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ABSTRACT

Recent research indicates that frequent model communication stands as a ma-
jor bottleneck to the efficiency of decentralized machine learning (ML), partic-
ularly for large-scale and over-parameterized neural networks (NNs). In this
paper, we introduce MALCOM-PSGD, a new decentralized ML algorithm that
strategically integrates gradient compression techniques with model sparsifica-
tion. MALCOM-PSGD leverages proximal stochastic gradient descent to handle
the non-smoothness resulting from the ℓ1 regularization in model sparsification.
Furthermore, we adapt vector source coding and dithering-based quantization for
compressed gradient communication of sparsified models. Our analysis shows
that decentralized proximal stochastic gradient descent with compressed commu-
nication has a convergence rate of O

(
ln(t)/

√
t
)

assuming a diminishing learn-
ing rate and where t denotes the number of iterations. Numerical results verify
our theoretical findings and demonstrate that our method reduces communication
costs by approximately 75% when compared to the state-of-the-art method.

1 INTRODUCTION

With the growing prevalence of computationally capable edge devices, there is a necessity for ef-
ficient learning algorithms that preserve data locality and privacy. One popular approach is decen-
tralized ML. Under this regime, nodes within the network learn a global model by iterative model
communication, whilst preserving data locality (Lalitha et al., 2018). It has been shown that de-
centralized ML algorithms can achieve similar accuracy and convergence rates to their centralized
counterparts under certain network connectivity conditions (Nedic & Ozdaglar, 2009; Scaman et al.,
2017; Koloskova et al., 2019; Lian et al., 2017). While decentralized ML eliminates the need for
data uploading, (Bonawitz et al., 2019; Van Berkel, 2009; Li et al., 2020) observed that iterative
model communication over rate-constrained channels creates a bottleneck. Particularly, the perfor-
mance of decentralized training of large-scale deep neural network (DNN) models is substantially
limited by excessively high communication costs (Chilimbi et al., 2014; Seide et al., 2014; Ström,
2015). This emphasizes the importance of designing efficient protocols for the communication and
aggregation of high-dimensional local models.

Recent research has shown that efficiency of model communication can be enhanced by model
sparsification and gradient/model compression. Model sparsification involves reducing the dimen-
sionality of model parameters by exploiting their sparsity (Tan et al., 2011). On the other hand,
model and gradient compression for decentralized ML has been studied in Alistarh et al. (2017);
Koloskova et al. (2021; 2019); Han et al. (2015); Wen et al. (2017); Lin et al. (2018); Seide et al.
(2014). It typically leverages lossy compression methods, such as quantization and source coding, to
compress local model updates prior to communication. While this approach reduces communication
bandwidth, it inevitably introduces imprecision during model aggregation.

Related Work. Kempe et al. (2003); Xiao & Boyd (2004); Boyd et al. (2006); Dimakis et al. (2010)
proposed gossiping algorithms for consensus aggregation of local optimization results by leverag-
ing peer-to-peer or neighborhood communication. Recently, Koloskova et al. (2019); Zhang et al.
(2017); Scaman et al. (2017) adopted the gossiping algorithm for decentralized ML with convex and
smooth loss functions, where convergence is guaranteed with constant and diminishing step sizes.
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Continuing this work, Koloskova et al. (2021); Lian et al. (2017); Nadiradze et al. (2021); Tang
et al. (2018) generalized the approach to smooth but non-convex loss functions and provided con-
vergence guarantees. Furthermore, (Koloskova et al., 2019) and (Tang et al., 2018) utilized gradient
compression by compressing the model updates before communication and aggregation. Notably,
Alistarh et al. (2017) proposed a dithering-based quantization scheme as well as a symbol-wise
source coding method for ML model compression. Meanwhile, Nadiradze et al. (2021) analyzed the
convergence of asynchronous decentralized optimization with model compression. While communi-
cation compression is advantageous in of itself, Alistarh et al. (2018); Stich et al. (2018) analytically
and numerically demonstrated the bandwidth gains from gradient sparsfication.

Fukushima & Mine (1981) proposed proximal gradient descent (PGD) for the optimization of non-
smooth functions with separable convex and smooth components. Subsequently, Beck & Teboulle
(2009) studied the convergence of PGD when the proximal optimization step can be executed via
a soft-thresholding operation. Continuing this work, Schmidt et al. (2011) generalized the method
for a convex objective with inexact gradient descent steps, while Sra (2012) established the conver-
gence rate of inexact PGD for non-convex objectives. Meanwhile, in the decentralized convex op-
timization setting, Chen (2012) proved the convergence of inexact PGD with sub-optimal proximal
optimization. Furthermore, Zeng & Yin (2018b) introduced general decentralized PGD algorithms
and established the convergence rates for both constant and decreasing step sizes. However, to the
best of our knowledge, the perturbations caused by data sub-sampling alongside stochastic gradient
descent (SGD) updates and the lossy gradient compression have been overlooked in the literature.

Our Contributions. In this work, we address the challenge of enhancing the communication ef-
ficiency in compressed decentralized ML with a non-convex loss. We introduce the Multi-Agent
Learning via Compressed updates for Proximal Stochastic Gradient Descent (MALCOM-PSGD)
algorithm, which communicates compressed and coded model updates. Our algorithm leverages
model sparsification to reduce the model dimension by incorporating ℓ1 regularization during the
SGD update. However, this non-smooth regularization term complicates the direct use of existing
decentralized SGD algorithms in local training. In response, we introduce a strategy that combines
decentralized proximal SGD to solve the regularized decentralized optimization, alongside gradient
compression to alleviate the communication cost. Our contributions are summarized as follows.

• We introduce MALCOM-PSGD which utilizes gradient compression, vector source encoding,
strategic aggregation and model sparsification to reduce the communication costs for decentral-
ized learning. Through analysis and numerical evaluation we show that the amalgamation of these
techniques enhances communication efficiency beyond the sum of their individual contributions.
Numerically, we demonstrate a 75% bit rate reduction when compare to the state of the art.

• We prove that MALCOM-PSGD converges in the objective value for non-convex and smooth
loss functions with a given compression error. MALCOM-PSGD exhibits a convergence rate
of O(ln t/

√
t) and a consensus rate of O(1/t) with diminishing learning rates and consensus

stepsizes, where t represents the number of training rounds. Our aggregation scheme improves
the accuracy but complicates the analysis because it does not preserve the average of the iterates.
Combined with the non-smooth objective, we cannot directly use the proofs inKoloskova et al.
(2021) and Zeng & Yin (2018b) to ensure convergece of MALCOM-PSGD.

• We employ the vector source coding scheme from Woldemariam et al. (2023) to minimize commu-
nication requirements, by encoding the support vector of entries that match a certain quantization
level. Our use of compressed model updates and differential encoding allows us to reasonably
assume we are creating a structure within our updates that this encoding scheme is most advanta-
geous under. This allows us to benefit from the compression under this scheme.

2 DECENTRALIZED LEARNING

We consider a decentralized learning system composed of n nodes, whose goal is to collaboratively
minimize an empirical loss function for a neural network model, as

min
x

1

n

n∑
i=1

Fi(x;Di), Fi(x) :=
1

|Di|

|Di|∑
j=1

fi(x; ξi,j), (1)

where x ∈ Rd represents the model parameters, Fi(·;Di) is the local loss on node i with respect to
(w.r.t.) the local dataset Di, and fi(·; ξi,j) represents the loss w.r.t. the data sample ξi,j . We assume
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that Fi is finite-sum, smooth, and non-convex, which represents a broad range of machine learning
applications, such as logistic regression, support vector machine, DNNs, etc.

Communication. At each iteration of the algorithm, nodes individually update local models using
the proximal gradient of the cost obtained with a mini-batch of their own data sets. Then, they com-
municate the update with their neighbors according to a network topology specified by an undirected
graph G({1, · · · , n}, E), where E denotes the edge set representing existing communication links
among the nodes. Let Ni := {j ∈ V : (i, j) ∈ E} denote the neighborhood of i. We define a
mixing matrix W ∈ Rn×n, with the (i, j)−th entry wij denoting the weight of the edge between i
and j. We make the following standard assumptions about W :

Assumption 1 (The mixing matrix). The mixing matrix W satisfies the following conditions:

i. wij > 0 if and only if there exists an edge between nodes i and j.
ii. The underlying graph is undirected, implying that W is symmetric.

iii. The rows and columns of W have a sum equal to one, i.e., it is doubly-stochastic.
iv. G({1, · · · , n}, E) is strongly connected, implying that W is irreducible.

We align the eigenvalues of W in descending order of magnitude as |λ1| = 1 > |λ2| ≥ · · · ≥ |λn|.
In practice, the weights in W can be chosen by multiple metrics, such as node degrees, link dis-
tances, and communication channel conditions (Dimakis et al., 2010). This is the standard assump-
tion for the mixing/gossiping matrix and is consistent with Koloskova et al. (2021).

Model Sparsification. As shown in (Chilimbi et al., 2014; Seide et al., 2014; Ström, 2015), the
frequent model communication is regarded as the bottleneck in the decentralized optimization of (1),
especially when optimizing large-scale ML models, such as DNNs. To facilitate the compression
of the models updates, we promote model sparsity by adding ℓ1 regularization to the objective.
Specifically, we replace the original objective in (1) with the following problem:

min
x∈Rd

{
F(x) :=

1

n

n∑
i=1

Fi(x;Di) + µ∥x∥1

}
, (2)

where µ > 0 is a predefined penalty parameter. The ℓ1 regularization is an effective convex surrogate
for the ℓ0-norm sparsity function, and thus is established as a computationally efficient approach for
promoting sparsity in the fields of compression and sparse coding (Donoho, 2006). However, we
note that adding ℓ1 regularization makes the objective in (2) non-smooth.1

Preliminaries on Decentralized Optimization. Decentralized optimization algorithms solve (2)
by an alternation of local optimization and consensus aggregation. Specifically, defining xi as the
local model parameters in node i for ∀1 ≤ i ≤ n, (2) can be recast as

min
xi∈Rd,∀i

1

n

n∑
i=1

(Fi(xi;Di) + µ∥xi∥1) subject to xi = xj ,∀(i, j) ∈ E. (3)

The nodes iteratively update the local solutions {xi} throughout T iterations. Denote the i-th local
model in iteration t as x(t)

i . In iteration t+ 1, each node i first updates a local solution, denoted by

x
(t+ 1

2 )
i , by minimizing Fi(xi) using the local dataset and the preceding solution x

(t)
i . Once every

node completes its local update, they communicate with their neighbors and aggregate the local
models by the following scheme.

x
(t+1)
i = x

(t+1/2)
i + γt

n∑
j=1

wi,j

(
y
(t)
j − x

(t+1/2)
i

)
= (1− γt)x

(t+1/2)
i + γt

n∑
j∈Ni

wijy
(t)
j , (4)

Here, γt is the consensus step size (i.e., consensus “learning rate”) and y
(t)
j is the inexact reconstruc-

tion of xj using the compressed information node j shared with node i. This aggregation protocol
is non-standard and is thus one of our contributions. For comparison, using our notation, Koloskova
et al. (2021)’s aggregation scheme is x(t+1)

i = x
(t+1/2)
i + γt

∑n
j=1 wi,j

(
y
(t)
j − y

(t)
i

)
1Since our optimization design is specifically aimed at minimizing the regularized loss, F , our analysis will

predominantly concentrate on the convergence with respect to F , rather than the unregularized loss F .
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Algorithm 1 MALCOM-PSGD

Initialize: x
(0)
i ,y

(−1)
i = 0 ∈ Rd,∀1 ≤ i ≤ n.

