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ABSTRACT

Dependency structures between modalities have been utilized explicitly and im-
plicitly in multimodal learning to enhance classification performance, particularly
when the training samples are insufficient. Recent efforts have concentrated on
developing suitable dependence structures and applying them in deep neural net-
works, but the interplay between the training sample size and various structures has
not received enough attention. To address this issue, we propose a mathematical
framework that can be utilized to characterize conditional dependency structures
in analytic ways. It provides an explicit description of the sample size in learning
various structures in a non-asymptotic regime. Additionally, it demonstrates how
task complexity and a fitness evaluation of conditional dependence structures affect
the results. Furthermore, we develop an autonomous updated coefficient algorithm
auto-CODES based on the theoretical framework and conduct experiments on
multimodal emotion recognition tasks using the MELD and IEMOCAP datasets.
The experimental results validate our theory and show the effectiveness of the
proposed algorithm.

1 INTRODUCTION

Multimodal learning is recently an active research area in machine learning aiming at jointly extracting
information and learning knowledge from different categories of data, such as images, audios, and
texts (Ngiam et al., 2011; Zadeh et al., 2019; Kiela et al., 2020). In multimodal learning, a critical
issue is to design efficient algorithms to extract features from various modalities, such that the label
information can be effectively extracted for classification, especially when the number of training
samples is insufficient to learn a huge and complex multimodal structure. There have been many
kinds of literature addressing this issue with different kinds of algorithms (Baltrušaitis et al., 2018),
in which the main research stream focuses on extracting features from several modalities that are
both relevant to the label and connected to one another (Gao et al., 2020; Ma et al., 2020; Summaira
et al., 2021). The effectiveness of such algorithms could have resulted from the intuition that the
labels appear to be the common patterns shared between different modalities in many real multimodal
datasets. For multimodal data with such property, designing modality features with higher correlations
will implicitly force the algorithm to search for more informative features to the label, and hence can
often require fewer training samples to achieve good performance.

From the statistical learning aspects, such benefits can be interpreted as that the modalities and the
label follow a conditional dependency structure where modalities are independent of each other once
the label is given. Since it is in a relatively low-dimensional space, it will demand less number
of samples to learn a good representation (Varma et al., 2019). Thus, there can be several factors
affecting the classification performance including (i) the number of labeled training samples, (ii) the
fitness of the conditional dependency structures to represent the true one, and (iii) the complexity of
the discrimination task.

There are works exploiting appropriate dependency structures to achieve good performances by
designing effective networks, fusion approaches (Zadeh et al., 2017; Liu et al., 2018; Nagrani et al.,
2021) and objective functions (Sohn et al., 2014; Sutter et al., 2020; Piergiovanni et al., 2020).
However, most existing works focus on designing learning algorithms and architectures without a
theoretical understanding of the training sample size in multimodal problems, which potentially limits
the performance, especially for complicated multimodal problems.
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In this paper, we consider the model to learn a linear combination of two types of estimators (Pier-
giovanni et al., 2020) representing the general dependency structure and the considered conditional
dependency structure. Then, we propose a testing loss function to evaluate the performance of
the trained model in a non-asymptotic regime. It considers the average performance of the linear
combined estimator over a certain number of training samples. Note that it is parametrized by a linear
combination coefficient of different types of estimators. Minimizing the testing loss will give us
the optimal coefficient which determines the optimal estimator which can lead to more informative
classification features. The optimal coefficient can also be used to characterize the conditional
dependency structure in the process. The detailed mathematical formulation and interpretations are
presented in Section 2 and Section 3.

In particular, we show that the explicit analytical solution of the optimal coefficient is inversely
proportional to the number of labeled training samples and the fitness measurement of the conditional
dependency structure. Also, it is proportional to the complexity of the learning task, which we
will discuss in Section 2. For instance, when the number of samples is insufficient to learn a high-
dimensional model, it will be preferable to fit the low-dimensional conditional dependency structure
which requires less number of parameters. Meanwhile, the coefficient for the estimator corresponding
to the conditional structure will be large. Therefore, the optimal coefficient essentially indicates the
efficient model that one shall choose for predicting the label in the multimodal problem with the
number of training samples taken into account. Moreover, our approach essentially provides guidance
and theoretical understanding for designing efficient multimodal algorithms to utilize the sample size
information and different dependency structures.

