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ABSTRACT

Last-iterate convergence behaviours of well-known algorithms are intensively in-
vestigated in various games, such as two-player bilinear zero-sum games. How-
ever, most known last-iterate convergence properties rely on strict settings where
the underlying games must have time-invariant payoffs. Besides, the limited
known attempts on the games with time-varying payoffs are in two-player bi-
linear time-varying zero-sum games and strictly monotone games. By contrast,
in other time-varying games, the last-iterate behaviours of two classic algorithms,
i.e., extra gradient (EG) and optimistic gradient (OG) algorithms, still lack re-
search, especially the convergence rates in multi-player games. In this paper, we
investigate the last-iterate behaviours of EG and OG algorithms for convergent
perturbed games, which extend upon the usual model of time-invariant games and
incorporate external factors, such as vanishing noises. Using the recently pro-
posed notion of the tangent residual (or its modifications) as the potential function
of games and the measure of proximity to the Nash equilibrium, we prove that the
last-iterate convergence rates of EG and OG algorithms for perturbed games on
bounded convex closed sets are O(1/

√
T ) if such games converge to monotone

games at rates fast enough and that such a result holds true for certain uncon-
strained perturbed games. With this result, we address an open question asking
for the last-iterate convergence rate of EG and OG algorithms in constrained and
time-varying settings. The above convergence rates are similar to known tight
results on corresponding time-invariant games.

1 INTRODUCTION

This paper discusses learning in time-varying multi-player games converging to monotone games.
Monotone games are a class of multi-player games (Rosen (1965)) including a wide range of impor-
tant games, including two-player zero-sum games, convex-concave games, λ-cocoercive games (Lin
et al. (2020)), zero-sum polymatrix games (Anagnostides et al. (2023); Cai & Daskalakis (2011); Cai
et al. (2016); Daskalakis & Papadimitriou (2009)), and zero-sum socially-concave games (Even-dar
et al. (2009)). Due to their wide applications, a vast literature on finding methods to approximate
their Nash equilibrium actions has been produced recently.

An important part of this literature is on last-iterate behaviours of well-known algorithms, and this
topic has gained much research interest in recent literature. These algorithms include extra-gradient
(EG) methods (Cai et al. (2022); Feng et al. (2023); Monteiro & Svaiter (2010)), optimistic gradi-
ent (OG) methods (Cai et al. (2022); Feng et al. (2023)), negative momentum methods (Feng et al.
(2023)) and weights update methods (Lin et al. (2020), proposed in Arora et al. (2012)). Although
last-iterate convergence performance is a challenging topic, yet in the case of monotone games, last-
iterate convergence has been discussed in many papers. Last-iterate convergence of the EG algo-
rithm in general monotone time-invariant games has been proven in Hsieh et al. (2019) and Popov
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(1980), and its convergence rate has proved to be O(1/
√
T ) in unconstrained settings (Golowich

et al. (2020a)) and general settings (Cai et al. (2022)). A recent result Wei et al. (2021) shows that
there even always exists a linear convergence rate whose value depends on the problem.

Despite the known considerable works, most recent literature on multi-player games is based on
the assumption that the underlying repeated games are time-invariant. Nevertheless, time-invariant
games are unrealistic in many real-life applications (Cardoso et al. (2019); Duvocelle et al. (2023);
Mai et al. (2018)), and more realistic learning settings should allow the underlying cost functions
of games to change with time. Games with such settings are called “time-varying games”. Top-
ics on time-varying games have gained popularity since several years ago. Duvocelle et al. (2023),
Feng et al. (2023) and Zhang et al. (2022) are the first known successful attempts to solve problems
about last-iterate convergence in time-varying games. However, Duvocelle et al. (2023) requires
decreasing step size and does not provide a convergence rate but only provides that the probabil-
ity of convergence is 1. By contrast, decreasing step size is unnatural since such a requirement
considers new information to be decreasingly important instead of equally or increasingly as nor-
mally expected Lin et al. (2020). Besides, that result only illustrates last-iterate convergence in
two-player zero-sum bilinear games in the unconstrained case, which is too special compared with
general multi-player games and constrained games. Feng et al. (2023) does not require decreasing
step sizes, but an unconstrained set of actions is still necessary.

Considering the limits of known research mentioned above, we conclude that the last-iterate conver-
gence behaviours of time-varying games are still far from fully understood and none of the existing
results on time-varying games provide satisfactory answers on whether and how fast an algorithm
converges except in unconstrained two-player bilinear games. Hence, an open question arises natu-
rally:

Will learning algorithms such as the extra gradient or optimistic gradient algorithms exhibit a
last-iterate convergence rate in time-varying games with a constant step size?

Our contribution. Motivated by known results, we first prove that there exist convergence rates
on certain bounded and unconstrained multi-player games with a time-varying cost function for each
player where the vector of cost functions ft varies with time in the following way (called convergent
perturbed game): ft = f∞ + gt, limt→∞ gt = 0. In this paper, we show the following results:

Assuming that
∑∞

t=0 max ∥Gt∥ ≤ ∞ where Gt = ∇gt, with z∗ defined as
the Nash equilibrium of G, we prove that the last-iterate convergence rate is
max{O(1/

√
T ), O(

√∑∞
k=T/2 max ∥Gk∥), O(max ∥GT ∥)} for general convex bounded

cases for the EG algorithm, max{O(1/
√
T ), O(maxk≥T/2 LGk

), O(
√∑∞

k=T/2 max ∥Gk∥)}
with LG-smooth perturbing and L-smooth limits when Gk(z

∗) = 0 for the EG algorithm,
max{O(1/

√
T ), O(

√∑∞
k=T/2 max ∥Gk∥), O(max ∥GT ∥)} for general convex bounded cases for

the OG algorithm and max{O(1/
√
T ), O(

√∑∞
k=T/2 max ∥Gk∥), O(max ∥GT ∥), O(LGT−1

)}
with LG-smooth perturbing and L-smooth limits when Gk(z

∗) = 0 for the OG algorithm, where T
refers to the time. For the extra gradient and optimistic gradient algorithms, that convergence rate
is approximately equal to the known tight bound for time-invariant games. Those results mean that
both algorithms are robust to disturbance.

Our last-iterate results of EG and OG generalize that of prior work Cai et al. (2022) and Feng et al.
(2023) significantly, where convergence rates of EG and OG have only been proved in two-player
bilinear time-varying games and monotone time-invariant games, respectively. Besides, our method
provides a partial answer to the open question about constraint games (Feng et al. (2023)) from a
different view.

Organization. Section 2 defines the game problems in this paper and describes the main prelim-
inaries applied to solve these problems. Sections 3 and 4 introduce the theoretical results on the
last-iterate convergence of errors defined as tangent residuals in the EG and OG algorithms and pro-
vide their proof sketches, respectively. Section 5 illustrates the convergence performances of the
EG and OG algorithms with numerical experiments. Section 6 concludes the paper with additional
discussions and proposals on directions for further investigations.
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1.1 RELATED WORK

Related works on time-varying games. In recent years, time-varying games have become the re-
search interest of a group of researchers. Most of the papers have focused only on correlated equilib-
rium or time-average convergence. The work most closely related to ours is Duvocelle et al. (2023),
investigating strictly monotone games. However, even two-player zero-sum bilinear games are not
strictly monotone (⟨F (z), z − z′⟩ = 0). Feng et al. (2023) discussed two-player zero-sum bilinear
games in unconstrained settings and obtained the first known result on the last-iterate convergence in
time-varying games. Another related paper, Anagnostides et al. (2023), focused on correlated equi-
libria for the multi-player time-varying case. Other known results, such as Zhang et al. (2022), are
focused on regret bounds (two-player) in time-varying bilinear saddle-point problems parameterized
by the similarity of the payoff matrices and the equilibria of these games. Another result related to
time-varying games, Harris et al. (2023), is about meta-learning in games, where each game can be
repeated for multiple iterations consisting of settings in which many similar games need to be solved
together. Cardoso et al. (2019) provides an optimal solution based on Nash equilibrium regret. In
this paper, we provide a different perspective on time-varying games.

Previous investigation on convergence rates of EG, OG and other related algorithms. EG and
OG algorithms have a long history (Korpelevich (1976); Popov (1980)) and the convergence rates
of EG and OG in time-invariant games have been thoroughly investigated. In recent years, uncon-
strained strongly monotone games and unconstrained bilinear games have been shown to have linear
convergence rates for EG, OG, and other variants in Daskalakis et al. (2018). Later papers have
proved their asymptotic convergence (Daskalakis & Panageas (2019)). The convergence property
of EG on concave games has been investigated in Monteiro & Svaiter (2010) (last-iterate) and Ne-
mirovski (2004), and the convergence property in special non-concave games has been proved in
Mertikopoulos et al. (2019).

2 NOTATIONS AND PRELIMINARIES

In this paper, we focus on time-varying games that converge to smooth monotone games in the fol-
lowing form: G = {[[N ]], {Z(i)}i∈[[N ]], {f (i)}i∈[[N ]]} =: {N ,Z, f} where [[N ]] := {1, 2, · · · , N}
is the set of players, Z ⊆ Rn is a closed convex set and the action set of players, {f (i)}i∈[[N ]] are
the cost functions of corresponding players and DZ = maxx1,x2∈Z ∥x1 − x2∥. In addition, z con-
sists of actions of players, and throughout the paper, with ∇ defined as the symbol of the gradient
feedback vector of the vector function, i.e., ∇f := (∇z(1)f (1), · · · ,∇z(N)f (N)), for simplicity, ∇f
is denoted as F and ∇g is denoted as G; fk, gk, Fk and Gk refer to f , g, F and G at time k; and sub-
script kz refers to the time k when z is applied. max ∥Gk∥, max ∥F∞∥, max ∥Gt∗∥ are maximums
defined on Z if Z is bounded, on {zi|i ∈ N or i− 1

2 ∈ N} if Z is unbounded with the EG algorithm,
and on {zi|i ∈ N} ∪ {wi|i ∈ N} if Z is unbounded with the OG algorithm. We define the Nash
equilibrium of these time-varying games as the Nash equilibrium of the limits of these time-varying
games.

Time-invariant monotone games, time-varying games and their Nash equilibria. In this part,
we introduce our model of time-varying games and the definition of Nash equilibria on them. To
introduce them, we define time-invariant monotone games in Definition 1 and the sufficient and
necessary condition of Nash equilibria in Lemma 1 at first. Lemma 1 shows that a Nash equilibrium
of the game G is equivalent to a solution of the variational inequality of monotone operator F .

Definition 1 (Rosen (1965)) A game G is monotone if ∀x1, x2 ∈ Z , ⟨F (x1)− F (x2), x1 − x2⟩ ≥
0.

Lemma 1 (Facchinei & Pang (2007)) For a monotone game G, an action z∗ is a Nash equilibrium
of G if and only if ∀z ∈ Z , ⟨F (z∗), z∗ − z⟩ ≤ 0.

Based on the preliminaries in time-invariant games above, we define the time-varying perturbed
games investigated in our paper.

Definition 2 (Convergent perturbed games) A convergent perturbed game consists of an infinite
sequence of games with cost functions satisfying {ft(z)}∞t=0 ⊂ Rn where limt→∞ ft(z) = f(z) for
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a certain f(z). An equivalent definition is that there exists a sequence of cost functions {gt(z)}∞t=0 ⊂
Rn and a function f(z) ∈ Rn such that ft(z) = f(z)+gt(z) in the same infinite sequence of games.
For simplicity, f(z) above is denoted as f∞(z).

Specifically, we focus on time-varying games converging to smooth monotone games, i.e., F∞(z)
of the games are monotone and L-Lipschitz. The definition of smooth games is the following.

Definition 3 (Rosen (1965)) G is L-smooth if F is L-Lipschitz, i.e., ∀x1, x2 ∈ Z , ∥F (x1) −
F (x2)∥ ≤ L∥x1 − x2∥.

We define the Nash equilibrium of these time-varying games as the Nash equilibrium of the limits
of these time-varying games.

Definition 4 z∗ is a Nash equilibrium of a convergent time-varying game G if z∗ is a Nash equilib-
rium of G∞ := {N ,Z, f∞} .

In convergent time-varying games, we modify Lemma 1 as the following lemma.

Lemma 2 For a game G converging to a monotone game, an action z∗ is a Nash equilibrium of G
if and only if ∀z ∈ Z , ⟨F∞(z∗), z∗ − z⟩ ≤ 0.

Note that all games converging to monotone games have at least one Nash equilibrium if Z is
bounded, while these games with unbounded Z may also have a Nash equilibrium under certain cir-
cumstances (Facchinei & Pang (2007)). Throughout the paper, we apply the following assumption
on the existence of the Nash equilibrium.

Assumption 1 (Existence of the Nash equilibrium) Any time-varying game G involved has at least
one Nash equilibrium.

Learning algorithm in games. In this part, we introduce two kinds of learning algorithms investi-
gated here: extra gradient and optimistic gradient algorithms. Both algorithms are proved to be last-
iterate convergent in time-invariant games (Cai et al. (2022)). This inspires the time-varying variant
of the two algorithms in general time-varying multi-player games defined in Eq. (1) and Eq. (2) and
illustrated in Figure 1, where the projection operator Π is defined as ΠZ(z) = argminz′∈Z∥z− z′∥.

The extra gradient algorithm is defined as follows:

zk+ 1
2
= ΠZ [zk − ηFk (zk)] , zk+1 = ΠZ

[
zk − ηFk

(
zk+ 1

2

)]
(1)

where the step size η > 0, z0 is an arbitrary point in Z , zk is the vector consisting of actions of all
players at the time k, and zk+ 1

2
is a vector used to calculate the actions of players at the time k + 1.

The optimistic gradient algorithm is defined as follows:

wk+1 = ΠZ [zk − ηFk (wk)] , zk+1 = ΠZ [zk − ηFk (wk+1)] (2)

where the step size η > 0, z0 and w0 are arbitrary points in Z , wk is the vector consisting of actions
of all players at the time k, and zk is a vector used to calculate the actions of players at the time
k + 1.

Both algorithms have a long history. The extra gradient algorithm was proposed in Korpelevich
(1976). The form of time dependence in our paper originates from Feng et al. (2023). The optimistic
gradient algorithm was proposed in Popov (1980). Several versions of the OG algorithm exist in the
known literature (Cai et al. (2022); Hsieh et al. (2019)). The version above is applied for convenience
of analysis on time-varying F .

Tangent residual as the measure of the proximity to Nash equilibria. In former results, the
common measures of the proximity of actions to Nash equilibria of games are the gap functions
(Nemirovski (2004); Hsieh et al. (2019)) defined as follows.

Definition 5 (Gap and total gap functions) For time-varying games converging to monotone games,
measures of the proximity of an action profile z ∈ Z to Nash equilibrium include their gap func-
tions and total gap functions. For a fixed parameter D, the gap function is defined as PG,D(z) =
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maxz′∈Z∩B(z,D) ⟨FG(z), z − z′⟩, where B(z,D) is a ball with radius D centered at z. The total gap
function is defined as TG,D(z) =

∑
i∈[[N ]]

(
f (i)(z)−minz′(i)∈Z(i)∩B(z(i),D) f

(i)(z′(i), z(−i))
)
,

where z(−i) consists of actions of all players except Player i.