1: for t ∈ [0, . . . , T − 1] do ▷ All nodes i do in parallel
2: x

(t+1/2)
i = x

(t)
i − ηt∇Fi(x

(t)
i , ξ

(t)
i )

3: q
(t)
i = Q(x

(t+1/2)
i − y

(t−1)
i ) ▷ Residual quantization; see (6).

4: for j ∈ Ni do
5: Encode and send q

(t)
i ▷ Residual communication with source encoding from Alg. 3.

6: Receive and decode q
(t)
j ▷ Receiver decoding.

7: y
(t)
j = q

(t)
j + y

(t−1)
j

8: z
(t+1)
i = x

(t+1/2)
i + γt

∑
j ̸=i wi,j

(
y
(t)
j − x

(t+1/2)
i

)
▷ Consensus aggregation; cf. (4).

9: x
(t+1)
i = Sηtµ

(
z
(t+1)
i

)
▷ Proximal optimization by soft-thresholding; see (7).

Objective of This Work. First, we seek an algorithm for optimizing (2) that also incorporates
quantized model updates. Second, we design a communication protocol that effectively compresses
model updates to minimize the number of bits needed for the gossiping aggregation in (4).

3 PROPOSED ALGORITHM

MALCOM-PSGD solves (2) using decentralized proximal SGD with five major steps: SGD, residual
compression, communication and encoding, consensus aggregation, and proximal optimization. We
refer to Algorithm 1 for the illustration of the steps. Unless it is stated otherwise, we consider a
synchronous decentralized learning framework over a static network for the sake of the analysis.
However, MALCOM-PSGD can be readily extended to asynchronous and time-varying networks
while maintaining comparable performance, as demonstrated numerically in Section B.4. The steps
of MALCOM-PSGD are detailed below.

SGD. At iteration t, each node i performs the mini-batch SGD update w.r.t. the gradient of the local
empirical loss Fi(x;Di) with input x(t)

i . The updated local model is denoted by x
(t+1/2)
i in Step 2

of Alg. 1, where ξ
(t)
i is the mini-batch data sampled from Di.

Residual Quantization. We directly utilize Assumption 1 from Koloskova et al. (2019) to define
our compression operator Q(x).

Assumption 2. For any input x, Q(x) : Rd → Rd satisfies that

E[∥Q(x)− x∥2] ≤ (1− 1

τ
)∥x∥2, Q(0) = 0, (5)

where τ ∈ (0, 1) is a constant representing the expected compression error.

Assumption 2 models a broad range of popular gradient compression schemes including QSGD
(Alistarh et al., 2017), topk and randk (Stich et al., 2018), and rescaled unbiased estimators. While
any of the above compression schemes yield the same analytical results for consensus and conver-
gence (Theorem 1 and Theorem 2), we introduce the following compression scheme for bit rate
analysis and implementation. We integrate the uniform quantization scheme QSGD with uniform
dithering and adaptive normalization as follows.

Q(xi) = 1
xi ̸=0

1

τ

(
ζ

(
xi −min(x)

max(x)−min(x)
,Γ

))
, ζ(x,Γ) =

1

Γ
⌊xΓ + u⌋, (6)

where τ = 1 + d/Γ2, xi denotes the i-th entry of the input vector x, 1A is the indicator function,
ζ(x,Γ) is the uniform scalar quantizer with Γ quantization levels, and u is drawn from the uniform
distribution over [0, 1]. We show in Appendix A.1 that the quantizer in (6), combined with the
corresponding de-normalization process at the receiver, satisfies Assumption 2. We apply Q(·)
element-wise to quantize the model differential x(t+ 1

2 )
i −y

(t−1)
i for each i in the network. Here, the

input values are adaptively normalized into the range [0, 1] by the extreme values of the input vector.
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We emphasize the importance of this adaptive normalization process in limiting the quantization
error during the training, particularly when dealing with small input values.

Source Coding. The proximal operation promotes sparsity in the local models, encouraging shrink-
age in the quantized model residuals, and thus motivating us to use fewer bits for fixed precision.
This is accomplished by encoding the frequencies and positions of non-zero values over the support
of each q

(t)
i by using a vector source encoder. We employ the source coding scheme proposed in

Woldemariam et al. (2023), where the details are discussed in Algorithm 3 of Appendix A.3. The
scheme is inspired by the notion of encoding the support of a sparse input. If the quantized coeffi-
cients that are non-zero tend to be concentrated around a limited number of modes, we can encode
the support of those coefficients for each level efficiently as we expect most quantization levels to
appear at a lower frequency. For notational simplicity, we omit the indices i and t from the quan-
tized encoding input vector q(t)

i , representing it as q in the sequel. The type vector t(q) storing the
frequency information of each level, denoted by χℓ, 0 ≤ ℓ ≤ Γ − 1, is first created, where the ℓ-th
type is tℓ(q) =

∑d
j=1 δ(qj − χℓ). Each entry of the type vector has an associated support vector sℓ

denoting the positions in q that are equal to sℓ, i.e., sℓ[j] = 1 if qj = χℓ and sℓ[j] = 0 otherwise.
Because

∑Γ−1
ℓ=0 sℓ[j] = 1,∀1 ≤ j ≤ d, for a support vector sℓ with sℓ[j] = 1, we know that all

subsequent support vectors for levels ℓ′ > ℓ have sℓ′ [j] = 0. Thus, these subsequent support vectors
do not need to encode positional information for the values Iℓ, the set of indices where sℓ[i] = 1.
Let sℓ[Iℓ] denote the indices within sℓ that are communicated. It follows from Woldemariam et al.
(2023) that Iℓ = I0 \

⋃
ℓ′<ℓ Iℓ′ where I0 = {1, . . . , d}. The run-lengths within the support vectors

sℓ[Iℓ] are then encoded with Golomb encoding. For further details see Appendix A.3.

Consensus Aggregation. Each node i aggregates the local models from its neighbors with its up-
dated local model x(t+1/2)

i (Step 9 of Alg. 1), leading to the aggregated model denoted by z
(t+1)
i .

The proposed consensus process differs from Koloskova et al. (2019), since we employ the true local
model x(t+1/2)

i , rather than the reconstructed one y(t)
i , for aggregation. Even though it does not pre-

serve the average of the iterates and complicates the analysis, this aggregation scheme was chosen
because it reduces the error accumulation caused by Q(x). Furthermore, this approach allows us to
balance consensus and local training by adjusting the stepsize γt. In addition, it effectively reduces
the consensus error, as shown in Section 4.

Proximal Optimization. To tackle the non-smoothness of the objective function in (2), we adopt
the proximal SGD method, which decomposes (2) into a smooth component Fi(x) and a convex but
non-smooth component µ∥x∥1. Then, x is updated by the SGD method as previously described and
is subsequently combined with neighboring estimates during the consensus step. Finally, the model
x(t+1) is computed by applying a proximal operation w.r.t. µ∥x∥1. This operation is character-
ized by a closed-form update expression derived from the soft-thresholding function. Specifically,
let Sηtµ(x) = max {(|x| − µηt), 0} sign(x) denote the soft-thresholding function. The proximal
update step is given by

x
(t+1)
i = proxηt,µ∥·∥

(
z
(t+1)
i

)
= Sηtµ

(
z
(t+1)
i

)
, (7)

where proxηt,µ∥·∥(z) = argminu{µηt ∥u∥1 + ∥u− z∥2/2} is the proximal operator. The soft-
thresholding operation promotes model sparsity by truncating values with a magnitude less than
µηt. This step is important in accelerating convergence and conserving communication bandwidth.

Remark. MALCOM-PSGD aggregates the local models z
(t+1)
i , which are updated in the SGD

steps, before the proximal operation. This design allows us to model the compression error and
the SGD update variance as perturbations to the proximal step. We analyze the impact of these
perturbations on the convergence of MALCOM-PSGD in Section 4.

4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence conditions of MALCOM-PSGD in terms of 1) the con-
vergence of the consensus in model aggregation, and 2) the convergence of the optimization solution
to (2). We denote the average of local models in round t by x̄(t) = 1

n

∑n
i=1 x

(t)
i . For ease of no-

tation, we denote the model parameters in the matrix form by stacking the local models by column
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as X(t) := [x
(t)
1 , · · · ,x(t)

n ] and X
(t)

:= [x(t), · · · ,x(t)]. We impose the following assumptions on
the training loss function, which is standard in the stochastic optimization literature.
Assumption 3. Each local empirical loss function, i.e., Fi in (1), satisfies the following conditions.

i. Each xi 7→ Fi is Lipschitz smooth with constant Li. As a result, the sum
∑

i Fi is Lipschitz
smooth with constant L = maxi Li.

ii. Each Fi(xi) + µ∥xi∥1 is proper, lower semi-continuous, bounded below, and coercive2.
iii. All the full batch gradient vectors are bounded above by G < ∞, i.e., ∥∇Fi(x

(t)
i )∥2 ≤ G2,∀i, t,

Moreover, the mini-batch stochastic gradient vectors are unbiased with bounded variance, i.e.,

E[∇Fi(x
(t)
i ; ξ

(t)
i )] = ∇Fi(x

(t)
i ), E[∥∇Fi(x, ξi)−∇Fi(x)∥2] ≤ σ2

i ,∀i, t. (8)

By the AM-GM inequality, (8) implies
n∑

i=1

E[∥∇Fi(x, ξi)∥2] ≤ 2

n∑
i=1

(
E[∥∇Fi(x, ξi)−∇Fi(x)∥2] + ∥∇Fi(x)∥2

)
≤ 2n(G2 + σ2),

(9)

where σ2 ≜ 1
n

∑n
i=1 σ

2
i is the average gradient variance. In (9), the term σ2 measures the inexact-

ness introduced to the mini-batch SGD step.

In this section, we consider a diminishing sublinear learning rate as seen in (Zeng & Yin, 2018b):

ηt =
1

L(t+ a)ϵ
, (10)

where a ≥ 1 and ϵ ∈ (0, 1] are predefined hyperparameters controlling the decaying rate. Further-
more, we also choose a decreasing consensus stepsize surrogated by ηt, as

γ0 ≤ 1− a−ϵ

1− λn
, γt ≤ ηt, γt+1 ≤ γt,∀t. (11)

We first show in the following that the consensus error converges to zero in MALCOM-PSGD.
Theorem 1. Suppose Assumptions 1-3 hold. Let ηt and γt be defined from 10 and 11 and define
ω = (1−|λ2|)2

8τ , where τ is from Assumption 2. Suppose the following conditions hold.

