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ABSTRACT
In this work, we present AerialGait, a comprehensive dataset for
aerial-ground gait recognition. This dataset comprises 82,454 se-
quences totaling over 10 million frames from 533 subjects, captured
from both aerial and ground perspectives. To align with real-life
scenarios of aerial and ground surveillance, we utilize a drone and
a ground surveillance camera for data acquisition. The drone is
operated at various speeds, directions, and altitudes. Meanwhile,
we conduct data collection across five diverse surveillance sites
to ensure a comprehensive simulation of real-world settings. Aeri-
alGait has several unique features: 1) The gait sequences exhibit
significant variations in views, resolutions, and illumination across
five distinct scenes. 2) It incorporates challenges of motion blur
and frame discontinuity due to drone mobility. 3) The dataset re-
flects the domain gap caused by the view disparity between aerial
and ground views, presenting a realistic challenge for drone-based
gait recognition. Moreover, we perform a comprehensive analy-
sis of existing gait recognition methods on AerialGait dataset and
propose the Aerial-Ground Gait Network (AGG-Net). AGG-Net
effectively learns discriminative features from aerial views by un-
certainty learning and clusters features across aerial and ground
views through prototype learning. Our model achieves state-of-the-
art performance on both AerialGait and DroneGait datasets. The
dataset and code will be made available upon acceptance.

CCS CONCEPTS
• Computing methodologies→ Biometrics; Object identifica-
tion.

KEYWORDS
Gait Recognition, Datasets, Aerial Views, Uncertainty Learning,
Prototype Learning

1 INTRODUCTION
Gait recognition can be conducted at a distance without the coop-
eration of subjects. This characteristic establishes it as an essential
tool for crime prevention, forensic identification, and social security.
Integrating gait recognition within aerial surveillance systems in-
troduces a novel paradigm in monitoring and security applications.
The development of drone-based applications in both industrial and
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(1) Various Views (2) Low Resolution 

(3) Illumination (4) Motion Blur 

(5) Frame Discontinuity 

(6) Ground View 

Figure 1: Challenges in AerialGait: (1) Various views, (2) Low
resolution, (3) Illumination, (4)Motion blur, and (5) Framedis-
continuity. In the last row, we provide an example of ground
view sequence.

academic areas has solidified the role of drones for aerial surveil-
lance. Compared to ground-based surveillance, aerial surveillance
offers unparalleled advantages including mobility, the efficiency of
tracking individuals, and the capability for both covert and overt
surveillance [17].

However, the research on drone-based gait recognition is lim-
ited, and the existing gait recognition datasets are collected by
fixed surveillance cameras under static scenes [14, 20, 35, 39]. Al-
though recent research has introduced a drone-based gait recogni-
tion dataset [12], it captures gait sequences by a stationary aerial
platform. This approach does not leverage the inherent mobility and
flexible target tracking capabilities of drones, which does not align
with real-world application scenarios. Furthermore, this dataset
is constrained by a limited number of subjects and fixed environ-
ment. Consequently, there is a clear need for a more diverse and
extensive dataset that contains both aerial and ground views for
gait recognition.

In this work, we introduce AerialGait, a comprehensive large-
scale dataset for aerial-ground gait recognition. AerialGait contains
82,454 sequences with 10,259,669 frames from 533 different iden-
tities. These subjects are captured from both aerial and ground
views. AerialGait is collected using a ground camera and a DJI
Mavic 3 drone. The operation of the drone encompasses a diverse
range of speeds, directions, and altitudes, introducing a variety of
views, resolutions, and motion blur effects to accurately align with
real-world aerial-ground surveillance scenarios. To enhance the
dataset’s diversity and applicability, subjects are filmed across five

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: Comparison of AerialGait with other gait recognition datasets.

Dataset Year Subject # Seq # Data Type Aerial
View

Various
Scenes

Moving
Camera

CASIA-B [29] 2006 124 13,640 RGB, Silhouette ✗ ✗ ✗

OU-MVLP [22] 2018 10,307 288,596 Silhouette ✗ ✗ ✗

GREW [39] 2021 26,345 128,671 Silhouette, 2D/3D Pose, Flow ✗ ✓ ✗

Gait3D [35] 2022 4,000 25,309 Silhouette, 2D/3D Pose, 3D Mesh ✗ ✓ ✗

CASIA-E [21] 2022 1,014 778,752 Silhouette ✗ ✓ ✗

SUSTech1K [20] 2023 1050 25,279 RGB, Silhouette, 3D Point Cloud ✗ ✓ ✗

CCPG [14] 2023 200 16,566 RGB, Silhouette ✗ ✗ ✗

Gait3D-Parsing [36] 2023 4,000 25,309 Parsing ✗ ✓ ✗

DroneGait [12] 2023 96 22,718 Silhouette, 2D/3D Pose, Flow, Mesh ✓ ✗ ✗

AerialGait - 533 82,454 Silhouette, 2D/3D Pose, Parsing ✓ ✓ ✓

distinct locations, including crossroads, rural paths, and stadiums,
ensuring various background scenarios.

