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ABSTRACT

We consider the problem of distributed mean estimation (DME), in which
n machines are each given a local d-dimensional vector , € R%, and must
cooperate to estimate the mean of their inputs u = % > oo, @y, while min-
imizing total communication cost. DME is a fundamental construct in dis-
tributed machine learning, and there has been considerable work on variants
of this problem, especially in the context of distributed variance reduction
for stochastic gradients in parallel SGD. Previous work typically assumes
an upper bound on the norm of the input vectors, and achieves an error
bound in terms of this norm. However, in many real applications, the input
vectors are concentrated around the correct output w, but p itself has large
norm. In such cases, previous output error bounds perform poorly.

In this paper, we show that output error bounds need not depend on in-
put norm. We provide a method of quantization which allows distributed
mean estimation to be performed with solution quality dependent only on
the distance between inputs, not on input norm, and show an analogous
result for distributed variance reduction. The technique is based on a new
connection with lattice theory. We also provide lower bounds showing that
the communication to error trade-off of our algorithms is asymptotically
optimal. As the lattices achieving optimal bounds under /;-norm can be
computationally impractical, we also present an extension which leverages
easy-to-use cubic lattices, and is loose only up to a logarithmic factor in
d. We show experimentally that our method yields practical improvements
for common applications, relative to prior approaches.

1 INTRODUCTION

Several problems in distributed machine learning and optimization can be reduced to vari-
ants distributed mean estimation problem, in which n machines must cooperate to jointly
estimate the mean of their d-dimensional inputs pu = %L 23:1 x, as closely as possible, while
minimizing communication. In particular, this construct is often used for distributed vari-
ance reduction: here, each machine receives as input an independent probabilistic estimate
of a d-dimensional vector V, and the aim is for all machines to output a common estimate
of V with lower variance than the individual inputs, minimizing communication. Without
any communication restrictions, the ideal output would be the mean of all machines’ inputs.

While variants of these fundamental problems have been considered since seminal work
by |Tsitsiklis & Luo| (1987), the task has seen renewed attention recently in the context
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of distributed machine learning. In particular, variance reduction is a key component in
data-parallel distributed stochastic gradient descent (SGD), the standard way to parallelize
the training of deep neural networks, e.g. [Bottou (2010); |[Abadi et al.| (2016]), where it is
used to estimate the average of gradient updates obtained in parallel at the nodes. Thus,
several prior works proposed efficient compression schemes to solve variance reduction or
mean estimation, see e.g. [Suresh et al. (2017)); |Alistarh et al.| (2017); Ramezani-Kebrya
et al.| (2019); |Gandikota et al| (2019)), and [Ben-Nun & Hoefler| (2019) for a general survey
of practical distribution schemes. These schemes seek to quantize nodes’ inputs coordinate-
wise to one of a limited collection of values, in order to then efficiently encode and transmit
these quantized values. A trade-off then arises between the number of bits sent, and the
added variance due of quantization.

Since the measure of output quality is variance, it appears most natural to evaluate this
with respect to input variance, in order to show that variance reduction is indeed achieved.
Surprisingly, however, we are aware of no previous works which do so; all existing methods
give bounds on output variance in terms of the squared input norm. This is clearly subopti-
mal when the squared norm is higher than the variance, i.e., when inputs are not centered
around the origin. In some practical scenarios this causes output variance to be higher than
input variance, as we demonstrate in Section [

Contributions. In this paper, we provide the first bounds for distributed mean estima-
tion and variance reduction which are still tight when inputs are not centered around the
origin. Our results are based on new lattice-based quantization techniques, which may be
of independent interest, and come with matching lower bounds, and practical extensions.
More precisely, our contributions are as follows:

e For distributed mean estimation, we show that, to achieve a reduction of a factor ¢ in
the input ‘variance’ (which we define to be the maximum squared distance between
inputs), it is necessary and sufficient for machines to communicate ©(dlog ¢q) bits.

o For variance reduction, we show tight ©(dlogn) bounds on the worst-case commu-
nication bits required to achieve optimal ©(n)-factor variance reduction by n nodes
over d-dimensional input, and indeed to achieve any variance reduction at all. We
then show how incorporating error detection into our quantization scheme, we can
also obtain tight bounds on the bits required in expectation.

o We show how to efficiently instantiate our lattice-based quantization framework in
practice, with guarantees. In particular, we devise a variant of the scheme which
ensures close-to-optimal communication-variance bounds even for the standard cu-
bic lattice, and use it to obtain improvements relative to the best known previous
methods for distributed mean estimation, both on synthetic and real-world tasks.