At last, we extend our theoretical results and propose an autonomous updated coefficient on depen-
dency structures (auto-CODES) algorithm by exploiting parametric models. It can compute the
weights on different dependency structures automatically with the features evolving in deep neural
networks. The experiments on the emotion recognition tasks with the MELD and IEMOCAP datasets
validate our theoretical results and show the effectiveness of the algorithm. The main contributions of
this paper can be summarized as follows:

• We propose a novel theoretical framework for multimodal analyses to characterize the
influence of the conditional dependency structure. To the best of our knowledge, it is the
first work to give an explicit characterization of the number of training samples toward
different dependency structures for multimodal learning in a non-asymptotic regime. Also,
it quantifies the task complexity and the fitness of the conditional dependency structure,
measured by the χ2-divergence, to the estimation.

• We extend the analyses from discrete to continuous data in the real world by exploiting
parametric models. Furthermore, we propose an algorithm with the autonomous updated
coefficient on different dependency structures (auto-CODES) based on the theoretical
analyses.

• We evaluate the proposed algorithm auto-CODES on multimodal emotion recognition tasks
with the widely used MELD and IEMOCAP datasets. The experimental results validate our
theory and show the effectiveness of our algorithm.

Due to space limitations, the proofs of theorems are presented in the supplemental material.

2 PROBLEM FORMULATION AND ANALYSIS

In this section, we consider a multimodal scenario where both modalities are discrete random
variables. For better illustration, we elaborate the framework in two modalities case. Specifically,
we focus on the linear combination of two types of estimators. By introducing the testing loss, we
evaluate the performance of the proposed estimator. Finally, we determine the optimal combining
coefficient by minimizing the testing loss and illustrate the aspects that affect the optimal coefficient.

Notation: First, let random variables X1, X2 and Y denote different modalities and label over
finite alphabets X1, X2 and Y , respectively. Then, n sample tuples D ≜ {(x(i)

1 , x
(i)
2 , y(i))}ni=1 are

generated in an independent, identically distributed (i.i.d.) manner from the true joint distribution
PX1X2Y , where PX1X2Y (x1, x2, y) > 0 for all entries. Specifically, we consider two different
estimators to approximate the joint distribution PX1X2Y : (i) the empirical joint distribution P̂X1X2Y ,
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and (ii) the empirical Markov-structured distribution P̂
(M)
X1X2Y

, which characterize the conditional
dependency structure X1 − Y −X2,

P̂X1X2Y (x1, x2, y) ≜
1

n

n∑
i=1

1{x(i)
1 = x1}1{x(i)

2 = x2}1{y(i) = y}, (1a)

P̂
(M)
X1X2Y

(x1, x2, y) ≜ P̂X1|Y (x1|y)P̂X2|Y (x2|y)P̂Y (y), (1b)

where 1{·} denotes the indicator function, P̂Y denotes the marginal empirical distribution of label
Y and P

(M)
X1X2Y

denotes PX1|Y PX2|Y PY . For simplification, we consider the case when the label
distribution has been learned well1 i.e., P̂Y (y) = PY (y), for y ∈ Y .

To begin, we focus on a linearly combined estimator based on two different structures.

P̃X1X2Y ≜ (1− α) · P̂X1X2Y + α · P̂ (M)
X1X2Y

, (2)

where the coefficient α ∈ [0, 1] is the parameter to be designed2.

Note that when α becomes zero, the proposed estimator equation 2 will degrade into a widely-used
unbiased estimator P̂X1X2Y . When α goes to one, it will become the estimator P̂ (M)

X1X2Y
representing

the conditional dependency structure, i.e. X1 − Y − X2. Thus, there has an optimal combining
coefficient to make the estimator equation 2 the most appropriate estimation for label prediction. In
addition, the optimal coefficient can be used to characterize the dependency structure and provide
theoretical insights for deriving the optimal estimation.

2.1 OPTIMAL COMBINATION COEFFICIENT

We define a testing loss function based on the referenced χ2-divergence to measure the performance
of the estimator equation 2, where the referenced χ2-divergence is defined as follows3.
Definition 1. For discrete random variable Z over finite alphabet Z , and its distributions PZ and
QZ , with reference distribution RZ , the referenced χ2-divergence between them is defined as

χ2
RZ

(PZ , QZ) ≜
∑
z∈Z

(PZ(z)−QZ(z))
2

RZ(z)
. (3)

We denote χ2 (PZ , QZ) ≜ χ2
PZ

(PZ , QZ), which corresponds to the Pearson χ2-divergence.
Based on the referenced χ2-divergence, we define the testing loss as the average divergence between
the estimator (2) and the true joint distribution under the fixed training sample size n.