However, gap functions are far from monotone. In fact, they are not monotone even in time-invariant
monotone games (Cai et al. (2022)). This causes inconvenience in our analysis. To solve that
problem, we adopt the tangent residual from Cai et al. (2022) as the measure of the proximity to the
Nash equilibrium, since it is, or is related to, monotone non-increasing functions of time in time-
invariant monotone games. The tangent residual in our settings is defined as follows. Though, due
to the cost function being time-varying in our settings, the tangent residual and its relative function
are only not increasing much with time instead of monotone non-increasing functions of time. The
details of those functions are discussed in Sections 3 and 4.

Definition 6 (Tangent residual in convergent games) For any closed convex set Z and operator F :

Z → Rn, define NZ(z) as the normal cone of z, N̂Z(z) = {z|z ∈ NZ(z), ∥z∥ ≤ 1} and JZ(z) :=
{z} + TZ(z), where TZ(z) = {z′ ∈ Rn : ⟨z′, a⟩ ≤ 0,∀a ∈ NZ(z)} is the tangent cone of z. The
tangent residual of G is

rtanF,Z(z) =
∥∥ΠJZ(z) [z − F (z)]− z

∥∥
To show the reasonability of using the tangent residual in our settings, we also show the relationship
between the tangent residual and the gap and total gap functions in the following lemma. Specif-
ically, it shows that gap functions are not much larger than tangent residuals, which means that
tangent residuals converge no more slowly than gap functions. As a result, the results shown in this
paper are applicable to traditional measures of the proximity to Nash equilibria.

Lemma 3 (Cai et al. (2022); Golowich et al. (2020a;b)) For a game G converging to monotone
game and a closed convex set Z , ∀z ∈ Z and D > 0, there exists PG,D(z) ≤ D · rtanG (z) and
TG,D(z) ≤ PG,

√
ND(z) ≤

√
ND · rtanG (z).

Assumptions on the form of time dependence of games. We introduce the following assump-
tions which will be applied in lemmas and theorems. The following assumptions are inspired by
Benzaid & Lutz (1987); Elaydi & Györi (1995); Elaydi et al. (1999); Feng et al. (2023); Zhao et al.
(2020) and are commonly called bounded accumulated perturbations (BAP) assumptions.

Assumption 2 g(z) in G satisfies
∑∞

t=0 max ∥Gt(z)∥ < ∞ where Z is bounded.

Assumption 3 G is LG-Lipschitz and
∑∞

t=0 max ∥Gt(z)∥ < ∞ and
∑∞

t=0 ∥L(Gt)∥ < ∞ where
Z is bounded.

Assumption 4 G is LG-Lipschitz with Gt(z
∗) = 0 and

∑∞
t=0 ∥L(Gt)∥ < ∞.

Start

initialize z0 ∈ Z and η > 0

k = 0

zk+ 1
2
= ΠZ [zk − ηFk(zk)]

zk+1 = ΠZ

[
zk − ηFk

(
zk+ 1

2

)]
k = k + 1

Start

initialize z0, w0 ∈ Z and η > 0

k = 0

wk+1 = ΠZ [zk − ηFk(wk)]

zk+1 = ΠZ [zk − ηFk(wk+1)]

k = k + 1

Figure 1: An illustration of the EG (left) and OG (right) algorithms.
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Under Assumptions 3 and 4, we also denote maxL(Gt) = LG. For games satisfying Assumption 4,
zk, wk are bounded with the EG and OG algorithms, and we do not need to assume it. The proof is
deferred to Appendices B.2 and C.2. Throughout the paper, each assumption is used independently.

Remark 1 In Assumption 4, it is not necessary to assume
∑∞

t=0 max ∥Gt(z)∥ < ∞, because
there exists

∑∞
t=0 max ∥Gt(z)∥ =

∑∞
t=0 max ∥Gt(z)−Gt(z

∗)∥ ≤
∑∞

t=0 max ∥LG∥∥z − z∗∥ ≤
max ∥zt − z∗∥

∑∞
t=0 ∥L(Gt)∥ < ∞.

3 LAST-ITERATE CONVERGENCE RESULTS OF THE EG ALGORITHM

In this section, we prove that EG with a constant learning rate η converges to a Nash equilibrium
action at the rate of O(1/

√
T ) under any one of Assumptions 2, 3 and 4. The EG algorithm is

analyzed in the following steps: firstly, the tangent residual of G is applied as the measure of prox-
imity in approximating a Nash equilibrium in any iteration; next, the best convergence rate within
T steps is shown, which is a small number; finally, it is proved that the square of tangent residual of
G is approximately non-increasing, which means the last-iterate convergence behaviour of the EG
algorithm is at least not worse than the best iterate too much and that the last-iterate convergence
rate of the EG algorithm is at least not much worse than the convergence rate of infinite series of
perturbation.

3.1 BEST-ITERATE CONVERGENCE OF THE EG ALGORITHM

To estimate the last-iterate convergence rate of the EG algorithm, we first estimate its best-iterate
convergence rate. Lemma 4 shows that there exists t∗ ∈ [[T ]] satisfying ∥zt∗ − zt∗+ 1

2
∥2 = O(1/T )

and rtan(zt∗+1) = O(1/
√
T ). The full version and the detailed proof of this lemma are deferred to

Appendix B.3.

Lemma 4 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn and
monotone and L-Lipschitz operator F∞ : Z → Rn, with the EG algorithm, let z∗ be a solution of
the game G. Then ∀T ≥ 1, there exists a t∗ ∈ [[T ]] and C1, C2, C3 > 0 satisfying∥∥∥zt∗ − zt∗+ 1

2

∥∥∥2 ≤ C1

T
and satisfying

rtan(zt∗+1) ≤ max

{
C2√
T

+ C3 max ∥Gt∗∥
}

under Assumption 2 if η ∈
(
0, 1

L

)
; under Assumption 3 if η ∈

(
0, 1√

L2+2LG(L+LG)

)
;

rtan(zt∗+1) ≤ max

{
C2√
T

+ LGt∗D

}
under Assumption 4 with D = max

∥∥∥z∗ − zt∗+ 1
2

∥∥∥ if 1− η2L2 − 2η2LG (L+ LG)− 4ηLG > 0.

3.2 APPROXIMATE MONOTONICITY OF THE EG ALGORITHM

In this subsection, we provide the monotonicity behaviour of the EG algorithm. Since the approach
is complicated, the detailed proof of the following theorem is deferred to Appendix B.4.

Theorem 1 For a game G converging to a monotone game, any closed convex set Z ⊆ Rn and
monotone and L-Lipschitz operator F∞ : Z → Rn, ∀η ∈ (0, 1/L), zk ∈ Z , rtan(zk)

2 ≥
rtan(zk+1)

2 −max ∥Gk∥ (4DZ + 4ηmax ∥F∞∥) /η. If Z = Rn, rtan(zk)2 ≥ rtan(zk+1)
2 −

max ∥Gk∥ (4D + 2ηmax ∥F∞∥) /η where D = max{∥zk − zk+1∥, ∥zk+ 1
2
− zk+1∥}, k ∈ N.

3.3 LAST-ITERATE CONVERGENCE OF THE EG ALGORITHM

This subsection combines the best-iterate results and the approximate monotonicity to estimate the
last-iterate convergence rate.
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Theorem 2 (Last-iterate convergence of the EG algorithm) For a game G converging to a monotone
game, ∀T ∈ N∗, D > 0,

max

{
rtan (zT ) ,

TG,D(zT )√
ND

,
PG,D(zT )

D

}
=O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥

})
where D = DZ with η ∈

(
0, 1

L

)
under Assumption 2, or D = DZ with η ∈

(
0, 1√

L2+2LG(L+LG)

)
under Assumption 3, and

max

{
rtan (zT ) ,

TG,D(zT )√
ND

,
PG,D(zT )

D

}
=O

(
max

{
1√
T
,maxk≥T/2 LGk

,

√∑∞

k=T/2
max ∥Gk∥

})
where D = max ∥zk − zk+1∥, k ∈ N with 1 − η2L2 − 2η2LG (L+ LG) − 4ηLG > 0 under
Assumption 4.

The proof is deferred to Appendix B.5.

4 LAST-ITERATE CONVERGENCE RESULTS OF THE OG ALGORITHM

In this section, we use a method similar to the previous section to show the last-iterate convergence
results of the OG algorithm.

We analyze the algorithm with the following steps: firstly, we apply a potential function based on
the tangent residual of G, i.e., ∆(zk, wk) = rtan(zk)

2 + ∥F∞(zk)− F∞(wk)∥2 as the measure of
proximity in approximating a Nash equilibrium in the current iteration; next, we show the best con-
vergence rate within T steps, which is a small number; finally, we prove that the potential function
of G is approximately non-increasing, so the last-iterate is at least not worse than the best iterate
too much, which means that the last-iterate convergence rate is at least not much worse than the
convergence rate of infinite series of perturbation.

4.1 BEST-ITERATE CONVERGENCE OF THE OG ALGORITHM

To estimate the last-iterate convergence rate of the OG algorithm, we first estimate its best-iterate
convergence rate. Lemma 5 shows that there exists t∗ ∈ [[T ]] satisfying η2∆(zt∗ , wt∗) ≤ O(1/T ).
The proof for the best-iterate convergence rate of the OG algorithm is based on Hsieh et al. (2019);
Wei et al. (2021). The full version and the proof details of the lemma are deferred to Appendix C.2.

Lemma 5 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn and
monotone and L-Lipschitz operator F∞ : Z → Rn, let z∗ be a solution of the game G. Then
∀T ≥ 1, if η ∈

(
0, 1√

6L

)
, there exists t∗ ∈ [[T ]] and C1, C2, C3, C4 > 0 satisfying

η2∆(zt∗ , wt∗) ≤
1

T

(
C1 ∥z0 − z∗∥2 + C2 ∥w0 − z0∥2 + C3Emk2 + C4Emk

)
where

Emk =
∑∞

k=0
max ∥Gk∥

Emk2 =
∑∞

k=0
max ∥Gk∥2

Under Assumption 3, if η ∈
(
0, 1√

6L2+4LLG+2L2
G

)
, there exists t∗ ∈ [[T ]] and C1, C2, C3, C4 > 0

satisfying

η2∆(zt∗ , wt∗) ≤
1

T

(
C1 ∥z0 − z∗∥2 + C2 ∥w0 − z0∥2 + C3Emk + C4Emk2

)
while under Assumption 4, if η is small, there exists t∗ ∈ [[T ]] and C1, C2, D > 0 satisfying

η2∆(zt∗ , wt∗) ≤
1

T

(
C1 ∥z0 − z∗∥2 + C2 ∥w0 − z0∥2 + 2η2D2

∑T

k=1
LGk−1

(
2L+ LGk−1

))
7
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4.2 APPROXIMATE MONOTONICITY OF THE OG ALGORITHM

This section shows the approximate monotonicity of ∆(zt, wt) for the OG algorithm. Since the
approach is complicated, we defer the detailed proof of the following theorem to Appendix C.3.

Theorem 3 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn,
∀η ∈ (0, 1/(2L)), zk ∈ Z , ∆(zt, wt) ≥ ∆(zt+1, wt+1) − (3DZ + 4ηmax ∥F∞∥)max ∥Gk∥/η if
Z is bounded, while ∆(zt, wt) ≥ ∆(zt+1, wt+1)− (3D + 2ηmax ∥F∞∥)max ∥Gk∥/η if Z = Rn,
where D = max{∥wk+1 − zk+1∥, ∥zk+1 − zk∥}, k ∈ N.

4.3 LAST-ITERATE CONVERGENCE OF THE OG ALGORITHM

This subsection shows a formal result on the last-iterate convergence behaviour based on the modi-
fied tangent residual. The following theorem states that the players’ strategies converge to the Nash
equilibrium of the game with a rate not slower than the rate of O(1/

√
T ) or depending on the con-

vergence rate of perturbation.

Theorem 4 (Last-iterate convergence of the OG algorithm) For a game G converging to a monotone
game, ∀T ∈ N∗,

max

{
rtan (wT ) ,

TG,DZ (wT )√
NDZ

,
PG,DZ (wT )

DZ

}
=O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥

})
under Assumption 2 with η ∈

(
0, 1√

6L

)
or under Assumption 3 with η ∈

(
0, 1√

6L2+4LLG+2L2
G

)
,

while there exists

max

{
rtan (wT ) ,

TG,D(wT )√
ND

,
PG,D(wT )

D

}
=O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥, LGT−1

})
under Assumption 4 with η ∈

(
0,min

{
1

2(L+LG) ,
1

4LG

})
, where D = max{∥wk+1 −

zk+1∥, ∥zk+1 − zk∥}, k ∈ N.

The proof is deferred to Appendix C.5.

5 EXPERIMENTS FOR TIME-VARYING GAMES

In this section, we provide some numerical examples for Theorem 2 and Theorem 4 proved in
Section 3 and Section 4. The numerical examples are based on examples of bilinear games in Feng
et al. (2023). By the following examples, we verify Theorem 2 and Theorem 4.

Example 1.

ft(z) = f∞(z) + gt(z)

=


[
zt1 − 1
zt2 − 1

]T [
2 5
4 1

] [
zt3 + 3
zt4 + 3

]
−
[
zt1 − 1
zt2 − 1

]T [
2 5
4 1

] [
zt3 + 3
zt4 + 3

]
+

− 40 cos((t+1)izt1)+40 cos((t+1)izt2)+20 cos((t+1)izt3)+20 cos((t+1)izt4)
(t+1)2i

− 2 cos((t+1)izt1)+3 cos((t+1)izt2)+5 cos((t+1)izt3)+6 cos((t+1)izt4)
(t+1)2i


s.t. ∥zt∥ =

∥∥∥[zt1 zt2 zt3 zt4]
T
∥∥∥ ≤ 2

This example is corresponding to Assumption 2, where Z = {z|∥z∥ ≤ 2} and∑∞
t=0 max ∥Gt(z)∥ ≤

∑∞
t=0

20
√
10

(t+1)i < ∞ if i > 1.

8
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Example 2.

ft(z) = f∞(z) + gt(z) =


[
zt1 − 1
zt2 − 1

]T [
2 5
4 1

] [
zt3 + 3
zt4 + 3

]
−
[
zt1 − 1
zt2 − 1

]T [
2 5
4 1

] [
zt3 + 3
zt4 + 3

]
+

[
200(z2

t1+z2
t2)+100(z2

t3+z2
t4)

(t+1)i

50(z2
t1+z2

t2)+60(z2
t3+z2

t4)
(t+1)i

]

s.t. ∥zt∥ =
∥∥∥[zt1 zt2 zt3 zt4]

T
∥∥∥ ≤ 2

This example is corresponding to Assumption 3, where Z = {z|∥z∥ ≤ 2},
∑∞

t=0 max ∥Gt(z)∥ ≤∑∞
t=0

200
√
10

(t+1)i < ∞ if i > 1 and
∑∞

t=0 LGt
≤
∑∞

t=0
400

√
10

(t+1)i < ∞ if i > 1.

Example 3.

ft(z) = f∞(z) + gt(z)

=


[
zt1 − 1
zt2 − 1

]T [
2 5
4 1

] [
zt3 + 3
zt4 + 3

]
−
[
zt1 − 1
zt2 − 1

]T [
2 5
4 1

] [
zt3 + 3
zt4 + 3

]
+

[
50(zt1−1)2+50(zt2−1)2+50(zt3+3)2+50(zt4+3)2

(t+1)i

40(zt1−1)2+30(zt2−1)2+20(zt3+3)2+10(zt4+3)2

(t+1)i

]

s.t. zt = [zt1 zt2 zt3 zt4]
T ∈ R4

This example is corresponding to Assumption 4, where
∑∞

t=0 LGt
≤
∑∞

t=0
200

(t+1)i < ∞ when
i > 1.