1.1 PROBLEM DEFINITIONS AND DISCUSSION

MEANESTIMATION is defined as follows: we have n machines v, and each receives as input
a vector x, € R?. We also assume that all machines receive a common value y, with the
guarantee that for any machines u, v, ||@, — x,| < y. Our goal is for all machines to output
the same value EST € R?, which is an unbiased estimator of the mean pu = %ZveM x,,
ie. E[EST] = p, with variance as low as possible. Notice that the input specification is
entirely deterministic; any randomness in the output arises only from the algorithm used.

In the variant of VARIANCEREDUCTION, we again have a set of n machines, and now an
unknown true vector V. Each machine v receives as input an independent unbiased estima-
tor , of V (i.e., E[z,] = V) with variance E [||z, — V||?] < o, Machines are assumed

to have knowledge of o. Our goal is for all machines to output the same value EST € RY,
which is an unbiased estimator of V, i.e., E[EST| = V, with low variance. Since the
input is random, output randomness now stems from this input randomness as well as any
randomness in the algorithm.

VARIANCEREDUCTION is common for instance in the context of gradient-based optimization
of machine learning models, where we assume that each machine v processes local samples in
order to obtain a stochastic gradient §,, which is an unbiased estimator of the true gradient
V., with variance bound o2. If we directly averaged the local stochastic gradients g,, we
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could obtain an unbiased estimator of the true gradient G with variance bound o /n, which
can lead to faster convergence.

Input Variance Assumption. The parameter y replaces the usual MEANESTIMATION
assumption of a known bound M on the norms of input vectors. Note that, in the worst
case, we can always set y = 2M and obtain the same asymptotic upper bounds as in e.g.
Suresh et al.| (2017); our results are therefore at least as good as previous approaches in all
cases, but provide significant improvement when inputs are not centered around the origin.

The reason for this change is to allow stronger bounds in scenarios where we expect inputs
to be closer to each other than to the origin. In particular, it allows our MEANESTIMATION
problem to more effectively generalize VARIANCEREDUCTION. Parameter y is a determinis-
tic analogue of the parameter ¢ for VARIANCEREDUCTION; both y and o provide a bound
on the distance of inputs from their mean, rather than from the origin. Accordingly, input
variance o2 for a VARTANCEREDUCTION instance corresponds (up to constant factors) to
y? for a MEANESTIMATION instance. For consistency of terminology, we therefore refer to
y? as the input variance of the instance (despite such inputs being deterministic).

It is common in machine learning applications of VARIANCEREDUCTION to assume that an
estimate of the variance o2 is known (Alistarh et al.l [2017; |Gandikota et al., 2019). To
study both problems in a common framework, we make the analogous assumption about
MEANESTIMATION, and assume knowledge of the input variance y>. Even if the relevant
bounds y or ¢ are not known a priori, they can usually be estimated in practice.

Relationship Between Problems. If one allows unrestricted communication, the natural
solution to both problems is to average the inputs. This is an exact solution to MEANES-
TIMATION with variance 0, and is also an asymptotically optimal solution to VARIANCERE-

DUCTION, of variance at most %2 However, doing so would require the exchange of infi-
nite precision real numbers. So, it is common to instead communicate quantized values of
bounded bit-length (Alistarh et al., |2017), which will engender additional variance caused

by random choices within the quantization method. The resulting estimates will therefore

2
have variance Varguant for MEANESTIMATION, and 2~ + Varguant for VARIANCEREDUC-
TION. We will show a trade-off between bits of communication and output variance for both
problems; in the case of VARIANCEREDUCTION, though, there is an ‘upper limit’ to this

trade-off, since we cannot go below Q("%) total output variance.

The other major difference between the two problems is that in MEANESTIMATION, distances
between inputs are bounded by y with certainty, whereas in VARIANCEREDUCTION they
are instead bounded by O(c) only in expectation. This causes extra complications for
quantization, and introduces a gap between average and worst-case communication cost.