γt ≤
1− |λ2|

4τ
; a ≥ 8ϵ

ω
; x

(0)
i = 0,∀i. (12)

Then, for ∀t > 0, ∀ϵ ∈ (0, 1], and ∀Q(•) that satisfies Assumption 2 we have
n∑

i=1

E∥x(t)
i − x(t)∥2 ≤ C

ω3
(2G2 + 2σ2 +

2

3
µ2d)nη2t , (13)

where C < 116 is an independent constant. Furthermore, applying the value of ηt in (10), the
consensus error

∑n
i=1 E∥x

(t)
i − x(t)∥2 converges to zero on the rate of O(1/t).

For the proof of Theorem 1, we refer to Appendix A.4. Theorem 1 is applicable to a broad range
of compression and coding schemes that satisfy Assumption 2. While the mini-batch sampling
variance in the SGD step is characterized by σ, a more significant compression error leads to a
larger τ , which in turn is manifested by a decreased ω in (13). Theorem 1 indicates a consensus
rate of O(1/t) which asymptotically matches (Koloskova et al., 2021, Lemma A.2). However, we
require a diminishing learning rate which is a stricter condition and is required because of the non-
smoothness induced by the regularization term. Additionally, because our aggregation scheme does
not preserve the average, the proof in Koloskova et al. (2021) does not hold for MALCOM-PSGD.

Define F(X) = 1/n
∑n

i=1(Fi(xi) + µ ∥xi∥1). Now we detail the final assumptions required for
proving the convergence of MALCOM-PSGD.

Assumption 4. Let {
∥∥X(t)

∥∥
F
}∞t=0 be the local models’ sequence obtained by Algorithm 1 within

the training iterations. The corresponding objective values {F(X(t))}∞t=0 are always finite. To-
gether with the coercivity of F in Assumption 3(ii), it follows that the norms of {X(t)}∞t=0 are
bounded as

∥∥X(t)
∥∥
F
≤ B, ∀t, for some constant B < ∞.

2A function h(x) is coercive if ∥x∥ → ∞ implies h(x) → ∞.
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Assumption 3(ii) is consistent with Zeng & Yin (2018b) and under this condition, Assumption 4
requires that the loss values produced in training iterations of our algorithm are finite. This assump-
tion can be reliably met with practical machine learning solvers. We note that Assumption 4 is not
required in Koloskova et al. (2021) and Zeng & Yin (2018b), but is critical for our analysis since
we need it to bound the optimality gap. Koloskova et al. (2021) is able to avoid this assumption by
assuming a smooth objective function while Zeng & Yin (2018b) avoids it by assuming loss-less
communication.

Theorem 2. Let the weighted average objective value be

F t =

∑t
k=0 ηkF(X

(k+1)
)∑

k ηk
. (14)

Let F∗ be the optimal objective value to F(X). With Assumptions 1-4 and (12), F t satisfies

E
[
F t −F⋆

]
≤
(
C1 +

C2√
n

) ∑t
k=0 η

2
k∑t

k=0 ηk
+

C3∑t
k=0 ηk

. (15)

Here, C1, C2, and C3 ∼ O(1) are some constants independent to t and n on the order of such that

C1 ≤ 116

2ω3

(
2G2 + 2σ2 + µ2d

)
+ ∥x⋆∥2

√
116

2ω3
(2G2 + 2σ2 + µ2d),

C2 ≤ B

√
116

2ω3
(2G2 + 2σ2 + µ2d),

C3 = ∥x∗∥22 /2,
where ω is defined in Theorem 1, and B is the constant defined in Assumption 4. Furthermore, the
convergence rate in (15) can be determined by choice of ϵ in (10). In particular, when ϵ = 1

2 , E
[
F t

]
converges to F⋆ on the highest rate of

E
[
F t −F⋆

]
= O

(
ln t√
t
+

ln t√
nt

+
1√
t

)
= O

(
ln t√
t

)
. (16)

The proof of Theorem 2 can be found in Appendix A.5. Theorems 1 and 2 show a trade-off between
consensus and convergence rates, depending on the value of ϵ, as both the consensus step size γt
and the learning rate ηt are influenced by ϵ. In particular, Theorem 2 indicates that the optimal value
for ϵ is ϵ = 1

2 , leading to the convergence rate of O(ln(t)/
√
t). We note that MALCOM-PSGD

exhibits the same convergence rate w.r.t. t as the error-free decentralized PGD approach in Zeng &
Yin (2018b). However, the quantization error in ω and the SGD variance σ2 amplify the values of
the multiplicative terms in C1 and C2, slowing down the convergence speed. For a decentralized
learning network exhibiting higher connectivity, the eigenvalue |λ2| of the mixing matrix W is
generally smaller. This results in a larger ω as per Theorem 1, consequently leading to improved
consensus and convergence rates according to Theorems 1 and 2.

The convergence order O
(
(1 + 1/

√
n) ln t/

√
t
)

stated in Theorem 2 indicates a diminishing
speedup with an increase in the number of devices n. This rate is notably slower than the rate
of O( 1

n
√
t
) achieved by decentralized PSGD with a convex loss and error-free communication, as

demonstrated in (Zeng & Yin, 2018a, Theorem 4(e)). The slower rate is due to the non-convex na-
ture of the loss function in (1). Also, our analysis, focusing on the convergence of the non-smooth
objective value F to its minimum, does not exhibit a linear speedup in terms of n in Koloskova et al.
(2021), which examines the convergence of the gradient vector of a smooth loss.

5 COMMUNICATION BIT RATE ANALYSIS

As the training converges, we expect a diminishing residual to be quantized in Step 3 of Alg. 1,
resulting in a sparse quantized vector. Let f t(·) be the probability mass function (PMF) of the
quantization output q(t)

i at iteration t, and denote the corresponding (re-ordered) frequency of the
ℓ-th quantization level, 0 ≤ ℓ ≤ Γ − 1, where {f t

ℓ}∀ℓ satisfies f t
ℓ ≥ f t

ℓ+1,∀ℓ. The quantization
mapping described in Section 3 scales an input vector according to its range, essentially shrinking
the support of f t(·) as t grows, given that the precision is fixed. In equation (11) of Woldemariam
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(a) Test accuracy per iterations.
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(b) Training loss over iterations.

Algorithms Avg. (MB) Std. Dev.

Maclcom 12.74 0.090

Error-Free 241.1 0.000

Choco+QSGD 58.59 2.074

Choco+OurComp 14.85 0.066
signSGD 16.74 0.000

(c) Bits transmitted per iteration.
Figure 1: Synchronous FL with the MNIST dataset and a heterogeneous data distribution

et al. (2023) , it is shown that the bit length of encoding q
(t)
i is upper bounded by

d

(
H(f t) + 2.914(1− f t

0) + f t
0 log2 f

t
0 +

Γ−1∑
ℓ=1

f t
ℓ log2(1−

ℓ−1∑
m=0

f t
m)

)
, (17)

where f0 is the PMF associated with the most frequent quantization level, H(f t) is the entropy of f t,
and d is the size of the model. By computing the empirical PMF f t in each iteration, (17) provides a
formula for the required number of bits in each local model communication. As mentioned before, it
is expected that the types will vary greatly as large values will rarely occur, which has been exploited
to achieve compression gains in our compression scheme.

Analysis Under Laplace Residual Model. The computation of communication costs using (17) ne-
cessitates an understanding of the prior distribution of the quantization inputs, i.e.,, the local model
residuals {x(t+ 1

2 )
i − y

(t−1)
i }. The accurate joint distribution of these residuals is often unavailable

prior to the training process. However, considering that the ℓ1-regularization in (2) promotes sparse
local models, we can effectively approximate the residual distribution using a suitable sparse dis-
tribution model. For clarity in our explanation, we assume that at each iteration t, all the residuals
follow an i.i.d. zero-mean Laplace distribution characterized by the time-varying Laplace diversity
parameter ρt, where a sparser model residual leads to a smaller ρt. With a large t, we prove in
Appendix A.3 that the communication bits for encoding each quantized model residual vector are
bounded by:

(17) < d
(
log2(2eρt) + 2.914e−

ln(d/ϵ)
Γ

)
= O

(
d
(
e−1/Γ − log t

))
, (18)

with probability at least 1− ϵ for small ϵ ∈ [0, 1].

(18) highlights that the communication efficiency of our compression scheme improves with an
increased number of quantization levels Γ on the order of O(de−1/Γ), which grows slower O(log Γ).
However, the advantage obtained from decreasing Γ must be balanced against the degradation in
convergence speed because a smaller Γ also results in higher quantization error and thus slower
convergence, as shown in (6) and Section 4. In summary, under the Laplace residual model, (18)
shows that the required communication bits of our compression scheme converges to O(de−1/Γ)
with a rate of O(−d log t). We refer to Appendix A.3 for the analysis and comparison with other
methods.

6 NUMERICAL RESULTS

In this section, we evaluate the performance of MALCOM-PSGD through simulations of decen-
tralized learning tasks on image classification using the MNSIT (Deng, 2012) dataset distributed
in a heterogeneous fashion consistent with Konečný et al. (2016). We compare MALCOM-PSGD
with CHOCO-SGD (Koloskova et al., 2021) paired with the compression scheme of QSGD given
in (Alistarh et al., 2017) and with CHOCO-SGD paired with the compression scheme utilized by
MALCOM-PSGD. The details of the experimental set up can be found in Appendix B along with
additional experiments. For the results presented here, models were trained for a fixed number of it-
erations and evaluated on the testing set while the number of bits were empirically computing using
each Algorithm’s respective encoding scheme. Monte Carlo simulations were performed for each
experiment. Figure 1 showcases the testing accuracy, training loss, and number of bits per iteration
over a fully connected network for MALCOM-PSGD, CHOCO-SGD+QSGD, CHOCO-SGD+Our
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(b) Loss over Iterations.

Algorithms Avg. (MB) Std.Dev.

Maclcom 4.54 0.202

Error-Free 80.36 0.000

Choco+QSGD 19.18 .620

Choco+OurComp 4.88 .151

(c) Bits transmitted per iteration.
Figure 2: “Ring like” Networking Topology
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(b) Train Loss over Iterations.
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Figure 3: Effect of sparsification on number of bits

Compression, signSGD (Bernstein et al., 2018), and the error free decentralized SGD. Since the
baseline algorithms optimize the unregularized loss, we evaluate the performance of all the algo-
rithms by the unregularized loss F for a uniform comparison. Similar to Figure 1, in Figure 2, we
consider a “ring like”3 network topology, and we compare the same algorithms, except for signSGD
since it is only adapted to the Federated Learning case.

