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Abstract

FOLD-R is an automated inductive learning algorithm for
learning default rules with exceptions for mixed (numeri-
cal and categorical) data. It generates an (explainable) an-
swer set programming (ASP) rule set for classification tasks.
We present an improved FOLD-R algorithm, called FOLD-
R++, that significantly increases the efficiency and scalabil-
ity of FOLD-R. FOLD-R++ improves upon FOLD-R with-
out compromising or losing information in the input train-
ing data during the encoding or feature selection phase. The
FOLD-R++ algorithm is competitive in performance with the
widely-used XGBoost algorithm, however, unlike XGBoost,
the FOLD-R++ algorithm produces an explainable model.
Next, we create a powerful tool-set by combining FOLD-
R++ with s(CASP)—a goal-directed ASP execution engine—
to make predictions on new data samples using the answer
set program generated by FOLD-R++. The s(CASP) system
also produces a justification for the prediction. Experiments
presented in this paper show that our improved FOLD-R++
algorithm is a significant improvement over the original de-
sign and that the s(CASP) system can make predictions in an
efficient manner as well.

1 Introduction
Dramatic success of machine learning has led to a torrent of
Artificial Intelligence (AI) applications. However, the effec-
tiveness of these systems is limited by the machines’ cur-
rent inability to explain their decisions and actions to human
users. That’s mainly because the statistical machine learning
methods produce models that are complex algebraic solu-
tions to optimization problems such as risk minimization or
geometric margin maximization. Lack of intuitive descrip-
tions makes it hard for users to understand and verify the
underlying rules that govern the model. Also, these methods
cannot produce a justification for a prediction they arrive at
for a new data sample.

The Explainable AI program (Gunning 2015) aims to cre-
ate a suite of machine learning techniques that: a) Produce
more explainable models, while maintaining a high level
of prediction accuracy. b) Enable human users to under-
stand, appropriately trust, and effectively manage the emerg-
ing generation of artificially intelligent partners. Inductive
Logic Programming (ILP) (Muggleton 1991) is one Ma-
chine Learning technique where the learned model is in the
form of logic programming rules (Horn Clauses) that are

comprehensible to humans. It allows the background knowl-
edge to be incrementally extended without requiring the en-
tire model to be re-learned. Meanwhile, the comprehensibil-
ity of symbolic rules makes it easier for users to understand
and verify induced models and refine them.

The ILP learning problem can be regarded as a search
problem for a set of clauses that deduce the training exam-
ples. The search is performed either top down or bottom-up.
A bottom-up approach builds most-specific clauses from the
training examples and searches the hypothesis space by us-
ing generalization. This approach is not applicable to large-
scale datasets, nor it can incorporate negation-as-failure into
the hypotheses. A survey of bottom-up ILP systems and their
shortcomings can be found at (Sakama 2005). In contrast,
top-down approach starts with the most general clause and
then specializes it. A top-down algorithm guided by heuris-
tics is better suited for large-scale and/or noisy datasets
(Zeng, Patel, and Page 2014).

The FOIL algorithm (Quinlan 1990) by Quinlan is a
popular top-down inductive logic programming algorithm
that generate logic programs. FOIL uses weighted informa-
tion gain as the heuristics to guide the search for best lit-
erals. The FOLD algorithm by Shakerin (Shakerin 2020;
Shakerin, Salazar, and Gupta 2017) is a new top-down al-
gorithm inspired by the FOIL algorithm. It generalizes the
FOIL algorithm by learning default rules with exceptions. It
does so by first learning the default conclusion that covers
positive examples while avoiding negative examples, then
next it swaps the positive and negative examples and calls
itself recursively to learn the exceptions to the default con-
clusions. Both FOIL and FOLD cannot deal with numeric
features directly; an encoding process is needed in the prepa-
ration phase of the training data that discretizes the contin-
uous numbers into intervals. However, this process not only
adds a huge computational overhead to the algorithm but
also leads to loss of information in the training data.