Distributed Model. We aim to provide a widely applicable method for distributed mean
estimation, and therefore we avoid relying on the specifics of particular distributed models.
Instead, we assume that the basic communication structures we use (stars and binary trees)
can be constructed without significant overhead. This setting is supported by machine
learning applications, which have very high input dimension (i.e., d > n), and so the costs of
synchronization or construction of an overlay (which do not depend on d, and are generally
poly-logarithmic in n), will be heavily dominated by the communication costs incurred
subsequently during mean estimation. They also need only be incurred once, even if mean
estimation or variance reduction is to be performed many times (e.g. during distributed
SGD). For these reasons, we do not include these model-specific setup costs in our stated
complexities; any implementation should take them into separate consideration.

For simplicity, we will present our algorithms within a basic synchronous fault-free message-
passing model, in which machines can send arbitrary messages to any other machine, but
they could naturally be extended to asynchronous and shared-memory models of communi-
cation. Our aim will be to minimize the number of bits sent and received by any machine
during the algorithm; we do not consider other measures such as round complexity.

Vector Norms. When dealing with vectors in RY, we will use names in bold, e.g. , y.
We will state most of our results in such a way that they will apply to any of the three

1For specific classes of input distribution, and for non-asymptotic concentration results, however,
better estimators of V are known; see e.g. |Joly et al.| (2017]).
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most commonly-used norms on R? in applications: ¢; norm |z|; := Z?:l |;|, ¢2 norm

|2 == \/2?21 22, and l norm ||x||s = max?_, ||z;||. Throughout the paper we will

therefore use the general notation ||-||, which should be considered to be fixed as one of these
norms, other than for statements specific to particular norms. Definitions which depend on
norms, such as variance Var [z] := E |||l — E [z] ||?], are therefore assumed to also be under
the appropriate norm.

1.2 RELATED WORK

Several recent works consider efficient compression schemes for stochastic gradients,
e.g. Seide et al| (2014); Wang et al.| (2018); /Alistarh et al.| (2017; 2018)); |Stich et al.| (2018);
[Wen et al.| (2017); [Wangni et al| (2018); [Lu & Saj (2020). We emphasize that these works
consider a related, but different problem: they usually rely on assumptions on the input
structure—such as second-moment bounds on the gradients—and are evaluated primarily
on the practical performance of SGD, rather than isolating the variance-reduction step. (In
some cases, these schemes also rely on history/error-correction (Aji & Heafield, |2017; Dry-|
[den et all 2016} |Alistarh et al., 2018; Stich et alJ 2018).) As a result, they do not provide
theoretical bounds on the problems we consider. In this sense, our work is closer to
let al.| (2017); [Kone¢ny & Richtérikl (2018); |Gandikota et al. (2019)), which focus primarily
on the distributed mean estimation problem, with SGD as only one potential application.

For example, QSGD (Alistarh et al. 2017) considers a similar problem to VARIANCERE-
DUCTION; the major difference is that coordinates of the input vectors are assumed to
be specified by 32-bit floats, rather than arbitrary real values. Hence, transmitting input
vectors exactly already requires only O(d) bits. They therefore focus on reducing the con-
stant factor (and thereby improving practical performance for SGD), rather than providing
asymptotic results on communication cost. They show that the expected number of bits per
entry can be reduced from 32 to 2.8, at the expense of having an output variance bound in
terms of input norm rather than input variance.

This is a common issue with existing quantization schemes, which leads to non-trivial com-
plications when applying quantization to gradient descent and variance-reduced SGD
stner}, or to model-averaging SGD , since in this case the inputs are
clearly not centered around the origin. The standard way to circumvent this issue, adopted
by the latter two references, but also by other work on quantization (Mishchenko et al.
, is to carefully adapt the quantization scheme and the algorithm to remove this issue,
for instance by quantizing differences with respect to the last quantization point. These
approaches, however, do not provide improvement as ‘one-shot’ quantization methods, and
instead rely on historical information and properties of SGD or the function to optimize
(such as smoothness). They are therefore inherently application-specific. Our method, by
contrast, does not require “manual” centering of the iterates, and does not require storage of
previous iterates, or any properties thereof. [Koneény & Richtarik (2018) study MEANESTI-
MATION under similar assumptions, and are the only prior work to use quantization centered
around points other than the origin. However, again prior knowledge about the input dis-
tribution must be assumed for their scheme to provide any improvements.