Definition 2. For estimator P̃X1X2Y with coefficient α and the corresponding true distribution
PX1X2Y , the testing loss and the optimal coefficient α∗ are defined as

L̃test(α) ≜ E
[
χ2(PX1X2Y , P̃X1X2Y )

]
, α∗ ≜ argmin

α∈[0,1]

L̃test(α), (4)

where the expectation is taken over all n i.i.d. samples generated from the true distribution.
Then, we have the following characterization of our proposed testing loss over the linearly combined
estimator and the optimal combining coefficient α∗.
Theorem 3. The testing loss as defined in equation 4 can be expressed as

L̃test(α) =

(
1

n
C +

1

n
V + χ2(PX1X2Y , P

(M)
X1X2Y

)

)
· α2 − 2

n
C · α+

1

n
(|X1||X2||Y| − 1), (5)

1Note that in many real-world datasets, such as MNIST, the label will be uniformly distributed in the training
set which makes this assumption reasonable.

2It can be shown that the estimator equation 2 can be naturally derived from optimizing a linearly combined
Log-Loss function, where we refer to the supplementary material for detailed discussion.

3Conventionally, such performance is computed by logarithm loss. However, in our setting, it will be ill-
defined when some (x1, x2, y) tuple is missing in training samples. By that time, we have P̃X1X2Y (x1, x2, y) =
0 while PX1X2Y (x1, x2, y) > 0, which would bring the logarithm loss to infinite.
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and the optimal coefficient α∗ to minimize the testing loss equation 4 can be given as

α∗ =
1
nC

χ2(PX1X2Y , P
(M)
X1X2Y

) + 1
nC + 1

nV
, (6)

where
C ≜ |Y| · [|X1||X2| − (|X1|+ |X2|)] + 1 + an, (7)

V ≜ −6 · χ2(PX1X2Y , P
(M)
X1X2Y

) + 2
∑
x2,y

χ2(PX1|X2Y , PX1|Y ) + 2
∑
x1,y

χ2(PX2|X1Y , PX2|Y )

+ |Y| (|X1|+ |X2|)− 2 + bn. (8)

an and bn are of the order O( 1n ), which will go to constants when n goes to infinity. The proof and
the detailed analytical expressions of an and bn are provided in the supplementary material.

By considering the conditional dependency structure and tuning the coefficient α, the improvement
can be calculated by the difference in the testing losses.
Corollary 4. The improvement of considering the optimal coefficient α∗ can be given as

L̃test(0)− L̃test(α
∗) =

1

n
· C2

C + V + n · χ2(PX1X2Y , P
(M)
X1X2Y

)
, (9)

where parameters C and V are defined in Theorem 3.

From the expressions equation 6, the optimal combining coefficient α∗ is determined by three main
factors: (i) the training sample size n; (ii) the fitness of the conditional dependency to describe the
true one, measured by the χ2-divergence χ2(PX1X2Y , P

(M)
X1X2Y

) and terms in the parameter V ; and
(iii) the task complexity C, characterized by the number of parameters needed to estimate the joint
distribution. The last characterization comes from the fact that when the task is to learn all the entries
of the true distribution, the number of parameters we need corresponds to the cardinality of the
sample space.

Many existing multimodal algorithms (Ma et al., 2020) focus on finding the appropriate dependency
structures to approximate the true one, while the number of training samples is not sufficiently
addressed. In Theorem 3, we show that the combining coefficient is inversely proportional to the
number of training samples and the fitness measure of the conditional dependency to the true one.
Also, it is proportional to the task complexity measured by the number of model parameters.

There are two interesting special cases for better understanding of Theorem 3 and Corollary 4. Case
1: When the true dependency structure is Markovian, i.e. X1 − Y −X2, the optimal coefficient will
becomes 1− V (C + V )−1, which is nearly 1− |X1|−1 − |X2|−1. The cardinality terms |X1| and
|X2| are usually large which results in that the α∗ is quite close to 1, representing that the model
should be close a Markov one 4 and the improvement is relatively large. Case 2: When the number of
training samples is relatively small and insufficient to learn a complex model, the optimal coefficient
α∗ would be close to 1, meaning that the model behaves as a “near Markov" one and would improve
from considering the conditional dependency structure. Such insights were not well captured in
many multimodal algorithms, and our results essentially provide the optimal characterization of
the combing coefficient among different dependency structures adjusted by the sample size and the
fitness measure.