To deal with the above problems, Shakerin developed an
extension of the FOLD algorithm, called FOLD-R, to handle
mixed (i.e., both numerical and categorical) features which
avoids the discretization process for numerical data (Shak-
erin 2020; Shakerin, Salazar, and Gupta 2017). However,
FOLD-R still suffers from efficiency and scalability issues
when compared to other popular machine learning systems
for classification. In this paper we report on a novel imple-



mentation method we have developed to improve the de-
sign of the FOLD-R system. In particular, we use the pre-
fix sum technique (Wikipedia contributors 2021) to optimize
the process of calculation of information gain, the most time
consuming component of the FOLD family of algorithms
(Shakerin 2020). Our optimization, in fact, reduces the time
complexity of the algorithm. If N is the number of unique
values from a specific feature and M is the number of train-
ing examples, then the complexity of computing information
gain for all the possible literals of a feature is reduced from
O(M*N) for FOLD-R to O(M) in FOLD-R++.

Our experimental results indicate that the FOLD-R++ al-
gorithm is comparable to popular machine learning algo-
rithms such as XGBoost wrt various metrics (accuracy, re-
call, precision, and F1-score) as well as in efficiency and
scalability. However, in addition, FOLD-R++ produces an
explainable and interpretable model in the form of an an-
swer set program.

This paper makes the following novel contribution: it
presents the FOLD-R++ algorithm that significantly im-
proves the efficiency and scalability of the FOLD-R ILP
algorithm without adding overhead during pre-processing
or losing information in the training data. As mentioned,
the new approach is competitive with popular classification
models such as the XGBoost classifier (Chen and Guestrin
2016). The FOLD-R++ algorithm outputs an answer set
program (ASP) (Gelfond and Kahl 2014) that serves as an
explainable/interpretable model. This generated answer set
program is compatible with s(CASP) (Arias et al. 2018), a
goal-directed ASP solver, that can efficiently justify the pre-
diction generated by the ASP model.1

2 Inductive Logic Programming
Inductive Logic Programming (ILP) (Muggleton 1991) is a
subfield of machine learning that learns models in the form
of logic programming rules (Horn Clauses) that are compre-
hensible to humans. This problem is formally defined as:
Given

1. A background theory B, in the form of an ex-
tended logic program, i.e., clauses of the form h ←
l1, ..., lm, not lm+1, ..., not ln, where l1, ..., ln are pos-
itive literals and not denotes negation-as-failure (NAF)
(Baral 2003; Gelfond and Kahl 2014). We require that B
has no loops through negation, i.e., it is stratified.

2. Two disjoint sets of ground target predicates E+, E−

known as positive and negative examples, respectively

3. A hypothesis language of function free predicates L, and
a refinement operator ρ under θ − subsumption (Plotkin
1971) that would disallow loops over negation.

Find a set of clauses H such that:

• ∀e ∈ E+, B ∪H |= e

• ∀e ∈ E−, B ∪H ̸|= e

• B ∧H is consistent.
1The s(CASP) system is freely available at https://

gitlab.software.imdea.org/ciao-lang/sCASP.