[Suresh et al.| (2017)) study the MEANESTIMATION problem defined on real-valued input vec-
tors. They present a series of quantization methods, providing an O(-5 >, . ||l@,[|3) upper

bound, and corresponding lower bounds. Recent work by |Gandikota et al. (2019) studies
VARIANCEREDUCTION, and uses multi-dimensional quantization techniques. However, their
focus is on protocols using o(d)-bit messages per machine (which we show cannot reduce
input variance). They do give two quantization methods using ©(d)-bit messages. Of these,
one gives an O(% max,<,, ||z, |3) bound on output variance, similar to the bound of
for MEANESTIMATION (the other is much less efficient since it is designed to
achieve a privacy guarantee). |[Mayekar & Tyagi (2020)) obtain a similar error bound but
with slightly longer ©(dlogloglog(log™ d))-bit messages.

All of the above works provide output error bounds based on the norms of input vectors.
This is only optimal under the implicit assumption that inputs are centered around the
origin. In Section[d] we provide evidence that this assumption does not hold in some practical
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scenarios, where the input (gradient) variance can be much lower than the input (gradient)
norm: intuitively, for SGD, input variance is only close to squared norm when true gradients
are close to 0, i.e., the optimization process is already almost complete.

2 OUuR REsuLTS

In this work, we argue that it is both stronger and more natural to bound output variance in
terms of input variance, rather than squared norm. We devise optimal quantization schemes
for MEANESTIMATION and VARIANCEREDUCTION, and prove matching lower bounds, re-
gardless of input norms. We summarize the main ideas that lead to these results.

2.1 LATTICE-BASED QUANTIZATION

The reason that all prior works obtain output variance bounds in terms of input norm rather
than variance is that they employ sets of quantization points which are centered around the
origin 0. We instead cover the entire space R? with quantization points that are in some
sense uniformly spaced, using lattices.

Lattices are subgroups of R¢ consisting of the integer combinations of a set of basis vectors.
It is well-known (Minkowski, |1911)) that certain lattices have desirable properties for cov-
ering and packing Euclidean space, and lattices have been previously used for some other
applications of quantization (see, e.g.,|Gibson & Sayood| (1988)), though mostly only in low
dimension. By choosing an appropriate family of lattices, we show that any vector in R¢
can be rounded (in a randomized, unbiased fashion) to a nearby lattice point, but also that
there are not too many nearby lattice points, so they can be specified using few bits.

Lattices contain an infinite number of points, and therefore any encoding using a finite
number of bits must use bit-strings to refer to an infinite amount of lattice points. To allow
the receiver in our quantization method to correctly decode the intended point, we utilize
the fact that we have a bound on the distance between any two machines’ inputs (y for
MEANESTIMATION, and O(c+/n) (probabilistically, by Chebyshev’s inequality) for VARI-
ANCEREDUCTION). Therefore, if all points that map to the same bit-string are sufficiently
far apart, a machine can correctly decode based on proximity to its own input.

The simplest version of our lattice quantization algorithm can be described as follows

e To encode x,, randomly map to one of a set of nearby lattice points forming a
convex hull around «,,. Denote this point by z.

e Send z mod ¢ under the lattice basis: ¢ is the quantization precision parameter.

e To decode with respect to x,, output the closest lattice point to @, matching
zmod q .

By showing that x, is contained within a convex hull of nearby lattice points, we can
round to one of these points randomly to obtain z such that the expectation of z is x,,
itself, thereby ensuring unbiasedness. This is because a point within a convex hull can be
expressed as a linear combination of its vertices with coefficients in [0, 1], which we can use
as rounding probabilities.

