Augmenting KG Hierarchies Using Neural Transformers

Sanat Sharmal0009—0003—-2479=3041] ‘\[avank Poddar, Jayant Kumar[0009—0004=3858—=5961] 'Kty
Blank[0009-0008-6404-95803] o1\ q Tyacy Kingl0000-0002-7956-505X]

Adobe Inc.

Abstract. This work leverages neural transformers to generate hierarchies in an existing
knowledge graph. For small (<10,000 node) domain-specific KGs, we find that a combination
of few-shot prompting with one-shot generation works well, while larger KG may require
cyclical generation. Hierarchy coverage increased by 98% for intents and 95% for colors.

Keywords: knowledge graphs - hierarchy generation - few-shot prompting.

1 Introduction

Knowledge graphs (KG) are widely used in industry to understand user behavior and provide con-
textual recommendations (figure 1) and search results. At Adobe, we utilize a KG to understand
users’ creative intent and recommend Adobe assets based on the intent. While the original KG had
over 4000 intent nodes, the original taxonomy was mostly flat, lacking substantial hierarchies that
could amplify the semantic significance between nodes and drive additional intent-based recommen-
dation use cases.

Browse by category Viewall >
o © - vy‘n -
Hepry 7 _b’?.g¥1 2
Bilhday! 5 e > >
Birthday Cards Birthday Birthday Posters Birthday Photo Birthday Memes Kids Birthday Unicorn Birthday K
Invitations Collages Cards Cards Iny

Fig. 1. Adobe Express SEO page for birthday with related pages powered by the intent-based KG.

In this work, we present a novel approach to automatically generate intricate graph hierarchies
in KGs by leveraging neural transformers. We enhance the structure of our graph by generating
hierarchies for both intent (what an Adobe user wants to accomplish, e.g. create a child’s birthday
card or a banner for their cafe’s website) and color node types, resulting in a significant increase
in hierarchy coverage: 98% for intent and 95% for color. Hierarchies have key benefits to our users.
Organizational Structure: Hierarchical relationships makes it easier to navigate and comprehend
the KG. Hierarchies help maintain order and provide a clear understanding of how different concepts
are related to each other. Semantic Relationships: Rich intent hierarchies allow us to capture the
semantic relationships between concepts. They also help us unlock key features, such as powering
browse and SEO relationships. Scalability and Flexibility: Top level categories allow for easier
addition of new intents without disrupting the overall structure as the KG grows.

2 Sanat Sharma, Mayank Poddar, Jayant Kumar, Kosta Blank, and Tracy King

2 Related Knowledge Graph Work

Knowledge graphs are widely used in industry in a variety of roles, from providing social media
recommendations [12,11] to providing entity linking and semantic information between concepts
[2,9]. With recent improvements in attention-based networks, specifically large transformers [5, 10],
there has been academic focus towards grounding language models with KGs [6], thereby providing
semantic reasoning and generation based on the KG information. Recent works also investigate
automated generation and completion of KGs using large transformer models [4,1]. They utilize
language models like ChatGPT to add new nodes to subsets of the graph. While most works focus
on adding additional nodes to KGs, our work focuses on augmenting the semantic relationships
of existing nodes in the graph using large transformer models. We generate rich hierarchies and
associations inside the graph, something that is novel to the field.

3 Approach

First we create top level (L1) categories for a specific class of nodes (e.g. intent or color). L
categories can be selected by domain experts or by a language model. They need to be broad and
expansive, as our aim is to transition from a general intent to a more specific one, progressing
through multiple levels. We created the L; intent nodes by examining Adobe Express frequent
queries and their intents, Adobe Stock content categories, and the Google open-source product
type taxonomy [3]. This resulted in 26 L; intent categories (e.g. Business and Industry, Travel,
Shopping, Beauty and Wellness, Health). These overlap with standard taxonomies but comprise a
subset relevant to Adobe Stock and Express users.

After establishing the L; categories, a classifier module assigns all KG nodes to one or more L
categories. Then a generator module enhances the existing hierarchy (if any) with the newly added
nodes. Finally, a scalable pipeline auto-ingests the new hierarchies into the KG and queries the KG
at inference time. To generate our hierarchies, we utilize two modules (Figure 2):

1. Classifier Module: The classifier module takes all nodes to be added to hierarchy and classifies
them into one or more of the L, candidate classes. We found large language models to be better
at few-shot classification than their smaller variants.