The comparison of AerialGait and other prominent gait datasets
is depicted in Table 1. This comparison highlights that only the
DroneGait [12] dataset andAerialGait include aerial view sequences.
However, DroneGait employs a stationary aerial platform, forego-
ing the mobility of drones and thus diverging from realistic de-
ployment scenarios. To better approximate real-world applications,
where drones are moving under different environments for individ-
ual identification and continuous tracking. We use a mobile drone
to capture gait sequences across various scenes, thereby enriching
the dataset with diverse background scenarios. Furthermore, the
AerialGait dataset not only equals but surpasses the recent datasets
like CCPG [14], SUSTech1K [20], and DroneGait [12] in terms of
sequence numbers.

Under real-world scenarios, aerial-ground gait recognition faces
several unique challenges, as shown in Figure 1. These challenges
include significant variations in views, resolutions, and illumi-
nation. The differences in heights and directions of drone flight in-
troduce a variety of views. For instance, high-altitude flights capture
top-down views, which may obscure specific gait features, while
lower flights offer detailed side views that better reveal walking
patterns. Furthermore, the resolution is influenced by the distance
between the drone and the subject, resulting in disparate resolu-
tions among different subjects. Additionally, collecting gait data
across diverse temporal and environmental conditions introduces
challenges such as variations in illumination and background.

In addition, motion blur and frame discontinuity stem from
the movement of both drone and subject, particularly when the
drone operates at varying speeds (1m/s-15m/s) and altitudes (3m-
20m). The moving drone makes captured images blurry and some-
times causes the target to move out of the drone’s field of view,
leading to discontinuous frames. Motion blur deteriorates the qual-
ity of RGB images, and impacts downstream methods that rely on
RGB images to generate gait data, such as segmentation and pose
estimation [19]. Frame discontinuity disrupts the sequence order
of captured frames, which is critical for the analysis of temporal
movement patterns.

Besides, the domain gap caused by view disparity between
aerial and ground views brings significant challenges when con-
ducting aerial-ground gait recognition. Models are required to learn
view-invariant features to effectivelymatch the same identity across
aerial and ground views. These challenges highlight the complexity
of aerial-ground gait recognition and emphasize the necessity for
approaches to effectively integrate aerial and ground views.

In response to these complex challenges, we present the Aerial-
Ground Gait Network (AGG-Net) with two main modules: Gait-
Oriented Uncertainty Learning module and Aerial-Ground Proto-
type Learning module. 1) Aerial surveillance encounters challenges
such as variations in views, resolutions, illumination, and motion
blur. To address these challenges, we propose the Gait-Oriented Un-
certainty Learning module. This module introduces uncertainty at
both the input and feature levels, designed to enhance the model’s
generalization ability in the presence of significant covariance in
the data. 2) Given the domain gap between aerial and ground views,
we utilize the Aerial-Ground Prototype Learningmodule to mitigate
the domain gap between aerial and ground views. Specifically the
Aerial-Ground Prototype Learning module extracts view-specific
features and updates the prototypes based on their corresponding
identity labels, thereby aligning the feature distribution of aerial
and ground views.

To summarize, the main contributions of our work are as follows:

• We construct a large-scale aerial-ground gait recognition
dataset named AerialGait for the application of drone-based
gait recognition. This dataset has the following unique char-
acteristics: 1) Significant variations in views, resolutions,
and illumination. 2) Motion blur and frame discontinuity. 3)
Domain gap between aerial and ground views.

• Based on these challenges, we present the Aerial-Ground
Gait Network (AGG-Net). The proposed AGG-Net is de-
signed to effectively learn generalizable features from aerial
perspectives and to bridge the discrepancy between aerial
and ground views.

• The proposed method achieves state-of-the-art performance
on both the AerialGait and the DroneGait datasets. Addition-
ally, the ablation study shows the contribution and efficacy
of the individual modules comprising the AGG-Net.
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2 RELATEDWORK
2.1 Ground View Gait Recognition
Recent advancements in ground view gait recognition have ex-
panded from indoor environments to outdoor settings, which are
more closely with real-world applications. Early research predom-
inantly relied on in-the-lab datasets like CASIA-B [29] and OU-
MVLP [22], which present limited variations in views, resolutions,
and illumination, thereby restricting their real-world applicabil-
ity. In response to these limitations, in-the-wild datasets such as
Gait3D [35] and GREW [39] are introduced, which utilize surveil-
lance cameras in supermarkets and streets, respectively. These
datasets incorporate real-world complexities such as occlusions
and varying lighting conditions, providing a more comprehensive
evaluation framework for gait models. Furthermore, the SUSTech1K
[20] dataset introduces lidar point cloud as a new data modality
for gait recognition. Gait3D-Parsing [36], building on the Gait3D
[35] dataset, incorporates human parsing as a new modality, sig-
nificantly enhancing the performance of silhouette-based methods.
Additionally, CCPG dataset [14] is constructed to demonstrate the
robustness of gait recognition in cloth-changing condition, high-
lighting its advantages over traditional person re-identification
methods.