Our reason for using mod g with respect to the lattice basis in order to encode lattice points
into bit-strings is that by exploiting properties of the particular lattices we employ, we can
show a lower bound on the distance between points encoded with the same bit-string, while
also controlling the number of bits we use. Then, since points encoded with the same string
are sufficiently far apart, our proximity-based decoding procedure can determine the correct
point. We also have a parameter € which controls the granularity of the lattice used. This
method of lattice-based quantization gives the following guarantee for communicating a
vector between two parties:

Theorem 1. For any g = Q(1), any € > 0, and any two parties u, v holding input vectors
Xy, T, € RY respectively, there is a quantization method in which u sends O(dlog q) bits to v,
and if ||@, — x| = O(ge), v can recover an unbiased estimate z of x,, with |z —ax,|| = O(e).
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Details and proofs are deferred to the full version of this paper due to space constraints.
This result is very general, and can be applied not only to distributed mean estimation but
to any application in which high-dimensional vectors are communicated, in order to reduce
communication.

2.2 UPPER BOUNDS

Next, we show how to apply our quantization procedure to MEANESTIMATION and VARI-
ANCEREDUCTION. We wish to gather (quantized estimates of) machines’ inputs to a single
machine, which computes the average, and broadcasts a quantized estimate of this average
to all other machines. For simplicity of analysis we do so using a star and a binary tree as
our communications structures, but any connected communication topology would admit
such an approach. The basic star topology algorithm can be described as follows:

e All machines u send x,,, quantized with precision parameter ¢ and € = O(y/q), to
the leader machine v.

e Machine v decodes all received vectors, averages them, and broadcasts the result,
using the same quantization parameters.

By choosing the leader randomly we can obtain tight bounds in expectation on the number
of communication bits used per machine, and by using a more balanced communication
structure such as a binary tree we can extend these bounds in expectation to hold with
certainty (at the expense of requiring more communication rounds).

Theorem 2. For any ¢ = (1), MEANESTIMATION can be performed with each machine
2
using strictly O(dlogq) communication bits, with O(%) output variance.

Theorem 3. VARIANCEREDUCTION can be performed using strictly O(dlogn) bits, with
O(%z) output variance, succeeding with high probability.

These results give optimal communication-variance bounds for these problems. However, to
make this bounds practical, we address two main challenges.

Challenge 1: Input Variance. One difficulty with our approach is that we assume a
known estimate of input variance (y? for MEANESTIMATION, o2 for VARIANCEREDUCTION).
Furthermore, in VARIANCEREDUCTION, even if our input variance estimate is correct, some
pairs of inputs can be further apart, since the bound is probabilistic.

To address this problem, we develop a mechanism for error detection, which allows the
receiver to detect if the encode and decode vectors (x, and x, respectively) are too far
apart for successful decoding. In this way, if our estimate of input variance proved too
low, we can increase either it or the number of bits used for quantization until we succeed.
The main idea is that rather than using mod ¢ to encode lattice points, we use a more
sophisticated coloring of the lattice and a new encoding procedure to ensure if x, and x,
are far apart, with high probability the encoder v chooses a color which is not used by any
nearby point to x,, and therefore u can tell that x, was not nearby.

As an application, we obtain an algorithm for VARIANCEREDUCTION which uses an optimal
expected number of bits per machine (except for an additive log n, which in our applications
is assumed to be far smaller than dlogq):

Theorem 4. For any ¢ = (1), VARIANCEREDUCTION can be performed using O(dlogq +

logn) communication bits per machine in expectation, with O(%2 + ‘ﬁ) output variance,

n
succeeding with high probability.

Challenge 2: Computational Tractability. Another issue is that known lattices which
are optimal for ¢; and /3-norms can be computationally prohibitive to generate and use for
problems in high dimension. ~We show that if we instead use the standard cubic lattice,
which is optimal under ¢,,-norm and admits straightforward O(d)-computation encoding
and decoding algorithms, in combination with a structured random rotation using the Walsh-
Hadamard transform as proposed by [Suresh et al. (2017)), we can come within a log-factor
variance of the optimal bounds of Theorems 2] 3] and [4]
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Theorem 5. Using the cubic lattice with a random rotation, we achieve the following output
variances under {o-norm (succeeding with high probability):

. O(@) for MEANESTIMATION, using strictly O(dlogq) bits;

D O(%) for VARIANCEREDUCTION, using strictly O(dlogn) bits;

. O(@ + %2) for VARIANCEREDUCTION, using O(dlogq + logn) bits in expec-

tation.
Furthermore, each machine need perform only O(d) computation in expectation.