Additionally, the established expression of α∗ can be interpreted as the optimal bias-variance trade-off
(Duda et al., 1973) of the low-dimensional structure to the estimation. Note that the bias-variance
trade-off in testing loss (4) is tuned by the coefficient α as

L̃test(α) =
1

n

(
Cα2 + V α2 + 2Cα+ |X1||X2||Y| − 1

)
︸ ︷︷ ︸

variance term(s)

+α2χ2(PX1X2Y , P
(M)
X1X2Y

)︸ ︷︷ ︸
bias term

. (10)

The variance terms will vanish with the increase in the training sample sizes. And the bias term
characterizes the cost of utilizing dependency structures. Then, the coefficient α∗ achieves the optimal
bias-variance trade-off when the testing loss is minimized.

4Due to the consideration of the limited number of samples and the assumption on the distribution of label
Y , it will not be strictly 1.
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3 ALGORITHM WITH AUTONOMOUS UPDATED COEFFICIENT ON
DEPENDENCY STRUCTURE

In this section, we build an algorithm with an autonomous updated coefficient on the dependency
structures (auto-CODES) as a realization of our theoretical framework on multimodal learning.
Specifically, we first extend our theory from a discrete data domain to a continuous one that can
be applied to practical datasets using representations in factorization form. Then, we give the
optimal coefficient α expressed by multimodal features and the objective loss function which linearly
combines two components corresponding to different dependency structures. Finally, we give the
proposed auto-CODES algorithm and the discrimination rule using maximum a posterior (MAP).

Throughout this section, we consider a dataset with k modalities X1, . . . , Xk, n training samples
(x

(i)
1 , . . . , x

(i)
2 , y(i)), i = 1, . . . , n, and m labels. The conditional dependency structure considered

here is that all the modalities are independent of each other once the label is given.

3.1 MULTIMODAL REPRESENTATIONS IN FACTORIZATION FORM

To utilize the previous analyzing framework, we introduce a parameterized representation for model-
ing the density function of the continuous data. The parameterized model is based on two parts: an
early fusion model and an embedding layer which can help us reduce the parameters for classification
to finite. An early fusion model can be described as the following. First, k modalities will go through
different deep neural networks and output k features. Then, they will be concatenated and fully
connected with a d-dimensional output layer to learn a joint representation f . The embedding layer
is the topmost layer for linear classifications, with weights corresponding to label y is given by
g(y) = [g1(y), . . . , gd(y)]

T. For a specific task, the weights in the topmost layer with a finite number
of parameters, i.e. g(1), . . . , g(|Y|), can be effectively trained with the joint representation f .

Our framework considers an inference model P̃ (f ,g)
Y |X1,...,Xk

, which is widely used in natural language
processing (Levy & Goldberg, 2014) and image recognition (Xu & Huang, 2020), in the following
factorization form5.

P̃
(f ,g)
Y |X1,...,Xk

(y|x1, . . . , xk) ≜ PY (y)(1 + ⟨f (x1, . . . , xk) , g (y)⟩). (11)

The optimal weights g∗
0 and g∗

1 , which make the model P̃ (f ,g∗
i )

Y |X1...Xk
fit the training samples, min-

imize the distance between empirical distributions and the estimation PX1...Xk
P̃

(f ,g∗
i )

Y |X1...Xk

6, re-

spectively. They can be given as: g∗
0 ≜ argming0

χ2
R

(
P̂X1...XkY , PX1...Xk

P̃
(f ,g0)
Y |X1...Xk

)
, g∗

1 ≜

argming1
χ2
R

(
P̂

(M)
X1X2Y

, PXX1...Xk
P̃

(f ,g1)
Y |X1...Xk

)
, where the fitness is measured by the χ2-divergence

and the reference distribution R ≜ PX1...Xk
PY . This allows us to apply the previous analyses and

focus on the inference model P (f ,g∗
i )

Y |X1...Xk
. Analogous to the linearly combined estimator (2), we

consider the linear combination of these inference models

Q
(α)
Y |X1...Xk

≜ (1− α)P̃
(f ,g∗

0 )

Y |X1...Xk
+ αP̃

(f ,g∗
1 )

Y |X1...Xk
= P̃

(f ,g∗)
Y |X1...Xk

, (12)

with g∗ = (1− α)g∗
0 + αg∗

1 .

