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ABSTRACT
Recommender systems often suffer from selection bias as users

tend to rate their preferred items. The datasets collected under

such conditions exhibit entries missing not at random and thus are

not randomized-controlled trials representing the target popula-

tion. To address this challenge, a doubly robust estimator and its

enhanced variants have been proposed as they ensure unbiased-

ness when accurate imputed errors or predicted propensities are

provided. However, we argue that existing estimators rely on mis-

calibrated imputed errors and propensity scores as they depend on

rudimentary models for estimation. We provide theoretical insights

into how miscalibrated imputation and propensity models may

limit the effectiveness of doubly robust estimators and validate our

theorems using real-world datasets. On this basis, we propose a

Doubly Calibrated Estimator that involves the calibration of both

the imputation and propensity models. To achieve this, we intro-

duce calibration experts that consider different logit distributions

across users. Moreover, we devise a tri-level joint learning frame-

work, allowing the simultaneous optimization of calibration experts

alongside prediction and imputation models. Through extensive

experiments on real-world datasets, we demonstrate the superior-

ity of the Doubly Calibrated Estimator in the context of debiased

recommendation tasks.
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1 INTRODUCTION
Real-world recommender systems utilize feedback data collected

from user-item interactions for learning user behaviors. However,

there has been recently a growing concern regarding the issue

of selection bias in user feedback datasets. As users tend to rate

their preferred items, the datasets collected under such conditions

exhibit entries missing not at random (MNAR) and thus are not

randomized-controlled trials representing the target population. To

tackle this issue, numerous debiasing methods have been proposed

for unbiased prediction of various user behaviors including explicit

ratings [12, 35, 40], implicit feedback [31, 33, 44], and post-click

conversion rate [5, 23, 25, 43]. In the early literature, the error-

imputation-based (EIB) estimator [36] and the inverse propensity

scoring (IPS) estimator [35] are two major approaches for designing

unbiased estimators, capable of accurately approximating the ideal

loss over the target population with only biased MNAR data.

Lately, the doubly robust (DR) estimator [40] and its enhanced

variants [6, 12, 22, 23, 25] are proposed to merge the EIB and the IPS

estimator for double robustness. DR estimators ensure the unbiased

estimation of the target population when accurate imputed errors or

predicted propensities are provided. However, rather than focusing

on achieving precise estimation, they prioritize the development of

estimators that are robust to the inaccurate estimation of imputed

error and propensity score. They enhance the robustness of DR

estimators for better bias-variance trade-off by manipulating either

the imputed errors [5, 12, 23] or the propensity scores [25]. While

DR estimators exhibit state-of-the-art debiasing performance based

on their double robustness, we argue that their effectiveness may

be limited since they still depend on rudimentary models [13, 19]

for estimating imputed errors and propensity scores.

Recent work in the field of machine learning has highlighted that

both logistic regression and neural networks, commonly adopted

for imputation and propensity models, have a tendency to gen-

erate overly confident predictions [1, 11, 20, 21]. The overconfi-

dence problem can be exacerbated especially for DR estimators, as

user-item pairs for training the prediction model and the propen-

sity model overlap with each other. DR estimators adopt inverse

propensity scoring for the observed pairs that already gave posi-

tive signals to the propensity model. Indeed, in our analysis with

real-world datasets, we demonstrate that the current imputed er-

ror and propensity score estimation yields miscalibrated estimates

that fail to accurately reflect the ground-truth likelihood. Miscal-

ibrated imputed errors can increase the bias and the variance of

DR estimators and overconfident propensity scores can yield a vari-

ance amplification problem. Nonetheless, literature has yet to delve

into the direct methodology for training accurate imputation and

propensity models, highlighting the necessity for such exploration.

https://doi.org/XXXXXXX.XXXXXXX
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This paper claims that DR estimators can be further enhanced

by leveraging model calibration approaches for the imputation and

the propensity models. We first provide theoretical insights into

how miscalibrated imputation and propensity models may limit the

effectiveness of doubly robust estimators: the bias and the variance

have an upper bound that is proportional to the calibration errors.

On this basis, we propose Doubly Calibrated Estimator that in-
volves the calibration of both the imputation and propensity models.