Note that ∀ϵ > 0, ∃N > 0 as the new initial time so that ∀T > N , LGT
< ϵ.

5.1 EXPERIMENTS ON THEOREM 2

In this section, the step size η is selected as 0.05 and the initial point of zt is selected as
z0 = [0.25 0.2 0.1 0.35]

T . As in the common practice shown in Feng et al. (2023), the BAP
assumptions, i.e., Assumptions 2, 3 and 4, are applied in the three examples above, respectively.

The experimental results are presented in Figure 2, which show that rtan(zt) converges to 0 under
any one of Assumptions 2, 3 and 4, and all three convergence rates of perturbations can decelerate the
convergence rate of learning dynamics as expected, thus support the convergence result in Theorem
2.
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Figure 2: Values of rtan(zt) for Example 1 (left), Example 2 (middle) and Example 3 (right).

5.2 EXPERIMENTS ON THEOREM 4

In this section, the step size η is selected as 0.05 and the initial points of wt and zt are selected as
w0 = z0 = [0.25 0.2 0.1 0.35]

T . As in the common practice shown in Feng et al. (2023), the
BAP assumptions, i.e., Assumptions 2, 3 and 4, are applied in the three examples above, respectively.

The experimental results are presented in Figure 3, which show that rtan(wt) converges to 0 under
any one of the Assumptions 2, 3 and 4, and all three convergence rates of perturbations can decelerate

9
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Figure 3: Values of rtan(wt) for Example 1 (left), Example 2 (middle) and Example 3 (right).

the convergence rate of learning dynamics as expected, thus supporting the convergence result in
Theorem 4.

6 CONCLUSIONS

In this paper, we provide last-iterate convergence rates of EG and OG algorithms in bounded and
some unbounded cases, including unconstrained cases, for time-varying multi-player games con-
verging to monotone games by proving that both algorithms show tight convergence rates compared
to related time-invariant games and the property of time-varying function. There exist some inter-
esting future research directions. In our experiments, it is suggested that the convergence rate in
bilinear cases can probably be improved. Another interesting direction of investigation is whether
and when games vary over time periodically (called “periodic games” in Feng et al. (2023)) or
stochastic games show similar results for EG and OG algorithms.
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A ADDITIONAL AUXILIARY LEMMAS

In this section, we present other lemmas frequently used in appendices required for proving the
convergence behaviours of EG and OG. The following lemmas are fundamental to the analysis.

Lemma 6 (Lang (1993)) Any continuous function on a closed bounded set within Rn is bounded.

Lemma 7 (Little et al. (2022)) If {an} is a sequence of non-negative numbers, then the series∑∞
j=1 aj and the product

∏∞
j=1(1 + aj) either both converge or both diverge.

The following two lemmas state known useful properties of the tangent residual.

Lemma 8 (Cai et al. (2022)) Let Z ⊆ Rn be a closed convex set and F : Z → R be the operator
defined in Section 2. ∀z ∈ Z , let c(z) = ΠN(z) [−F∞(z)]. Then we have

• rtan(z) = ∥F∞(z) + c(z)∥,

• ⟨F∞(z) + c(z), c(z)⟩ = 0,

• ⟨F∞(z) + c(z), a⟩ ≥ 0, ∀a ∈ N(z).

Lemma 9 (Cai et al. (2022)) (Equivalent definitions of the tangent residual)
For any closed convex set Z and operator F : Z → Rn, define NZ(z) as the normal cone
of z and JZ(z) := {z} + TZ(z), where TZ(z) = {z′ ∈ Rn : ⟨z′, a⟩ ≤ 0,∀a ∈ NZ(z)} is the
tangent cone of z. Then all of the following quantities are equivalent:

1.
√
∥F (z)∥2 −maxa∈N̂Z(z),⟨F (z),a⟩≤0⟨F (z), a⟩2

2. mina∈N̂Z(z),⟨F (z),a⟩≤0 ∥F (z)− ⟨F (z), a⟩ · a∥

3.
∥∥ΠTZ(z) [−F (z)]

∥∥
4.
∥∥ΠJZ(z) [z − F (z)]− z

∥∥
13
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5.
∥∥−F (z)−ΠNZ(z) [−F (z)]

∥∥
6. mina∈NZ(z) ∥F (z) + a∥

The following lemma states a useful property of the tangent residual.

Lemma 10 Let Z ⊆ Rn be a closed convex set and F : Z → Rn be the operator defined in Section
2. If z1 = ΠZ [z2 − ηFkz3

(z3)], then we have

rtan(z1) ≤
∥∥∥∥z2 − z1

η
+ F∞(z1)− F∞(z3)

∥∥∥∥+max
{∥∥Gkz3

∥∥}
If Gkz3

is also LGkz3
-Lipschitz and Gk(z

∗) = 0, then

rtan(z1) ≤
∥∥∥∥z2 − z1

η
+ F∞(z1)− F∞(z3)

∥∥∥∥+ LGkz3
D

where D = max ∥z∗ − z3∥.

Proof. Due to z1 = ΠZ [z2−ηFkz3
(z3)], we have z2 − ηFkz3

(z3)− z1 ∈ NZ(z1). By that equation
and item 6 in Lemma 9, there exists

rtan(z1) = min
c∈NZ(z1)

∥F∞ + c∥ ≤
∥∥∥∥z2 − z1

η
+ F∞(z1)− Fkz3

(z3)

∥∥∥∥
=

∥∥∥∥z2 − z1
η

+ F∞(z1)− F∞(z3)−Gkz3
(z3)

∥∥∥∥
≤
∥∥∥∥z2 − z1

η
+ F∞(z1)− F∞(z3)

∥∥∥∥+max
{∥∥Gkz3

∥∥}
If Gkz3

is also LGkz3
-Lipschitz and Gk(z

∗) = 0, then there exists
∥∥Gkz3

(z∗)−Gkz3
(z3)

∥∥ ≤
LGkz3

∥z∗ − z3∥ ≤ LGkz3
D so that

rtan(z1) ≤
∥∥∥∥z2 − z1

η
+ F∞(z1)− F∞(z3)

∥∥∥∥+ LGkz3
D

□

In the analysis, the natural residual is applied to estimate the tangent residual. Lemma 11 shows that
the tangent residual is the upper bound of the natural residual.

Definition 7 For any closed convex set Z and any monotone operator F : Z → Rn, the natural
residual at z ∈ Z is rnatF,Z(z) = ∥z −ΠZ(z − F (z))∥.

Lemma 11 (Cai et al. (2022)) For any closed convex set Z , any monotone operator F : Z → Rn

and any z ∈ Z , rnatF,Z(z) ≤ rtanF,Z(z).

B OMITTED PROOFS FOR LAST-ITERATE CONVERGENCE OF THE EG
ALGORITHM

In this section, we provide detailed proof for the last-iterate convergence rate of the EG algorithm:

zk+ 1
2
= ΠZ [zk − ηFk (zk)] , zk+1 = ΠZ

[
zk − ηFk

(
zk+ 1

2

)]
(3)

This section consists of the following parts. First, with a method inspired by Facchinei & Pang
(2007) and Korpelevich (1976), the best-iterate convergence rate of ∥zk − zk+ 1

2
∥ is proved for the

EG algorithm. Then, the upper bound of tangent residual of zk is proved to be max{O(∥zk −
zk+ 1

2
∥), O(max ∥Gk∥)} if Gk is LGk

-Lipschitz and to be O(∥zk − zk+ 1
2
∥) no matter whether Gk

is LGk
-Lipschitz. Next, the tangent residual is proved to be either non-increasing or increasing

slowly enough across iterates of the EG algorithm. Finally, the last-iterate convergence rate of the
EG algorithm is concluded from the conditions above.

14
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B.1 PREPARATION FOR ANALYZING THE BEST-ITERATE CONVERGENCE BEHAVIOURS OF
THE EG ALGORITHM

Lemma 12 For a game G converging to a monotone game with any closed convex set Z ⊆
Rn, a monotone L-Lipschitz operator F∞ mapping from Z to Rn and zk ∈ Z , with the
EG algorithm, there exists

∥∥∥zk+ 1
2
− zk+1

∥∥∥ ≤ η(L + LGk
)
∥∥∥zk − zk+ 1

2

∥∥∥ and
∥∥∥zk − zk+ 1

2

∥∥∥ ≤
∥zk−zk+1∥

1−ηL−ηLGk
when η ∈

(
0, 1

L+LG

)
if Gk is LGk

-Lipschitz, and there always exists
∥∥∥zk − zk+ 1

2

∥∥∥ ≤
∥zk−zk+1∥+2ηmax∥Gk∥

1−ηL when η ∈
(
0, 1

L

)
.

Proof. Since zk+ 1
2
= ΠZ [zk−ηF (zk)] and zk+1 = ΠZ [zk−ηF (zk+ 1

2
)], due to non-expansiveness

of ΠZ and L-Lipschitzness of F∞ and LGt
-Lipschitzness of Gt, there exists∥∥∥zk+ 1

2
− zk+1

∥∥∥ ≤
∥∥∥ηF (zk)− ηF

(
zk+ 1

2

)∥∥∥
≤
∥∥∥ηF∞ (zk)− ηF∞

(
zk+ 1

2

)∥∥∥+ η
∥∥∥Gk (zk)−Gk

(
zk+ 1

2

)∥∥∥
≤ ηL

∥∥∥zk − zk+ 1
2

∥∥∥+ ηLGk

∥∥∥zk − zk+ 1
2

∥∥∥
∥∥∥zk+ 1

2
− zk+1

∥∥∥ ≤ ηL
∥∥∥zk − zk+ 1

2

∥∥∥+ 2ηmax ∥Gk∥

Since limk→∞ LGk
= 0, there exists∥∥∥zk+ 1

2
− zk+1

∥∥∥ ≤ η(L+ LGk
)
∥∥∥zk − zk+ 1

2

∥∥∥
Hence,

∥zk − zk+1∥ ≥
∥∥∥zk − zk+ 1

2

∥∥∥− ∥∥∥zk+ 1
2
− zk+1

∥∥∥ ≥ (1− ηL− ηLGk
)
∥∥∥zk − zk+ 1

2

∥∥∥
∥zk − zk+1∥ ≥

∥∥∥zk − zk+ 1
2

∥∥∥− ∥∥∥zk+ 1
2
− zk+1

∥∥∥ ≥ (1− ηL)
∥∥∥zk − zk+ 1

2

∥∥∥− 2ηmax ∥Gk∥

□

Lemma 13 For a game G converging to a monotone game with any convex set Z ⊆ Rn, monotone
L-Lipschitz operator F∞ mapping from Z to Rn and z∗ ∈ Z , there exists

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 −
(
1− η2L2

) ∥∥∥zk − zk+ 1
2

∥∥∥2 + 4ηDZ max ∥Gk∥

where DZ = maxx1,x2∈Z ∥x1 − x2∥ defined in Section 2. If Gk is also LGk
-Lipschitz,

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 −
(
1− η2L2 − 2η2LGk

(L+ LGk
)
) ∥∥∥zk − zk+ 1

2

∥∥∥2
+ 2η

(
max

∥∥∥Gk

(
zk+ 1

2

)∥∥∥∥∥∥zk+ 1
2
− z∗

∥∥∥)
while under Assumption 4,

∥zk+1 − z∗∥2 ≤ (1 + 4ηLGk
) ∥zk − z∗∥2 −

(
1− η2L2 − 2η2LGk

(L+ LGk
)− 4ηLGk

) ∥∥∥zk − zk+ 1
2

∥∥∥2
Proof. Due to Pythagorean equality which is also used in the proof of Lemma 10 in Cai et al. (2022),〈
zk+1 − z∗, zk+1 −

(
zk − ηF

(
zk+ 1

2

))〉
≤ 0. Hence, there exists

∥zk+1 − z∗∥2 ≤
∥∥∥zk − ηF∞

(
zk+ 1

2

)
− ηGk

(
zk+ 1

2

)
− z∗

∥∥∥2 + ∥∥∥zk − ηF∞

(
zk+ 1

2

)
− ηGk

(
zk+ 1

2

)
− zk+1

∥∥∥2
15
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Furthermore, we have

∥zk+1 − z∗∥2 ≤
∥∥∥zk − ηF∞

(
zk+ 1

2

)
− ηGk

(
zk+ 1

2

)
− z∗

∥∥∥2 − ∥∥∥zk − ηF∞

(
zk+ 1

2

)
− ηGk

(
zk+ 1

2

)
− zk+1

∥∥∥2
= ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η

〈
z∗ − zk, F∞

(
zk+ 1

2

)
+Gk

(
zk+ 1

2

)〉
− 2η

〈
zk+1 − zk, F∞

(
zk+ 1

2

)
+Gk

(
zk+ 1

2

)〉
= ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η

〈
z∗ − zk+1, F∞

(
zk+ 1

2

)
+Gk

(
zk+ 1

2

)〉
= ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η

〈
F∞

(
zk+ 1

2

)
, z∗ − zk+ 1

2

〉
+ 2η

〈
F∞

(
zk+ 1

2

)
, zk+ 1

2
− zk+1

〉
+ 2η

〈
z∗ − zk+1, Gk

(
zk+ 1

2

)〉
≤ ∥zk − z∗∥2 −

(∥∥∥zk − zk+ 1
2

∥∥∥2 + ∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + 2
〈
zk − zk+ 1

2
, zk+ 1

2
− zk+1

〉)
+ 2η

〈
F∞

(
zk+ 1

2

)
, zk+ 1

2
− zk+1

〉
+ 2η

〈
z∗ − zk+1, Gk

(
zk+ 1

2

)〉

Since
〈
F∞

(
zk+ 1

2

)
, z∗ − zk+ 1

2

〉
≤ 0, there exists

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 −
∥∥∥zk − zk+ 1

2

∥∥∥2 − ∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)〉
+ 2η

〈
zk+ 1

2
− zk+1, Gk

(
zk+ 1

2

)〉
− 2

〈
zk − ηF∞

(
zk+ 1

2

)
− zk+ 1

2
, zk+ 1

2
− zk+1

〉
= ∥zk − z∗∥2 −

∥∥∥zk − zk+ 1
2

∥∥∥2 − ∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)〉
− 2

〈
zk − η (F∞ (zk) +Gk (zk))− zk+ 1

2
, zk+ 1

2
− zk+1

〉
+ 2η

〈
zk+ 1

2
− zk+1, Gk

(
zk+ 1

2

)〉
− 2η

〈
zk+ 1

2
− zk+1, Gk (zk)

〉
− 2η

〈
zk+ 1

2
− zk+1, F∞ (zk)− F∞

(
zk+ 1

2

)〉

Due to
〈
zk − η (F∞ (zk) +Gk (zk))− zk+ 1

2
, zk+ 1

2
− zk+1

〉
=〈

zk − ηF (zk)− zk+ 1
2
, zk+ 1

2
− zk+1

〉
≥ 0, zk+ 1

2
= ΠZ [zk − ηF (zk)] and zk+1 ∈ Z ,

there exists

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 −
∥∥∥zk − zk+ 1

2

∥∥∥2 − ∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)〉
+ 2η

〈
zk+ 1

2
− zk+1, Gk

(
zk+ 1

2

)
−Gk (zk)