3 The FOLD-R++ Algorithm
The FOLD algorithm (Shakerin 2020; Shakerin, Salazar, and
Gupta 2017) is a top-down ILP algorithm that searches for
best literals to add to the body of the clauses for hypothesis,
H , with the guidance of an information gain-based heuristic.
The FOLD-R++ algorithm2 refactors the FOLD algorithm
and is summarized in algorithm1. The output of the FOLD-
R++ algorithm is a set of default rules that include excep-
tions. An example implied by any rule in the set would be
classified as positive. Therefore, the FOLD-R++ algorithm
rules out the already covered positive examples in line 5 af-
ter learning a new rule. For each rule learning process, a best
literal would be selected based on weighted information gain
with the current training examples, in line 13, then the exam-
ples that cannot be implied by learned default literals would
be ruled out for further learning of the current rule. When the
information gain becomes zero or the number of negative ex-
amples drops below the ratio threshold, the default learning
part is done. Unlike the FOIL algorithm, FOLD-R++ next
learns exceptions after first learning default literals. This is
done by swapping the residual positive and negative exam-
ples and calling itself recursively in line 29. The remaining
positive and negative examples can be swapped again and
exceptions to exceptions learned (and then swapped further
to learn exceptions to exceptions of exceptions, and so on).
The ratio parameter in Algorithm 1 represents the ratio of
training examples that are part of the exception to the exam-
ples implied by only the default conclusion part of the rule.
It will allow us to control the nesting level of exceptions the
user wants to permit.

Example 1 In the FOLD-R++ algorithm, the target is to
learn rules for fly(X). B,E+, E− are background knowl-
edge, positive and negative examples, respectively.

B: bird(X) :- penguin(X).
bird(tweety). bird(et).
cat(kitty). penguin(polly).

E+: fly(tweety). fly(et).
E-: fly(kitty). fly(polly).

The target predicate {fly(X) :- true.} is speci-
fied when calling the learn rule function at line 4. The
function selects the literal bird(X) as result and adds it
to the clause r = fly(X) :- bird(X) because it has
the best information gain among {bird,penguin,cat}.
Then, the training set gets updated to E+ = {tweety, et},
E− = {polly} in line 16-17. The negative example polly is
still implied by the generated clause and so is a false neg-
ative classification. The default learning of learn rule func-
tion is finished because the best information gain of candi-
date literal is zero. Therefore, the FOLD-R++ function is
called recursively with swapped positive and negative ex-
amples, E+ = {polly}, E− = {tweety, et}, to learn ex-
ceptions. In this case, an abnormal predicate {ab0(X) :-
penguin(X)} is generated and returned as the only ex-
ception to the previous learned clause as r = fly(X) :-
bird(X), ab0(X). The abnormal rule {ab0(X) :-

2The FOLD-R++ toolset is available on https://github.
com/hwd404/FOLD-R-PP.



Algorithm 1 FOLD-R++ Algorithm

Input: target, B,E+, E−, ratio ▷ ratio is the exception
ratio

Output: R = {r1, ..., rn} ▷ R is rule set
1: function FOLD-R++(E+, E−, Lused)
2: R← ∅
3: while |E+| > 0 do
4: r ← LEARN RULE(E+,E−,Lused)
5: E+ ← E+ \ covers(r, E+, true)
6: R← R ∪ {r}
7: end while
8: return R
9: end function

10: function LEARN RULE(E+, E−, Lused)
11: L← ∅
12: while true do
13: l← FIND BEST LITERAL(E+,E−,Lused)
14: L← L ∪ {l}
15: r ← set default(r, L)
16: E+ ← covers(r, E+, true)
17: E− ← E− \ covers(r, E−, false)
18: if l is invalid or |E−| ≤ |E+| ∗ ratio then
19: if l is invalid then
20: L← L \ {l}
21: r ← set default(r, L)
22: else
23: flag ← true
24: end if
25: break
26: end if
27: end while
28: if flag then
29: AB ← FOLD-R++(E−,E+,Lused + L)
30: r ← set exception(r,AB)
31: end if
32: return r
33: end function

penguin(X)} is added to the final rule set producing the
program below:

fly(X) :- bird(X), not ab0(X).
ab0(X) :- penguin(X).

We next give more details of the FOLD-R++ algorithm.