To achieve this, we introduce calibration experts, each assigned to a

specific group of users via the assignment network. By doing so,

each expert can learn specialized knowledge about its group for

the calibration of imputation and propensity models and also get

enough training signals from users within the group. Additionally,

we devise a tri-level joint learning framework, allowing the simul-

taneous optimization of calibration experts alongside prediction

and imputation models.

The proposed method offers several merits as follows: (1) Our

approach is orthogonal to existing DR estimators and can be seam-

lessly combined with them, (2) It enables the simultaneous reduc-

tion of both bias and variance of DR estimators, (3) It does not

require any additional unbiased data. The main contributions of

this paper are summarized as follows:

• We provide a theoretical analysis on the correlation between

the performance of DR estimators and the calibration of the

imputation and the propensity models. Then, we demonstrate

existing DR estimators may exhibit limited effectiveness, as they

rely on miscalibrated imputed errors and propensity scores.

• We propose Doubly Calibrated Estimator that involves the cali-

bration of both the imputation and propensity models. Imputed

errors and propensity scores are calibrated with calibration ex-

perts by assigning users to each expert through the assignment

network.

• We validate the superiority of the proposed method by extensive

experiments on real-world datasets. We also provide in-depth

quantitative analyses to verify the effectiveness of each proposed

component.

2 PRELIMINARIES
2.1 Problem Formulation
Let U = {𝑢} and I = {𝑖} denote a set of users and a set of items,

respectively. For a pair of𝑢 ∈ U and 𝑖 ∈ I, an observation indicator
𝑜𝑢,𝑖 is given as 1 if the item 𝑖 is exposed to the user𝑢 and 0 otherwise.

The observation indicator 𝑜𝑢,𝑖 is often referred to as treatment since

the rating 𝑟𝑢,𝑖 is observed only when an item is exposed to a user

(𝑜𝑢,𝑖 = 1) [5, 23, 25]. In this paper, we adopt the binary rating

scheme (𝑟𝑢,𝑖 ∈ {0, 1}) for illustrating purposes, following recent

literature in the post-click conversion rate scenario [5, 23, 25, 43]

or the implicit feedback scenario [31, 33, 44]. To distinguish the

entire population and observed distribution, let D = U ×I denote

the set of all user-item pairs and O = {(𝑢, 𝑖) | (𝑢, 𝑖) ∈ D, 𝑜𝑢,𝑖 = 1}
denote the set of observed pairs.

If ratings for all user-item pairs inD are observed, the prediction

model 𝑟𝑢,𝑖 = 𝑓𝜃 (𝑥𝑢,𝑖 ) with input feature 𝑥𝑢,𝑖 can be trained by the

ideal loss function on full observation:

L
ideal

(𝜃 ) = 1

|D|
∑︁
𝑢,𝑖∈D

𝑒𝑢,𝑖 , (1)

where 𝑒𝑢,𝑖 = 𝑒 (𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) represents the prediction error between

the prediction 𝑟𝑢,𝑖 and the target 𝑟𝑢,𝑖 , and can be Mean Squared

Error (MSE) [3, 19] or Binary Cross Entropy (BCE) [13]. Instead,

the prediction model is often trained by a naive estimator on the

only observed ratings, since most ratings are missing due to the

users’ selection mechanism:

Enaive (𝜃 ) =
1

|O|
∑︁
𝑢,𝑖∈O

𝑒𝑢,𝑖 . (2)

For this naive estimator to be an unbiased estimator of the ideal

loss, we need the expected value of its estimation across all the

possible observations O to precisely match the ideal loss [40], i.e.,

EO [Enaive] = L
ideal

. However, as addressed in [35], the users in

the recommender systems tend to rate their preferred items and this

process is missing not at random (MNAR). Therefore, the observed

set O is not a result of randomized-controlled trials and the naive

estimator may induce a large bias [35]: |EO [Enaive] − L
ideal

| > 0.