〉
− 2η

〈
zk+ 1

2
− zk+1, F∞ (zk)− F∞

(
zk+ 1

2

)〉
≤ ∥zk − z∗∥2 −

∥∥∥zk − zk+ 1
2

∥∥∥2 − ∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + 2η
〈
z∗ − zk+1, Gk

(
zk+ 1

2

)〉
− 2η

〈
zk+ 1

2
− zk+1, Gk (zk)

〉
+ 2ηL

∥∥∥zk+ 1
2
− zk+1

∥∥∥ ∥∥∥zk − zk+ 1
2

∥∥∥
= ∥zk − z∗∥2 −

∥∥∥zk − zk+ 1
2

∥∥∥2 − (∥∥∥zk+ 1
2
− zk+1

∥∥∥− ηL
∥∥∥zk − zk+ 1

2

∥∥∥)2
+ η2L2

∥∥∥zk − zk+ 1
2

∥∥∥2 + 4ηDZ max ∥Gk∥

≤ ∥zk − z∗∥2 −
(
1− η2L2

) ∥∥∥zk − zk+ 1
2

∥∥∥2 + 4ηDZ max ∥Gk∥

16



Published as a conference paper at ICLR 2025

If Gk is LGk
-Lipschitz, according to Lemma 12 , there exists

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 −
∥∥∥zk − zk+ 1

2

∥∥∥2 − ∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)〉
+ 2η

〈
zk+ 1

2
− zk+1, Gk

(
zk+ 1

2

)
−Gk (zk)

〉
− 2η

〈
zk+ 1

2
− zk+1, F∞ (zk)− F∞

(
zk+ 1

2

)〉
≤ ∥zk − z∗∥2 −

∥∥∥zk − zk+ 1
2

∥∥∥2 − ∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)〉
+ 2ηLGk

∥∥∥zk+ 1
2
− zk+1

∥∥∥∥∥∥zk+ 1
2
− zk

∥∥∥+ 2ηL
∥∥∥zk+ 1

2
− zk+1

∥∥∥ ∥∥∥zk − zk+ 1
2

∥∥∥
= ∥zk − z∗∥2 −

∥∥∥zk − zk+ 1
2

∥∥∥2 − (∥∥∥zk+ 1
2
− zk+1

∥∥∥− ηL
∥∥∥zk − zk+ 1

2

∥∥∥)2
+ η2L2

∥∥∥zk − zk+ 1
2

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)〉
+ 2ηLGk

∥∥∥zk+ 1
2
− zk+1

∥∥∥∥∥∥zk+ 1
2
− zk

∥∥∥
≤ ∥zk − z∗∥2 −

(
1− η2L2

) ∥∥∥zk − zk+ 1
2

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)〉
+ 2ηLGk

∥∥∥zk+ 1
2
− zk+1

∥∥∥∥∥∥zk+ 1
2
− zk

∥∥∥
≤ ∥zk − z∗∥2 −

(
1− η2L2

) ∥∥∥zk − zk+ 1
2

∥∥∥2 + 2η
(
max

∥∥∥Gk

(
zk+ 1

2

)∥∥∥∥∥∥zk+ 1
2
− z∗

∥∥∥)
+ 2η2LGk

(L+ LGk
)
∥∥∥zk − zk+ 1

2

∥∥∥2
Under Assumption 4,

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 −
(
1− η2L2

) ∥∥∥zk − zk+ 1
2

∥∥∥2 + 2η
〈
z∗ − zk+ 1

2
, Gk

(
zk+ 1

2

)
−Gk (z

∗)
〉

+ 2η2LGk
(L+ LGk

)
∥∥∥zk − zk+ 1

2

∥∥∥2
≤ ∥zk − z∗∥2 −

(
1− η2L2

) ∥∥∥zk − zk+ 1
2

∥∥∥2 + 2ηLGk

∥∥∥zk+ 1
2
− z∗

∥∥∥2
+ 2η2LGk

(L+ LGk
)
∥∥∥zk − zk+ 1

2

∥∥∥2
≤ (1 + 4ηLGk

) ∥zk − z∗∥2 −
(
1− η2L2

) ∥∥∥zk − zk+ 1
2

∥∥∥2
+
(
2η2LGk

(L+ LGk
) + 4ηLGk

) ∥∥∥zk − zk+ 1
2

∥∥∥2
□

B.2 BOUNDEDNESS OF THE EG ALGORITHM IN (L+ LGk
)-LIPSCHITZ GAMES

This section shows that zk across iterates of the EG algorithm are bounded under Assumption 4.

Lemma 14 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn,
monotone L-Lipschitz operator F∞ mapping from Z to Rn and zk ∈ Z , with the EG algorithm
under Assumption 4, there exists C ∈ R so that ∥zk − z∗∥ ≤ C.

Proof. Due to Assumption 4, limk→∞ Gk = 0. Hence, there exists a N ∈ R so that ∀k > N ,
1− η2L2 − 2η2LGk

(L+ LGk
)− 4ηLGk

> 0, and then

∥zk+1 − z∗∥2 ≤ (1 + 4ηLGk
) ∥zk − z∗∥2

By the equation above, there exists

∥zT+1 − z∗∥2 ≤ ∥zN − z∗∥2
∏T

k=N
(1 + 4ηLGk

)

≤ ∥zN − z∗∥2
∏∞

k=N
(1 + 4ηLGk

)
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Therefore, C ≥ ∥zk − z∗∥ when C = max
{
∥zN − z∗∥2

∏∞
k=N (1 + 4ηLGk

) , ∥z0 − z∗∥2 ,

∥z1 − z∗∥2 , · · · , ∥zN − z∗∥2
}

. □

B.3 BEST-ITERATE CONVERGENCE OF THE TANGENT RESIDUAL OF THE EG ALGORITHM

Lemma 15 For a game G converging to a monotone game with any convex set Z ⊆ Rn, monotone
L-Lipschitz operator F∞ mapping from Z to Rn and z∗ ∈ Z , there exists

rtan(zk+1) ≤
(
1 + ηL+ (ηL)2

η

)∥∥∥zk − zk+ 1
2

∥∥∥+ (3 + 2ηL)max {∥Gk∥}

If Gk is LGk
-Lipschitz and Gt(z

∗) = 0, there exists

rtan(zk+1) ≤
(
1 + ηL+ (ηL)2

η
+ (1 + ηL)LG

)∥∥∥zk − zk+ 1
2

∥∥∥+ LGk
D

where D = max
∥∥∥z∗ − zk+ 1

2

∥∥∥.

Proof. Due to Lemma 10, there exists

rtan(zk+1) ≤
∥∥∥∥zk − zk+1

η
+ F∞(zk+1)− F∞

(
zk+ 1

2

)∥∥∥∥+max {∥Gk∥}

Hence,

rtan(zk+1) ≤
∥∥∥∥zk − zk+ 1

2

η

∥∥∥∥+ ∥∥∥∥zk+1 − zk+ 1
2

η

∥∥∥∥+ L
∥∥∥zk+1 − zk+ 1

2

∥∥∥+max {∥Gk∥}

≤
(
1

η
+

(
1 + ηL

η

)
ηL

)∥∥∥zk − zk+ 1
2

∥∥∥+ (2η(1 + ηL

η

)
+ 1

)
max {∥Gk∥}

=

(
1 + ηL+ (ηL)2

η

)∥∥∥zk − zk+ 1
2

∥∥∥+ (3 + 2ηL)max {∥Gk∥}

If Gk is LGk
-Lipschitz and Gt(z

∗) = 0, there exists

rtan(zk+1) ≤
∥∥∥∥zk − zk+1

η
+ F∞(zk+1)− F∞

(
zk+ 1

2

)∥∥∥∥+ LGk
D

Hence,

rtan(zk+1) ≤
∥∥∥∥zk − zk+1

η

∥∥∥∥+ ∥∥∥F∞(zk+1)− F∞

(
zk+ 1

2

)∥∥∥+ LGk
D

≤
∥∥∥∥zk − zk+ 1

2

η

∥∥∥∥+ ∥∥∥∥zk+1 − zk+ 1
2

η

∥∥∥∥+ L
∥∥∥zk+1 − zk+ 1

2

∥∥∥+ LGk
D

≤
(
1

η
+ L+ LG + ηL(L+ LG)

)∥∥∥zk − zk+ 1
2

∥∥∥+ LGk
D

=

(
1 + ηL+ (ηL)2

η
+ (1 + ηL)LG

)∥∥∥zk − zk+ 1
2

∥∥∥+ LGk
D

□

Full version of Lemma 4. For a game G converging to a monotone game with any closed convex
set Z ⊆ Rn and monotone and L-Lipschitz operator F∞ : Z → Rn, with the EG algorithm, let z∗
be a solution of the game G. Then ∀T ≥ 1, there exists a t∗ ∈ [[T ]] satisfying∥∥∥zt∗ − zt∗+ 1

2

∥∥∥2 ≤ C1

T

and satisfying

rtan(zt∗+1) ≤ max

{
C2√
T

+ C3 max ∥Gt∗∥
}
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under Assumptions 2 and 3,

rtan(zt∗+1) ≤ max

{
C2√
T

+ LGt∗D

}
under Assumption 4, where

C1 =
∥z0 − z∗∥2 + 4ηDZ

∑∞
k=0 (max ∥Gk∥)

1− η2L2

C2 =
1 + ηL+ (ηL)2

η

√
∥z0 − z∗∥2 + 4ηDZ

∑∞
k=0 (max ∥Gk∥)

1− η2L2

C3 = 3 + 2ηL

under Assumption 2 if η ∈
(
0, 1

L

)
;

C1 =
∥z0 − z∗∥2 + 2ηDZ

∑∞
k=0 max ∥Gk∥

1− η2L2 − 2η2LG (L+ LG)

C2 =
1 + ηL+ (ηL)2

η

√
∥z0 − z∗∥2 + 2ηDZ

∑∞
k=0 max ∥Gk∥

1− η2L2 − 2η2LG (L+ LG)

C3 = 3 + 2ηL

under Assumption 3 if η ∈
(
0, 1√

L2+2LG(L+LG)

)
;

C1 =
∥z0 − z∗∥2

∏∞
k=0 (1 + 4ηLGk

)

1− η2L2 − 2η2LG (L+ LG)− 4ηLG

C2 =

(
1 + ηL+ (ηL)2

η
+ (1 + ηL)LG

)√
∥z0 − z∗∥2

∏∞
k=0 (1 + 4ηLGk

)

1− η2L2 − 2η2LG (L+ LG)− 4ηLG

under Assumption 4 with D = max
∥∥∥z∗ − zt∗+ 1

2

∥∥∥ if 1− η2L2 − 2η2LG (L+ LG)− 4ηLG > 0.

Proof. Due to Lemma 13, there exists

∥z0 − z∗∥2 ≥ ∥zT+1 − z∗∥2 +
(
1− η2L2

)∑T

k=0

∥∥∥zk − zk+ 1
2

∥∥∥2 −∑T

k=0
4ηmax ∥GkDZ∥

≥
(
1− η2L2

)∑T

k=0

∥∥∥zk − zk+ 1
2

∥∥∥2 −∑T

k=0
4ηmax ∥GkDZ∥

≥
(
1− η2L2

)∑T

k=0

∥∥∥zk − zk+ 1
2

∥∥∥2 − 4ηDZ
∑∞

k=0
max ∥Gk∥

Hence, ∥∥∥zt∗ − zt∗+ 1
2

∥∥∥2 ≤ 1

T (1− η2L2)

(
∥z0 − z∗∥2 + 4ηDZ

∑∞

k=0
(max ∥Gk∥)

)
Due to Lemma 15,

rtan(zt∗+1) ≤

√
∥z0 − z∗∥2 + 4ηDZ

∑∞
k=0 (max ∥Gk∥)

T (1− η2L2)

(
1 + ηL+ (ηL)2

η

)2

+(3 + 2ηL)max {∥Gt∗∥}

If Gk is LGk
-Lipschitz, there exists

∥z0 − z∗∥2 ≥ ∥zT+1 − z∗∥2 +
∑T

k=0

(
1− η2L2 − 2η2LGk

(L+ LGk
)
) ∥∥∥zk − zk+ 1

2

∥∥∥2
−
∑T

k=0
(2ηmax ∥Gk∥DZ)

≥
∑T

k=0

(
1− η2L2 − 2η2LGk

(L+ LGk
)
) ∥∥∥zk − zk+ 1

2

∥∥∥2 −∑T

k=0
(2ηmax ∥Gk∥DZ)
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For N ∈ N∗, when ∀k > N , 1− η2L2 − 2η2LGk
(L+ LGk

) > 0, there exists

∥z0 − z∗∥2 ≥
∑T

k=0

(
1− η2L2 − 2η2LG (L+ LG)

) ∥∥∥zk − zk+ 1
2

∥∥∥2 −∑T

k=0
(2ηmax ∥Gk∥DZ)

Hence,∥∥∥zt∗ − zt∗+ 1
2

∥∥∥2 ≤ 1

T (1− η2L2 − 2η2LG (L+ LG))

(
∥z0 − z∗∥2 + 2ηDZ

∑∞

k=0
max ∥Gk∥

)
Due to Lemma 15,

rtan(zt∗+1) ≤

√
∥z0 − z∗∥2 + 2ηDZ

∑∞
k=0 max ∥Gk∥

T (1− η2L2 − 2η2LG (L+ LG))

(
1 + ηL+ (ηL)2

η

)2

+ (3 + 2ηL)max {∥Gt∗∥}

Under Assumption 4,

∥zT+1 − z∗∥2 ≤
∏T

k=0
(1 + 4ηLGk

) ∥z0 − z∗∥2

−
∑T−1

k=0

(
1− η2L2 − 2η2LGk

(L+ LGk
)− 4ηLGk

)∏T

i=k+1
(1 + 4ηLGi

)
∥∥∥zk − zk+ 1

2

∥∥∥2
For N ∈ N∗, when ∀k > N , 1− η2L2 − 2η2LG (L+ LG)− 4ηLG > 0, there exists

∥z0 − z∗∥2 ≥
∑T−1

k=0

(
1− η2L2 − 2η2LG (L+ LG)− 4ηLG

)∏T
i=k+1(1 + 4ηLGi)∏T

k=0 (1 + 4ηLGk
)

∥∥∥zt∗ − zt∗+ 1
2

∥∥∥2
Then, since

∏T
k=0 (1 + 4ηLGk

) ≤
∏∞

k=0 (1 + 4ηLGk
), there exists∥∥∥zt∗ − zt∗+ 1

2

∥∥∥2 ≤
∥z0 − z∗∥2

∏∞
k=0 (1 + 4ηLGk

)

T (1− η2L2 − 2η2LG (L+ LG) −4ηLG)

Due to Lemma 15,

rtan(zt∗+1) ≤

√
∥z0 − z∗∥2

∏∞
k=0 (1 + 4ηLGk

)

T (1− η2L2 − 2η2LG (L+ LG)− 4ηLG)

(
1 + ηL+ (ηL)2

η
+ (1 + ηL)LG

)
+ LGt∗D

□

B.4 LAST-ITERATE CONVERGENCE OF THE EG ALGORITHM WITH A CONSTANT STEP SIZE

Restatement of Theorem 1. For a game G converging to a monotone game, ∀η ∈
(
0, 1

L

)
, zk ∈ Z ,

rtan(zk)
2 ≥ rtan(zk+1)

2 −max ∥Gk∥
(
4DZ + 4ηmax ∥F∞∥

η

)
If Z = Rn, there exists

rtan(zk)
2 ≥ rtan(zk+1)

2 −max ∥Gk∥
(
4D + 2ηmax ∥F∞∥

η

)
where D = max{∥zk − zk+1∥, ∥zk+ 1

2
− zk+1∥}, k ∈ N.

