 69.63 69.26 69.64 69.40 69.64 69.65 69.66 69.84 69.68
0.0016 69.06 69.62 69.38 69.72 69.63 69.74 69.93 69.79 70.36 69.79 70.70 69.83
0.0032 69.22 69.72 69.73 69.86 70.17 69.93 70.73 70.00 71.40 70.07 72.01 70.08
0.0063 68.99 69.81 69.69 70.06 70.71 70.22 71.54 70.40 72.52 70.50 73.38 70.51
0.0126 67.31 69.83 68.04 70.33 70.35 70.75 71.65 71.09 73.10 71.25 74.22 71.27
0.0251 62.15 69.26 63.91 70.33 68.12 71.18 70.42 71.88 72.45 72.23 74.12 72.36
0.0501 53.51 66.75 57.69 69.30 64.35 71.17 68.18 72.37 71.10 73.08 73.30 73.44
0.1000 44.41 61.19 51.99 66.38 60.59 69.99 65.81 71.96 69.62 73.45 72.46 74.26
0.2000 37.91 53.68 47.94 62.06 57.59 67.75 64.13 70.95 68.60 73.09 71.83 74.34
0.3000 35.35 49.40 46.43 59.57 56.41 66.32 63.42 70.15 68.19 72.62 71.58 74.21
0.4000 34.05 46.60 45.63 57.93 55.83 65.43 63.06 69.52 67.99 72.22 71.44 74.06
0.5000 33.22 44.72 45.12 56.82 55.44 64.80 62.82 69.14 67.85 72.00 71.33 73.94
0.6000 32.67 43.44 44.79 55.98 55.18 64.30 62.66 68.89 67.75 71.81 71.27 73.85
0.7000 32.27 42.47 44.52 55.39 54.99 63.92 62.54 68.68 67.70 71.67 71.23 73.77
0.8000 31.96 41.71 44.31 54.87 54.85 63.62 62.45 68.51 67.62 71.57 71.20 73.73
0.9000 31.69 41.11 44.17 54.47 54.74 63.39 62.39 68.36 67.59 71.48 71.17 73.71
1.0000 31.51 40.56 44.06 54.16 54.66 63.19 62.33 68.23 67.55 71.40 71.15 73.67
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Table 8: Accuracies on ImageNet variations with difference choices of α. We compare LP vs SLR-
AVD. The results are averaged over all 5 ImageNet variations.

Shots k = 1 k = 2 k = 4 k = 8 k = 16 k = 32

α
Methods LP AVD LP AVD LP AVD LP AVD LP AVD LP AVD

0.0000 58.66 59.03 58.66 59.03 58.66 59.03 58.66 59.03 58.66 59.03 58.66 59.03
0.0001 58.67 59.03 58.68 59.03 58.69 59.04 58.70 59.04 58.70 59.04 58.71 59.04
0.0002 58.68 59.02 58.68 59.04 58.70 59.04 58.71 59.04 58.70 59.04 58.73 59.04
0.0004 58.69 59.03 58.70 59.04 58.71 59.04 58.73 59.03 58.75 59.05 58.81 59.05
0.0008 58.70 59.03 58.75 59.06 58.81 59.06 58.84 59.06 58.88 59.06 58.99 59.06
0.0016 58.72 59.06 58.81 59.08 58.90 59.09 59.03 59.11 59.07 59.08 59.23 59.11
0.0032 58.69 59.07 58.77 59.13 58.97 59.18 59.15 59.19 59.20 59.16 59.47 59.21
0.0063 58.30 59.10 58.27 59.14 58.79 59.23 58.89 59.31 58.98 59.28 59.40 59.37
0.0126 56.77 58.90 56.41 59.16 57.40 59.30 57.56 59.45 57.79 59.49 58.34 59.59
0.0251 52.55 58.09 51.93 58.70 54.30 59.14 54.81 59.38 55.47 59.55 56.28 59.78
0.0501 45.05 55.46 45.65 57.11 49.68 58.20 51.10 58.73 52.54 59.13 53.86 59.76
0.1000 36.63 50.25 39.71 53.88 45.30 56.12 47.77 57.21 50.03 58.05 51.87 59.25
0.2000 30.30 43.39 35.56 49.45 42.08 53.33 45.47 55.21 48.38 56.46 50.61 58.29
0.3000 27.83 39.70 33.94 47.00 40.79 51.76 44.55 54.02 47.73 55.60 50.12 57.70
0.4000 26.59 37.37 33.09 45.44 40.10 50.76 44.09 53.25 47.39 55.02 49.88 57.31
0.5000 25.82 35.84 32.57 44.43 39.67 50.12 43.79 52.74 47.18 54.63 49.71 57.04
0.6000 25.28 34.73 32.22 43.70 39.40 49.63 43.59 52.36 47.03 54.37 49.62 56.82
0.7000 24.87 33.94 31.99 43.16 39.18 49.25 43.45 52.07 46.92 54.16 49.55 56.67
0.8000 24.59 33.33 31.80 42.72 39.03 48.95 43.34 51.86 46.83 54.02 49.49 56.54
0.9000 24.36 32.85 31.65 42.38 38.91 48.71 43.26 51.67 46.77 53.88 49.44 56.45
1.0000 24.17 32.42 31.53 42.08 38.80 48.51 43.19 51.54 46.72 53.79 49.41 56.35