Further, we define the testing loss and the corresponding optimal coefficient α∗ as

L̃(f ,g)
test (α) ≜ E

[
χ2
R

(
PX1...XkY , PX1...Xk

Q
(α)
Y |X1...Xk

)]
, α∗ ≜ argmin

α∈[0,1]

L̃(f ,g)
test (α). (13)

We have the following characterization.

5Note that it can be negative in real applications. But we can also use it to make discriminative decisions
through maximum a posterior (MAP) rule.

6Note that when the discriminative model P̃ (f ,g)

Y |X1...Xk
is fixed, PX1...Xk P̃

(f ,g)

Y |X1...Xk
is the optimal approxi-

mation of the true distribution PX1...XkY .
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Theorem 5. For a given dataset, the optimal α∗ for testing loss equation 13 can be given as

α∗ =
1
nC

′′

Γ + 1
nC

′′ + 1
nV

′′ , where

Γ ≜
∑
y∈Y

1

PY (y)

∑
x′
1,...,x

′
k

∑
x′′
1 ,...,x

′′
k

fT(x′
1, . . . , x

′
k)Λ

−1
f f(x′′

1 , . . . , x
′′
k)

(
P

(M)
X1...XkY

(x′
1, . . . , x

′
k, y)− PX1...XkY (x

′′
1 , . . . , x

′′
k , y)

)2

Λf ≜
∑

x1,...,xk

PX1...Xk
(x1, . . . , xk)f(x1, . . . , xk)f

T(x1, . . . , xk).

Terms C ′′, V ′′, and the calculation approach of those terms from the training data are given in the
supplementary material.

These terms can be represented by some expectations of features f and g and are approximated
by the corresponding empirical means. For instance, Λf can be computed from the data by Λf ←
1
n

∑n
i=1 f(x

(i)
1 , . . . , x

(i)
k )fT(x

(i)
1 , . . . , x

(i)
k ).

3.2 OUR PROPOSED ALGORITHM

First, based on linear estimator equation 12, the objective function can be chosen as the linear
combination of two referenced χ2-distances measuring the gap between the learned distribution with
distributions corresponding to different dependency structures, i.e.,

(1− α)χ2
R

(
P̂X1...XkY , P̂X1...Xk

P̂
(f ,g)
Y |X1...Xk

)
+ αχ2

R

(
P̂

(M)
X1...XkY

, P̂X1...Xk
P̂

(f ,g)
Y |X1...Xk

)
. (14)

Based on the approach established in (Wang et al., 2019; Huang et al., 2017), the objective equation 14
can then be transformed to the following loss function which can be computed by the feature (f , g),

L̃(α)
train(f , g) = (1− α)Ldep(f , g) + αL(M)

dep (f , g), (15)

Ldep(f , g) =
1

n− 1

n∑
i=1

fT(x
(i)
1 , . . . , x

(i)
k )g(y(i))− 1

2
tr(cov(f) cov(g)), (16)

L(M)
dep (f , g) =

m∑
j=1

P̂Y (j)

[
1

nj − 1

nj∑
i=1

fT(x
(i,j)
1 , . . . , x

(i,j)
k )g(j)− 1

2
tr(cov(fj) cov(g))

]
,

(17)

where f(x
(i)
1 , . . . , x

(i)
k ) is the feature output for i-th sample (x

(i)
1 , . . . , x

(i)
k , y(i)), g(i) is the

embedding for label i, cov(f) ← 1
n−1

∑n
i=1 f(x

(i)
1 , . . . , x

(i)
k )fT(x

(i)
1 , . . . , x

(i)
k ), cov(g) ←

1
n−1

∑n
i=1 g(y

(i))gT(y(i)), P̂Y (j) =
∑n

i=1 1{y(i) = j}, i = 1, . . . ,m. As for loss L(M)
dep (f , g), it

needs a permutation on samples’ modalities within the subset of the same label. We denote the subset
of training samples with label j ∈ {1, . . . , k} as Dj = {(x(i,j)

1 , . . . , x
(i,j)
k )}dj

i=1, where dj is the
number of samples whose label is j in the overall dataset D. x(i,j)

t is chosen from {x(i,j)
t }dj

i=1, t =

1, . . . , k, and nj =
∏k

t=1 dt, cov(fj)← 1
nj−1

∑nj

t=1 f(x
(t,j)
1 , . . . , x

(t,j)
k )fT(x

(t,j)
1 , . . . , x

(t,j)
k ).