Gait recognition methods can be divided into two categories
based on the input modality: pose-based [6, 23, 31] and appearance-
based methods [1, 4, 15, 25–27]. Additionally, recent efforts aim to
combine multiple modalities [3, 20, 36] for a more comprehensive
gait analysis. Pose-based approaches often rely on either 2D or 3D
pose data. For instance, GaitTR [31] employs self-attention mech-
anism to investigate spatial correlations. GPGait [6] introduces a
Human-Oriented Transformation, aiming to improve the method’s
generalizability across different datasets. Appearance-based meth-
ods primarily utilize silhouette as the input. GaitGL [15] focuses on
both global and local features and proposes local temporal aggre-
gation to integrate temporal information. GaitSet [1] regards the
gait sequence as an unordered set and extracts set-based features.
GaitBase [4] employs a ResNet-like backbone and simplifies Gait-
Set’s network architecture, establishing a strong baseline across
various benchmarks. LandmarkGait [27] generates landmarks from
silhouettes, thereby constructing specific and comprehensive local
representations of body parts through landmarks.

2.2 Aerial View Human Identification
With the rapid advancement of drone technology, numerous aerial
view human identification datasets have emerged [7, 10, 11, 13, 16,
32, 33] to support research in aerial visual tasks. These datasets typ-
ically exhibit more complex intra-class variations, including differ-
ences in views and poses, compared to conventional visual datasets.
For instance, PRAI-1581 [33], released in 2019, includes 39,461 aerial
view images of 1,581 subjects. UAV-human [13], introduced in 2021,
comprises 41,290 images of 1,144 individuals, captured by drones at
altitudes ranging from 2 to 8 meters. Additionally, G2APS [32], the
first to construct a large-scale ground-to-aerial person search bench-
mark dataset, contains 31,770 images of 2,644 identities, captured
using both drones and ground surveillance cameras.

Drone-based gait recognition has also advanced in recent years,
with DroneGait [12] is the only publicly available dataset. However,

DroneGait is collected using two stationary drones, which does not
leverage the potential mobility of drones. This approach restricts
the dataset’s applicability in real-world scenarios, leading to limited
variability in poses and views. Furthermore, the DroneGait dataset
encompasses data from merely 96 subjects, further limiting its
diversity. Alongside the dataset, a novel technique named Vertical
Distillation [12] is introduced, aimed at refining aerial view features
into a more distinctive distribution.

3 DATASET
The AerialGait dataset is collected by a ground camera and a drone,
providing multi-view data in various outdoor environment. It con-
tains 82,454 sequences with 10,259,669 frames from 533 different
subjects. Additionally, it incorporates covariates such as carrying
bags and changing clothes. The AerialGait dataset provides four
types of data: silhouette, 2D/3D pose, and human parsing.

Drone Hovering Area

Min height: 3m

10m
3m

Human Walking Area

Max height: 20m

    
   

Max speed: 15m/s 
Min speed: 1m/s

Figure 2: The collection diagram of AerialGait. The drone’s
flight path is random, and subjects are instructed to walk in
10 different directions.

3.1 Data Acquisition
The collection of AerialGait lasts for over two weeks across five
distinct environments, ensuring a diversity of lighting conditions
and background variations. Data collection is conducted using a
monocular camera for ground views and a DJI Mavic 3 drone for
aerial perspectives. The collection diagram is shown in Figure 2.
To ensure a comprehensive simulation of real-world applications,
subjects are instructed to walk in 10 different directions, while the
drone is operated to hover and move in different directions. The
drone’s altitude is manually adjusted between 3m and 20m, with a
random flight path. Flight speeds varied from 1m/s to 15m/s to repli-
cate scenarios where drones search for targets. Monocular camera
is positioned at a height of 1m. Both the drone and the monocu-
lar camera are set to a resolution of 1920×1080, recording at 30
frames per second (FPS). We refer to the setting with the CASIA-B
[29] dataset, covariates of carrying bags and changing clothes are
incorporated. Ideally, each subject contributes a total of 80 gait se-
quences, formulated as = (4(𝑛𝑜𝑟𝑚𝑎𝑙 𝑤𝑎𝑙𝑘𝑖𝑛𝑔) +2(𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑏𝑎𝑔𝑠) +
2(𝑐𝑙𝑜𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔)) × 10(𝑣𝑖𝑒𝑤𝑠).
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3.2 Data Processing
We process the captured videos using human tracking methods [34],
then manually remove irrelevant individuals. Finally, we construct
a dataset comprising 82,454 sequences with a total of over 10 million
frames from 533 subjects. To accommodate various gait recognition
models, the dataset includes silhouette, 2D/3D pose, and human
parsing result. Examples of different data types are shown in Figure
3. Human segmentation is performed using the HumanSeg model
[2], human parsing are generated with U2-Net [18], 2D pose with
ViTPose [28], and 3D pose with MotionBert [38].

Aerial View Ground View

(1)

(2)

(3)

(4)

(5)

Figure 3: Data types of AerialGait: (1) RGB, (2) Silhouette, (3)
Human Parsing, (4) 2D Pose, (5) 3D Pose.