Proof. In this proof, “LHS” stands for “left-hand side”. Let ck = ΠNZ(zk)(−F∞(zk)) and ck+1 =
ΠNZ(zk+1)(−F∞(zk+1)). By Lemma 8, there exists

η2rtan(zk)
2 − η2rtan(zk+1)

2 = ∥ηF∞(zk) + ηck∥2 − ∥ηF∞(zk+1) + ηck+1∥2 (4)

Considering that F∞ is both monotone and L-Lipschitz and L < 1
η , there exists

−
(∥∥∥zk+ 1

2
− zk+1

∥∥∥2 − ∥∥∥ηF∞

(
zk+ 1

2

)
− ηF∞ (zk+1)

∥∥∥2) ≤ 0 (5)

−2 ⟨ηF∞ (zk+1)− ηF∞ (zk) , zk+1 − zk⟩ ≤ 0 (6)
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Since zk+ 1
2
= ΠZ(zk−ηF (zk)) and zk+1 = ΠZ

(
zk − ηF

(
zk+ 1

2

))
, there exists zk−ηFk(zk)−

zk+ 1
2
∈ N

(
zk+ 1

2

)
and zk − ηFk

(
zk+ 1

2

)
− zk+1 ∈ N (zk+1). Hence,

−2
〈
zk − ηFk(zk)− zk+ 1

2
, zk+ 1

2
− zk+1

〉
≤ 0 (7)

−2
〈
zk − ηFk

(
zk+ 1

2

)
− zk+1, zk+1 − zk

〉
≤ 0 (8)

−2
〈
ηck, zk − zk+ 1

2

〉
≤ 0 (9)

By Lemma 8, there exists

−2
〈
ηck+1 + ηF∞(zk+1), zk − ηFk

(
zk+ 1

2

)
− zk+1

〉
≤ 0 (10)

−2 ⟨ηck+1 + ηF∞(zk+1),−ηck+1⟩ = 0 (11)
Hence, there exists

Expression (4) + LHS of Inequality (5) + LHS of Inequality (6) + LHS of Inequality (7)
+LHS of Inequality (8) + LHS of Inequality (9) + LHS of Inequality (10) + LHS of Equation (11)

=
∥∥∥ηF∞(zk) + ηck − zk + zk+ 1

2

∥∥∥2 + ∥∥∥ηF∞

(
zk+ 1

2

)
+ ηck+1 − zk + zk+1

∥∥∥2 + 2η
〈
Gk(zk), zk+ 1

2
− zk+1

〉
+2η

〈
Gk

(
zk+ 1

2

)
, zk+1 − zk

〉
+ 2η

〈
Gk

(
zk+ 1

2

)
, ηck+1 + ηF∞(zk+1)

〉
≥2η

〈
Gk(zk), zk+ 1

2
− zk+1

〉
+ 2η

〈
Gk

(
zk+ 1

2

)
, zk+1 − zk

〉
+ 2η

〈
Gk

(
zk+ 1

2

)
, ηck+1 + ηF∞(zk+1)

〉
≥− 4η (DZ max ∥Gk∥)− 2η2 (2max ∥F∞∥max ∥Gk∥)

(12)

which means

rtan(zk)
2 ≥ rtan(zk+1)

2 −max ∥Gk∥
(
4DZ + 4ηmax ∥F∞∥

η

)
(13)

If Z = Rn, ηck+1 = 0. By Lemma 14, there exists

Expression (4) + LHS of Inequality (5) + LHS of Inequality (6) + LHS of Inequality (7)
+LHS of Inequality (8) + LHS of Inequality (9) + LHS of Inequality (10) + LHS of Equation (11)

≥2η
〈
Gk(zk), zk+ 1

2
− zk+1

〉
+ 2η

〈
Gk

(
zk+ 1

2

)
, zk+1 − zk

〉
+ 2η

〈
Gk

(
zk+ 1

2

)
, ηck+1 + ηF∞(zk+1)

〉
≥− 4η(Dmax ∥Gk∥)− 2η2 (max ∥F∞∥max ∥Gk∥)
which means

rtan(zk)
2 ≥ rtan(zk+1)

2 −max ∥Gk∥
(
4D + 2ηmax ∥F∞∥

η

)
(14)

□

Now we combine all the results above in this section in Theorem 5 for the proof of Theorem 2.

Theorem 5 For a game G converging to a monotone game, ∀T = T1 + T2, T1, T2 ∈ N∗ ,DZ > 0,
the convergence rate of the EG algorithm satisfies

rtan (zT1+T2+1) ≤

√(
C2√
T2

+ C3 maxk∈[T1,T1+T2] ∥Gk∥
)2

+
4DZ + 4ηmax ∥F∞∥

η

∑∞

k=T1

max ∥Gk∥

when G satisfies Assumption 2 if η ∈
(
0, 1

L

)
or G satisfies Assumption 3 if η ∈(

0, 1√
L2+2LG(L+LG)

)
, and

rtan (zT1+T2+1) ≤

√(
C2√
T2

+maxt∈[T1,T1+T2] LGk
D0

)2

+
4D + aηmax ∥F∞∥

η

∑∞

k=T1

max ∥Gk∥
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when G satisfies Assumption 4 with D0 = max
∥∥∥z∗ − zt∗+ 1

2

∥∥∥ and D = max{∥zk−zk+1∥, ∥zk+ 1
2
−

zk+1∥}, k ∈ N if 1 − η2L2 − 2η2LG (L+ LG) − 4ηLG > 0, and for unconstrained cases a = 2
and for constrained cases a = 4. Under Assumption 2,

C2 =
1 + ηL+ (ηL)2

η

√
maxt∈N ∥zt − z∗∥2 + 4ηDZ

∑∞
k=0 (max ∥Gk∥)

1− η2L2

C3 = 3 + 2ηL

Under Assumption 3,

C2 =

(
1 + ηL+ (ηL)2

η
+ (1 + ηL)LG

)√
maxt∈N ∥zt − z∗∥2 + 2ηDZ

∑∞
k=0 max ∥Gk∥

1− η2L2 − 2η2LG (L+ LG)

C3 = 3 + 2ηL

Under Assumption 4,

C2 =

(
1 + ηL+ (ηL)2

η
+ (1 + ηL)LG

)√
maxt∈N ∥zt − z∗∥2

∏∞
k=0 (1 + 4ηLGk

)

1− η2L2 − 2η2LG (L+ LG)− 4ηLG

Proof. Due to Lemmas 13, 14 and 15, there exists t∗ ∈ (T1, T1 + T2] ∩ N∗ so that rtan(zt∗+1)
2 =

O(1/T2). Since T1 < t∗ + 1, according to Theorem 1, there exists

rtan(zT1+T2+1)
2 ≤ rtan(zt∗+1)

2 +

(
4DZ + 4ηmax ∥F∞∥

η

)∑∞

k=T1

max ∥Gk∥

under any one of Assumptions 2 and 3, while there exists

rtan(zT1+T2+1)
2 ≤ rtan(zt∗+1)

2 +
4D + aηmax ∥F∞∥

η

∑∞

k=T1

max ∥Gk∥

under Assumption 4 with unconstrained games and a = 2. Considering that all zi, zi+ 1
2
, i ∈ N are

in a bounded convex set due to Lemma 14, we have a = 4 under Assumption 4 in a constrained
game. The theorem is obtained by directly combining the equation above with Lemma 4. □

B.5 PROOF OF THEOREM 2

Cases where T < 3 are trivial with Big O notation since a(x) = O(b(x)) is true if x belongs to
a limited set, ∀a(x) ≥ 0 and b(x) > 0. Suppose T = T1 + T2 + 1, T1, T2 ∈ N∗ for T ≥ 2 and
T1 = T2 + 2 or T2 + 1. According to Theorem 5, it holds that

rtan (zT ) = rtan (zT1+T2+1)

≤

√(
C2√
T2

+ C3 maxk∈[T1,T1+T2] ∥Gk∥
)2

+
4DZ + 4ηmax ∥F∞∥

η

∑∞

k=T1

max ∥Gk∥

=

√
O

(
1

T2

)
+O

(
maxk∈[T1,T1+T2] ∥Gk∥

)2
+O

(∑∞

k=T1

max ∥Gk∥
)

= O

(
1√
T2

)
+O

(
maxk∈[T1,T1+T2] ∥Gk∥

)
+O

(√∑∞

k=T1

max ∥Gk∥
)

Hence,

rtan (zT ) =O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥

})
Then, according to Lemma 3, PG,D(z)

D ≤ rtanG (z) and TG,D(z)√
ND

≤ rtanG (z). Hence, it holds that

max

{
rtan (zT ) ,

TG,D(zT )√
ND

,
PG,D(zT )

D

}
=O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥

})
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Besides, we have
rtan (zT ) = rtan (zT1+T2

)

≤

√(
C2√
T2

+maxk∈[T1,T1+T2] LGk
D0

)2

+
4D + aηmax ∥F∞∥

η

∑∞

k=T1

max ∥Gk∥

=

√
O

(
1

T2

)
+O

(
maxk∈[T1,T1+T2] LGk

D0

)2
+O

(∑∞

k=T1

max ∥Gk∥
)

= O

(
1√
T2

)
+O

(
maxk∈[T1,T1+T2] LGk

D0

)
+O

(√∑∞

k=T1

max ∥Gk∥
)

under Assumption 4. Hence,

rtan (zT ) =O

(
max

{
1√
T
,maxk≥T/2 LGk

,

√∑∞

k=T/2
max ∥Gk∥

})
Then, according to Lemma 3, PG,D(z)

D ≤ rtanG (z) and TG,D(z)√
ND

≤ rtanG (z). Hence, it holds that

max

{
rtan (zT ) ,

TG,D(zT )√
ND

,
PG,D(zT )

D

}
=O

(
max

{
1√
T
,maxk≥T/2 LGk

,

√∑∞

k=T/2
max ∥Gk∥

})
□

C OMITTED PROOFS FOR LAST-ITERATE CONVERGENCE OF THE OG
ALGORITHM

In this section, we provide detailed proof for the last-iterate convergence rate of the OG algorithm.
∀k ≥ 0,

wk+1 = ΠZ [zk − ηFk (wk)] , zk+1 = ΠZ [zk − ηFk (wk+1)] (15)

The proof of last-iterate convergence of the OG algorithm is similar to that of the EG algorithm.
This appendix consists of the following parts. This section consists of the following parts. First,
with a method inspired by Hsieh et al. (2019); Wei et al. (2021), the best-iterate convergence rate of
∆(zk, wk) for the OG algorithm is proved. Then, the upper bound of tangent residual of zk is proved
to be max{O(∥zk − zk+ 1

2
∥), O(max ∥Gk∥)} if Gk is LGk

-Lipschitz and to be O(∥zk − zk+ 1
2
∥) no

matter whether Gk is LGk
-Lipschitz. Next, the tangent residual is proved to be either non-increasing

or increasing slowly enough across iterates of the OG algorithm. Finally, the last-iterate convergence
rate of the OG algorithm is concluded from the conditions above.

Lemma 16 For any closed convex set Z ⊆ Rn, if z1 = ΠZ [z2 − ηFkz3
(z3)], then we have

∥z1 − z2∥2 ≤ 2η2∆(z2, z3) + 4η2Lmax ∥z2 − z3∥
∥∥Gkz3

∥∥+ 2η2
∥∥Gkz3

∥∥2
Proof. For z4 = ΠZ [z2 − ηF∞(z2)], there exists

∥z1 − z2∥ ≤ ∥z1 − z4∥+ ∥z4 − z2∥
Since z1 = ΠZ [z2 − ηFkz3

(z3)] exists and the projection operator is non-expansive, there exists

∥z1 − z4∥ ≤ η ∥F∞(z2)− F∞(z3)∥+ η
∥∥Gkz3

(z3)
∥∥

Due to Definition 7 and Lemma 11, there exists
∥z2 − z4∥ = rnatηF,Z(z2) ≤ rtanηF,Z(z2) = ηrtan(z2)

Due to (a+ b)2 ≤ 2a2 + 2b2, there exists

∥z1 − z2∥2 ≤ 2η2rtan(z2)
2 + 2η2 ∥F∞(z2)− F∞(z3)∥2 + 4η2Lmax ∥z2 − z3∥

∥∥Gkz3

∥∥+ 2η2
∥∥Gkz3

∥∥2
= 2η2∆(z2, z3) + 4η2Lmax ∥z2 − z3∥

∥∥Gkz3

∥∥+ 2η2
∥∥Gkz3

∥∥2
□
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C.1 PREPARATION FOR ANALYZING THE BEST-ITERATE CONVERGENCE BEHAVIOURS OF
THE OG ALGORITHM

Inspired by the proof of the best-iterate convergence rate with the OG algorithm in time-invariant
games Hsieh et al. (2019); Wei et al. (2021), we provide Lemma 18 to analyze the best-iterate
convergence behaviours of the OG algorithm with Lemma 17.