2. Generator Module: The generator module runs in a loop for each L; category. The generator
takes the existing hierarchy for that L, category (just the L; node if no hierarchy exists) and
adds all the candidate nodes to generate the updated category hierarchy. We found one-shot
hierarchy generation using large language models to be the best approach (§3.2).

3.1 Few-Shot Prompting

In order to use the classification module, we do few-shot learning in which we provide the language
model (GPT4 with a 32K context [5]) with a few classification examples and a strict prompt. A
sample prompt we used is “You are a taronomist, classify the given node to one or more of the
provided categories. If you think the category should be its own thing, return Other. Please return
a dictionary every time.” With the prompt, we provide a few sample nodes, the categories and
an output prediction. Based on a few rounds of samples, we then provide the true candidates for
classification to the model. Similar to other approaches in the industry [7,8], we see a significant
boost of 12% in accuracy by doing few-shot learning compared to zero-shot classification.

Augmenting KG Hierarchies Using Neural Transformers 3

Cat1 Cand
1n
Classifier Module Cat2 G&r;zrjlt:r ™
Candidates —— — I_'_I
LM . LLM LA
Catn Cand Updated Category
1.n Hierarchy
|
- u mEmm
ategories
g Category Hierarchy

Fig. 2. Hierarchy Generation Approach

3.2 Generation Module

Once the candidates are categorized, we experimented with two techniques in the generation module
to create the updated hierarchy. Cyclical Generation: Generate each level of the category in a
loop. This means that Lo level nodes are added first, then L3z and so on. This is needed when
the existing hierarchy is large and cannot fit in the model context. One-Shot Generation: All
candidate nodes are added to the hierarchy in a single pass, without any cyclical generation. We
found that this approach produced better results with smaller (<10,000 node) taxonomies.

Cyclical Generation In the cyclical generation approach, we follow a cyclical pattern to gen-
erate each level of the hierarchy for an L; category and its children.

1. From the candidate set of nodes at level L;, classify nodes that belong to that level. Utilize
the existing nodes at that level (i.e. any nodes already present in the hierarchy) to help the
language model via a few-shot approach.

. The nodes not categorized to be part of level L; will become part of lower levels (L;y1.).

3. Pass the remaining nodes as well as the existing hierarchy to the generator module to create
the new updated hierarchy for level L;. The generator module will attempt to categorize and
place each of the remaining nodes under one of the L; nodes.

4. For each of the L; nodes and their hierarchy, repeat the process in a recursive manner to fine-
tune the hierarchies. The process stops when either a specified depth (L;) is reached or all nodes
have been added to the hierarchy.

[\

While the cyclical approach is useful, especially for larger graphs, we saw several drawbacks with
it when generating our intent hierarchies. Error Propagation: LLMs can hallucinate or generate
incorrect structured content. Having multiple steps in the generation process can lead to error
propagation through the chain. This is the biggest issue with a recursive approach. The Other
Conundrum: LLMs are bad at placing nodes into the “Other” category. This means that most
nodes were assigned into a level’s category (L;) rather than being placed into the Other category
(to be a part of the L3 and lower levels). Order Importance: Whether we pass nodes in a batch
or one at a time for classification, the order of nodes plays a huge difference in the categorizing.
For example, if “birthday party” was categorized as an L; first and then the node “birthday” is
shown to the LLM, it often incorrectly categorizes “birthday” as a child of “birthday party” due to
their similarities. Additional checks and another overall pass is required to fix the categorizations.
One-shot generation (see below) alleviates these issues.

4 Sanat Sharma, Mayank Poddar, Jayant Kumar, Kosta Blank, and Tracy King

ifi Generator
_> Category Classifier Module Updated Module - _
Candidates E Category L; @ -I -I -I
Nodes
Updated Category

Level i Hierarchy

D n
Category L, Remaining
Nodes ' Candidates .-
Category Level i
Hierarchy Recurse to more levels

Fig. 3. Cyclical Generation requires classification of nodes and addition at each level

One-Shot Generation In the one-shot generation process, we provide all the nodes to be
added as well as the full existing hierarchy to the LLM and allow it to generate the Ly, L3 and
lower categories with just a few examples provided. This approach worked well when there was an
existing, partial hierarchy in place to guide the language model’s intuition. If a large number of
candidates need to be added to the hierarchies, batched generations followed by an overall pass
where the language model has the chance to correct any errors is utilized. For our domain-specific
use cases, we found full, one-shot generation to be more viable since our taxonomy is relatively
small (< 5000 intent nodes and < 500 color nodes).