3.1 Literal Selection
The literal selection process for Shakerin’s FOLD-R algo-
rithm can be summarized in Algorithm 2.

The FOLD-R algorithm (Shakerin 2020; Shakerin,
Salazar, and Gupta 2017) selects the best literal based on
the weighted information gain for learning defaults, simi-
lar to the original FOLD algorithm described in (Shakerin,
Salazar, and Gupta 2017). For numeric features, the FOLD-
R algorithm would enumerate all the possible splits. Then,
it classifies the data and compute information gain for liter-
als for each split. The literal with the best information gain
would be selected as result. In contrast, FOLD-R++ uses a

Algorithm 2 FOLD-R Algorithm’s Specialize function

1: function SPECIALIZE(c, E+, E−)
2: while size(E−) > 0 do
3: (c1, IG1)← test categorical(c, E+, E−)
4: (c2, IG2)← test numeric(c, E+, E−)
5: if IG1 = 0 & IG2 = 0 then
6: ĉ← EXCEPTION(c, E−, E+)
7: if ĉ = null then
8: ĉ← enumerate(c, E+)
9: end if

10: else
11: if IG1 ≥ IG2 then
12: ĉ← c1
13: else
14: ĉ← c2
15: end if
16: end if
17: E− ← E− \ covers(ĉ, E−)
18: end while
19: end function

new, more efficient method employing prefix sums to cal-
culate the information gain based on the classification cate-
gories. In FOLD-R++, information gain for a given literal is
calculated as shown in Algorithm 3.

Algorithm 3 FOLD-R++ Algorithm, Information Gain
function

1: function IG(tp, fn, tn, fp)
2: if fp+ fn > tp+ tn then
3: return −∞
4: end if
5: pos, neg ← tp+ fp, tn+ fn
6: tot← pos+ neg
7: result← ( tp

tot log2(
tp
pos ))tp>0+( fp

tot log2(
fp
pos ))fp>0

8: result ← result + ( tn
tot log2(

tn
neg ))tn>0 +

( fntot log2(
fn
neg ))fn>0

9: return result
10: end function

The variables tp, fn, tn, fp in Algorithm 3 for finding the
information gain represent the numbers of true positive, false
positive, true negative, and false negative examples, respec-
tively. With the function above, the new approach employs
the prefix sum technique to speed up the calculation. Only
one round of classification is needed for a single feature,
even with mixed types of values. The new approach to cal-
culate the best IG and literal is summarized in Algorithm
4.

Example 2 Given positive and negative examples, E+, E−,
with mixed type of values on feature i, the target is to find
the literal with the best information gain on the given fea-
ture. There are 8 positive examples, their values on feature i
are [1, 2, 3, 3, 5, 6, 6, b]. And, the values on feature i of the 5
negative examples are [2, 4, 6, 7, a].



Algorithm 4 FOLD-R++ Algorithm, Best Information Gain
function
Input: E+, E−, i
Output: best, l ▷ best: the best IG of feature i, l: the literal

with IG best
1: function BEST INFO GAIN(E+, E−, i)
2: pos, neg ← count classification(E+, E−, i)
3: ▷ pos, neg are dicts that holds the # of pos / neg

examples for each value
4: xs, cs← collect unique values(E+, E−, i)
5: ▷ xs, cs are lists that holds the unique numeric and

categorical values
6: xp, xn, cp, cn← count total(E+, E−, i)
7: ▷ (xp, xn) are the total # of pos /

neg examples with numeric value, (cp, cn) are the same
for categorical values.

8: xs← counting sort(xs)
9: for j ← 1 to size(xs) do ▷ compute the prefix sum

10: pos[xsi]← pos[xsi] + pos[xsi−1]
11: neg[xsi]← neg[xsi] + neg[xsi−1]
12: end for
13: for x ∈ xs do
14: lit dict[literal(i,≤, x)] ← IG(pos[x], xp −

pos[x] + cp, xn− neg[x] + cn, neg[x])
15: lit dict[literal(i, >, x)] ← IG(xp −

pos[x], pos[x] + cp, neg[x] + cn, xn− neg[x])
16: end for
17: for c ∈ cs do
18: lit dict[literal(i,=, x)] ← IG(pos[c], cp −

pos[c] + xp, cn− neg[c] + xn, neg[c])
19: lit dict[literal(i, ̸=, x)] ← IG(cp − pos[c] +

xp, pos[c], neg[c], cn− neg[c] + xn)
20: end for
21: best, l← best pair(lit dict)
22: return best, l
23: end function