Shot k = 1 k = 2 k = 4

α
Method WISE-FT WISE-SLR WISE-FT WISE-SLR WISE-FT WISE-SLR

0.00 58.39 59.07 58.39 59.21 58.39 59.33
0.02 58.40 59.09 58.40 59.22 58.45 59.39
0.04 58.40 59.11 58.44 59.27 58.53 59.45
0.06 58.42 59.11 58.46 59.31 58.62 59.49
0.08 58.42 59.12 58.48 59.33 58.69 59.58
0.10 58.44 59.14 58.51 59.38 58.73 59.63
0.20 58.46 59.20 58.65 59.48 59.07 59.97
0.40 58.50 59.29 58.82 59.68 59.40 60.24
0.60 58.55 59.38 58.97 59.80 59.60 60.37
0.80 58.56 59.44 58.98 59.75 59.68 60.19
1.00 58.58 59.49 58.98 59.74 59.50 59.88

Table 9: Accuracies on ImageNet variations with difference choice of α. We compare WISE-FT to
WISE-SLR. The results are averaged over 5 ImageNet variations.
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Shot k = 1 k = 2 k = 4

α
Method WISE-FT WISE-SLR WISE-FT WISE-SLR WISE-FT WISE-SLR

0.00 68.33 69.71 68.33 70.30 68.33 71.13
0.02 68.33 69.73 68.37 70.33 68.44 71.19
0.04 68.37 69.76 68.45 70.35 68.53 71.24
0.06 68.39 69.78 68.50 70.41 68.60 71.30
0.08 68.39 69.82 68.53 70.49 68.68 71.36
0.10 68.43 69.83 68.55 70.51 68.80 71.42
0.20 68.51 69.92 68.74 70.68 69.20 71.64
0.40 68.59 70.04 69.04 70.91 69.89 71.93
0.60 68.70 70.18 69.29 71.12 70.28 72.09
0.80 68.78 70.27 69.47 71.21 70.48 71.96
1.00 68.88 70.31 69.59 71.21 70.42 71.70

Table 10: Accuracies on ImageNet with difference choice of α. We compare WISE-FT to WISE-
SLR.

Choosing γ and LLM prompting We consider another prompt “Give me 100 useful visual fea-
tures for distinguishing {} in a photo”, and use it with frequency penalty (FP) 0 in 1©, FP 0.1 in 2©.
3© uses the GPT3 prompts in the main text with 0 FP. Unless otherwise specified, other experiments

use γ = 1
Mc+1 and FP 0.1, and the GPT prompts in the main text. We find that the GPT3 prompt

itself does not matter as much as FP – it is more important to generate a more diverse set of VD.
Note in the main text we set γ = 5, this is because on ImageNet it is hard to guarantee the same
Mc across classes (due to an excess number of classes), hence we use a large γ to enforce ZS-AVD
relies mostly on the strong class prompts. In this ablation study, we enforce GPT to give 100 VDs
per class so we can simply average over them.

Table 11: ZS ablation on γ and GPT prompts.

γ or prompts 1/(Mc + 1) 1 5 1© 2© 3©
CIFAR10 91.51 91.19 91.16 91.25 91.42 90.44

CIFAR10.1 86.35 85.90 85.90 85.90 85.60 85.40
CIFAR10.2 83.80 83.10 83.10 83.20 84.20 82.50

Table 12: Accuracies of zero-shot, visual descriptors, and augmented visual descriptors on ImageNet
and its variations. ZS-AVD outperforms all baselines across different datasets. ZS-VD2 further adds
template “a photo of {classname}, which has {description}” on top of ZS-VD.