Figure 3 showcases the effects of different thresholding parameters (µ). From Figure 1 and Fig-
ure 2, one can see that MALCOM-PSGD achieves equivalent test accuracy and convergence rate as
CHOCO-SGD but we observe a 75% reduction in bits transmitted per iteration. When compared to
signSGD in the Federated Learning scheme we achieve a 19% reduction. Lastly, Figure 3 demon-
strates that the improvement in communication efficiency is the result of our aggregation technique,
sparsification, and efficient encoding scheme. In Figure 3c, the x-axis is different thresholding pa-
rameters while the green line represents CHOCO-SGD with Our Compression scheme. Notice that
when MALCOM-PSGD does not utilize sparsification it still uses fewer bits than CHOCO-SGD.
This implies that our aggregation scheme, independent of sparsification, improves communication
efficiency. Furthermore, Figure 3c indicates that model sparsification provides an additional im-
provement in communication efficiency, demonstrating that MALCOM-PSGD as a whole is more
communication efficient than the sum of its parts.

7 CONCLUSION

We introduced the MALCOM-PSGD algorithm for decentralized learning with finite-sum, smooth,
and non-convex loss functions. Our approach sparsifies local models by non-smooth ℓ1 regulariza-
tion, rendering the implementation of the conventional SGD-based model updating challenging. To
address this challenge, we adopted the decentralized proximal SGD method to minimize the regu-
larized loss, where the residuals of local SGD updates are shared and aggregated prior to the local
proximal optimization. Furthermore, we employed dithering-based gradient quantization and vec-
tor source coding schemes to compress model communication and leverage the low entropy of the
updates to reduce the communication cost. By characterizing data sub-sampling and compression
errors as perturbations in the proximal operation, we quantified the impact of gradient compression
on training performance and established the convergence rate of MALCOM-PSGD with diminish-
ing stepsizes. Moreover, we analyzed the communication cost in terms of the asymptotic code rate
for the proposed algorithm. Numerical results validate the theoretical findings and demonstrate the
improvement of our method in both learning performance and communication efficiency.

3We formally describe this network topology in Appendix B.1.1 including a diagram and mixing matrix.
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A APPENDIX

A.1 THE QUANTIZATION SCHEME IN (6) SATISFIES ASSUMPTION 2

We denote the effective quantization scheme combining (6) and the de-normalization procedure at
the receiver end by Q̂(·). Specifically, for any input vector x ∈ Rd, the i-th entry of the output

is given by Q̂(xi) = (max (x) − min (x))Q(xi) + min (x). Let h(xi) =
xi −min(x)

max(x)−min(x)
,

r(x) = max(x)−min(x), and m = min(x). We have

Q̂(xi) =
1

τ
(ζ (h(xi)) r(x) +m) .

From (Alistarh et al., 2017, Lemma 3.1), the operator ζ(·) is unbiased, i.e., E[ζ(h(x))] = h(x),
where the expectation is taken w.r.t. the uniform dithering process. Moreover, let l be the quanti-
zation region of xi such that h(xi) ∈ [l/Γ, (l + 1/Γ)]. Let pi denote the probability that h(xi) is
mapped to (l+1)/Γ, where we have pi = h(xi)Γ− l. In other words, we have ζ(h(xi),Γ) equal to
(l + 1)/Γ with probability pi and equal to (l + 1)/Γ with probability 1− pi. Therefore, we have

E[ζ(h(xi),Γ)
2] = E[ζ(h(xi),Γ)]

2 +Var(ζ(h(xi),Γ)) = h2(xi) +
p(1− p)

Γ2
≤ h2(xi) +

1

4Γ2
,

where Var(·) denotes the variance of the input random variable, and the last inequality follows from
p(1− p) ≤ 1/4.

Note that

E[∥Q̂(x)∥2] = 1

τ2
E

[
d∑

i=1

(r(x)ζ(h(xi),Γ) +m)
2

]

=
1

τ2

(
d∑

i=1

E
[
r2(x)ζ(h(xi),Γ)

2
]
+

d∑
i=1

E [2r(x)mζ(h(xi),Γ)] +

d∑
i=1

m2

)

≤ 1

τ2

(
r2(x)

d∑
i=1

(
h2(xi) +

1

4Γ2

)
+ 2r(x)m

d∑
i=1

h(xi) + dm2

)
. (19)

For h(·), we have
d∑

i=1

h(xi) =
1

r(x)
(−dm+

d∑
i=1

xi), (20)

d∑
i=1

h2(xi) =
1

r2(x)

d∑
i=1

x2
i −

2m

r2(x)

d∑
i=1

xi +
dm2

r2(x)
. (21)
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Algorithm 2 The matrix form of MALCOM-PSGD.

Initialize: X(0),Y (−1) = 0.
1: for t ∈ [0, . . . , T − 1] do ▷ All nodes i do in parallel
2: X(t+1/2) = X(t) − ηt∇F

(
X(t), ξ(t)

)
3: Q(t) = Q(X(t+1/2) − Y (t−1)) ▷ Residual quantization; see (6).
4: for j ∈ Ni do
5: Encode and send Q(t) ▷ Residual communication with source encoding from Alg. 3.
6: Receive and decode Q(t) ▷ Receiver decoding.
7: Y (t) = Q(t) + Y (t−1)

8: Z(t+1) = (1− γt)X
(t+1/2) + γtY

(t)W ▷ Consensus aggregation; cf. (4).
9: X(t+1) = Sηtµ

(
Z(t+1)

)
▷ Proximal optimization by soft-thresholding; see (7).

Substituting (20) and (21) into (19) we have:

E[∥Q̂(x)∥2] = 1

τ2

(
∥x∥22 + r2(x)

d

4Γ2

)
(a)

≤ 1

τ2

(
1 +

d

Γ2

)
∥x∥22

(a)
=

∥x∥22
τ

,

where (a) follows from r2(x) ≤ 4∥x∥2∞ ≤ 4∥x∥22 and (b) follows from the definition of τ . Finally,
we have

E
[
∥Q̂(x)− x∥2

]
= E

[
d∑

i=1

Q̂(xi)
2

]
− 2E

[
d∑

i=1

Q̂(xi)xi

]
+ E

[
d∑

i=1

x2
i

]

≤ 1

τ
∥x∥2 − 2

τ
∥x∥2 + ∥x∥2 =

(
1− 1

τ

)
∥x∥2,

which completes the proof.

A.2 MATRIX REPRESENTATION OF MALCOM-PSGD AND USEFUL LEMMAS

To facilitate our proofs, we recast MALCOM-PSGD into an equivalent matrix form. Specif-
ically, we define Y (t) = [y

(t)
1 , · · · ,y(t)

n ], Z(t) = [z
(t)
1 , · · · , z(t)

n ], Q(t) = [q
(t)
1 , · · · , q(t)

n ],
ξ(t) = [ξ

(t)
1 , · · · , ξ(t)n ]T , and ∇F (X(t), ξ(t)) = [∇Fi(x

(t)
1 , ξ

(t)
1 ), · · · ,∇Fn(x

(t)
n , ξ

(t)
n )]. Together

with the matrices X(t) and X
(t)

defined in Section 4, we have the matrix form of Alg. 1, as shown
in Alg. 2.

We also provide two useful results for the proof.

Lemma 1. For any A,B with the same dimension, we have, for any α > 0:
∥A+B∥2F ≤ (1 + α)∥A∥2F + (1 + α−1)∥B∥2F , (22)
∥AB∥F ≤ ∥A∥F ∥B∥2. (23)

Lemma 2. For the mixing matrix W satisfying Assumption 1, we have, for any k > 0,∥∥∥∥W k − 1

n
11⊤

∥∥∥∥
2

≤ |λ2|k = (1− δ)k, (24)

∥I−W ∥22 = λ2
n, (25)

where we define δ := 1− |λ2|.

Proof. See (Koloskova et al., 2019, Lemma 16).

A.3 FURTHER DISCUSSIONS ON THE ENCODING ALGORITHM

Preliminaries on Source Encoding. Elias coding Elias (1975) is a universal encoding scheme for
unknown distributions that are assumed to generally have small integer values. Elias omega coding
recursively encodes a value in binary: the string that encodes a value has the binary encoding of the
value appended to itself, whose length becomes the subsequent value to be encoded in binary.
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Algorithm 3 The source encoding scheme.

1: function ENCODE(q, Γ)
2: Compute t(q) and encode it with Elias omega encoding.
3: Initialize I = {1, . . . , N}.
4: for ℓ = 1, . . . ,Γ− 1 do
5: I ′ = ∅, Rℓ = ∅.
6: Compute Mℓ = [(ln 2)(N −

∑
m≤ℓ tm(q))/tℓ(q)].

7: r = 0.
8: for j ∈ I do
9: if δ(qj − ℓ) = 0 then

10: Rℓ = Rℓ ∪ {r}.
11: if |Rℓ| < tℓ(q) then
12: Encode r by Golomb coding with parameter Mℓ.
13: r = 0.
14: I ′ = I ′ ∪ {n}.
15: else
16: r = r + 1.
17: I = I \ I ′.

Golomb coding Golomb (1966) an encoding scheme parameterized by an integer M that divides
the value to be encoded. The quotient and remainder are separately encoded in unary and binary,
respectively.

Algorithm Implementation. The following algorithm describes the encoding scheme proposed in
Woldemariam et al. (2023). In this scheme, the type vector is assumed to be in descending order,
while implementation allows for an unordered type vector. In Algorithm 3, the notation [x] denotes
the nearest integer of x. To decode, the first Γ strings encoded with Elias omega coding are decoded
with Elias decoding to retrieve the type vector. The run-lengths are then decoded with Golomb
decoding and used to iteratively reconstruct the support vectors. With the positional information
encoded through the support vectors, the decoder can fill in values of χℓ for all ℓ.

Bit Analysis Under Laplace Inputs. Calculating the number of communication bits using (??)
requires the knowledge of the distribution of the local model residuals. Tracking the exact joint
distribution of the local residuals x

(t+ 1
2 )

i − y
(t−1)
i over iterations is generally challenging. As an

alternative, we can fit the prior distribution of the residuals under a specific statistical model. Given
that the ℓ1-minimization in (2) encourages sparsity in local model updates, a sparse prior distribution
for the quantization input is a logical choice. For instance, we can assume the unquantized residuals
{x(t+ 1

2 )
i −y

(t−1)
i } follow a time-varying i.i.d. Laplace distribution denoted as pt. Specifically, each

entry of the vector, denoted by q̃tj , 1 ≤ j ≤ d, follows the distribution of

pt(q̃
t
j) = Lap(0, ρt) =

1

2ρt
e−|q̃tj |/ρt , (26)

where ρt is the Laplace diversity parameter at iteration t. A smaller ρt implies less variance in the
value of q̃tj and a sparser model residual for quantization.