With the given examples and specified feature, the numbers
of positive examples and negative examples for each unique
value are counted first, which are shown as pos, neg at right
side of Table 1. Then, the prefix sum arrays are calculated for
computing heuristic as pos sum, neg sum. Table 2 show
the information gain for each literal, the literal(i, ̸=, a) has
been selected with the highest score.

3.2 Justification
Explainability is very important for some tasks like loan ap-
proval, credit card approval, and disease diagnosis system.
Answer set programming provides explicit rules for how a
prediction is generated compared to black box models like
those based on neural networks. To efficiently justify the
prediction, the FOLD-R++ outputs answer set programs that
are compatible with the s(CASP) goal-directed ASP system
(Arias et al. 2018).

Example 3 The “Titanic Survival Prediction” is a classical
classification challenge which contains 891 passengers as
training examples and 418 passengers as testing examples

examples ith feature value
E+ 1 2 3 3 5 6 6 b
E− 2 4 6 7 a

value 1 2 3 4 5 6 7 a b
pos 1 1 2 0 1 2 0 0 1
pos sum 1 2 4 4 5 7 7 na na
neg 0 1 0 1 0 1 1 1 0
neg sum 0 1 1 2 2 3 4 na na

Table 1: Left: Examples and values on ith feature. Right:
positive/negative count and prefix sum on each value

Info Gain
value ≤ value > value = value ̸= value
1 −∞ -0.664 na na
2 −∞ -0.666 na na
3 -0.619 −∞ na na
4 -0.661 −∞ na na
5 -0.642 −∞ na na
6 -0.616 −∞ na na
7 -0.661 −∞ na na
a na na −∞ -0.588
b na na −∞ -0.627

Table 2: The info gain on ith feature with given examples

and their survival based on features such as sex, age, num-
ber of siblings/spouses, number of parents/children, etc..
FOLD-R++ generates the following program with only 12
rules:
(1) status(X,0):- sex(X,’male’), not ab1(X), not ab3(X),

not ab5(X).

(2) status(X,0):- class(X,’3’), not sex(X,’male’),

fare(X,N4), N4>23.25, not ab6(X), not ab7(X).

(3) status(X,0):- class(X,’3’), not sex(X,’male’),

age(X,N1),N1>16.0, number_of_siblings_spouses(X,N2),

N2=<2.0, fare(X,N4), N4>12.475, N4=<18.0,

number_of_parents_children(X,N3), N3=<1.0,

not ab8(X), not ab9(X).

(4) ab1(X):- number_of_siblings_spouses(X,N2), N2>2.0,

fare(X,N4), N4>26.25, age(X,N1), N1=<3.0, N1>2.0.

(5) ab2(X):- age(X,N1), N1>42.0, N1=<45.0,

number_of_siblings_spouses(X,N2), N2=<0.0,

number_of_parents_children(X,N3), N3=<0.0,

embarked(X,’s’).

(6) ab3(X):- class(X,’1’), age(X,N1), N1=<52.0,

fare(X,N4), N4>25.587, N4=<26.55, not ab2(X).

(7) ab4(X):- number_of_parents_children(X,N3), N3=<0.0,

age(X,N1), N1=<11.0.

(8) ab5(X):- number_of_siblings_spouses(X,N2), N2=<2.0,

age(X,N1), N1=<12.0, not ab4(X).

(9) ab6(X):- number_of_parents_children(X,N3), N3=<0.0.

(10) ab7(X):- fare(X,N4), N4>31.275, N4=<31.387.