ZS ZS-VD ZS-AVD ZS-VD2 Waffle-2 Waffle-5 Waffle-10

IN 68.78 65.89 69.52 66.5 64.36 62.27 60.24
IN-V2 62.23 59.19 62.97 60.57 57.95 56.39 54.54
IN-R 77.72 72.75 77.85 72.96 73.32 72.83 70.68
IN-A 50.64 46.11 50.87 47.29 46.4 44.51 50.65

IN-Sketch 48.38 44.84 48.91 45.87 44.43 42.90 41.57
ObjectNet 54.31 49.60 54.58 51.76 48.73 48.37 46.34

Here we include a comparison among WISE-SLR, CoOp+WISE-FT, WaffleCLIP+WISE-FT, and
sparse class prompts (SCP)+WISE-FT. For SCP, we have 1000 classes and 7 templates. We create
a text embedding for each class with each template, and get in total 7000 class prompts. On the
few-shot training data, we learn a sparse combination of these 7000 features with an L1-regularized
cross-entropy loss. Finally, we perform WISE-FT with the zeroshot weights.
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Figure 15: ID-OOD curves of SLR-AVD vs CoOp, Waffle, and the class prompts on average over
ImageNet variations. k = 1, 2, 4, 8, 16, 32.

Performance of SLR with AVD vs image features when k is large. The numbers are averaged over
two random runs.
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Figure 16: LP vs SLR-AVD, across various ImageNet variations. k=1,2,4,8,16,32,64,256,1024.

How sparse is SLR-AVD The average number of non-zero entries for each class is
447, 248, 182, 177, 173, and 135 for k = 1, 2, 4, 8, 16, 32. The numbers are rounded to the near-
est integers.

We include the results with k = 4 for our method and several baselines here. The MLP model has
layers 512, 4500, 1000. This amounts to total of 512 ∗ 4511 + 4500 ∗ 1000 = 6804000 parameters,
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which equals to the total number of parameters in our SLR model (it has 6804 ∗ 1000 parameters if
we also count the 0 entries).

Table 13: Accuracies of zero-shot, visual descriptors, and augmented visual descriptors on ImageNet
and its variations. ZS-AVD outperforms all baselines across different datasets.

IN IN-V2 IN-R IN-A IN-Sketch ObjectNet

ZS 68.78 62.23 77.72 50.64 48.38 54.31
ZS-VD 65.89 59.19 72.75 46.11 44.84 49.60
ZS-AVD 69.52 62.97 77.85 50.87 48.91 54.58
MLP weight decay 0.01 52.55 49.23 29.08 44.39 27.15 29.71
MLP weight decay 0.1 52.62 49.33 29.07 44.39 27.2 29.79
LP 54.66 45.92 54.5 32.34 28.77 32.44
WISE-FT+LP 70.71 63.66 77.89 50.69 48.89 54.39
SLR 63.19 55.02 67.64 42.09 37.43 40.39
WISE-FT+SLR 71.18 64.2 77.98 51.07 49.37 54.59
Full FT 70.42 63.50 77.87 52.08 48.47 55.56
WISE-FT+Full FT 70.48 63.5 78.32 52.11 48.99 55.77
SLR-AVD-FT 71.70 64.79 77.95 52.61 48.94 55.10
WISE-SLR 72.09 65.3 78.59 52.64 49.92 55.41
CoOp 69.36 62.77 76.54 50.43 47.96 53.68
WISE-FT+CoOp 70.14 63.48 78.1 51.48 49.16 54.79

We include a more detailed description of U ,W :

Uvd =

 (Uvd)1
...

(Uvd)M

 ,Ucp =

 (Ucp)1
...

(Ucp)|C|

 ,Uavd =

[
Uvd

Ucp

]
, where each Ui ∈ Rd.

Wvd =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ,Wcp =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ,Wavd =
[
Wvd Wcp

]
,where 1 ∈ RMc .

Here we assume each class c has the same number of descriptors. The general case can be easily
derived. Wcp ∈ R|C|×|C| is a diagonal matrix. Wavd is block-diagonal with |C| number of rows;
each of its block has a row vector of size Mc, which amounts to total of

∑
c∈CMc = M columns.
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