Then, our algorithm can be organized as an iteration of two main optimizations: (i) the optimization
of α for given (f , g) by minimizing the testing loss L̃test(α) equation 13 and use the expression
in Theorem 5 for computation; (ii) the optimization of features (f , g) for given α to minimize the
training loss equation 14 by the deep neural network. We summarize it in Algorithm 1.

With the output features f∗ and g∗ trained by the algorithm, the classification of a newly observed
sample (x1, x2) is given by the maximum a posterior (MAP) decision rule

ỹ(x1, . . . , xk) = argmax
y∈Y

PY |X1...Xk
(y|x1, . . . , xk)

= argmax
y∈Y

PY (y)(1 + ⟨f∗ (x1, . . . , xk) , g
∗ (y)⟩).

6



Under review as a conference paper at ICLR 2023

Algorithm 1 An Auto-updated Coefficient on Dependency Structures (auto-CODES) Algorithm

Input: multimodal data samples {(x(i)
1 , . . . , x

(i)
2 , y(i))}ni=1

Initialize α∗ = 0
repeat
(f∗, g∗)← argminf ,g L̃

(α∗)
train(f , g)

α∗ ← argminα∈[0,1] L̃
(f∗,g∗)
test (α)

until α∗ converges
(f∗, g∗)← L̃(α∗)

train(f , g)
return f∗, g∗, α∗

4 EXPERIMENTS

In this section, we verify our model and algorithm to answer the following research questions (RQ):

RQ1: Can auto-CODES make discrimination well?

RQ2: Can auto-CODES automatically determine an appropriate coefficient α?

RQ3: Is the optimal coefficient α scale to the inverse proportion of the training sample size?

Experimental settings. In our experiments, two widely-used multimodal emotion recognition
datasets are used, MELD (Poria et al., 2018) and IEMOCAP (Busso et al., 2008). MELD contains
13K utterances from 1433 dialogues from the TV series Friends. Each utterance is annotated with
three emotion labels, positive, neutral, and negative. We use the audio and textual modalities for
our verification. As for IEMOCAP, it contains approximately 12 hours of audiovisual data with six
emotion categories: anger, happiness, sadness, neutral, excitement, and frustration. We use visual and
audio modalities for our verification. In our settings, the sample size plays a crucial role. Thus, we
randomly select subsets of both datasets with certain levels of sample sizes as our training sets. To
preserve the inner structure within dialogues, the random selection is towards the dialogues. The exact
sample sizes are listed in Table 1. As for the model structure, we use DialogueRNN (Majumder et al.,
2019) as our backbone network for extracting multi-modal features and adopt 2-layer Multi-layer
Perceptron (MLP) with RELU (Glorot et al., 2011) activation for extracting one-hot label features.
We use accuracy and F1-score as our evaluation metric.

4.1 EMOTION RECOGNITION RESULTS

To answer RQ1, we compare auto-CODES with the following methods: (i) CE: Cross entropy loss
that is widely used in machine learning classification tasks, (ii) MaskedNLL: a variant of NLL loss to
cope with excluding logit value of the padded sample, which is used in (Majumder et al., 2019), (iii)
Focal loss(Mukhoti et al., 2020): Focal loss is designed to address the issue of the class imbalance
problem, and (iv) Soft-HGR (Wang et al., 2019): Soft-HGR loss learns correlated representation
across modalities without hard whitening constraints. All the experiments are conducted on various
training sample sizes. The discrimination accuracies along with the F1-score on emotion recognition
tasks are reported and shown in Table 1 and Table 3.

The results demonstrate that our auto-updated method achieves superior performance against existing
methods among all settings with different sample sizes. From the dialogue size 10 to 40, auto-
CODES outperforms the second-best method Soft-HGR by the margin of 2.086% (size 20) to 2.63%
(size 30) on the F1-score metric. For the dialogue sizes 40 and 60, auto-CODES achieves absolute
improvements by margins of 1.629% and 1.515% over Focal loss. Also, to examine the impact of the
coefficient α, we conduct experiments with prefixed static α as a comparison with our auto-updated
algorithm. Comparing the last two columns in Table 1, we can observe that auto-CODES obtains
1.856% (size 60) to 4.456% (size 10) improvements in terms of F1-score over static CODES. These
results suggest that: (1) when the training samples are insufficient, our proposed auto-CODES
outperforms focal loss, Soft-HGR, Cross Entropy loss, and MaskedNll loss, (2) auto-updating α can
improve the results over static CODES by large margins.
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Table 1: Comparison with other objectives in MELD dataset with different training sample sizes. All
reported results are averaged over 10 repeated experiments.