(11) ab8(X):- fare(X,N4), N4>15.5, N4=<17.4, age(X,N1),

N1=<24.0.

(12) ab9(X):- age(X,N1), N1>32.0, N1=<36.0.

Note that status(X,0) means that person whose id is X
perished, while status(X,1) means that person with id
X survived. Note that we don’t have any rules generated for



status(X,1), so we could add a rule: status(X,1)
:- not status(X,0). The above program achieves
0.94 accuracy, 0.97 precision, 0.93 recall, and 0.95 F1 score,
which is quite remarkable. Given a new data sample, the pre-
dicted answer for this data sample using the above answer
set program can be efficiently produced by the s(CASP) sys-
tem. The s(CASP) system can also produce a justification
(a proof tree) for this prediction. Since s(CASP) is query
driven, an example query such as ?- status(926, S)
which checks if passenger with id 926 perished or survived,
will succeed if status of passenger 926 is indeed predicted as
perished (S is set to 0) by the model represented by the an-
swer set program above. The s(CASP) system can provide a
proof for each query. The English description for predicates
is also needed to output the proof tree in human readable for-
mat. The meaning of predicates in English is given via the
#pred declaration, as shown below via examples:

#pred age(X,Y) :: ’person @(X) is of age @(Y)’.

#pred number_of_sibling_spouses(X,Y) ::

’person @(X) had @(Y) siblings or spouses’.

#pred ab9(X) :: ’abnormal case 9 holds for @(X)’.

The s(CASP) system can even generate this proof in a hu-
man understandable form (Arias et al. 2020). For example,
here is the justification tree generated for the passenger with
id 926:

?- status(926,X).

% QUERY:I would like to know if

’status’ holds (for 926, and X).

ANSWER: 1 (in 4.825 ms)

JUSTIFICATION_TREE:

person 926 perished,

because person 926 is male,

and there is no evidence that ’ab1’ holds (for 926),

because there is no evidence that

person 926 paid Var1 not equal 57.75

for the ticket,

and person 926 paid 57.75 for the ticket,

and there is no evidence that

’number_of_siblings_spouses’ holds

(for 926, and Var8).

there is no evidence that

abnormal case 3 holds for 926,

because there is no evidence that

’class’ holds (for 926, and 1).

there is no evidence that

abnormal case 5 holds for 926,

because there is no evidence that

person 926 is of age Var2 not equal 30,

and person 926 is of age 30.

The global constraints hold.

With the justification tree, the reason for the prediction
can be easily understood by human beings. The generated
ASP rule-set can also be understood by a human. In fact,
s(CASP) can print the ASP rules in English, given the de-
scription of predicates in English via the #pred declaration
explained above. If there is any unreasonable logic gener-
ated in the rule set, it can also be modified directly by the
human without retraining. Thus, any bias in the data that is

captured in the generated ASP rules can be corrected by the
human user, and the updated ASP rule-set used for making
new predictions. An example translation for two of the rules
(Rules (1) and (12)) above is shown below:

(1) person X perished, if

person X is male and

there is no evidence that ’ab1’ holds (for X) and

there is no evidence that abnormal case 3 holds

for X and

there is no evidence that abnormal case 5 holds

for X.

(12) abnormal case 9 holds for X, if

person X is of age Y and

Y is greater than 32.0 and

person X is of age Y and

Y is less or equal 36.0.

Note that if a data sample is not predicted to hold, be-
cause the corresponding query fails on s(CASP), then a jus-
tification can be generated by asking the negation of the
query. The s(CASP) system supports constructive negation,
and thus negated queries can be executed in s(CASP) and
their justification/proof generated just as easily as the posi-
tive queries.