Then, we bound the PMF ft of the quantized value Q(q̃tj) by the entropy inequality H(f t) ≤
h(pt) = log2(2ρte), where h(pt) represents the differential entropy of the distribution pt. Further-
more, we have

f t
0

(a)

≥ Pr(Q(q̃tj) = 0) = Pr

(
−Υt

2Γ
≤ q̃tj ≤

Υt

2Γ

)
(b)
= 2Pr

(
0 ≤ q̃tj ≤

Υt

2Γ

)
= 1− e−

Υt
2Γρt , (27)

where Υt = max(x
(t+ 1

2 )
i −y

(t−1)
i )−min(x

(t+ 1
2 )

i −y
(t−1)
i ) is the time-varying range of the model

residual vector used for adaptive normalization in (6), (a) follows from that f t
0 is the largest value

in the PMF f t, and (b) follows from the symmetry of the Laplace distribution around zero. The
next step is to bound the random variable Υt/ρt. Using the property for the Laplace distribution

14
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Compression method # of bits per local communication
Our scheme (17) < d(H(f t) + const) ≤ d(log Γ + const)
QSGD d(log Γ + const)
signSGD d

Table 1: Comparison of communication complexity with a large t in the worst-case scenario.

Pr(max1≤j≤d |qtj | > ϑρt) ≤ de−ϑ,∀ϑ > 0, and let ϵ = de−ϑ, we have

Pr

(
max
1≤j≤d

|qtj | > (ln d− ln ϵ)ρt

)
≤ ϵ. (28)

Since qtj is an i.i.d. continuous variable and the Laplce distribution is symmetric, we have Υt =

2max1≤j≤d |qtj |. Combining this result with (29), with probability at least 1 − ϵ for a small ϵ < 1,
we have

f t
0 ≥ 1− e−

ln d−ln ϵ
Γ . (29)

Substituting this into the bit bound in (17), we have

# of bits per communication ≤ d
(
H(f t) + 2.914(1− f t

0) + f t
0 log2 f

t
0 +

Γ−1∑
ℓ=1

f t
ℓ log2(1−

ℓ−1∑
m=0

f t
m)︸ ︷︷ ︸

<0

)

< d(log2(2eρt) + 2.914e−
ln d−ln ϵ

Γ ). (30)

Notably, our compression scheme achieves smaller communication cost with sparser inputs (i.e., a
smaller ρt). By using the convergence result in Theorem 1, we can bound the value of ρt as follows.

Proposition 1 (Decrease of the residual variance). Suppose the conditions in Theorem 1 hold. For
any iteration t = 0, 1, · · · , we have

2dρ2t ≤ 1

n

n∑
i=1

E[
∥∥∥x(t+ 1

2 )
i − y

(t−1)
i

∥∥∥2]
≤ 2

(
1 +

√
C

ω

1− γt−1λn

ω

)2

(2G2 + 2σ2 + µ2d)η2t−1 = O
(

1

t2ϵ

)
, (31)

where C < 116 is the constant defined in Theorem 1.

Proof. See Appendix A.6.1.

It follows from Proposition 1 that ρt decreases with the order of O
(

1√
dtϵ

)
. Plugging this re-

sult into (31), the number of communication bits for the Laplace distributed residuals decreases
to O

(
de−1/Γ

)
with the rate of O(−d log t) with high probability.

Comparision with other compression methods. ßwe compare the worst-case communication bit
rate of our compression scheme with the existing method QSGD (Alistarh et al., 2017) and signSGD
(Bernstein et al., 2018) in Table 1. Here, the worst-case communication complexity of QSGD fol-
lows from (Alistarh et al., 2017, Lemma A.4) by noting that every quantization output q(t)

i satisfies
||q(t)

i ||0 ≤ d.

Table 1 shows that our method attains a smaller communication cost than QSGD. This result algins
with our numerical findings in Section 6, where our approach consistently outperforms QSGD in
communication efficiency. On the other hand, when comparing our method with signSGD, with
a small quantization precision Γ, our method exhibits comparable communication costs. Never-
theless, signSGD, limited to one-bit quantization only, incurs substantial quantization errors and
subsequently slower training convergence. As demonstrated in Section 6, our method not only main-
tains similar communication costs but also significantly enhances training performance compared to
signSGD.
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A.4 PROOF OF THEOREM 1

Before proving Theorem 1, we state the following two lemmas.

Lemma 3. Suppose γt ≤ 1−|λ2|
4τ , then for any θ > 0 we have:

EQt+1

[(
1 + θ−1

) ∥∥∥Z(t+1) −Z
(t+1)

∥∥∥2
F
+
∥∥∥X(t+3/2) − Y (t+1)

∥∥∥2
F

]
≤ (1 + θ−1)(1− ω)

(∥∥∥X(t+1/2) −X
(t+1/2)

∥∥∥2
F
+
∥∥∥X(t+1/2) − Y (t)

∥∥∥2
F

)
+ (1 + θ)η2t

∥∥∥∇F
(
X(t+1), ξ(t+1) +Φ(t+1)

)∥∥∥2
F
, (32)

where ω = (1−|λ2|)2
8τ ≤ 1

8 .

Proof. See Appendix A.6.2.

Lemma 3 provides a useful bound on the aggregation error in terms of the model averaging error
and the quantization error.

Lemma 4. Consider a sequence {rt}t≥1 s.t.

rt+1 ≤ (1− c/2)rt +
2

c
η2tA, (33)

for positive constants c and A; and ηt =
b

(t+a)ϵ with a, b > 0 and ϵ ∈ (0, 1].

Moreover, suppose ϵ < c
4(2−c)a and r0 ≤ Aη2

0

c
4(a+2ϵ)

ac+4(c−2)ϵ . We have

rt ≤
η2tA

c

4(a+ 2ϵ)

ac+ 4(c− 2)ϵ
,∀t. (34)

Proof. See Appendix A.6.3.

Equipped with the above results, we are ready to prove Theorem 1. Define the following auxiliary
functions:

Lηt,γt
(X) =

n∑
i=1

(
Fi(xi) +

γt
2ηt

∥xi∥2I−W

)
= 1TF (X) +

γt
2ηt

∥X∥2I−W , (35)

Mηt,γt
(X) = Lηt,γt

(X) + µ ∥X∥1,1 . (36)

Then, Step 9 of Alg. 2 can be represented as

X(t+1) = prox
(
(1− γt)X

(t) + γtY
(t)W − ηt∇F (X(t), ξ(t))

)

= X(t) − ηt

∇F (X(t), ξ(t)) +
γt
ηt
X(t)(I−W )︸ ︷︷ ︸

∇Lηt,γt (X
(t);ξt)

+Φ(t+1)

− γt

X(t) − Y (t−1) −Q(X(t) − Y (t−1))︸ ︷︷ ︸
Quantization error ≜Et

W ,

(37)

for some subgradient Φ(t+1) ∈ ∂
(
µ
∥∥X(t+1)

∥∥
1,1

)
. We observe the following properties:

Observation 1. Every subgradient of the regularization function ϕ ∈ ∂(µ ∥x∥1) has a bounded
norm as ∥ϕ∥2 ≤ µ

√
d. Under Assumption 3, we have E[∥∇F (X; ξ) +Φ∥2F ] ≤ 2n(2G2 + 2σ2 +

µ2d) for any ϕi ∈ ∂(µ ∥xi∥1), X , and ξ.

Observation 2. Under Assumption 3, Lηt,γt
(·) is Lipschitz smooth with constant L′ = (1− γt)L+

γtη
−1
t (1− λn).

16
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Define a sequence {rt}t such that

rt = E
[∥∥∥X(t) −X

(t)
∥∥∥2
F
+
∥∥∥X(t+1/2) − Y (t)

∥∥∥2
F

]
. (38)

At iteration t+ 1, we have

rt+1 = E

[∥∥∥∥Z(t+1) −Z
(t+1)

+ ηt+1

(
Φ(t+1)

)(11T

n
− I

)∥∥∥∥2
F

]
+ E

[∥∥∥X(t+3/2) − Y (t+1)
∥∥∥2
F

]

≤ E
[
(1 + α−1)

∥∥∥Z(t+1) −Z
(t+1)

∥∥∥2
F
+
∥∥∥∇X(t+1) − Y (t+1)

∥∥∥2
F

]
+ (1 + α)η2tE

[∥∥∥Φ(t+1)
∥∥∥2
F

](∥∥∥∥11T

n
− I

∥∥∥∥2
2

)
(32),θ=α

≤ (1 + α−1)(1− ω)
∥∥∥X(t+1/2) −X

(t+1/2)
∥∥∥2
F
+ (1− ω)

∥∥∥X(t+1/2) − Y (t)
∥∥∥2
F

+ (1 + α)(η2t )2nµ
2d+ (1 + α)η2t

∥∥∥∇F
(
X(t+1), ξ(t+1)

)
+Φ(t+1)

∥∥∥2
F

≤ (1 + α−1)(1 + β−1)(1− ω)
∥∥∥X(t) −X

(t)
∥∥∥2
F
+ (1 + β)(1− ω)η2t

∥∥∥F (X(t+1))
∥∥∥2
F

+ (1 + α)(η2t )2nµ
2d+ (1− ω)

∥∥∥X(t+1/2) − Y (t)
∥∥∥2
F
+ (1 + α)η2t

∥∥∥∇F
(
X(t+1), ξ(t+1)

)
+Φ(t+1)

∥∥∥2
F

β=6/(ω(1−ω))

≤ (1 + α−1)(1 +
ω(1− ω)

6
)(1− ω)rt + (1 + α)(1 +

6

ω(1− ω)
)(1− ω)4nη2t (2G

2 + 2σ2 + µ2d)

α=ω/(3−ω)

≤ (1 + ω/2)(1− ω)rt +

(
9

ω

)
4nη2t (2G

2 + 2σ2 + µ2d)

≤ (1− ω/2)rt +
36

ω
nη2t (2G

2 + 2σ2 + µ2d).

Combining the recursion of rt+1 and Lemma 4, we have (33) with A = 18n(2G2 + 2σ2 + µ2d).
Applying Lemma 4 and assuming ϵ < ω

4(2−ω)a, we have

rt ≤
56(a+ 2ϵ)

ω(aω + 4(ω − 2)ϵ)
nη2t (2G

2 + 2σ2 + µ2d). (39)

To prove (13), we first note that if a ≥ 8ϵ/ω,
a

ϵ
≥ 8

ω
>

4(2− ω)

ω
.

(39) follows from the assumption of
∥∥x(0)

∥∥ = 0. Furthermore, define the function h(x) =
1+2x

ω+4(ω−2)x . We have

h′(x) = 2 · ω + 4(ω − 2)x− 2(1 + 2x)(ω − 2)

(ω + 4(ω − 2)x)2
=

8− 2ω

(ω + 4(ω − 2)x)2
> 0.