2.2 Unbiased Estimators
There have been proposed two major approaches for designing the

unbiased estimators. First, Error-imputation-based (EIB) estimators

[36, 42] adopt imputation models to directly predict the individual

loss 𝑒𝑢,𝑖 for each pair. Then, EIB estimators use the imputed error

as a proxy of errors for missing ratings:

EEIB (𝜃 ) =
1

|D|
∑︁
𝑢,𝑖∈D

(𝑜𝑢,𝑖𝑒𝑢,𝑖 + (1 − 𝑜𝑢,𝑖 )𝑒𝑢,𝑖 ), (3)

where 𝑒𝑢,𝑖 = 𝑒 (𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) is the true error for observed ratings and

𝑒𝑢,𝑖 = 𝑒 (𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) is the imputed error predicted by the imputation

model 𝑔𝜙 (𝑥𝑢,𝑖 ) = 𝑟𝑢,𝑖 . Obviously, the EIB estimator is an unbiased

estimator of the ideal loss when the imputed errors are accurate,

i.e, (𝑒𝑢,𝑖 = 𝑒𝑢,𝑖 ∀(𝑢, 𝑖) ∈ D) ⇒ (EO [EEIB] = L
ideal

).
On the other hand, Inverse Propensity Scoring (IPS) estimators

[33, 35] adopt propensity models to predict the probability of ob-

serving the true rating. Then, IPS estimators use the propensity

score to inversely weight the prediction error for observed ratings:

EIPS (𝜃 ) =
1

|D|
∑︁
𝑢,𝑖∈D

𝑜𝑢,𝑖𝑒𝑢,𝑖

𝑝𝑢,𝑖
, (4)

where 𝑝𝑢,𝑖 = 𝑃 (𝑜𝑢,𝑖 = 1) is the propensity score predicted by the

propensity model ℎ𝜓 (𝑥𝑢,𝑖 ) = 𝑝𝑢,𝑖 . The IPS estimator is an unbiased

estimator of the ideal loss when the predicted propensity scores are

accurate, i.e., (𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 ∀(𝑢, 𝑖) ∈ O) ⇒ (EO [EIPS] = L
ideal

).

2.3 Doubly Robust Estimators
Recently, Doubly Robust (DR) estimator [40] and its enhanced vari-

ants [6, 22, 23, 25] are proposed to merge the EIB and the IPS

estimator for double robustness. Given imputed error 𝑒 = 𝑒 (𝑟, 𝑟 )
and learned propensity score 𝑝 = ℎ𝜓 (𝑥𝑢,𝑖 ), DR estimator can be

formulated as follows:

EDR (𝜃 ) =
1

|D|
∑︁
𝑢,𝑖∈D

(
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

)
. (5)

By utilizing both the imputed error and the propensity score, DR

estimators have double robustness: DR estimator is an unbiased es-

timator when either the imputed errors or the propensity scores are

accurate. The following lemma presents the bias and the variance
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of DR estimator induced by the inaccurate estimation of imputed

errors and propensity scores.

Lemma 1 (Bias and Variance of DR estimator). The bias and
variance of DR estimator are computed as:

Bias[EDR] =
1

|D|

��� ∑︁
𝑢,𝑖∈D

(𝑝𝑢,𝑖 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

)
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

���,
Var[EDR] =

1

|D|2
∑︁
𝑢,𝑖∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
𝑝2

𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2 .

(6)

Please refer [5, 40] for the proofs.

2.4 Limitations of Existing Estimators
According to Lemma 1, the bias and the variance of DR estimator

are positively correlated with the inaccuracy of the imputation

model and the propensity model. Nevertheless, both models have

been learned in a surprisingly simplistic manner. In the early meth-

ods [33, 36], heuristic techniques are adopted for the estimation of

imputed errors and propensity scores, e.g., 𝑒𝑢,𝑖 = 𝜔 |𝑟𝑢,𝑖 − 𝛾 |, where
𝜔 and 𝛾 are hyper-parameters. Recent studies have also embraced

straightforward model-based approaches, such as employing lo-

gistic regression on held-out unbiased data [25, 35] or training

binary classifiers for the observation indicator [5, 23, 40]. These

model-based approaches exhibit a slight improvement over heuris-

tic techniques, resulting in a moderately accurate prediction model.

Nevertheless, as indicated by recent literature [11, 21], both logistic

regression and neural networks have a tendency to generate overly

confident predictions. An over-confident propensity model can lead

to propensity scores that are either too low or too high, and these

poorly calibrated estimates may further hinder the effectiveness of

DR estimator.