3.3 Dataset Statistics
Resolution Diversity. The resolution distribution of aerial and
ground views is illustrated in Figure 4 (a). 1) Aerial views generally
have a significantly lower average resolution compared to ground
views. This discrepancy is primarily due to the greater distance
of drones compared to ground-based cameras. 2) The minimum
resolution of ground view images is approximately 50,000 pixels,
ensuring a basic data quality. However, the resolution of aerial
views can be drastically lower due to considerable variations in
flight altitude. This severe fluctuation significantly impacts the
quality of gait data captured from aerial views.
Sequence Length Diversity. The distribution of sequence lengths
for both ground and aerial views is depicted in Figure 4 (b). 1)
Both aerial and ground views exhibit a wide distribution. This
phenomenon is attributed to the diverse collection environments.
For example, subjects walking through crowded areas tend to walk
slower compared to those in open areas, leading to variations in
sequence lengths. 2) The average sequence length of aerial views
is significantly less than that of ground views. This discrepancy
arises from drone mobility, when a drone flies too high or too fast,
the tracking model will lose the target occasionally, resulting in
fewer frames compared to ground views.

Resolution distribution Sequence length distribution

N
um
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m
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es

N
um

be
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Resolution ( pixel # ) Sequence length ( frame # )

(a) (b)

Figure 4: Data statistics of AerialGait: (a) The resolution dis-
tribution of AerialGait. (b) The sequence length distribution
of AerialGait.

3.4 Privacy Statement
We are committed to ensuring the privacy and ethical of all subjects
in our dataset. Each subject is openly recruited and participates
voluntarily. Additionally, they are fully informed about the pur-
pose and use of the dataset. Before data collection, we sign a data
collection agreement with each subject, guaranteeing that their
information will be only used for academic research purposes. Ad-
ditionally, every researcher who wants to use the dataset is required
to sign a dataset usage agreement, ensuring that the dataset will be
only used for research purposes.

4 OUR APPROACH
In this section, we first describe the overview of our method in
Section 4.1, and then introduce the proposed two well-designed
modules, i.e., Gait-Oriented Uncertainty Learning in Section 4.2
and Aerial-Ground Prototype Learning in Section 4.3. Finally, we
introduce the overall loss function in Section 4.4.

4.1 Overview
Previously, we introduce three primary challenges in aerial-ground
gait recognition, including 1) significant variations in views, reso-
lutions, and illumination; 2) motion blur and frame discontinuity;
and 3) domain gap between aerial and ground views. To address
these challenges, we employ three distinct strategies.

Firstly, we tackle frame discontinuity, as the frames in aerial
views are not always continuous. So we utilize a set-based 2D back-
bone that processes unordered sets of frames, which is more robust
to the frame discontinuity. Secondly, the significant variations
in views, resolutions, illumination, and motion blur hinder
the model’s ability to capture identity-specific information. Based
on this premise, we propose Gait-Oriented Uncertainty Learning
module, which comprises Silhouette-Oriented Uncertainty Learn-
ing (SOUL) and Feature-Oriented Uncertainty Learning (FOUL) sub-
modules. The Gait-Oriented Uncertainty Learning module intro-
duces uncertainty at both the input and feature levels, aiming to
enhance the model’s generalization ability when faced with input
data exhibiting significant covariance. Lastly, to address the do-
main gap between aerial and ground views, we propose Aerial-
Ground Prototype Learning module. Here, "prototype" refers to the
representative examples in the dataset. By aligning the prototype
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distribution of aerial and ground views, we bridge the gap between
them effectively.

The architecture of AGG-Net is shown in Figure 5. Our model
simultaneously samples both aerial and ground views of the same
subject as input. Then the SOUL module generates diverse silhou-
ettes based on the input, Subsequently, these generated silhouettes
are fed into the feature extraction backbone. Following this, the
FOUL module then converts these features into Gaussian distribu-
tions with distinct means and variances. Temporal and Horizontal
Pooling are applied to aggregate the features. Then the pooled
features are used to compute ID Loss through fully connected lay-
ers. Finally, Aerial-Ground Prototype Learning module updates the
view-specific prototypes by the pooled features and calculates the
distribution discrepancy between these prototypes.

4.2 Gait-Oriented Uncertainty Learning
4.2.1 Silhouette-Oriented Uncertainty Learning. In aerial view gait
sequences, the large view variation often results in significant oc-
clusion of the human body, particularly affecting the visibility of
discriminative regions such as the legs and feet. Additionally, the
movement of the drone introduces blur at the edges of silhouettes.
To address these challenges, we propose the SOUL module, the
detailed procedure is shown in Figure 5 (a).

Firstly, we randomly select a structuring element to construct a
kernel by different types such as cross, ellipse and rect. The variabil-
ity in structuring elements facilitates diverse transformations of the
original image, introducing uncertainty in the morphological pro-
cessing. Then, we randomly select a rectangular region within the
silhouette based on a predefined range of area ratios (𝑠𝑚𝑎𝑥/𝑠𝑚𝑖𝑛)
and aspect ratios 𝑟 . Finally, we randomly apply either Dilation or
Erosion to the selected region. Dilation expands the foreground
regions of the silhouette by setting the pixels of the structuring ele-
ment to the maximum value. Erosion, on the other hand, shrinks the
foreground regions by removing pixels from edges of the silhouette,
thereby refining the silhouette’s shape and potentially separating
connected foreground regions.

Compared with Random Erasing [37], our SOUL module focuses
onmaking subtle changes to the human shape rather than assigning
the whole selected region to zero. This approach prevents the model
from overemphasizing specific regions and enhances its robustness
when dealing with silhouettes of ambiguous shapes.