For ϵ/a ≤ ω/8, we have

h(ϵ/a) ≤ h(ω/8) =
2 + ω/2

ω2
≤ 33

16ω2
, (40)

where the last inequality follows from ω ≤ 1/8. Substituting (40) into (39) and applying

E[
∥∥∥Xt −X

t
∥∥∥2
F
] ≤ rt, we have

E
∥∥∥X(t) −X

(t)
∥∥∥2
F
≤ rt ≤

56

ω
nη2t (2G

2 + 2σ2 + µ2d)h(ω/8) ≤ C

ω3
nη2t (2G

2 + 2σ2 + µ2d),

(41)
where C < 116 is a constant.

A.5 PROOF OF THEOREM 2

Theorem 1 implies the following results that will be useful in the proof of Theorem 2.
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Proposition 2. Under the conditions of Theorem 1, for any t = 0, 1, · · · , we have

1

n

n∑
i=1

E
[∥∥∥x(t+1)

i − y
(t)
i

∥∥∥2] ≤ 2

(
1 +

√
C

ω

1− γtλn

ω

)2

(2G2 + 2σ2 + µ2d)η2t , (42)

where C < 116 is the constant defined in Theorem 1.

Proof. See Appendix A.6.4.

Proposition 3. Under the same conditions of Theorem 1, one has that

E
∥∥∥x(t+1) − x(t)

∥∥∥2 ≤ 1

n

n∑
i=1

E
∥∥∥x(t+1)

i − x
(t)
i

∥∥∥2 ≤ (2G2 + 2σ2 + µ2d)

(
1 + 6

√
C

32ω3
+ 1

)2

η2t ,

(43)
where C < 116 is the constant defined in Theorem 1.

Proof. Note that∥∥∥X(t+1) −X
(t)
∥∥∥2
F
=
∥∥∥(X(t+1) −X(t))11T /n

∥∥∥2
F
≤
∥∥∥X(t+1) −X(t)

∥∥∥2
F
. (44)

Applying (22), for any α, β > 0,

E
∥∥∥X(t+1) −X(t)

∥∥∥2
F
≤ (1 + α−1)E

∥∥∥X(t+1) −X
(t+1)

∥∥∥2
F

+ (1 + α)(1 + β−1)E
∥∥∥X(t) −X

(t)
∥∥∥2
F
+ (1 + α)(1 + β)E

∥∥∥X(t+1) −X
(t)
∥∥∥2
F
.

(45)
The last term in (45) can be simplified as

E
∥∥∥X(t+1) −X

(t)
∥∥∥2
F
≤ E

∥∥∥ηt (∇F (X(t), ξ(t)) + Φ(t+1)
)
− γt(X

(t) − Y (t))
∥∥∥2
F

∥∥11T /n
∥∥2
2

≤ 2η2tE
∥∥∥∇F (X(t), ξ(t)) + Φ(t+1)

∥∥∥2
F
+ 2γ2

t E
∥∥∥X(t) − Y (t)

∥∥∥2
F

≤ 4n(2G2 + 2σ2 + µ2d)η2t + 2γ2
t E
∥∥∥X(t) − Y (t)

∥∥∥2
F
. (46)

Combining (45), (46), and (38), for ∀α, β > 0,

E[
∥∥∥X(t+1) −X(t)

∥∥∥2
F
] ≤(1 + α−1)rt+1 + (1 + α)rt max{1 + β−1, 2γ2

t (1 + β)}

+ (1 + α)(1 + β)4n(2G2 + 2σ2 + µ2d)η2t . (47)

In particular, setting β = 8, we have 1 + β−1 = 9/8 and 2γ2
t (1 + β) = 18/γ2

t ≤ 9/8. Applying
(41),

E[
∥∥∥X(t+1) −X(t)

∥∥∥2
F
] ≤
(
1 + α−1 + (1 + α)

(
9C

8ω3
+ 36

))
n(2G2 + 2σ2 + µ2d)η2t . (48)

By the inequality of arithmetic and geometric means, we have

1 + α−1 + (1 + α)

(
9C

8ω3
+ 36

)
≥

(
1 +

√
9C

8ω3
+ 36

)2

, (49)

where the inequality holds if α−2 = 9C
8ω3 + 36. Combining (48) and (49) completes the proof.

We prove the convergence of MALCOM-PSGD by using Theorem 1, Proposition 2, and Proposition
3 as follows. First, note that ηt ≤ 1

aϵ ≤ 1−(1−λn)γt

L ,∀t with γt ≤ 1−a−ϵ

1−λn
. Leveraging L′ =

L + γtη
−1
t (1 − λn) in Observation 2, we have L′ ≤ η−1

t . Following (Zeng & Yin, 2018a, Eqs.
(88)-(89) ), for any given U ∈ Rd×n that is independent to t,

Mηt,γt
(U)−Mηt,γt

(X(t+1)) ≥
〈
∇Lηt,γt

(X(t)) +Φ(t+1),U −X(t+1)
〉
− L′

2

∥∥∥X(t+1) −X(t)
∥∥∥2
F
,
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where Φ(t+1) ∈ ∂(µ
∥∥X(t+1)

∥∥
1,1

). Substituting Φ(t+1) in (37) and taking U to be an optimal
solution X⋆ ∈ X ⋆,
E[Mηt,γt(X

(t+1))−Mηt,γt(X
⋆)]

≤ −η−1
t E

〈
X(t) −X(t+1) − γt(X

(t) − Y (t))W ,X⋆ −X(t+1)
〉
+

L′

2
E
∥∥∥X(t+1) −X(t)

∥∥∥2
F

−
〈
Et[∇Lηt,γt

(X(t))−∇Lηt,γt
(X(t); ξt)],X⋆ − Et+1[X

(t+1)]
〉

︸ ︷︷ ︸
=0

L′≤η−1
t

≤ η−1
t

2
E
∥∥∥X(t+1) −X(t)

∥∥∥2
F
− η−1

t E
〈
X(t) −X(t+1) − γt(X

(t) − Y (t))W ,X⋆ −X(t+1)
〉

=
1

2ηt
(E
∥∥∥X(t) −X⋆

∥∥∥2
F
− E

∥∥∥X(t+1) −X⋆
∥∥∥2
F
) + γtη

−1
t E

〈
(X(t) − Y (t))W ,X⋆ −X(t+1)

〉
≤ 1

2ηt

(
E
∥∥∥X(t) −X⋆

∥∥∥2
F
− E

∥∥∥X(t+1) −X⋆
∥∥∥2
F
+ 2γtEt

∥∥∥X(t) − Y (t)
∥∥∥
F
Et+1

∥∥∥X⋆ −X(t+1)
∥∥∥
F

)

Pro. 2
≤ 1

2ηt

E
∥∥∥X(t) −X⋆

∥∥∥2
F
− E

∥∥∥X(t+1) −X⋆
∥∥∥2
F
+ 2C0 γtηtEt+1

∥∥∥X⋆ −X(t+1)
∥∥∥
F︸ ︷︷ ︸

≜At+1

 ,

(50)
where C0 is a constant given by the square root of the r.h.s. of Theorem 1.

Taking the summation of (50) recursively w.r.t. k = 0, 1, ..., t and using X(0) = 0, we have
t∑

k=0

ηk(E[Mηk,γk
(X(k+1))]− nF⋆)) ≤ 1

2
∥X⋆∥2F + C0

t∑
k=0

Ak+1. (51)

On the other hand, note that∥∥∥X(k+1)
∥∥∥
1,1

≥
∥∥∥X(k+1)

∥∥∥
1,1

−
∥∥∥X(k+1) −X

(k+1)
∥∥∥
1,1

≥
∥∥∥X(k+1)

∥∥∥
1,1

−
√
d
∥∥∥X(k+1) −X

(k+1)
∥∥∥
F
;

(52)
and

Lηk,γk
(X(k+1)) ≥ Lηk,γk

(X
(k+1)

)+ < ∇Lηk,γk
(X(k+1)),X(k+1) −X

(k+1)
> −L′

2

∥∥∥X(k+1) −X
(k+1)

∥∥∥2
F

≥ Lηk,γk
(X

(k+1)
)−G

∥∥∥X(k+1) −X
(k+1)

∥∥∥
F
− L′

2

∥∥∥X(k+1) −X
(k+1)

∥∥∥2
F
.

(53)

Combining (52) and (53) and noting that X is consensus by definition, we have

Mηk,γk
(X(k+1)) ≥ nF(X

(k+1)
)− (G+ µ

√
d)
∥∥∥X(k+1) −X

(k+1)
∥∥∥
F
− L′

2

∥∥∥X(k+1) −X
(k+1)

∥∥∥2
F
.

(54)

Combining (51) and (54) and applying L′ ≤ η−1
t ,

n
∑
k

ηk(EF(X
(k+1)

)−F⋆) ≤ 1

2
∥X⋆∥2F + (G+ µ

√
d)
∑
k

ηkE
∥∥∥X(k+1) −X

(k+1)
∥∥∥
F

+
1

2

∑
k

E
∥∥∥X(k+1) −X

(k+1)
∥∥∥2
F
+ C0

t∑
k=0

Ak+1. (55)

Applying Theorem 1 and Proposition 3, we have E
∥∥∥X(k+1) −X

(k+1)
∥∥∥
F

= O(ηk) and

E
∥∥∥X(k+1) −X

(k+1)
∥∥∥2
F

= O(η2k). Note that the left-hand side of (55) equals to n(
∑

k ηk)(F t −
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F⋆). Therefore,

EF t −F⋆ ≤
n
2 ∥x⋆∥22 + nC ′

1

∑t
k=0 η

2
k +

√
nC ′

2

∑t
k=0 γkηkE

∥∥X⋆ −X(k+1)
∥∥
F

n(
∑t

k=0 ηk)

=
C3∑t
k=0 ηk

+ C ′
1

∑t
k=0 η

2
k∑t

k=0 ηk
+ C ′

2

∑t
k=0 γkηkE

∥∥X⋆ −X(k+1)
∥∥
F√

n(
∑t

k=0 ηk)
, (56)

where

C ′
1 ≤ C

2ω3

(
2G2 + 2σ2 + µ2d

)
,

C ′
2 ≤
√

C

2ω3
(2G2 + 2σ2 + µ2d),

C3 = ∥x⋆∥2 /2,
with C < 116 be the constant defined in Theorem 1. The final step to prove (15) is to compute the
last term in (56). Applying the triangle inequality,

γkηkE
∥∥∥X⋆ −X(k+1)

∥∥∥
F
≤ (∥X⋆∥F + E

∥∥∥X(k+1)
∥∥∥
F
)γkηk ≤ (B + ∥X⋆∥F )η

2
k

= Bη2k +
√
n ∥x⋆∥2 η

2
k, (57)

where B is defined in Assumption 4, and the last inequality follows from γt ≤ ηt. Plugging this
result into (56), we have

EF t −F⋆ ≤ C3∑t
k=0 ηk

+ (C ′
1 + ∥x⋆∥2 C

′
2)

∑t
k=0 η

2
k∑t

k=0 ηk
+

C ′
2B√
n

∑t
k=0 η

2
k∑t

k=0 ηk
, (58)

which is identical to (15). Finally, applying the result in (Chen, 2012, Sect. 3.2.4) to characterize

the order of
1∑∞

k=1 ηk
and

∑t
k=1 η

2
k∑t

k=1 ηk
, the terms in (58) exhibit the order of

1∑t
k=1 ηk

=


O( 1

t1−ϵ ) if ϵ ∈ (0, 1
2 ),

O( 1√
t
) if ϵ = 1

2 ,

O( 1
t(1−ϵ) ) if ϵ ∈ ( 12 , 1),

O( 1
ln t ) if ϵ = 1.