Under the cubic lattice, our quantization method is particularly simple and efficient in
practice. Since the lattice basis is orthogonal, vector encoding and decoding by finding ap-
propriate nearby lattice points boils down to a simple coordinate-wise rounding procedure.

3 LOwER BOUNDS

We next show matching lower bounds on the communication required for MEANESTIMATION
and VARIANCEREDUCTION. These results bound the number of bits a machine must receive
(from any source) to output an estimate of sufficient accuracy, via an information-theoretic
argument, and therefore apply to almost any model of communication. Our proofs essentially
argue that, if a machine receives only a small amount of bits during the course of an
algorithm, it has only a small number of possible (expected) outputs. We can therefore
find instances such that our desired output (@ or V) is far from any of these possible
outputs. This argument is complicated, however, by the probabilistic nature of outputs
(and, in the case of the VARIANCEREDUCTION problem, inputs).

Theorem 6. For any MEANESTIMATION algorithm in which any machine receives at most
b bits in expectation,

3b

E [|BST - ul?] = Q%2 ¥) .

To achieve an output variance of O(%), we see that machines must receive Q(dlogq) bits
in expectation, matching the upper bound of Theorem [2] Similarly, we have the following
tight bounds for VARIANCEREDUCTION:

Theorem 7. For any VARIANCEREDUCTION algorithm in which all machines receive
(strictly) at most b bits,

E [|[EST - V|J?] = Q(0?n2~ %) .

This bound matches Theorem (3} since to reduce the variance expression to O(%z) (and, in
fact, even to O(c?), i.e., to achieve any reduction of output variance compared to input
variance), we require b = 2(dlogn) bits.

Theorem 8. For any VARIANCEREDUCTION algorithm in which any machine receives at
most b bits in expectation,

3b

E[|EST - V|*] = Qo2 ) .

Here we match the leading terms of Theorem to reduce variance to O("g), we require

Q(dlog q) bits in expectation. Note that it is well known (and implied by e.g. Braverman

et al| (2016])) that output variance cannot be reduced below O(%Z) even with unlimited
communication, so Theorem [§] implies that the full variance expression in Theorem [ is
tight.
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4 EXPERIMENTAL VALIDATION

We investigate three distinct applications for our scheme: compressing gradients and models
in variants of data-parallel SGD, and distributed power iteration for eigenvalue computa-
tion (Suresh et all [2017). We implement the practical version of our algorithm (using the
cubic lattice), which for simplicity we call RLQSGD (or LQSGD for the version without
Hadamard rotation). The implemented variant ensures optimal variance, up to a logd fac-
tor (Theorem [5)). We compare against QSGD (Alistarh et al., [2017), the Hadamard-based
scheme of [Suresh et al.| (2017, as well as uncompressed baselines.

Example 1: Compressing Gradients. We first apply compression to a parallel solver
for least-squares regression, which is given as input a matrix A, partitioned among the
nodes, and a target vector b, with the goal of finding w* = argmin,,||Aw — b||3. In this
example, we generate w* € R? and entries of A € R%*? by sampling from N(0,1), and
we set b = Aw*. Note that the input data (and gradients) are thus naturally normalized.
We then run distributed gradient descent with our quantization scheme, using 3 bits per
coordinate for all methods, and examine the characteristics of the gradients sent, as well
as the convergence and variance of the overall process. Figure [1] (left) shows the gradient
norms and distances for the case of two nodes executing gradient descent for d = 100 and
8K samples, while the center and right panels show the variance of the gradient estimate
for each method and convergence, respectively.

Regression norms: S = 8192, n = 2 Regression Variance Regression convergence: S = 8192, n = 2
d = 100, batch_size = 4096 S =8192, n = 2,d = 100, batch_size = 4096 d =100, Ir = 0.8, batch = 4096, glevel = 8

— max(go) = min(go) 1

—— Input variance ~—— LQSGD (cubic)
RLQSGD (cubic) 3.0 RLQSGD (cubic)

~ LQSGD (cubic) ~— QSGD

—— QSGD, glevel = 8 ~—— Hadamard

—— Hadamard, qlevel = 8 25 -=- GD

ligo = gl
— llgo-aillz 0
— llgoll

10g1||EST - VI3
Lo

'
@

Figure 1: Gradient quantization results for the regression example.