4.2.2 Feature-Oriented Uncertainty Learning. In the task of aerial-
ground gait recognition, gait sequences captured from aerial views
exhibit higher ambiguity compared to those from ground views.
To address this issue, we propose the FOUL module, which is de-
signed to capture the inherent noise in the data by modeling the
extracted features as Gaussian distributions. The mean of these dis-
tributions serves as the typical feature vector for IDmatching, while
the variance quantifies feature uncertainty, with noisy data typi-
cally exhibiting larger variances. During training, feature vectors
are sampled from these Gaussian distributions, thereby enhancing
the model’s generalization ability to tackle the various challenges
presented by aerial views.

Specifically, as shown in Figure 5 (b), we modify the final block
of the feature extraction backbone into two separate branches: a
mean branch, denoted as 𝑓𝜇 (·), and a variance branch, denoted as

𝑓𝜎 (·). The i-th gait feature in the training batch, processed by the
feature extraction backbone, is denoted as 𝑒𝑖 . Then the i-th mean
vector 𝜇𝑖 = 𝑓𝜇 (𝑒𝑖 ) and variance vector 𝜎𝑖 = 𝑓𝜎 (𝑒𝑖 ) are generated
by two separate branches. The generated variance vector can be
treated as a measure of uncertainty for the i-th gait sequence. Thus,
the original feature representation is transformed into a Gaussian
distribution, represented by 𝑧𝑖 ∼ N(𝜇𝑖 , 𝜎𝑖 ).

However, since 𝑧𝑖 is sampled randomly based on mean vector
𝜇𝑖 and variance vector 𝜎𝑖 , the gradient will not propagate back to
the preceding layers. To address this issue, the reparameterization
trick [30] is employed. It generates a sample 𝜖 from a standard
Gaussian distribution where 𝜖 ∼ N(0, 𝐼 ). Then, the sampled feature
representation is computed as 𝑧′

𝑖
= 𝜇𝑖 + 𝜖𝜎𝑖 , this method effectively

separates the random component from the trainable parameters,
allowing the gradient to backpropagate through the network.

To regulate the variance produced by the variance branch and
prevent the trivial solution of variance decreasing to zero, we com-
pute the L2 norm of the variance and a margin 𝜏 is introduced to
ensure that the variance remains within a reasonable range. The
uncertainty-constrained loss 𝐿𝑢𝑐 is formulated as:

𝐿𝑢𝑐 = 𝑚𝑎𝑥 (0, 𝜏 −
∑︁𝐵

𝑖=1
| |𝜎𝑖 | |2) (1)

Here, 𝐵 represents batch size and calculated as 𝐵 = 𝑏1 · 𝑏2, where
𝑏1 denotes the number of identities in a training batch, and 𝑏2
represents the sequence number of each identity. Equation 1 effec-
tively ensures that the variance within a batch remains within an
appropriate range.

During our experiments, we observe that only a single channel
in 𝜎𝑖 is active, contributing to the uncertainty constrained loss.
Interestingly, the corresponding channel in 𝜇𝑖 is consistently zero
during training, indicating that the network ignore the information
from the active channel in 𝜎𝑖 , This phenomenon suggests a signifi-
cant channel bias, as 𝜎𝑖 appear to have no impact on the sampled
feature 𝑧′

𝑖
. To address this channel bias, we implement layer nor-

malization across the channel dimension for both the mean and
variance vectors. Consequently, the final sampled representation,
𝑧′′
𝑖
, is given by:

𝑧′′𝑖 = 𝐿𝑁1 (𝜇𝑖 ) + 𝜖𝐿𝑁2 (𝜎𝑖 ), 𝜖 ∼ N(0, 𝐼 ) (2)

Subsequently, the generated 𝜇𝑖 and 𝑧′′𝑖 are input into two fully
connected layers with shared weights. The ID loss is calculated as
follows:

𝐿𝑖𝑑 =
∑︁𝐵

𝑖=1
(𝑇𝑟𝑖 (𝜇𝑖 ) +𝐶𝐸 (𝜇𝑖 ))

𝐿𝑠−𝑖𝑑 =
∑︁𝐵

𝑖=1
(𝑇𝑟𝑖 (𝑧′′𝑖 ) +𝐶𝐸 (𝑧

′′
𝑖 ))

(3)

where 𝑇𝑟𝑖 (·) and 𝐶𝐸 (·) denote the triplet loss and cross-entropy
loss, 𝐵 represent the batch size. By projecting both the original
feature and the sampled feature into different ID distributions, we
enhance the model’s robustness against the challenges posed by
diverse views.

4.3 Aerial-Ground Prototype Learning
In the task of aerial-ground gait recognition, there is a notable do-
main gap between aerial and ground views. Ground views typically
provide abundant gait information due to clear visibility of the hu-
man body and moderate camera-subject distance. In contrast, aerial
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Figure 5: The overview of the Aerial-Ground Gait Network (AGG-Net)

views often faces challenges such as various views and motion blur,
complicating the visibility and analysis of gait data. Given that
these two perspectives share the same IDs but exhibit disparate
characteristics, we introduce an Aerial-Ground Prototype Learning
module. The prototype can be treated as the most representative
examples in the dataset. By aligning the prototype distribution of
aerial and ground views, we aim to alleviate the gap between them.