4 Experiments and Performance Evaluation
In this section, we present our experiments on UCI stan-
dard benchmarks (Lichman 2013). The XGBoost Classifier
is popular classification model and used as a baseline in our
experiment. We used simple settings for XGBoost classifier
without limiting its performance. However, XGBoost can-
not deal with mixed type (numerical and categorical) of ex-
amples directly. One-hot encoding has been used for data
preparation. We use precision, recall, accuracy, F1 score,
and execution time to compare the results.

FOLD-R++ does not require any encoding before train-
ing. The original FOLD-R system used the JPL library with
Java implementation. We implemented FOLD-R++ only
with Python. To make inferences using the generated rules,
we developed a simple ASP interpreter for our application
that is part of the FOLD-R++ system. Note that the gen-
erated programs are stratified and predicates contain only
variables and constants, so implementing an interpreter for
such a restricted class in Python is relatively easy. However,
for obtaining the justification/proof tree, or for translating
the ASP rules into equivalent English text, one must use the
s(CASP) system.

We also compare the FOLD-R++ algorithm with the RIP-
PER algorithm (Cohen 1995). RIPPER generates formulas
in conjunctive normal form as an explanation of the model.
Table 4 shows the comparison for two datasets from the
UCI repository (Adult and Credit Card). FOLD-R++ out-
performs RIPPER on all categories except precision. Most
significantly, FOLD-R++ generates much smaller number of
rules. Computation time for FOLD-R++ is also a lot less.

As discussed earlier, the time complexity for computing
information gain on a feature is significantly reduced in
FOLD-R++ due to the use of prefix-sum. Therefore, we ob-
tain a rather large improvements in efficiency. For the credit



XGBoost FOLD-R++
DataSet Shape Acc. Prec. Rec. F1 Time (ms) Acc. Prec. Rec. F1 Time (ms)
acute (120, 7) 1 1 1 1 35 0.99 1 0.99 0.99 2.5
autism (704, 18) 0.97 0.98 0.98 0.97 76 0.95 0.96 0.97 0.97 47
breast-w (699, 10) 0.95 0.97 0.96 0.96 78 0.96 0.97 0.96 0.97 28
cars (1728, 7) 1 1 1 1 77 0.98 1 0.97 0.98 48
credit-a (690, 16) 0.85 0.83 0.83 0.83 368 0.84 0.92 0.79 0.84 100
ecoli (336, 9) 0.76 0.76 0.62 0.68 165 0.96 0.95 0.94 0.95 28
heart (270, 14) 0.80 0.81 0.83 0.81 112 0.79 0.79 0.83 0.81 44
ionosphere (351, 35) 0.88 0.86 0.96 0.90 1,126 0.92 0.93 0.94 0.93 392
kidney (400, 25) 0.98 0.98 0.98 0.98 126 0.99 1 0.98 0.99 27
kr vs. kp (3196, 37) 0.99 0.99 0.99 0.99 210 0.99 0.99 0.99 0.99 361
mushroom (8124, 23) 1 1 1 1 378 1 1 1 1 476
sonar (208, 61) 0.53 0.54 0.84 0.65 1,178 0.78 0.81 0.75 0.78 419
voting (435, 17) 0.95 0.94 0.95 0.94 49 0.95 0.94 0.94 0.94 16
adult (32561, 15) 0.86 0.88 0.94 0.91 274,655 0.84 0.86 0.95 0.90 10,069
credit card (30000, 24) - - - - - 0.82 0.83 0.96 0.89 21,349

Table 3: Evaluation of FOLD-R++ on UCI Datasets

Data Adult Credit card
Shape (32561 , 15) (30000 , 24)
Algo RIPPER FOLDR++ RIPPER FOLDR++
Acc. 0.70 0.84 0.77 0.82
Prec 0.96 0.86 0.87 0.83
Rec 0.63 0.95 0.83 0.96
F1 0.76 0.90 0.85 0.89
# Rules 46.9 16.7 38.4 19.1
Time 59.5s 10.1s 47.4s 27.9s

Table 4: Comparison with RIPPER Algorithm

dataset, a dataset with only 690 instances, the new FOLD-
R++ algorithm is hundreds times faster than the original
FOLD-R. All the learning experiments have been conducted
on a desktop with Intel i5-10400 CPU @ 2.9GHz and 32
GB ram. To measure performance metrics, we conducted
10-fold cross-validation on each dataset and the average of
accuracy, precision, recall, F1 score and execution time have
been presented. Table 3 reports the performance metrics and
execution time on each dataset compared with the baseline
model. The best performer is highlighted with boldface font.