Figure 1| (left) shows that, even in this simple normalized example, the distance between
the two gradients throughout training is much smaller than the norm of the gradients them-
selves. Figure [1| (center) shows that both variants of our scheme (RLQSGD and LQSGD,
with and without rotation) have significantly lower variance relative to Hadamard and stan-
dard QSGD, and in fact are the only schemes to get below input variance in this setting.
Figure|l| (right) shows that this leads to better convergence using our method. The exper-
imental report in the full version of this paper contains experiments on other datasets, and
node counts, as well as a larger-scale application of our scheme to train neural networks.
This application shows that our scheme matches or slightly improves the performance of
specialized gradient compression schemes, at the same bit budget.

Local SGD Convergence: S = 8192, n = 2 Local SGD quantization error: S = 8192, n = 2
d =100, Ir = 0.1, batch = 4096, g = 8, rep = 10 d =100, Ir = 0.1, batch = 4096, g = 8, rep = 10
—— RLQSGD (cubic) 0 —— RLQSGD (cubic)
0 QSGD QSGD

—— Hadamard
- GD -2

~—— Hadamard

10910(loss)
log10(quantization error)

0.0 25 5.0 7.5 10.0 125 15.0 175 0.0 25 5.0 75 10.0 125 15.0 175
iteration iteration

Figure 2: Local SGD: convergence for different quantizers (left) and quantization error (right).
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Example 2: Local SGD. A related example is that of compressing models in Lo-
calSGD , where each node takes several SGD steps on its local model, followed
by a global model averaging step, among all nodes. (Similar algorithms are popular in Feder-
ated Learning (Kairouz et al., 2019).) We use RLQSGD to quantize the models transmitted
by each node as part of the averaging: to avoid artificially improving our performance, we
compress the model difference A; between averaging steps, at each node i. RQSGD is a
good fit since neither the models nor the A; are zero-centered. We consider the same setup
as for the previous example, averaging every 10 local SGD iterations. We illustrate the con-
vergence behavior and the quantization error in Figure [2| which shows better convergence
and higher accuracy for lattice-based quantization.

Example 3: Distributed Power Iteration. The power iteration method estimates the
principal eigenvector of an input matrix X, whose rows are partitioned across machines, to
form input matrices X; at the nodes. Each row of the input matrix X is generated from
a multivariate gaussian with first two eigenvalues large and comparable. In each iteration,
each machine updates their estimate relative to its input matrix as u; = X! X;x, and nodes
average these estimates. We apply 8-bit quantization to communicate these vectors wu;,
following [Suresh et al|(2017). Notice that our method is a good candidate here since these
estimates clearly need not be zero-centered, a fact that is evident in Figure [3| (left). Figure
(center) shows convergence under different quantization schemes, while Figure [3[ (right)
shows that our method provides significantly lower quantization error across iterations.

Power Iteration Norms Power Iteration Convergence Power Iteration Quantization Error
S = 8192, d = 128, glevel = 64, workers = 8 S = 8192, d = 128, glevel = 64, workers = 8 S = 8192, d = 128, glevel = 64, workers = 8

—— LQSGD (cubic) 36
RLQSGD (cubic)

— QsGD

— Hadamard

— Baseline

Veopll2

[
logsollv =
5

—— LQSGD (cubic)
RLQSGD (cubic)

24 —— QsGD

—— Hadamard

Figure 3: Input norms (left), convergence (center) and quantization error (right) when executing
distributed power iteration on 8 parallel workers.

Overall, the results suggest that our method can leverage its support of arbitrary centering
to provide consistent improvements in these three different settings.

5 CONCLUSIONS

We have argued in this work that for the problems of distributed mean estimation and
variance reduction, one should measure the output variance in terms of the input variance,
rather than the input norm as used by previous works. Through this change in perspective,
we have shown optimal algorithms, and matching lower bounds, for both problems, inde-
pendently of the norms of the input vectors. This improves over the theoretical guarantees
provided by previous work whenever the inputs are not known to be concentrated around
the origin. Our experiments suggest that this also brings about improvements in terms of
practical performance. In future work, we plan to explore practical applications for variants
of our schemes, for instance in the context of federated or decentralized distributed learning.
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