Lemma 17 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn and
monotone and L-Lipschitz operator F∞ : Z → Rn and zk, wk ∈ Z , there exists

∥wk − wk+1∥2 ≤ 2(4η2L2)k∥w0 − z0∥2 + 2
∑k

i=0
(4η2L2)i ∥zk−i − wk+1−i∥2

+ 16η2
∑k−1

i=0
(4η2L2)i ∥Gk−1−i∥2

and when T ≥ 1, if η ∈
(
0, 1

2L

)
,∑T

k=0
∥wk − wk+1∥2 ≤ 2

1− 4η2L2

(
∥w0 − z0∥2 +

∑T

k=0
∥zk − wk+1∥2

+8η2
∑T−1

i=0
max ∥Gi∥2

)
while under Assumption 4, there exists

∥wk − wk+1∥2 ≤ 2 ∥zk − wk+1∥2 +
∑k

i=1
2
∏i

j=1

(
2η2

(
L+ LGk−j

)2) ∥zk−i − wk−i+1∥2

+ 2
∏k

i=1

(
2η2

(
L+ LGi−1

)2) ∥w0 − z0∥2∑T

k=0
∥wk − wk+1∥2 ≤ EG

(
∥w0 − z0∥2 +

∑T

k=0
∥zk − wk+1∥2

)
where

EG = 2 + lim
T→∞

2
∑T

k=1

(
2η2 (L+ LG)

2
)k

Proof. ∀k ≥ 1,

∥wk − zk∥2 ≤ η2 ∥Fk−1(wk−1)− Fk−1(wk)∥2

≤ η2 (L ∥wk−1 − wk∥+ ∥Gk−1(wk−1)−Gk−1(wk)∥)2

≤ 2η2
(
L2 ∥wk−1 − wk∥2 + 4 ∥Gk−1∥2

)
∀k ≥ 0 there exists

∥wk − wk+1∥2 ≤ 2 ∥wk − zk∥2 + 2 ∥zk − wk+1∥2

Hence, ∀k ≥ 2 and under Assumption 2, there exists

∥wk − wk+1∥2 ≤ 2η2L2 ∥wk−1 − wk∥2 + 2 ∥zk − wk+1∥2 + 2η2 ∥Gk−1(wk−1)−Gk−1(wk)∥2

+ 4η2L ∥wk−1 − wk∥ ∥Gk−1(wk−1)−Gk−1(wk)∥
≤ 4η2L2 ∥wk−1 − wk∥2 + 2 ∥zk − wk+1∥2 + 4η2 ∥Gk−1(wk−1)−Gk−1(wk)∥2

≤ 4η2L2 ∥wk−1 − wk∥2 + 2 ∥zk − wk+1∥2 + 16η2 ∥Gk−1∥2

≤ 4η2L2

(
2(4η2L2)k−1∥w0 − z0∥2 + 2

∑k−1

i=0
(4η2L2)i ∥zk−1−i − wk−i∥2

+16η2
∑k−2

i=0
(4η2L2)i ∥Gk−2−i∥2

)
+ 2 ∥zk − wk+1∥2 + 16η2 ∥Gk−1∥2

= 2(4η2L2)k∥w0 − z0∥2 + 2
∑k

i=0
(4η2L2)i ∥zk−i − wk+1−i∥2

+ 16η2
∑k−1

i=0
(4η2L2)i ∥Gk−1−i∥2
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and when k = 1,

∥wk − wk+1∥2 ≤ 2(4η2L2)k∥w0 − z0∥2 + 2
∑k

i=0
(4η2L2)i ∥zk−i − wk+1−i∥2

+ 16η2
∑k−1

i=0
(4η2L2)i ∥Gk−1−i∥2

Hence, there exists∑T

k=0
∥wk − wk+1∥2 ≤ 2

1− 4η2L2

(
∥w0 − z0∥2 +

∑T

k=0
∥zk − wk+1∥2

+8η2
∑T−1

i=0
max ∥Gi∥2

)
If Gk is LGk

-Lipschitz, ∀k ≥ 1, there exists

∥wk − zk∥2 ≤ η2
(
L+ LGk−1

)2 ∥wk−1 − wk∥2

Hence, under Assumption 4,

∥wk − wk+1∥2 ≤ 2η2
(
L+ LGk−1

)2 ∥wk−1 − wk∥2 + 2 ∥zk − wk+1∥2

≤ 2 ∥zk − wk+1∥2 +
∑k−2

i=0
2
∏i

j=0

(
2η2

(
L+ LGk−1−j

)2) ∥zk−1−i − wk−i∥2

+
∏k

i=1

(
2η2

(
L+ LGi−1

)2) ∥w0 − w1∥2

≤ 2 ∥zk − wk+1∥2 +
∑k

i=1
2
∏i

j=1

(
2η2

(
L+ LGk−j

)2) ∥zk−i − wk−i+1∥2

+ 2
∏k

i=1

(
2η2

(
L+ LGi−1

)2) ∥w0 − z0∥2

By the equation above, there exists∑T

k=0
∥wk − wk+1∥2 ≤ 2

(
1 +

∑T

k=1

∏k

i=1

(
2η2

(
L+ LGi−1

)2)) ∥w0 − z0∥2

+ 2 ∥z0 − w1∥2 +
∑T

k=1

(
2 ∥zk − wk+1∥2

+
∑k

i=1
2
∏i

j=1

(
2η2

(
L+ LGk−j

)2) ∥zk−i − wk−i+1∥2
)

= 2

(
1 +

∑T

k=1

∏k

i=1

(
2η2

(
L+ LGi−1

)2)) ∥w0 − z0∥2

+
∑T

k=0
∥zk − wk+1∥2

(
2 +

∑T−k

i=1
2
∏i

j=1

(
2η2

(
L+ LGk+i−j

)2))
Since EG = 2+limT→∞ 2

∑T
k=1(2η

2(L+LG)
2)k so that 2+2

∑T
k=1

∏k
i=1(2η

2(L+LGi−1
)2)≤

EG, ∑T

k=0
∥wk − wk+1∥2 ≤ EG

(
∥w0 − z0∥2 +

∑T

k=0
∥zk − wk+1∥2

)
□

Lemma 18 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn and
monotone and L-Lipschitz operator F∞ : Z → Rn and zk, wk ∈ Z , if η ∈

(
0, 1√

6L

)
, there exists

∥zT+1 − z∗∥2 ≤ ∥z0 − z∗∥2 + 2η2L2

1− 4η2L2
∥w0 − z0∥2 −

1− 6η2L2

1− 4η2L2

∑T

k=0
∥zk − wk+1∥2

+
16η4L2

1− 4η2L2

∑T−1

k=0
max ∥Gk∥2 + 4ηDZ

∑T

k=0
max ∥Gk∥
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and if Gk is LGk
-Lipschitz and η ∈

(
0, 1√

6L2+4LLG+2L2
G

)
, there exists

∥zT+1 − z∗∥2 ≤ ∥z0 − z∗∥2 + 2η2 (L+ LG)
2

1− 4η2L2
∥w0 − z0∥2 −

1− 6η2L2 − 4η2LLG − 2η2L2
G

1− 4η2L2

·
∑T

k=0
∥zk − wk+1∥2 +

16η4 (L+ LG)
2

1− 4η2L2

∑T−1

k=0
max ∥Gk∥2

+ 2ηDZ
∑T

k=0
max ∥Gk∥

while under Assumption 4, if η ∈
(
0,min

{
1

2(L+LG) ,
1

4LG

})
,

∥zT+1 − z∗∥2 ≤ EG2 ∥z0 − z∗∥2 + EG2η
2 (L+ LG)

2
EG ∥w0 − z0∥2

− (1− 4ηLG − EGEG2η
2 (L+ LG)

2
)
∑T

k=0
∥zk − wk+1∥2

where

EG = 2 + lim
T→∞

2
∑T

k=1

(
2η2 (L+ LG)

2
)k

EG2 = lim
T→∞

∏T

k=0
(1 + 4ηLGk

)

Proof. ∀k ≥ 0, there exists

∥zk+1 − z∗∥2 = ∥zk − z∗∥2 + ∥zk+1 − zk∥2 + 2 ⟨zk+1 − zk, zk − z∗⟩
= ∥zk − z∗∥2 − ∥zk+1 − zk∥2 + 2 ⟨zk+1 − zk, zk+1 − z∗⟩
≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η ⟨F∞(wk+1), zk+1 − z∗⟩
− 2η ⟨Gk(wk+1), zk+1 − z∗⟩

Due to Lemma 17, there exists

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η ⟨F∞(wk+1), zk+1 − z∗⟩
− 2η ⟨Gk(wk+1), zk+1 − z∗⟩
= ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η ⟨F∞(wk+1), zk+1 − wk+1⟩
+ 2η ⟨F∞(wk+1), z

∗ − wk+1⟩ − 2η ⟨Gk(wk+1), zk+1 − wk+1⟩
+ 2η ⟨Gk(wk+1), z

∗ − wk+1⟩
≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η ⟨F∞(wk+1), zk+1 − wk+1⟩
− 2η ⟨Gk(wk+1), zk+1 − wk+1⟩+ 2η ⟨Gk(wk+1), z

∗ − wk+1⟩

∀k ≥ 0, there exists

∥zk+1 − wk+1∥2 = ∥zk+1 − zk∥2 + ∥zk − wk+1∥2 + 2 ⟨zk − wk+1, zk+1 − zk⟩
= ∥zk+1 − zk∥2 − ∥zk − wk+1∥2 + 2 ⟨zk − wk+1, zk+1 − wk+1⟩
≤ ∥zk+1 − zk∥2 − ∥zk − wk+1∥2 + 2η ⟨F∞(wk), zk+1 − wk+1⟩
+ 2η ⟨Gk(wk), zk+1 − wk+1⟩

By adding the two equations above, we obtain

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk+1 − wk+1∥2 − ∥zk − wk+1∥2

+ 2η ⟨F∞(wk)− F∞(wk+1), zk+1 − wk+1⟩+ 2η ⟨Gk(wk+1), z
∗ − wk+1⟩

+ 2η ⟨Gk(wk)−Gk(wk+1), zk+1 − wk+1⟩
≤ ∥zk − z∗∥2 − ∥zk+1 − wk+1∥2 − ∥zk − wk+1∥2

+ 2η ∥F∞(wk)− F∞(wk+1)∥ ∥zk+1 − wk+1∥+ 2η ⟨Gk(wk+1), z
∗ − wk+1⟩

+ 2η ∥Gk(wk)−Gk(wk+1)∥ ∥zk+1 − wk+1∥
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If Z is bounded,

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 + η2L2 ∥wk − wk+1∥2 + 2ηmax ∥Gk∥∥zk+1 − z∗∥
+ 2ηDZ∥Gk∥
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 + η2L2 ∥wk − wk+1∥2 + 4ηDZ max ∥Gk∥

Then, there exists

∥zT+1 − z∗∥2 ≤ ∥z0 − z∗∥2 −
∑T

k=0
∥zk − wk+1∥2 + η2L2

∑T

k=0
∥wk − wk+1∥2

+ 4ηDZ
∑T

k=0
max ∥Gk∥

≤ ∥z0 − z∗∥2 −
∑T

k=0
∥zk − wk+1∥2 + 4ηDZ

∑T

k=0
max ∥Gk∥

+
2η2L2

1− 4η2L2

(
∥w0 − z0∥2 +

∑T

k=0
∥zk − wk+1∥2 + 8η2

∑T−1

k=0
max ∥Gk∥2

)
≤ ∥z0 − z∗∥2 + 2η2L2

1− 4η2L2
∥w0 − z0∥2 −

1− 6η2L2

1− 4η2L2

∑T

k=0
∥zk − wk+1∥2

+
16η4L2

1− 4η2L2

∑T−1

k=0
max ∥Gk∥2 + 4ηDZ

∑T

k=0
max ∥Gk∥

If Gk is LGk
-Lipschitz, there exists

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk+1 − wk+1∥2 − ∥zk − wk+1∥2 + 2ηL ∥wk − wk+1∥ ∥zk+1 − wk+1∥
+ 2η ⟨Gk(wk+1), z

∗ − wk+1⟩+ 2ηLGk
∥wk − wk+1∥ ∥zk+1 − wk+1∥

≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 + η2 (L+ LGk
)
2 ∥wk − wk+1∥2 + 2η ⟨Gk(wk+1), z

∗ − wk+1⟩
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 + η2 (L+ LGk

)
2 ∥wk − wk+1∥2 + 2ηDZ max ∥Gk(wk+1)∥

Hence, there exists

∥zT+1 − z∗∥2 ≤ ∥z0 − z∗∥2 −
∑T

k=0
∥zk − wk+1∥2 + η2 (L+ LG)

2
∑T

k=0
∥wk − wk+1∥2

+ 2ηDZ
∑T

k=0
max ∥Gk∥

≤ ∥z0 − z∗∥2 −
∑T

k=0
∥zk − wk+1∥2 +

2η2 (L+ LG)
2

1− 4η2L2

(
∥w0 − z0∥2 +

∑T

k=0
∥zk − wk+1∥2

+ 8η2
∑T−1

i=0
max ∥Gi∥2

)
+ 2ηDZ

∑T

k=0
max ∥Gk∥

≤ ∥z0 − z∗∥2 + 2η2 (L+ LG)
2

1− 4η2L2
∥w0 − z0∥2 −

1− 6η2L2 − 4η2LLG − 2η2L2
G

1− 4η2L2

·
∑T

k=0
∥zk − wk+1∥2 +

16η4 (L+ LG)
2

1− 4η2L2

∑T−1

k=0
max ∥Gk∥2 + 2ηDZ

∑T

k=0
max ∥Gk∥

Under Assumption 4, there exists

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 + η2 (L+ LGk
)
2 ∥wk − wk+1∥2 + 2ηLGk

∥z∗ − wk+1∥2

≤ (1 + 4ηLGk
) ∥zk − z∗∥2 − (1− 4ηLGk

) ∥zk − wk+1∥2 + η2 (L+ LGk
)
2 ∥wk − wk+1∥2
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Hence,

∥zT+1 − z∗∥2 ≤
∏T

k=0
(1 + 4ηLGk

) ∥z0 − z∗∥2 −
∑T−1

k=0

∏T

i=k+1
(1 + 4ηLGi) (1− 4ηLGk

) ∥zk − wk+1∥2

− (1− 4ηLGT
) ∥zT − wT+1∥2 +

∑T−1

k=0

∏T

i=k+1
(1 + 4ηLGi

) η2 (L+ LGk
)
2 ∥wk − wk+1∥2

+ η2 (L+ LGT
)
2 ∥wT − wT+1∥2

≤ EG2 ∥z0 − z∗∥2 −
∑T

k=0
(1− 4ηLGk

) ∥zk − wk+1∥2

+ EG2η
2 (L+ LG)

2
∑T

k=0
∥wk − wk+1∥2

≤ EG2 ∥z0 − z∗∥2 −
∑T

k=0
(1− 4ηLGk

) ∥zk − wk+1∥2

+ EG2η
2 (L+ LG)

2
EG

(
∥w0 − z0∥2 +

∑T

k=0
∥zk − wk+1∥2

)
≤ EG2 ∥z0 − z∗∥2 + EG2η

2 (L+ LG)
2
EG ∥w0 − z0∥2

− (1− 4ηLG − EGEG2η
2 (L+ LG)

2
)
∑T

k=0
∥zk − wk+1∥2

□

C.2 BEST-ITERATE CONVERGENCE OF ∆(zk, wk)

This section shows that ∀T ∈ N∗, there exists t∗ ∈ [[T ]] satisfying ∆(zt∗ , wt∗) = O(1/T ).

Following is the proof of the boundedness of any sequence of players’ actions with the OG algorithm
in (L+ LGk

)-Lipschitz games described under Assumption 4.

Lemma 19 For a game G converging to a monotone game with any closed convex set Z ∈ Rn,
monotone L-Lipschitz operator F∞ mapping from Z to Rn and zk ∈ Z , with the OG algorithm
under Assumption 4, there exists Cz, Cw > 0 so that ∥zk − z∗∥ ≤ Cz and ∥wk − z∗∥ ≤ Cw.

Proof. Under Assumption 4, with Lemma 18, we find that ∀t ∈ N∗, ∥zk − z∗∥2 is bounded in
any sequence of games in this paper with the OG algorithm. Hence, there exists Cz > 0 so that
∥zk − z∗∥ < Cz .