Specifically, as shown in Figure 5 (c). The prototypes of aerial
and ground views are denoted as 𝑃𝑎 and 𝑃𝑔 ∈ 𝑁 × 𝐶 × 𝐷 . 𝑁
represents the number of identities in the training set,𝐶 denotes the
channel dimension, and 𝐷 indicates the part dimension. During the
initial training stage, the prototypes are initialized as zero vectors.
The features of aerial and ground views are denoted as 𝑇𝑎 and
𝑇𝑔 ∈ 𝐵 ×𝐶 × 𝐷 , where 𝐵 represent the batch size.

The momentum update strategy, inspired by the MoCo frame-
work [8], is employed to update the prototypes with the features at
each iteration. This strategy is defined as follows:

[𝑝𝑣𝑖 ]
𝑙 =

{
𝜆𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑣 ( [𝑡𝑣

𝑘
]𝑙 ) + (1 − 𝜆) [𝑝𝑣

𝑖
]𝑙−1 𝑘 = 𝑖

[𝑝𝑣
𝑖
]𝑙−1 𝑘 ≠ 𝑖

𝑠 .𝑡 . 𝑣 ∈ {𝑎,𝑔}
(4)

where [𝑝𝑣
𝑖
]𝑙 represents the 𝑙-th iteration prototype for identity 𝑖

and view 𝑣 , where 𝑣 = 𝑎 for aerial views and 𝑣 = 𝑔 for ground views.
Additionally, [𝑡𝑣

𝑘
]𝑙 is the feature of the identity 𝑘 . The feature is

processed through a view-specific encoder 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑣 that incor-
porates a batch normalization layer and a fully connected layer.
Then we iterate the features in the training batch. When 𝑘 = 𝑖 , the
i-th prototype is updated based on [𝑡𝑣

𝑘
]𝑙 iteratively. Parameter 𝜆

is the update ratio. The momentum update strategy facilitates the
incorporation of view-specific information and retains historical
features, thus enabling synchronized clustering of prototypes.

Base on the view-specific prototypes, we calculate the prototype
clustering loss (𝐿𝑝𝑐 ) during training. The loss is formulated as:

𝐿𝑝𝑐 = 𝑚𝑚𝑑 (𝑃𝑎, 𝑃𝑔) = 𝜙 (𝑃𝑎, 𝑃𝑎) +𝜙 (𝑃𝑔, 𝑃𝑔) − 2×𝜙 (𝑃𝑎, 𝑃𝑔) (5)

Here, the Maximum Mean Discrepancy (MMD) loss [9] is em-
ployed to minimize the distribution differences between aerial and
ground views, where 𝜙 denotes the kernel function used to esti-
mate the distribution difference. In our experiments, we utilize the
Gaussian kernel function, which is detailed as follows:

𝜙 (𝑃𝑎, 𝑃𝑔) =
1
𝑁

∑︁𝑁

𝑖=1
𝑒𝑥𝑝 (−

||𝑝𝑎
𝑖

− 𝑝
𝑔

𝑖
| |2

2𝜉2
) (6)

where 𝜉 is the width of the Gaussian Kernel. TheMMDLoss assesses
the distribution bias between aerial and ground views, effectively
aligning the feature distributions of aerial and ground views.

4.4 Overall Loss Function
The basic loss in our framework are the ID loss 𝐿𝑖𝑑 which consists
of standard triplet loss and CE loss [4]. In addition, we integrate
the uncertainty constrained loss (𝐿𝑢𝑐 ), sampled id loss (𝐿𝑠−𝑖𝑑 ) from
the FOUL module, and the prototype clustering loss (𝐿𝑝𝑐 ) from
Aerial-Ground Prototype Learning module. Thus, the overall loss
function is summarized as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑖𝑑 + 𝛼𝐿𝑠−𝑖𝑑 + 𝛽𝐿𝑢𝑐 + 𝛾𝐿𝑝𝑐 (7)

where 𝛼 , 𝛽 , and 𝛾 are hyperparameters employed to balance the
contribution of each loss during training.

5 EXPERIMENTS
5.1 Experimental Setup and Implementation

Details
Datasets. We conduct experiments on the proposed AerialGait
dataset and the DroneGait dataset [12].
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Table 2: Performance comparison on AerialGait and DroneGait.

Methods Ref. Modality AerialGait DroneGait
A -> A G -> G G -> A A -> G A -> A G -> G G -> A A -> G

GaitGraph2 [23] CVPR22
Skeleton

24.62 32.11 16.49 18.05 20.50 36.48 11.24 12.44
GaitTR [31] ESWA23 45.18 53.55 25.96 26.87 23.20 44.41 11.30 10.50
GPGait [6] ICCV23 55.51 66.92 38.77 49.22 40.80 70.66 21.75 21.23
GaitSet [1] PAMI21

Silhouette

75.48 94.61 64.48 66.21 47.87 86.92 44.37 37.62
GaitPart [5] CVPR20 57.41 85.81 41.74 41.80 41.81 87.10 39.31 30.01
GaitGL [15] ICCV21 69.59 94.26 57.44 59.36 53.28 92.51 42.69 33.81
V-Distill [12] TMM23 80.24 45.22 3.10 4.90 64.30 49.10 5.40 8.40
GaitBase [4] CVPR23 81.22 96.51 71.64 74.83 65.75 91.59 50.06 44.38

AGG-Net(ours) - 84.92 97.32 76.00 80.35 69.69 92.33 54.44 48.97

AerialGait has 533 identities with 82,454 sequences. In our
experimental setup, we randomly select 100 identities for training,
while the remaining 433 subjects are set for testing. Specifically,
during the testing phase, the first two sequences of normal walking
are assigned to gallery, and the remaining sequences are utilized as
probe.