Sample size
(Dialogue size)

Metric Method

CE MaskedNll Focal Soft-HGR CODESα=0.05 auto-CODES

107 (10) accuracy 50.222±2.709 50.544±1.380 50.858±3.005 52.784±2.143 51.741±3.221 53.640±1.345
F1-score 38.099±2.296 40.147±2.269 40.649±1.999 44.998±2.227 42.751±1.683 47.206±1.179

198 (20) accuracy 51.218±1.312 51.571±1.255 51.226±1.477 53.890±1.879 53.091±2.404 55.179±1.147
F1-score 41.840±1.657 42.912±1.615 42.535±2.146 47.038±1.957 45.786±1.210 49.124±0.902

302 (30) accuracy 51.272±1.467 52.084±0.990 52.655±0.421 54.736±1.576 53.986±1.407 55.943±0.925
F1-score 42.091±1.275 43.351±1.527 43.589±1.986 48.358±1.170 46.816±2.313 50.988±0.712

413 (40) accuracy 52.475±0.979 52.943±1.159 53.471±0.534 55.441±1.362 54.219±1.513 57.816±0.964
F1-score 43.647±0.764 44.341±1.165 46.135±1.146 49.213±0.927 47.942±1.252 51.538±0.699

516 (50) accuracy 54.176±1.098 53.586±1.042 55.613±0.665 55.901±0.937 54.730±1.467 58.467±0.783
F1-score 47.397±1.100 46.537±0.934 50.509±1.700 50.107±0.776 48.523±1.012 52.138±0.872

636 (60) accuracy 55.448±0.707 55.441±0.941 56.576±0.479 56.467±0.792 56.087±1.280 59.847±0.781
F1-score 50.547±0.876 50.263±1.231 51.138±0.944 50.981±0.811 50.747±0.812 52.653±0.584

Table 2: The optimal coefficients α∗ derived by auto-CODES and grid search method on different
training sample sizes on the MELD dataset.

Sample size n
(dialogue size)

grid search (gs) auto-CODES (auto)

αgs accuracy αauto accuracy n · αauto

107 (10) 0.02 52.912 ± 1.164 0.0189 ± 0.0011 53.640 ± 1.345 3.74
198 (20) 0.02 55.144 ± 1.470 0.0179 ± 0.0009 55.179 ± 1.147 3.54
302 (30) 0.01 55.949 ± 1.342 0.0130 ± 0.0016 55.943 ± 0.925 3.93
413 (40) 0.01 57.486 ± 1.292 0.0092 ± 0.0007 57.816 ± 0.964 3.81
516 (50) 0.01 58.372 ± 0.964 0.0078 ± 0.0008 58.467 ± 0.783 4.02
636 (60) 0.01 59.573 ± 0.745 0.0058 ± 0.0006 59.848 ± 0.781 3.69

4.2 DETERMINATION OF THE OPTIMAL COEFFICIENT

To answer RQ2, we conduct experiments to compare our auto-updated coefficient α and the coefficient
determined by grid search and manual adjustments conventionally. Instead of only relying on
empirical experience with no theoretical assurance, our theory determines the optimal coefficient α∗

and updates the learned modalities’ features automatically.

During training, our algorithm and grid search method use the same number of training epochs for
each α updating iteration circle at different training tuple sizes. In the grid search method, we search
101 values of α ranging from 0 to 1 with a step length of 0.01. In our algorithm, we stop the iteration
once the difference ratio of the updating alpha is smaller than 0.1. The results are shown in Table 2.
It suggests that our method can locate an appropriate and even better α than the grid search method.

4.3 OPTIMAL COEFFICIENT WITH THE NUMBER OF TRAINING SAMPLES

To answer RQ3, we examine the optimal α determined by auto-CODES on MELD and IEMOCAP.
According to our theory, α∗ is roughly of the order 1

n . For different training sample sizes, we conduct
10 repetitive experiments using auto-CODES to locate the optimal coefficient and report their average
as the final α∗. The values of their product n ·α∗ for both MELD dataset are demonstrated in Table 2.
It can be approximately recognized as a fixed number around 3.8. The results for IEMOCAP has
given in the appendix. According to the column “n · αauto” of Table 2, our theoretical outcome can
not only determine a good α but also reveal its relation with the number of training sample sizes. For
more experiment results on the IEMOCAP dataset, please see Supplementary Material.
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Table 3: Comparison with other objectives in the IEMOCAP dataset with different training sample
sizes. All reported results are averaged over 10 repeated experiments.