With OG algorithm, we have zk = ΠZ [zk−1 − ηFk (wk)]. Hence, for Cw = 2Cz ,

∥wk+1 − zk∥ = ∥ΠZ [zk − ηFk (wk)]−ΠZ [zk−1 − ηFk (wk)]∥
≤ ∥zk − zk−1∥ ≤ ∥zk − z∗∥+ ∥z∗ − zk−1∥ ≤ 2Cz ≤ Cw

□

Lemma 20 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn and
monotone and L-Lipschitz operator F∞ : Z → Rn and zk, wk ∈ Z , if η ∈

(
0, 1√

6L

)
, there exists

∑T

k=1
η2∆(zk, wk) ≤

4 + 20η4L4

1− 6η2L2
∥z0 − z∗∥2 +

4η2L2
(
5η2L2 + 6

)
1− 6η2L2

∥w0 − z0∥2

+
4η2

(
9 + 4η2L2 − 20η4L4

)
1− 6η2L2

Emk2 +
4ηDZ

(
4 + 20η4L4

)
1− 6η2L2

Emk

where

Emk =
∑∞

k=0
max ∥Gk∥

Emk2 =
∑∞

k=0
max ∥Gk∥2
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Under Assumption 3, if η ∈
(
0, 1√

6L2+4LLG+2L2
G

)
, there exists

∑T

k=1
η2∆(zk, wk) ≤

4(1− 4η2L2) + 2η2L2
(
η2 (L+ LG)

2
+ 8 + 8η2L2

)
1− 6η2L2 − 4η2LLG − 2η2L2

G

∥z0 − z∗∥2 + ∥w0 − z0∥2

·

2η2 (L+ LG)
2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)

+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2


+
8ηDZ(1− 4η2L2) + 4η3DZL

2
(
η2 (L+ LG)

2
+ 8 + 8η2L2

)
1− 6η2L2 − 4η2LLG − 2η2L2

G

Emk + 4η2Emk2

(
9 + 8η2L2

+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2
+

2η2 (L+ LG)
2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)

)

Under Assumption 4, if 1− 4ηLG − EGEG2η
2 (L+ LG)

2
> 0, there exists

∑T

k=1
∆(zk, wk) ≤

4 + EGη
2 (L+ LG)

2 (
4 + 3η2L2

)
1− 4ηLG − EGEG2η2 (L+ LG)

2EG2 ∥z0 − z∗∥2

+

(
4EG2 + EGEG2η

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2 + 4 + 3η2L2

)
(η2 (L+ LG)

2
EG) ∥w0 − z0∥2

+2η2D2
∑T

k=1
LGk−1

(
2L+ LGk−1

)
where D = maxt∈N{∥zt − z∗∥, ∥zt − wt∥}.

Proof. ∀k ≥ 1, due to Lemma 10 , there exists

η2rtan(zk)
2 ≤ (∥zk−1 − zk + ηF∞(zk)− ηF∞(wk)∥+ ηmax ∥Gk−1∥)2

≤ 2 ∥zk−1 − zk∥2 + 2η2 (∥F∞(zk)− F∞(wk)∥+max ∥Gk−1∥)2

≤ 2 ∥zk−1 − zk∥2 + 2η2 (L ∥zk − wk∥+max ∥Gk−1∥)2

≤ 4 ∥zk−1 − wk∥2 + 4 ∥wk − zk∥2 + 4η2L2 ∥zk − wk∥2 + 4η2 max ∥Gk−1∥2

≤ 4 ∥zk−1 − wk∥2 +
(
4 + 4η2L2

) (
2η2L2 ∥wk−1 − wk∥2 + 8η2 max ∥Gk−1∥2

)
+ 4η2 max ∥Gk−1∥2

= 4 ∥zk−1 − wk∥2 + 2η2L2
(
4 + 4η2L2

)
∥wk−1 − wk∥2 + 4η2

(
9 + 8η2L2

)
max ∥Gk−1∥2

Hence, according to Lemma 18, when η ∈
(
0, 1√

6L

)
, there exists

∑T

k=1
η2∆(zk, wk) =

∑T

k=1

(
η2rtan(zk)

2 + ∥ηF∞(zk)− ηF∞(wk)∥2
)

≤4
∑T

k=1
∥zk−1 − wk∥2 +

(
4 + 5η2L2

)
2η2L2

∑T

k=1
∥wk−1 − wk∥2 + 4η2

(
9 + 10η2L2

)∑T

k=1
max ∥Gk−1∥2

=4
∑T−1

k=0
∥zk − wk+1∥2 +

(
4 + 5η2L2

)
2η2L2

∑T−1

k=0
∥wk − wk+1∥2 + 4η2

(
9 + 10η2L2

)∑T−1

k=0
max ∥Gk∥2

≤4
∑T−1

k=0
∥zk − wk+1∥2 +

(
4 + 5η2L2

)
2η2L2 2

1− 4η2L2

(
∥w0 − z0∥2 +

∑T−1

k=0
∥zk − wk+1∥2

+ 8η2
∑T−2

i=0
max ∥Gi∥2

)
+ 4η2

(
9 + 10η2L2

)∑T−1

k=0
max ∥Gk∥2
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=

(
4 + 20η4L4

1− 4η2L2

)∑T−1

k=0
∥zk − wk+1∥2 +

(
4 + 5η2L2

)
4η2L2

1− 4η2L2

(
∥w0 − z0∥2 + 8η2

∑T−2

i=0
max ∥Gi∥2

)
+4η2

(
9 + 10η2L2

)∑T−1

k=0
max ∥Gk∥2

≤
(
4 + 20η4L4

1− 6η2L2

)(
∥z0 − z∗∥2 + 2η2L2

1− 4η2L2
∥w0 − z0∥2 +

16η4L2

1− 4η2L2

∑T−2

i=0
max ∥Gi∥2

+ 4ηDZ
∑T−1

k=0
max ∥Gk∥

)
+

(
4 + 5η2L2

)
4η2L2

1− 4η2L2

(
∥w0 − z0∥2 + 8η2

∑T−2

i=0
max ∥Gi∥2

)
+4η2

(
9 + 10η2L2

)∑T−1

k=0
max ∥Gk∥2

≤
(
4 + 20η4L4

1− 6η2L2

)(
∥z0 − z∗∥2 + 2η2L2

1− 4η2L2
∥w0 − z0∥2 +

16η4L2

1− 4η2L2
Emk2 + 4ηDZEmk

)
+

(
4 + 5η2L2

)
4η2L2

1− 4η2L2

(
∥w0 − z0∥2 + 8η2Emk2

)
+ 4η2

(
9 + 10η2L2

)
Emk2

≤4 + 20η4L4

1− 6η2L2
∥z0 − z∗∥2 +

2η2L2
(
4 + 20η4L4

)
+
(
1− 6η2L2

) (
4 + 5η2L2

)
4η2L2

(1− 4η2L2) (1− 6η2L2)
∥w0 − z0∥2 + Emk2

·
16η4L2

(
4 + 20η4L4

)
+ 32η4L2

(
4 + 5η2L2

) (
1− 6η2L2

)
+ 4η2

(
9 + 10η2L2

) (
1− 4η2L2

) (
1− 6η2L2

)
(1− 4η2L2) (1− 6η2L2)

+
4ηDZ

(
4 + 20η4L4

)
1− 6η2L2

Emk

=
4 + 20η4L4

1− 6η2L2
∥z0 − z∗∥2 +

4η2L2
(
5η2L2 + 6

)
1− 6η2L2

∥w0 − z0∥2 +
4η2

(
9 + 4η2L2 − 20η4L4

)
1− 6η2L2

Emk2

+
4ηDZ

(
4 + 20η4L4

)
1− 6η2L2

Emk

Under Assumption 3, due to Lemma 10, there exists

η2rtan(zk)
2 ≤ (∥zk−1 − zk + ηF∞(zk)− ηF∞(wk)∥+ ηmax ∥Gk−1∥)2

≤ 4 ∥zk−1 − wk∥2 + 2η2L2
(
4 + 4η2L2

)
∥wk−1 − wk∥2 + 4η2

(
9 + 8η2L2

)
max ∥Gk−1∥2

By adding the two inequalities above and summing them with k ∈ [[T ]], we obtain

∑T

k=1
η2∆(zk, wk) =

∑T

k=1

(
η2rtan(zk)

2 + ∥ηF∞(zk)− ηF∞(wk)∥2
)

≤ 4
∑T

k=1
∥zk−1 − wk∥2 + 2η2L2

(
4 + 4η2L2

)∑T

k=1
∥wk−1 − wk∥2

+ 4η2
(
9 + 8η2L2

)∑T

k=1
max ∥Gk−1∥2

+
∑T

k=1
η2L2

(
η2
(
L+ LGk−1

)2 ∥wk−1 − wk∥2
)

≤ 4
∑T

k=1
∥zk−1 − wk∥2 + 4η2

(
9 + 8η2L2

)∑T

k=1
max ∥Gk−1∥2

+ η2L2
(
2
(
4 + 4η2L2

)
+ η2 (L+ LG)

2
)∑T

k=1
∥wk−1 − wk∥2

= 4
∑T−1

k=0
∥zk − wk+1∥2 + 4η2

(
9 + 8η2L2

)∑T−1

k=0
max ∥Gk∥2

+ η2L2
(
8 + 8η2L2 + η2 (L+ LG)

2
)∑T−1

k=0
∥wk − wk+1∥2
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According to Lemmas 17 and 18 , there exists∑T

t=1
η2∆(zk, wk) ≤ 4

∑T−1

k=0
∥zk − wk+1∥2 + 4η2

(
9 + 8η2L2

)∑T−1

k=0
max ∥Gk∥2 + 2η2L2

8 + 8η2L2 + η2 (L+ LG)
2

1− 4η2L2

(∑T−1

k=0
∥zk − wk+1∥2 + 4η2

∑T−2

i=0
max ∥Gi∥2

+ ∥w0 − z0∥2
)

≤

4 +
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2


(

1− 4η2L2

1− 6η2L2 − 4η2LLG − 2η2L2
G

∥z0 − z∗∥2

+
2η2 (L+ LG)

2

1− 6η2L2 − 4η2LLG − 2η2L2
G

∥w0 − z0∥2

+
8η4 (L+ LG)

2

1− 6η2L2 − 4η2LLG − 2η2L2
G

∑T−1

k=0
max ∥Gk∥2

+
2ηDZ

(
1− 4η2L2

)
1− 6η2L2 − 4η2LLG − 2η2L2

G

∑T

k=0
max ∥Gk∥

)

+

4η2
(
9 + 8η2L2

)
+

8η4L2
(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2

Emk2

+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2
∥w0 − z0∥2

≤
4
(
1− 4η2L2

)
+ 2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 6η2L2 − 4η2LLG − 2η2L2
G

∥z0 − z∗∥2

+ 2ηDZEmk

4
(
1− 4η2L2

)
+ 2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 6η2L2 − 4η2LLG − 2η2L2
G

+ Emk2

4η2
(
9 + 8η2L2

)
+

8η4L2
(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2

+
8η4 (L+ LG)

2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)


+

2η2 (L+ LG)
2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)

+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2

 ∥w0 − z0∥2

Under Assumption 4, due to Lemma 10, there exists

η2rtan(zk)
2 ≤

(
∥zk−1 − zk + ηF∞(zk)− ηF∞(wk)∥+ ηLGk−1

D
)2

≤ 2 ∥zk−1 − zk∥2 + 2η2
(
L ∥zk − wk∥+ LGk−1

D
)2

≤ 4 ∥zk−1 − wk∥2 +
(
4 + 2η2L2

)
∥zk − wk∥2 + 2η2D2LGk−1

(
2L+ LGk−1

)
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Hence, with ∥wk − zk∥2 ≤ η2
(
L+ LGk−1

)2 ∥wk−1 − wk∥2 and according to Lemmas 17 and 18,
there exists∑T

k=1
η2∆(zk, wk) ≤ EGη

2 (L+ LG)
2 (

4 + 3η2L2
)
∥w0 − z0∥2

+
(
4 + EGη

2 (L+ LG)
2 (

4 + 3η2L2
))∑T−1

k=0
∥zk − wk+1∥2 + 2η2D2

∑T

k=1
LGk−1

(
2L+ LGk−1

)
≤EGη

2 (L+ LG)
2 (

4 + 3η2L2
)
∥w0 − z0∥2 + 2η2D2

∑T

k=1
LGk−1

(
2L+ LGk−1

)
+

(
4 + EGη

2 (L+ LG)
2 (

4 + 3η2L2
))(

EG2 ∥z0 − z∗∥2 + EG2η
2 (L+ LG)

2
EG ∥w0 − z0∥2

)
1− 4ηLG − EGEG2η2 (L+ LG)

2

≤
4 + EGη

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2EG2 ∥z0 − z∗∥2 + ∥w0 − z0∥2

·

(
4 + EGη

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2EG2η

2 (L+ LG)
2
EG + EGη

2 (L+ LG)
2 (

4 + 3η2L2
))

+2η2D2
∑T

k=1
LGk−1

(
2L+ LGk−1

)
=
4 + EGη

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2EG2 ∥z0 − z∗∥2 +

(
4EG2 + EGEG2η

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2

+ 4 + 3η2L2

)
(η2 (L+ LG)

2
EG) ∥w0 − z0∥2 + 2η2D2

∑T

k=1
LGk−1

(
2L+ LGk−1

)
□

From Lemma 20, we obtain the following lemma.

Full version of Lemma 5. For a game G converging to a monotone game with any closed convex
set Z ⊆ Rn and monotone and L-Lipschitz operator F∞ : Z → Rn, let z∗ be a solution of the
game G. Then ∀T ≥ 1, if η ∈

(
0, 1√

6L

)
, there exists t∗ ∈ [[T ]] satisfying

η2∆(zt∗ , wt∗) ≤
1

T

(
4 + 20η4L4

1− 6η2L2
∥z0 − z∗∥2 +

4η2L2
(
5η2L2 + 6

)
1− 6η2L2

∥w0 − z0∥2

+
4η2

(
9 + 4η2L2 − 20η4L4

)
1− 6η2L2

Emk2 +
4ηDZ

(
4 + 20η4L4

)
1− 6η2L2

Emk

)

Under Assumption 3, if η ∈
(
0, 1√

6L2+4LLG+2L2
G

)
, there exists t∗ ∈ [[T ]] satisfying

η2∆(zt∗ , wt∗) ≤
1

T

4(1− 4η2L2) + 2η2L2
(
η2 (L+ LG)

2
+ 8 + 8η2L2

)
1− 6η2L2 − 4η2LLG − 2η2L2

G

∥z0 − z∗∥2 + ∥w0 − z0∥2

·

2η2 (L+ LG)
2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)

+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2


+
8ηDZ(1− 4η2L2) + 4η3DZL

2
(
η2 (L+ LG)

2
+ 8 + 8η2L2

)
1− 6η2L2 − 4η2LLG − 2η2L2

G

Emk + 4η2Emk2

(
9 + 8η2L2

+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2
+

2η2 (L+ LG)
2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)

))
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while under Assumption 4, if 1−4ηLG−EGEG2η
2 (L+ LG)

2
> 0, there exists t∗ ∈ [[T ]] satisfying

η2∆(zt∗ , wt∗) ≤
1

T

(
4 + EGη

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2EG2 ∥z0 − z∗∥2

+

(
4EG2 + EGEG2η

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2 + 4 + 3η2L2

)
(η2 (L+ LG)

2
EG) ∥w0 − z0∥2

+2η2D2
∑T

k=1
LGk−1

(
2L+ LGk−1

))
where D = maxt∈N{∥zt − z∗∥, ∥zt − wt∥}.

Proof. ∀T ≥ 1, there exists t∗ ∈ [[T ]]

η2∆(zt∗ , wt∗) ≤
1

T

∑T

k=1
η2∆(zk, wk)

The lemma is directly obtained with the inequality above from Lemma 20. □

C.3 APPROXIMATE MONOTONICITY OF ∆(zk, wk)

This section shows that ∆(zk, wk) is either non-increasing or increasing at a low rate across iterates
with the OG algorithm.