DroneGait consists of 96 identities, with a total of 22,718 se-
quences. Follow the setting of the original paper [12], the first 48
identities are selected for training and the remaining 48 identities
for testing. In the testing phase, the first two sequences of normal
walking are assigned to the gallery, and the subsequent sequences
are utilized as the probe. The DroneGait dataset is divided into three
subsets, defined by their vertical viewing angles: 0◦, 30◦-60◦, and
60◦-80◦. For our experiments, we classify the 0◦ subset as ground
views and the 60◦-80◦ subset as aerial views.
Evaluation Protocols Our experiments are based on four evalua-
tion protocols: Aerial to Aerial (A->A), Ground to Ground (G->G),
Ground to Aerial (G->A), and Aerial to Ground (A->G). The first
term in each pair represents the probe view, and the second term
represents the gallery view. We compute the average Rank-1 ac-
curacy under conditions of normal walking, carrying bags, and
changing clothes. Additionally, we exclude the results when the
subject’s walking direction is the same in both the probe and gallery.
Implementation Details. We implement our model based on
OpenGait [4], and all experiments are conducted on 8 NVIDIA
TITAN V GPUs. The batch size is denoted as [𝑏1, 𝑏2], where 𝑏1
represents the selected ID number, and 𝑏2 represents the sequence
number for each ID. In our experiments, we apply a batch size of
[8,8] for both the AerialGait and DroneGait datasets, where each
ID has 4 sequences from the aerial view and 4 sequences from
the ground view. The network structure of the feature extraction
backbone, along with the mean branch and variance branch in the
Feature-Oriented Uncertainty module, is detailed in the Supplemen-
tal Materials. Here we provide the setup of hyperparameters in our
experiments: 1) The probability of applying the SOUL module is set
to 0.5. The max/min area ratio range 𝑠𝑚𝑎𝑥/𝑠𝑚𝑖𝑛 is set to 0.02 and
0.4, respectively, while the area aspect ratio range 𝑟 is set to 0.2. 2)
In the FOUL module, the margin 𝜏 for the uncertainty constrained
loss is set at 4 × 104. 3) In the Aerial-Ground Prototype Learning
module, the updating ratio 𝜆 of the prototype is set to 0.1. The width
of the gaussian kernel 𝜉 is set to 1. 4) The loss weights 𝛼 , 𝛽 , and 𝛾
are set to 1 × 10−4, 1 × 10−3, and 1 × 10−1, respectively.

5.2 Experimental Results on AerialGait and
DroneGait

This section presents a comprehensive analysis to evaluate the per-
formance of gait recognition models on the AerialGait and Drone-
Gait datasets. The detailed results is shown in Table 2. We compare
our approach with three skeleton-based methods: GaitGraph2 [23],
GaitTR [31], and GPGait [6], and five silhouette-based models: Gait-
Set [1], GaitPart [5], GaitGL [15], Vertical Distillation [12], and
GaitBase [4].

5.2.1 Comparison with State-of-the-art Models. Among these mod-
els, our proposed AGG-Net surpasses existing approaches across
four distinct evaluation settings on both the AerialGait and Drone-
Gait datasets. 1) In the Aerial to Aerial protocol, AGG-Net achieves
84.92% accuracy on the AerialGait dataset and 69.69% on the Drone-
Gait dataset. Our model introduces uncertainty at data and feature
levels, effectively capturing identity-related features and enhancing
the model’s robustness to noisy data. 2) The model shows strong
performance in the Aerial to Ground and Ground to Aerial proto-
cols. On the AerialGait dataset, AGG-Net reaches a rank-1 accuracy
of 80.35% in the Aerial to Ground protocol, outperforming Gait-
Base [4] by a notable margin of 5.52%. Moreover, in the Ground
to Aerial protocol of the DroneGait dataset, our method exceeds
the second-best result by 4.49%. Our approach effectively align the
distribution between aerial and ground views, thereby achieving
superior performance in the four protocols.

5.2.2 Comparison with Different Evaluation Protocols. In the four
evaluation protocols, the Ground-to-Ground setting yields the best
results, reflecting the effectiveness of current gait recognition mod-
els under ground-based conditions. In contrast, the performance in
Aerial-to-Aerial protocol shows a significant decline. It is largely
due to challenges such as significant variations in viewpoint and
resolution. Moreover, the Aerial-to-Ground and Ground-to-Aerial
settings are further complicated by the domain gap between aerial
and ground views, which impedes aerial-ground matching.