The XGBoost Classifier employs decision tree ensem-
ble method for classification task and provides quite de-
cent performance. FOLD-R++ almost always spends less
time to finish learning compared to XGBoost classifier, es-
pecially for the large dataset Adult income census. For most
of the datasets, FOLD-R++ can achieve equivalent scores.
FOLD-R++ achieves much higher scores on e-coli and sonar
datasets. For the credit card dataset, the baseline XGBoost
model failed training due to 32 GB memory limitation, but
FOLD-R++ still finished training quite efficiently.

5 Related Work
ALEPH (Srinivasan 2001) is one of the most popular ILP
system, which induces theories by using bottom-up gener-

alization search. However, it cannot deal with numeric fea-
tures and its specialization step is manual, there is no au-
tomation option. Takemura and Inoue’s method (Takemura
and Inoue 2021) relies on tree-ensembles to generate ex-
plainable rule sets with pattern mining techniques. Its perfor-
mance depends on the tree-ensemble model. Additionally, it
may not be scalable due to its computational time complex-
ity that is exponential in the number of valid rules.

A survey of ILP can be found in (Muggleton et al. 2012).
Rule extraction from statistical Machine Learning models
has been a long-standing goal of the community. The rule
extraction algorithms from machine learning models are
classified into two categories: 1) Pedagogical (i.e., learn-
ing symbolic rules from black-box classifiers without open-
ing them) 2) Decompositional (i.e., to open the classifier
and look into the internals). TREPAN (Craven and Shavlik
1995) is a successful pedagogical algorithm that learns deci-
sion trees from neural networks. SVM+Prototypes (Núñez,
Angulo, and Català 2002) is a decompositional rule extrac-
tion algorithm that makes use of KMeans clustering to ex-
tract rules from SVM classifiers by focusing on support vec-
tors. Another rule extraction technique that is gaining atten-
tion recently is “RuleFit” (Friedman, Popescu, and others
2008). RuleFit learns a set of weighted rules from ensemble
of shallow decision trees combined with original features.
In ILP community also, researchers have tried to combine
statistical methods with ILP techniques. Support Vector ILP
(Muggleton et al. 2005) uses ILP hypotheses as kernel in
dual form of the SVM algorithm. kFOIL (Landwehr et al.
2006) learns an incremental kernel for SVM algorithm us-
ing a FOIL style specialization. nFOIL (Landwehr, Kerst-
ing, and Raedt 2005) integrates the Naive-Bayes algorithm
with FOIL. The advantage of our research over all of the
above mentioned research work is that we generate answer
set programs containing negation-as-failure that correspond
closely to the human thought process. Thus, the descriptions
are more concise. Second it is scalable thanks to the greedy



nature of our clause search.

6 Conclusions and Future Work
In this paper we presented an efficient and highly scalable al-
gorithm, FOLD-R++, to induce default theories represented
as an answer set program. The resulting answer set program
has good performance wrt prediction and justification for the
predicted classification. In this new approach, unlike other
methods, the encoding for data is not needed anymore and
no information from training data is discarded. Compared
with the popular classification system XGBoost, our new ap-
proach has similar performance in terms of accuracy, preci-
sion, recall, and F1-score, but better training efficiency. In
addition, the FOLD-R++ algorithm produces an explainable
model. Predictions made by this model can be computed ef-
ficiently and their justification automatically produced using
the s(CASP) system.
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