,

∑t
k=1 η

2
k∑t

k=1 ηk
=


O( 1

tϵ ) if ϵ ∈ (0, 1
2 ),

O( ln t√
t
) if ϵ = 1

2 ,

O( 1
t1−ϵ ) if ϵ ∈ ( 12 , 1),

O( 1
ln t ) if ϵ = 1.

This completes the proof.

A.6 LEMMA AND PROPOSITION PROOFS

A.6.1 PROOF OF PROPOSITION 1

When the entries x(t+ 1
2 )

i − y
(t−1)
i follow the i.i.d. Laplace distribution with the diversity parameter

ρt, the variance of each entry is given by 2ρ2t . Therefore, we have

2dρ2t ≤ 1

n

n∑
i=1

E[
∥∥∥x(t+ 1

2 )
i − y

(t−1)
i

∥∥∥2] = E
[∥∥∥X(t+ 1

2 ) − Y (t−1)
∥∥∥2
F

]
. (59)
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For ease of notation, we bound it with iteration t+ 1. For any α > 0, we have

E
[∥∥∥X(t+1+ 1

2 ) − Y (t)
∥∥∥2
F

]
= E

[∥∥∥Z(t+1) − Y (t) − ηt

(
∇F (X(t+1); ξt) + Φ(t+1)

)∥∥∥2
F

]
≤ (1 + α−1)η2tE

[∥∥∥∇F (X(t+1); ξt) + Φ(t+1)
∥∥∥2
F

]
+ (1 + α)E

[∥∥∥(1− γt)X
(t) − Y (t) + γtY

(t)W
∥∥∥2
F

]
≤ 2(1 + α−1)(2G2 + 2σ2 + µ2d)nη2t + (1 + α)E

[∥∥∥(I− γtW )(X(t) − Y (t)) + γtX
(t)(I−W )

∥∥∥2
F

]
(a)

≤ 2(1 + α)

(
E
[∥∥∥X(t) − Y (t)

∥∥∥2
F

]
∥I− γtW ∥22 + γ2

t E
[∥∥∥(X(t) −X

(t)
)(I−W )

∥∥∥2
F

])
+ 2(1 + α−1)(2G2 + 2σ2 + µ2d)nη2t

≤ 2(1 + α)

(
(1− γtλn)

2E
[∥∥∥X(t) − Y (t)

∥∥∥2
F

]
+ γ2

t (1− λn)
2E
[∥∥∥X(t) −X

(t)
∥∥∥2
F

])
+ 2(1 + α−1)(2G2 + 2σ2 + µ2d)nη2t

(b)

≤ 2(1 + α)(1− γtλn)
2E
[∥∥∥X(t) −X

(t)
∥∥∥2
F
+
∥∥∥X(t) − Y (t)

∥∥∥2
F

]
+ 2(1 + α−1)(2G2 + 2σ2 + µ2d)nη2t

(c)

≤ 2(1 + α)(1− γtλn)
2rt + 2(1 + α−1)(2G2 + 2σ2 + µ2d)nη2t

(d)

≤ 2

1 + α−1 + (1 + α)(1− γtλn)
2C/ω3︸ ︷︷ ︸

≜h(α)

 (2G2 + 2σ2 + µ2d)nη2t , (60)

where (a) follows from X
(t)
(I −W ) = 0; (b) follows from γt(1 − λn) ≤ 1 − γtλn; (c) follows

from the definition in (38); and (d) follows from (41).

By the inequality of arithmetic and geometric means,
h(α) = 1 + (1− γtλn)

2C/ω3 + α−1 + α(1− γtλn)
2C/ω3

≥ 1 + (1− γtλn)
2C/ω3 + 2(1− γtλn)

√
C/ω3

= (1 + (1− γtλn)
√
C/ω3)2, (61)

where the inequality holds if α =
√

ω3/C/(1 − γtλn). Combining (60) and (61) completes the
proof.

A.6.2 PROOF OF LEMMA 3

For any α1 > 0, we have∥∥∥Z(t+1) −Z
(t+1)

∥∥∥2
F

=
∥∥∥(1− γt)(X

(t+1/2) −X
(t+1/2)

) + γt(Y
(t) −X(t+1/2))(W − 11T /n) +γt(X

(t+1) −X
(t+1/2)

)(W − 11T /n)
∥∥∥2
F

(22)

≤ (1 + α1)
∥∥∥(X(t+1/2) −X

(t+1/2)
)((1− γt)I+ γt(W − 11T /n))

∥∥∥2
F
+ (1 + α−1

1 )γ2
t λ

2
2

∥∥∥Y (t) −X(t+1)
∥∥∥2
F

(25),(23)
= (1 + α1)

∥∥∥(X(t+1/2) −X
(t+1/2)

)((1− γt)I+ γt(W − 11T /n))
∥∥∥2
F
+ (1 + α−1

1 )γ2
t λ

2
2

∥∥∥Y (t) −X(t+1/2)
∥∥∥2
F
.

(62)
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Applying Jensen’s inequality, we can bound the first term on the right-hand side above as∥∥∥∥(X(t+1/2) −X
(t+1/2)

)(
(1− γt) I+ γt

(
W − 1

n
11⊤

))∥∥∥∥
F

(24)

≤ (1− γt)
∥∥∥X(t+1/2) −X

(t+1/2)
∥∥∥
F
+ γt|λ2|

∥∥∥X(t+1/2) −X
(t)
∥∥∥
F

≤ (1− γt(1− |λ2|))
∥∥∥X(t+1/2) −X

(t+1/2)
∥∥∥
F
. (63)

Denoting λ̃ = 1− |λ2| and substituting 63 into equation 62, we have∥∥∥Z(t+1) −Z
(t+1)

∥∥∥2
F
≤ (1 + α1)

(
1− γtλ̃

)2 ∥∥∥X(t+1/2) −X
(t+1/2)

∥∥∥2
F

+
(
1 + α−1

1

)
γ2
t

(
1− λ̃

)2 ∥∥∥Y (t) −X(t+1/2)
∥∥∥2
F
. (64)

On the other hand, for any α2, θ > 0,

EQ

[∥∥∥X(t+3/2) − Y (t+1)
∥∥∥2
F

]
= EQ

[∥∥∥X(t+3/2) −Q
(
X(t+3/2) − Y (t)

)
− Y (t)

∥∥∥2
F

]
Lemma 2
≤ (1− τ−1)

∥∥∥X(t+3/2) − Y (t)
∥∥∥2
F

= (1− τ−1)
∥∥∥proxηt,µ∥·∥1

(
(1− γt)X

(t+1/2) + γtY
(t)W

)
− Y (t) − ηt+1∇F (X(t+1), ζ(t+1))

∥∥∥2
F

= (1 + θ−1)(1− τ−1)
∥∥∥(1− γt)X

(t+1/2) + γtY
(t)W − Y (t)

∥∥∥2
F

(65)

+ (1 + θ)(1− τ−1)η2t+1

∥∥∥∇F (X(t+1), ξ(t+1)) +Φ(t+1)
∥∥∥2
F

τ≥0

≤ (1 + θ−1) (1− τ−1)
∥∥∥(1− γt)X

(t+1/2) + γtY
(t)W − Y (t)

∥∥∥2
F︸ ︷︷ ︸

≜D

+(1 + θ)η2t

∥∥∥∇F (X(t+1), ξ(t+1)) +Φ(t+1)
∥∥∥2
F
.

(66)

Recall that where Φ(t+1) ∈ ∂(µ
∥∥X(t+1)

∥∥
1,1

) Here, the term D can be simplified as

D = (1− τ−1)
∥∥∥(X(t+1/2) − Y (t))(I− γtW ) + γt(X

(t+1/2) −X
(t+1/2)

)(W − I)
∥∥∥2
F

≤ (1− τ−1)(1 + α2) ∥I− γtW ∥22
∥∥∥X(t+1/2) − Y (t)

∥∥∥2
F
+ (1− τ−1)γ2

t

(
1 + α−1

2

)
∥I−W ∥22

∥∥∥X(t+1/2) −X
(t+1/2)

∥∥∥2
F

≤ (1− τ−1)(1 + α2)(1− γtλn)
2
∥∥∥X(t+1/2) − Y (t)

∥∥∥2
F
+ (1− τ−1)γ2

t

(
1 + α−1

2

)
(1− λn)

2
∥∥∥X(t+1/2) −X

(t+1/2)
∥∥∥2
F
.

(67)
Combining (64) and (65),

E
[
(1 + θ−1)

∥∥∥Z(t+1) −Z
(t+1)

∥∥∥2
F
+
∥∥∥X(t+1/2) − Y (t+1)

∥∥∥2
F

]
≤ (1 + θ−1)max{A(γt), B(γt)}

(∥∥∥X(t+1/2) −X
(t+1/2)

∥∥∥2
F
+
∥∥∥X(t+1/2) − Y (t)

∥∥∥2
F

)
+ (1 + θ)η2t

∥∥∥∇F (X(t+1), ξ(t+1)) +Φ(t+1)
∥∥∥2
F
, (68)

where

A(γt) = (1 + α1)
(
1− γtλ̃

)2
+ (1− τ−1)γ2

t

(
1 + α−1

2

)
(1− λn)

2,

B(γt) =
(
1 + α−1

1

)
γ2
t

(
1− λ̃

)2
+ (1− τ−1)(1 + α2) (1− γtλn)

2
. (69)

Comparing (68) with our goal in (32), it remains to show that max{A(γt), B(γt)} ≤ 1 − ω. We
bound the terms A(γt),B(γt) as follows.
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Proof for A(γt) ≤ 1 − ω: Let α1 = γtλ̃/2 and α2 = 1/(2τ). Following (Koloskova et al., 2019,
Eqs. (20)–(24)),

for any κ ∈ [0, 1], we have

A(γt) ≤ 1− κ
λ̃2

8(1− λn)2τ + λ̃2
. (70)

Setting κ = 8(1−λn)
2τ+λ̃2

8τ in (70), we have A(γt) ≤ 1 − λ̃2

8τ = 1 − ω, where the last equation
follows from ω = λ̃2

8τ .