5.2.3 Comparison with Silhouette and Pose-based Methods. In our
comparative analysis of skeleton-based and silhouette-based gait
recognition methods. 1) It is observed that silhouette-based ap-
proaches generally outperform skeleton-based methods. This dis-
parity in performance can be attributed to the fact that silhouette
segmentation is less impacted by variations in views, because it
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relies on distinguishing human shapes based on the contrast be-
tween the foreground and background colors. Conversely, pose
estimation methods, which are fundamental to skeleton-based ap-
proaches, are more sensitive to view changes, particularly when
the lower body of the human is occluded in aerial views. 2) Among
the skeleton-based models, GPGait [6] demonstrated the best out-
comes. This success is likely due to GPGait’s Part-Aware Graph
Convolutional Network’s ability to effectively extract fine-grained
local information, showcasing its robustness in skeleton-based gait
recognition. 3) In silhouette-based methods, Vertical Distillation
[12] utilizes ground view features as the teacher to guide the learn-
ing of aerial view features. However, since the ground view data are
not directly incorporated into the training process but only treated
as a pre-trained teacher, the model cannot classify the ground view
data. The results show that Vertical Distillation achieves results
comparable to GaitBase in the Aerial-to-Aerial protocol, but its
performance significantly degrades in other settings.

5.2.4 Comparison of Frame Continuity. GaitGL [15] processes or-
dered sequences through 3D CNNs to extract temporal information,
while GaitSet [1] takes unordered sets as input and utilizes temporal
pooling to acquire set-based information. In the Aerial-to-Aerial
protocol, GaitGL surpasses GaitSet on the DroneGait dataset (53.38%
compared to 47.87%) but underperforms on AerialGait (69.59% com-
pared to 75.48%). This is probably due to frame discontinuity in
the AerialGait dataset, caused by drone movement. In such sce-
narios, set-based approaches, including GaitSet, GaitBase, and our
AGG-Net, demonstrate superior robustness under the condition of
discontinuous frames.

Table 3: Ablation study of each module on AerialGait dataset.
Prot. denotes Aerial-Ground Prototype Learning.

Base SOUL FOUL Prot. AerialGait
A->A G->G G->A A->G

✓ 81.01 96.42 72.24 75.44
✓ ✓ 82.14 96.97 73.14 77.14
✓ ✓ ✓ 84.54 97.19 73.98 78.52
✓ ✓ ✓ 83.04 97.02 75.27 80.47
✓ ✓ ✓ ✓ 84.92 97.32 76.00 80.35

5.3 Ablation Study
We evaluate the effectiveness of each module on AerialGait, and
the results is shown in Table 3. 1) The incorporation of the SOUL
module substantially enhances the model’s capacity to focus more
discriminative silhouette regions under various views and to adjust
to blurring effects due to drone movements, thereby improving
performance across all protocols. 2) The FOUL module projects the
features into different Gaussian distributions, significantly encour-
aging the model to learn a wider distribution based on the learned
variance. This further enhances the model’s ability when facing gait
sequences captured from diverse aerial viewpoints. The third line of
Table 3 show that the results have particularly improved, especially
in the Aerial-to-Aerial protocol. 3) The introduction of the Aerial-
Ground Prototype Learning module proves effective in aligning

the distributions of aerial and ground views. This module signifi-
cantly enhances performance, especially in the Aerial-to-Ground
and Ground-to-Aerial protocols.

By integrating these modules, our approach effectively extracts
the gait features from aerial and ground views and bridges the
domain gap between them, achieving a rank-1 accuracy of 84.92%,
97.32%, 76.00%, and 80.35% across the four protocols, respectively.
The results demonstrate that all the proposed components con-
tribute consistently to the performance.

5.4 Visualization of Feature Distribution
To intuitively demonstrate the effectiveness of our method to bridge
the gap between aerial and ground views, we utilize t-SNE [24] to
visualize the feature distribution of randomly selected 8 identities
on AerialGait. As shown in Figure 6, the feature distribution in
the base model exhibits significant domain gap between aerial and
ground views, potentially impeding aerial-ground gait recognition
as the number of identities increases. In contrast, our AGG-Net
successfully aligns the distributions of aerial and ground views,
resulting in a more compact and unified feature distribution. Our
model alleviate the domain gap between aerial and ground views,
enhancing the overall performance in the task of aerial-ground gait
recognition.

(a) (b)

Figure 6: The t-SNE [24] visualization of feature distribution
in (a) our basemodel in Section 5.3 and (b) AGG-Net. Different
colors represent different identities. Hollow circles ◦ and
solid circles • denote features from aerial and ground views,
respectively. Best viewed in color and zoomed in.

6 CONCLUSION
In this work, we propose AerialGait for aerial-ground gait recog-
nition. The dataset contains characteristics such as variations in
views, motion blur, and other complexities. Comprehensive experi-
ments are conducted on this datasets. Furthermore, we present the
Aerial-Ground Gait Network (AGG-Net), which integrates uncer-
tainty learning and prototype learning. AGG-Net effectively bridges
the gap between aerial and ground views and demonstrates supe-
rior performance on both the AerialGait and DroneGait datasets.
In the future, we expect that the AerialGait dataset will encourage
more research into the task of aerial-ground gait recognition.
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