Restatement of Theorem 3. For a game G converging to a monotone game, ∀η ∈
(
0, 1

2L

)
,

zk ∈ Z , ∆(zk, wk) ≥ ∆(zk+1, wk+1)− 1
η (3DZ + 4ηmax ∥F∞∥)max ∥Gk∥, while ∆(zk, wk) ≥

∆(zk+1, wk+1)− 1
η (3D + 2ηmax ∥F∞∥)max ∥Gk∥ if D = max{∥wk+1 − zk+1∥, ∥zk+1 − zk∥}

and Z = Rn.

Proof. In this proof, “LHS” stands for “left-hand side”. Due to Lemma 8, there exists

η2∆(zk, wk)− η2∆(zk+1, wk+1) =
(
η2rtan(zk)

2 + η2 ∥F∞ (zk)− F∞ (wk)∥2
)

−
(
η2rtan(zk+1)

2 + η2 ∥F∞ (zk+1)− F∞ (wk+1)∥2
)

=
(
∥ηF∞(zk) + ηck∥2 + η2 ∥F∞ (zk)− F∞ (wk)∥2

)
−
(
∥ηF∞(zk+1) + ηck+1∥2 + η2 ∥F∞ (zk+1)− F∞ (wk+1)∥2

)
(16)

Considering that F∞ is monotone and L-Lipschitz, and η ∈
(
0, 1

2L

)
, there exists

−2 ⟨ηF∞(zk+1)− ηF∞(zk), zk+1 − zk⟩ ≤ 0 (17)

−2

(
1

4
∥zk+1 − wk+1∥2 − ∥ηF∞ (zk+1)− ηF∞ (wk+1)∥2

)
≤ 0 (18)

According to the OG algorithm, there exists zk − ηF∞(wk) − ηGk(wk) − wk+1 ∈ N(wk+1) and
zk − ηF∞(wk+1)− ηGk(wk+1)− zk+1 ∈ N(zk+1). Hence,

−⟨zk − ηF∞(wk)− ηGk(wk)− wk+1, wk+1 − zk+1⟩ ≤ 0 (19)

−2 ⟨zk − ηF∞(wk+1)− ηGk(wk+1)− zk+1, zk+1 − zk⟩ ≤ 0 (20)
Since c(zk) ∈ N(zk), there exists

−⟨ηc(zk), zk − wk+1⟩ ≤ 0 (21)

−⟨ηc(zk), zk − zk+1⟩ ≤ 0 (22)
According to Lemma 8 and zk−ηFk(wk+1)−zk+1 ∈ NZ(zk+1), ck+1 ∈ ΠNZ(zk+1)(−F∞(zk+1)),

−2 ⟨ηc(zk+1) + ηF∞(zk+1), zk − ηF∞(wk+1)− ηGk(wk+1)− zk+1⟩ ≤ 0 (23)

−2 ⟨ηc(zk+1) + ηF∞(zk+1),−ηc(zk+1)⟩ ≤ 0 (24)
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there exists the following inequality:

Expression (16) + LHS of Inequality (17) + LHS of Inequality (18) + LHS of Inequality (19)
+LHS of Inequality (20) + LHS of Inequality (21) + LHS of Inequality (22) + LHS of Inequality (23)
+LHS of Inequality (24)

=

∥∥∥∥wk+1 − zk+1

2
+ ηF∞(wk)− ηF∞(zk)

∥∥∥∥2 + ∥∥∥∥ηF∞(zk) + ηc(zk)− zk +
wk+1 + zk+1

2

∥∥∥∥2
+ ∥zk − ηF∞(wk+1)− zk+1 − ηc(zk+1)∥2 + ⟨ηGk(wk), wk+1 − zk+1⟩
+2 ⟨ηGk(wk+1), zk+1 − zk⟩+ 2 ⟨ηGk(wk+1), ηc(zk+1) + ηF∞(zk+1)⟩
≥ − η ∥wk+1 − zk+1∥max ∥Gk∥ − 2η ∥zk+1 − zk∥max ∥Gk∥ − 4η2 max ∥F∞∥max ∥Gk∥
≥ − η (3DZ + 4ηmax ∥F∞∥)max ∥Gk∥

(25)
and there exists the following inequality if the game is unconstrained:

Expression (16) + LHS of Inequality (17) + LHS of Inequality (18) + LHS of Inequality (19)
+LHS of Inequality (20) + LHS of Inequality (21) + LHS of Inequality (22) + LHS of Inequality (23)
+LHS of Inequality (24)
≥⟨ηGk(wk), wk+1 − zk+1⟩+ 2 ⟨ηGk(wk+1), zk+1 − zk⟩+ 2 ⟨ηGk(wk+1), ηF∞(zk+1)⟩
≥ − ηDmax ∥Gk∥ − 2ηDmax ∥Gk∥ − 2η2 max ∥F∞∥max ∥Gk∥
≥ − η (3D + 2ηmax ∥F∞∥)max ∥Gk∥

□

C.4 CONVERGENCE RATE OF ∆(zk, wk)

In the following lemma, we demonstrate the relationship between rtan(F,Z) (wk+1) and ∆(zk, wk).

Lemma 21 For a game G converging to a monotone game with any closed convex set Z ⊆ Rn and
monotone and L-Lipschitz operator F∞ : Z → Rn and zk, wk, wk+1 ∈ Z , there exists

rtan(wk+1) ≤
√
2 (2 + ηL)

√
∆(zk, wk) + (2 + ηL)max ∥Gk∥

If Gk is LGk
-Lipschitz and Gt(z

∗) = 0, there exists

rtan(wk+1) ≤
√
2 (2 + ηL)

√
∆(zk, wk) + (1 + ηL)max ∥Gk∥+ LGk

D

where D = min{max ∥zk − wk∥, DZ} under Assumption 4, and D = DZ under other circum-
stances.

Proof. Due to the OG algorithm and the non-expansiveness of the projection operator, there exists

∥zk − wk+1∥ ≤ ∥zk −ΠZ [zk − ηF∞(zk)]∥+ ∥wk+1 −ΠZ [zk − ηF∞(zk)]∥
≤ rtan(ηF,Z)(zk) + ∥ΠZ [zk − ηFk(wk)]−ΠZ [zk − ηF∞(zk)]∥
≤ ηrtan(F,Z)(zk) + ∥ηF∞(wk)− ηF∞(zk)∥+ ∥ηGk(zk)∥

According to Lemma 10, we have

rtan(zk) ≤
1 + ηL

η
∥zk − wk+1∥+ ∥F∞(zk)− F∞(wk)∥+max{∥Gk∥}

Hence, there exists

rtan(wk+1) ≤ (1 + ηL) rtan(F,Z)(zk) + (2 + ηL) ∥F∞(wk)− F∞(zk)∥+ (2 + ηL)max ∥Gk∥

≤
√
2 (2 + ηL)

√
rtan(F,Z)(zk)

2 + ∥F∞(wk)− F∞(zk)∥2 + (2 + ηL)max ∥Gk∥

=
√
2 (2 + ηL)

√
∆(zk, wk) + (2 + ηL)max ∥Gk∥
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If Gk is LGk
-Lipschitz, there exists

rtan(wk+1) ≤
∥∥∥∥zk − wk+1

η
+ F∞(wk+1)− F∞(wk)

∥∥∥∥+ LGk
D

≤ 1

η
∥zk − wk+1∥+ ∥F∞(wk+1)− F∞(zk)∥+ ∥F∞(zk)− F∞(wk)∥+ LGk

D

≤ 1 + ηL

η
∥zk − wk+1∥+ ∥F∞(zk)− F∞(wk)∥+ LGk

D

Hence, there exists

rtan(wk+1) ≤ (1 + ηL) rtan(F,Z)(zk) + (2 + ηL) ∥F∞(wk)− F∞(zk)∥+ (1 + ηL) ∥Gk(zk)∥
+ LGk

D

≤
√
2 (2 + ηL)

√
rtan(F,Z)(zk)

2 + ∥F∞(wk)− F∞(zk)∥2

+ (1 + ηL) ∥Gk(zk)∥+ LGk
D

≤
√
2 (2 + ηL)

√
∆(zk, wk) + (1 + ηL)max ∥Gk∥+ LGk

D

□

Now we combine all the results above in this section in Theorem 6 for the proof of Theorem 4.

Theorem 6 For a game G converging to a monotone game, under Assumption 2 if η ∈(
0, 1√

6L

)
, or under Assumption 3 if η ∈

(
0, 1√

6L2+4LLG+2L2
G

)
, or under Assump-

tion 4 if η ∈
(
0,min

{
1

2(L+LG) ,
1

4LG

})
,
√
∆(zT1+T2 , wT1+T2), r

tan(zT1+T2) ≤ C1√
T2

+√
C2

∑∞
k=T1

max ∥Gk∥. Under Assumption 2, if η ∈
(
0, 1√

6L

)
,

rtan(wT1+T2+1) ≤
√
2 (2 + ηL)C1√

T2

+
√
2 (2 + ηL)

√
C2

∑∞

k=T1

max ∥Gk∥

+ (2 + ηL)max ∥GT1+T2∥

C1 =
1

η

(
4 + 20η4L4

1− 6η2L2
maxt∈N ∥zt − z∗∥2 +

4η2L2
(
5η2L2 + 6

)
1− 6η2L2

maxt∈N ∥wt − zt∥2

+
4η2

(
9 + 4η2L2 − 20η4L4

)
1− 6η2L2

Emk2 +
4ηDZ

(
4 + 20η4L4

)
1− 6η2L2

Emk

) 1
2

C2 =
3DZ + 4ηmax ∥F∞∥

η

Under Assumption 3,

rtan(wT1+T2+1) ≤
√
2 (2 + ηL)C1√

T2

+
√
2 (2 + ηL)

√
C2

∑∞

k=T1

max ∥Gk∥

+ (2 + ηL)max ∥GT ∥+ LGT
DZ

C1 =
1

η

4(1− 4η2L2) + 2η2L2
(
η2 (L+ LG)

2
+ 8 + 8η2L2

)
1− 6η2L2 − 4η2LLG − 2η2L2

G

maxt∈N ∥zt − z∗∥2 +maxt∈N ∥wt − zt∥2

·

2η2 (L+ LG)
2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)

+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2


+
8ηDZ(1− 4η2L2) + 4η3DZL

2
(
η2 (L+ LG)

2
+ 8 + 8η2L2

)
1− 6η2L2 − 4η2LLG − 2η2L2

G

Emk + 4η2Emk2

(
9 + 8η2L2
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+
2η2L2

(
8 + 8η2L2 + η2 (L+ LG)

2
)

1− 4η2L2
+

2η2 (L+ LG)
2
(
4 + 2η2L2

(
8η2L2 + η2 (L+ LG)

2
))

(1− 6η2L2 − 4η2LLG − 2η2L2
G) (1− 4η2L2)

)) 1
2

C2 =
3DZ + 4ηmax ∥F∞∥

η

Under Assumption 4,

rtan(wT1+T2+1) ≤
√
2 (2 + ηL)C1√

T2

+
√
2 (2 + ηL)

√
C2

∑∞

k=T1

max ∥Gk∥

+ (1 + ηL)max ∥GT ∥+ LGT
D

C1 =
1

η

(
4 + EGη

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2EG2 maxt∈N ∥zt − z∗∥2

+

(
4EG2 + EGEG2η

2 (L+ LG)
2 (

4 + 3η2L2
)

1− 4ηLG − EGEG2η2 (L+ LG)
2 + 4 + 3η2L2

)
(η2 (L+ LG)

2
EG)maxt∈N ∥wt − zt∥2

+2η2D2
0

∑T

k=1
LGk−1

(
2L+ LGk−1

) ) 1
2

C2 =
3D + aηmax ∥F∞∥

η

where D0 = maxt∈N{∥zt − z∗∥, ∥zt − wt∥}, D = max{∥wk+1 − zk+1∥, ∥zk+1 − zk∥}, k ∈ N,
and for unconstrained cases a = 2 and for constrained cases a = 4.

Proof. According to Lemma 5, there exists t∗ ∈ (T1, T1+T2]∩N∗ so that ∆(zt∗ , wt∗)
2 = O(1/T2).

Since T1 < t∗, according to Theorem 3, there exists

∆(zT1+T2
, wT1+T2

) ≤ ∆(zt∗ , wt∗) +
∑∞

k=T1

3DZ + 4ηmax ∥F∞∥
η

max ∥Gk∥

under any one of Assumptions 2 and 3, and there exists

∆(zT1+T2 , wT1+T2) ≤ ∆(zt∗ , wt∗) +
∑∞

k=T1

3D + aηmax ∥F∞∥
η

max ∥Gk∥

under Assumption 4 with unconstrained games and a = 2. Considering that all zi, wi, i ∈ N are in
a bounded convex set due to Lemma 19, we have a = 4 under Assumption 4 in a constrained game.
The theorem is obtained by directly combining the two equations above with Lemma 5 and Lemma
19. □

C.5 PROOF OF THEOREM 4

Cases where T < 3 are trivial with Big O notation since a(x) = O(b(x)) is true if x belongs to
a limited set, ∀a(x) ≥ 0 and b(x) > 0. Suppose T = T1 + T2 + 1, T1, T2 ∈ N∗ for T ≥ 3 and
T1 = T2 + 2 or T2 + 1. According to Theorem 6, we have

rtan(wT ) = rtan(wT1+T2+1) ≤
√
2 (2 + ηL)C1√

T2

+
√
2 (2 + ηL)

√
C2

∑∞

k=T1

max ∥Gk∥

+ (2 + ηL)max ∥GT1+T2
∥

where C1, C2 > 0 under Assumptions 2 and 3. Hence,

rtan(wT ) = O

(
1√
T2

)
+O

(√∑∞

k=T1

max ∥Gk∥
)
+O (max ∥GT−1∥)

= O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥

})
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Also, we have

rtan(wT ) =rtan(wT1+T2+1) ≤
√
2 (2 + ηL)C1√

T2

+
√
2 (2 + ηL)

√
C2

∑∞

k=T1

max ∥Gk∥

+ (1 + ηL)max ∥GT−1∥+ LGT−1
D0

where C1, C2 > 0 under Assumption 4 and D0 is D in Theorem 6. ∀ϵ > 0, ∃N0, ∀N > N0,
|
∏∞

k=N (1 + 4ηLGk
)− 1| < ϵ and LGN

< ϵ so that 1− 4ηLG − EGEG2η
2 (L+ LG)

2
> 0 if N0

were the initial time 0. Since ∀N0 > 0, T = O(T − N0) for T > N0, (T + N0)/2 > T/2 and
EG < 4, we have

rtan(wT ) =O

(
1√
T2

)
+O

(√∑∞

k=T1

max ∥Gk∥
)
+O (max ∥GT ∥) +O

(
LGT−1

D0

)
=O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥ , LGT−1

})
Then, according to Lemma 3, PG,D(z)

D ≤ rtanG (z) and TG,D(z)√
ND

≤ rtanG (z). Hence, we have

max

{
rtan (wT ) ,

TG,D(wT )√
ND

,
PG,D(wT )

D

}
= rtan (wT )

Therefore,

max

{
rtan (wT ) ,

TG,D(wT )√
ND

,
PG,D(wT )

D

}
=O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥

})
under Assumptions 2 and 3, including D = DZ > 0, while

max

{
rtan (wT ) ,

TG,D(wT )√
ND

,
PG,D(wT )

D

}
=O

(
max

{
1√
T
,

√∑∞

k=T/2
max ∥Gk∥,max ∥GT ∥ , LGT−1

})
under Assumption 4. □
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