Updating the Graph For new intents, the above approach is used to integrate them into the
KG. When creating intents for a new domain (e.g. Adobe app tools), a subgraph is generated for
the new domain and then merged into the existing KG. One algorithm improvement, suggested by
an anonymous reviewer, is to examine each subgraph in the generated graph and query the LLM as
a third step if it looks good. This uses the LLM for evaluation and updating, instead of generating.

4 Hierarchical KG Evaluation and Conclusions

Statistics on the hierarchical KG generated using one-shot generation and few-shot prompting are
summarized below (‘Lower’ indicates nodes in Ls or below categories).

KG Nodes In Hierarchy Before In Hierarchy Now % Change|L; Lo L3 Ly Lower
Intents | 4639 891 4630 419% 25 383 1826 1937 920
Colors | 328 12 328 2100% 12 224 92 1 0

We evaluated the KG hierarchies through a human-in-the-loop approach. We provided a graph-
ical interface to identify nodes that are incorrectly positioned and to offer suggestions for enhance-
ment. We engaged 16 Adobe-internal domain experts to review the hierarchies within each L,
category for both intent and color nodes. The hierarchies were found to be relevant >95% of the
time. Lower levels were spot-checked for accuracy. Identified errors were then manually corrected.

The ultimate evaluation will be in leveraging the KG hierarchies in search and recommendation
features. The non-hierarchical graph already provides related search style links between Express
SEO pages (figure 1) and powers null and low recovery in Adobe Express by mapping queries and
templates to intents. These use cases will be enhanced by using the hierarchy to provide additional
links, to type the links, and to provide back-off through the hierarchy. The Express SEO color pages
represent the first user-facing application of the hierarchical graph.

Augmenting KG Hierarchies Using Neural Transformers 5

Adobe Company Portrait

Adobe Inc. enables customers to change the world through digital experiences and creativity. The
Adobe search and discovery team supports search and recommendations across customer text,
image, video, and other document types as well as over Adobe Stock assets and Adobe help and
tutorials.

Main Author Bio

Sanat Sharma is a senior machine learning engineer at Adobe Inc. He earned his Master’s degree
from University of Texas, Austin in 2020, with a focus on NLP. Sanat’s work focuses on search
improvements and contextual recommendations, and his work has been published at conferences
such as SIGIR and CVPR.

References

10.

11.

. Carta, S., Giuliani, A., Piano, L., Podda, A.S., Pompianu, L., Tiddia, S.G.: Iterative zero-shot LLM

prompting for knowledge graph construction (2023), https://arxiv.org/abs/2307.01128

Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang,
W.: Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA, August 24-27, 2014. pp. 601-610 (2014), http://www.cs.cmmu.edu/ nlao/publication/2014.kdd.pdf
Google: Google product type taxonomy, https://www.google.com/basepages/producttype/taxonomy.en-
US.txt, 2021-09-21 version

Meyer, L.P., Stadler, C., Frey, J., Radtke, N., Junghanns, K., Meissner, R., Dziwis, G., Bulert,
K., Martin, M.: LLM-assisted knowledge graph engineering: Experiments with ChatGPT (2023),
https://arxiv.org/abs/2307.06917

OpenAl: GPT-4 technical report (2023), https://arxiv.org/abs/2303.08774

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language models and knowledge
graphs: A roadmap (2023), https://arxiv.org/abs/2306.08302

Parnami, A., Lee, M.: Learning from few examples: A summary of approaches to few-shot learning
(2022)

Song, Y., Wang, T., Mondal, S.K., Sahoo, J.P.: A comprehensive survey of few-shot learning: Evolution,
applications, challenges, and opportunities (2022), https://arxiv.org/abs/2205.06743

Stokman, F., Vries, P.: Structuring knowledge in a graph. In: van der Veer, G.C., Mulder, G. (eds.)
Human-Computer Interaction, pp. 186-206. Springer (1988). https://doi.org/10.1007/978-3-642-73402-
1 12

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fer-
nandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou,
R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux,
M.A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Moly-
bog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M.,
Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov,
1., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.:
Llama 2: Open foundation and fine-tuned chat models (2023), https://arxiv.org/abs/2307.09288
Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook social graph. CoRR
abs/1111.4503 (2011), http://arxiv.org/abs/1111.4503

6 Sanat Sharma, Mayank Poddar, Jayant Kumar, Kosta Blank, and Tracy King

12. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convo-
lutional neural networks for web-scale recommender systems. CoRR abs/1806.01973 (2018),
http://arxiv.org/abs/1806.01973