Sample size
(Dialogue size)

Metric Method

CE MaskedNll Focal Soft-HGR CODESα=0.01 auto-CODES

446 (10) accuracy 42.580 ± 1.791 41.956 ± 1.645 42.890 ± 1.783 42.466 ± 1.980 42.784 ± 1.465 43.023 ± 1.706
F1-score 36.710 ± 2.009 35.518 ± 1.480 37.302 ± 1.592 36.398 ± 1.848 37.010 ± 1.573 37.415 ± 1.292

565 (12) accuracy 43.217 ± 1.487 44.789 ± 1.669 44.962 ± 1.374 44.511 ± 1.655 44.754 ± 1.221 45.478 ± 1.236
F1-score 37.399 ± 1.642 40.726 ± 0.878 40.519 ± 1.587 39.507 ± 1.132 40.751 ± 1.383 40.910 ± 1.085

647 (14) accuracy 45.116 ± 1.054 45.533 ± 1.577 45.599 ± 1.568 44.969 ± 1.513 45.730 ± 1.420 46.239 ± 1.128
F1-score 40.714 ± 1.199 41.227 ± 1.114 41.376 ± 1.247 40.397 ± 1.022 41.786 ± 1.209 42.803 ± 0.976

5 RELATED WORK

In this section, we summarize the related works from two aspects: correlation analysis and the
dependency structures in multimodal learning.

Correlation Analyses in Multimodal Learning. Correlation analysis methods can be fusion-based
or objective-based. Fusion-based methods design the fusion approaches of different modalities
representations, such as tensor fusion network for multimodal sentiment analysis (Zadeh et al., 2017),
and factorized multimodal representations (Liu et al., 2018; Tsai et al., 2018). Objective-based
methods capture modality interactions by using distinct statistical notions. For example, canonical
correlation analysis (CCA) approaches like (Karami & Schuurmans, 2021) are based on Pearson
correlation. Jensen-Shannon-Divergence (Sutter et al., 2020), Variation of Information (Sohn et al.,
2014), and HGR maximal correlation (Wang et al., 2019; Ma et al., 2020; Tong et al., 2021) have
also shown that the statistical design of learning objectives can facilitate the correlation extraction
among modalities. The concept of sample efficiency has been discussed in the weighted algorithm
TAWT (Chen et al., 2021). The explicit and accurate quantity of training samples for analysis is not
appropriately addressed.

Learning Dependency Structures in Multimodal. Learning features in complex manifolds formed
by different modalities of data is essential. One approach is to learn the discriminative one such
as conditional random fields (CRF) (Lafferty et al., 2001). Another strategy involves learning the
generative model using multimodal deep Boltzmann machines (DBMs) (Salakhutdinov & Hinton,
2009), or coupled, factorial and multi-stream hidden Markov models (HMM) method (Nefian et al.,
2002; Ghahramani & Jordan, 1997; Gurban et al., 2008). However, the theoretical characterization of
utilizing the dependency structures is not sufficiently explored.

6 DISCUSSION

In this paper, we propose a new theoretical framework to analytically characterize the explicit and
exact relation between the sample size with conditional dependency structures in multimodal learning
in a non-asymptotic regime. Moreover, we propose a weighted training algorithm, auto-CODES,
based on the theoretical framework. It can iteratively update the coefficient on different dependency
structures based on the evolving modalities’ features. The effectiveness of auto-CODES is further
corroborated through multimodal emotion recognition experiments on MELD and IEMOCAP datasets
with promising results.

Limitations and Future Work. There are two main limitations in our work. First, we proposed
a tractable algorithm for one specific type of conditional dependency structure, but we left the
generalized tractable approach for all different kinds of dependency structures for future work.
Second, even though we have specified the precise shape of the coefficient that features can compute,
it is still laborious to specify its role in the algorithm; therefore, we intend to improve the computing
method for the coefficient in the future. We also intend to integrate our framework with pre-train
networks and run further experiments on various modalities across various datasets, including MOSEI.
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