Proof for B(γt) ≤ 1−ω: Leveraging the inequality (1−x)(1+x/2) ≤ 1−x/2,∀x > 0, we have

B(γt) = γ2
t (1− λ̃)2

(
1 +

2

γtλ̃

)
+ (1− τ−1)

(
1 +

1

2τ

)
(1− γtλn)

2

γt≤1

≤ (1− λ̃)2
(
γt +

2γt

λ̃

)
+

(
1− τ−1

2

)
(1− γtλn)

2

γt≤1

≤ (1− λ̃)2
(
1 +

2

λ̃

)
γt +

(
1− τ−1

2

)
(1 + γtλ

2
n − 2γtλn)

−1≤λn≤1

≤ (1− λ̃)2
(
1 +

2

λ̃

)
γt +

(
1− τ−1

2

)
(1 + 3γt)

τ>0
≤ (1− λ̃)2

(
1 +

2

λ̃

)
γt +

(
1− τ−1

2

)
1 + 3γt

= 1− 1

2

(
τ−1 − 2λ̃3 + 4− 12λ̃

λ̃
γt

)
. (71)

We consider the following two cases, depending on the value of λ̃ = 1− |λ2| ∈ [0, 1].

• If λ̃ ≥
√
41−5
4 ≈ 0.351, one can verify that the cubic function λ̃2 + 2λ̃3 + 4 − 12λ̃ ≤ 0.

Consequently, the last term in (71) is non-positive, yielding B(γt) ≤ 1− 1
2τ . Meanwhile,

we have λ̃ ≤ 1 since |λ2| ≤ 1 and τ ≥ 1 from the definition in (6). This implies B(γt) ≤
1− 1

2τ ≤ 1− λ̃2

8τ = 1− ω.

• If λ̃ <
√
41−5
4 ≈ 0.351, we have λ̃2 + 2λ̃3 + 4− 12λ̃ > 0. When γt ≤ λ̃

τ(λ̃2+2λ̃3+4−12λ̃)
,

it follows from (71) that

B(γt) ≤ 1− λ̃2

2τ(λ̃2 + 2λ̃3 + 4− 12λ̃)
. (72)

To prove B(γt) ≤ 1− ω, it remains to verify if the following inequality holds:

λ̃2

2τ(λ̃2 + 2λ̃3 + 4− 12λ̃)
≥ λ̃2

8τ
. (73)

Note that we have λ̃2 + 2λ̃3 + 4 − 12λ̃ ≤ 4 − 3λ̃ ≤ 4 since 0 ≤ λ̃ ≤ 1. Therefore, (73)
holds.

A.6.3 PROOF OF LEMMA 4

Let m = 4c(a+2ϵ)
ac+4(c−2)ϵ . We will prove Lemma 4 by induction. Suppose rt ≤ m

η2
tA
c2 . For t+ 1,

rt+1 ≤ (1− c/2)m
η2tA

c2
+

2

c
η2tA ≤ η2tA

c2
((1− c/2)m+ 2c) . (74)
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It is sufficient to prove
((1− c/2)m+ 2c) η2t ≤ mη2t+1

⇔m(t+ a)2ϵ − (t+ a+ 1)2ϵ ((1− c/2)m+ 2c) ≥ 0

⇔m− (1 +
1

t+ a
)2ϵ ((1− c/2)m+ 2c) ≥ 0

⇔
(
1 +

1

t+ a

)2ϵ (
(1− c

2
)m+ 2c

)
≤ m

Define a function g(x) = (1 + x)2ϵ − 1− 4ϵx for x ∈ [0, 1). Since 2ϵ− 1 ≤ 1,

g′(x) = 2ϵ(1 + x)2ϵ−1 − 4ϵ ≤ 0. (75)

Therefore, g(x) ≤ g(0) = 0, implying that
(
1 + 1

t+a

)2ϵ
≤ 1 + 4ϵ

t+a . Therefore, it is sufficient to
prove (

1 +
4ϵ

t+ a

)((
(1− c

2

)
m+ 2c

)
≤ m ⇐

(
1 +

4ϵ

a

)((
(1− c

2

)
m+ 2c

)
≤ m

A simple calculation shows that it is sufficient to have m ≥ 4c(a+2ϵ)
ac+4(c−2)ϵ , which is true from the

definition of m.

A.6.4 PROOF OF PROPOSITION 2

The proof of Proposition 2 is similar to that in Appendix A.6.1. For any α > 0, we have

E
[∥∥∥X(t+1) − Y (t)

∥∥∥2
F

]
= E

[∥∥∥Z(t+1) − Y (t) − ηt

(
∇F (X(t); ξt) + Φ(t+1)

)∥∥∥2
F

]
≤ (1 + α−1)η2tE

[∥∥∥∇F (X(t); ξt) + Φ(t+1)
∥∥∥2
F

]
+ (1 + α)E

[∥∥∥(1− γt)X
(t) − Y (t) + γtY

(t)W
∥∥∥2
F

]
≤ 2(1 + α−1)(2G2 + 2σ2 + µ2d)nη2t + (1 + α)E

[∥∥∥(I− γtW )(X(t) − Y (t)) + γtX
(t)(I−W )

∥∥∥2
F

]
.

(76)
We see that the expression in (76) is identical to (60). Following the same steps in Appendix A.6.1,
we have Proposition 2.

B EXPERIMENTAL RESULTS

B.1 FEDERATED LEARNING OVER MNIST

We simulated 10 nodes within a fully connected network. This corresponds to the federated learn-
ing setup except we do not assume the existence of a central aggregator. The mixing matrix
W = 11T /n and γt = 1. The DNN we are training consists of three fully connected layers
with total d = 669, 706 parameters.The training data is distributed in a highly heterogeneous fash-
ion by following Konečný et al. (2016), where each node has data corresponding to exactly two
classes/labels with 60K/10K training/testing data in total. The consensus aggregation is performed
in a synchronous manner, i.e., at iteration t all the nodes simultaneously perform the aggregation
step by (4). Additionally, to validate the efficacy of MALCOM-PSGD we use a constant learning
rate (ηt = .2) and consensus step size (γt = 1). For the error free baseline we use the standard
decentralized SGD algorithm. To generate Figure 1

B.1.1 RING-LIKE TOPOLOGY

Simulation setup for the partially connected network. We assume a network topology as illus-
trated in Figure 4 and we have also included its corresponding mixing matrix. This network topology
is a neighborhood ring topology. That is, there are 4 neighborhoods connected together by nodes
0,2,4,6 and 8. Besides the change in network topology and mixing matrix we use the same data
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Figure 4: Left: The Ring-Like network topology. Circles denote the devices and edges denote
connection links, where self-loops are omitted in the plot for brevity. Right: The corresponding
mixing matrix W.
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Figure 5: Synchronous FL with ResNet18 over CIFAR10, where local data is i.i.d. distributed.
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Figure 6: Asynchronous decentralized learning of MNIST.

distribution, DNNs, and training/testing split as B.1. We utilize a constant learning rate (ηt = .2)
and consensus step size (γt = 1).

For the sake of completeness we also have also plotted the number of total bits versus accuracy. See
Figure 10

B.2 EFFECTS OF SPARSIFICATION

The network and DNN setup is identical to B.1 accept we only consider MALCOM-PSGD and
CHOCO-SGD+Our Compression Scheme. We vary the level of thresholding which corresponds to
µ in (7).

B.3 RESNET18 OVER CIFAR10

We simulate an FL network with 10 nodes where each node uses the ResNet18 model He et al. (2016)
with an i.i.d. distribution of 50, 000 CIFAR10 training samples. Aggregation and communication
protocols are the same as those in the above experiments with the MNIST dataset. The results are
presented in Fig. 5. We observe similar results to that in Fig. 1, except that MALCOM-PSGD
converges faster than CHOCO-SGD. Notably, MALCOM-PSGD reduces communication costs from
the error-free baseline and CHOCO-SGD by 95% and 78%, respectively.
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Figure 7: No Quantization
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Figure 8: Diminishing Learning rate

B.4 ASYNCHRONOUS DECENTRALIZED LEARNING

This setup is identical to the FL setup above, except that we consider pairwise dynamic and asyn-
chronous networking. At each iteration, we randomly pick two nodes for model sharing and ag-
gregation over their communication link, resulting in a time-varying mixing matrix. The results are
presented in Fig. 6. Similar to the synchronous case, both CHOCO-SGD and MALCOM-PSGD
eventually recover the accuracy and loss of the error-free algorithm, but it should be noted that
our algorithm converges at a slightly faster rate. This is because in the asynchronous setting er-
ror accumulation during aggregation is more significant due to the high data heterogeneity. Our
findings indicate that MALCOM-PSGD reduces the communication cost by 94% compared to the
error-free baseline and by 74% relative to CHOCO-SGD. This result highlights the efficiency of
MALCOM-PSGD in the practical asynchronous setting, which represents numerous real-world sit-
uations, including Internet-of-Things (IoT) and device-to-device (D2D) networks.

B.5 NO COMPRESSION

We assume the same set up as the Asynchronous Decentralized Learning experiment as described in
B.4 but we apply no compression and encoding. The goal of this experiment is to show that adding
sparsity has a marginal effect on the test accuracy and training loss as illustrated in Figure 7.

B.6 DIMINISHING VS CONSTANT LEARNING RATE.

We assume the asynchronous set up as above but consider two different learning rates. For the
constant learning rate we have η = .2 where as for the diminishing learning rate we follow (10):
ηt =

1
L(t+a)ϵ setting ϵ = 1/2, L = .2, and α = 200. The results are summarized in Figure 8 and

indicate that with properly chosen constants, a diminishing and constant learning rate can achieve
similar performance.

B.7 BIT CONSTRAINED EXPERIMENTS

We simulate decentralized image classification over the MNIST dataset with the aforementioned
DNN. Local model residuals are communicated over rate-constrained channels with the channel
capacity of 39 MB/iteration and 1 MB/iteration for the synchronous and asynchronous systems,
respectively. Fig. 9 plots the test accuracy and training loss under the stringent communication rate
constraints. While CHOCO-SGD diverges due to excessive quantization error, MALCOM-PSGD
capitalizes on more efficient communication and thus allows high-precision quantization.
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(c) Async: Acc. versus Iter.
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(d) Async: Loss versus Iter.
Figure 9: Decentralized learning under the communication rate constraints. The loss values of (b)
and (d) are on the order of 1036 and 1024 respectively.

0 1 2 3 4 5 6
Communication Cost (MB) 1e10

10
20
30
40
50
60
70
80
90

Te
st
 A
cc
ur
ac
y

Choco-SGD+QSGD
Error-Free SGD
Malcom-PSGD
Choco+OurComp.
sign-SGD

(a) Accuracy per Total Bits.
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Figure 10: Bit Utilization vs Accuracy for Fully Connected and Ring Topology
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