On the other hand, several recent works [5, 12, 22] focus on

developing estimators that are robust to the inaccurate estimation

of imputed errors and propensity scores. They enhance the robust-

ness of DR estimator by reducing the bias and the variance while

having the same level of inaccuracy in imputed errors and propen-

sity scores. Nevertheless, we argue that their effectiveness may be

limited since they still depend on rudimentary models for estimat-

ing imputed errors and propensity scores. The literature has yet to

delve into the direct methodology for training accurate imputation

and propensity models without any unbiased data, highlighting the

necessity for such exploration.

2.5 Model Calibration
In this paper, we adopt the concept of model calibration [11] to

quantitatively measure the inaccuracy of the imputation and the

propensity models. We say a model is calibrated if its output reflects

the ground-truth likelihood of correctness [20]. For the propensity

model ℎ𝜓 and the observation indicator 𝑜 , a formal definition can

be formulated as follows:

E[𝑜 |ℎ𝜓 (𝑥) = 𝑝] = 𝑝 ∀𝑝 ∈ [0, 1] . (7)

For example, if we have 100 pairs with propensity scores 𝑝𝑢,𝑖 = 0.2,

we expect exactly of these pairs to be observed (𝑜𝑢,𝑖 = 1). Using

the above definition, the miscalibration of a propensity model can

be measured by Expected Calibration Error (ECE) and Maximum

Calibration Error (MCE) [28]:

ECE(ℎ𝜓 ) = E𝑝
[
|E[𝑜 |ℎ𝜓 (𝑥) = 𝑝] − 𝑝 |

]
,

MCE(ℎ𝜓 ) = max

𝑝
|E[𝑜 |ℎ𝜓 (𝑥) = 𝑝] − 𝑝 |. (8)

ECE and MCE quantify the average and worst-case discrepancy be-

tween actual observation proportion and average predicted propen-

sity across 𝑀 bins. Likewise, we can compute ECE and MCE of

the imputation model 𝑔𝜙 by substituting (ℎ𝜓 , 𝑜, 𝑝) with (𝑔𝜙 , 𝑟 , 𝑟 ) in
Eq.8.

3 CALIBRATION AND DR ESTIMATORS
In this section, we describe the motivation for proposing our doubly

calibrated estimator. We first theoretically analyze how DR estima-

tor stands to benefit from the calibration of the imputation and the

propensity models. Then, we empirically demonstrate that existing

imputation and propensity models are indeed miscalibrated and

limit the effectiveness of DR estimator.

3.1 Theoretical Analysis
We analyze how the miscalibration of the imputation and the

propensity models amplify the bias and the variance of DR es-

timator and further hinder the effectiveness of DR estimators.

3.1.1 Bias of DR Estimator. We first present a theorem con-

cerning the interplay between the bias of DR estimator and the

calibration of the propensity model.

Theorem 2. The bias of DR estimator exhibits an upper bound
proportional to the calibration error of the propensity model.

Bias[EDR] ≤ 𝜌max · ECE(ℎ𝜓 ),
Bias[EDR] ≤ 𝜌max ·MCE(ℎ𝜓 ),

where 𝜌max = max(𝑢,𝑖 ) ∈D | (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )/𝑝𝑢,𝑖 |.

Please refer to Appendix A for the proof. The above theorem im-

plies that DR estimator may become unreliable when the propensity

models are over-confident and yield large calibration errors. Simi-

larly, we can derive the following corollary of Theorem 2 for the

imputation model.

Corollary 3. The bias of DR estimator exhibits an upper bound
proportional to the calibration error of the imputation model.

Bias[EDR] ≤ 𝜋max · ECE(𝑔𝜙 ),
Bias[EDR] ≤ 𝜋max ·MCE(𝑔𝜙 ) .

where 𝜋max = max(𝑢,𝑖 ) ∈D | (𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 ) (𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
)/𝑝𝑢,𝑖 |.

𝑒 (𝑟 ) denotes the loss when the target label is 𝑟 , e.g., 𝑒 (𝑟 ) = −𝑟 log𝑟 −
(1 − 𝑟 )log(1 − 𝑟 ) for BCE. Please refer to Appendix A for the proof.

Likewise, the above corollary implies that calibrated imputed errors

can reduce the upper bound on the bias of the DR estimator, leading

toward the unbiased estimation of the ideal loss.

3.1.2 Variance of DR Estimator. Moreover, we argue that the

miscalibration of the imputation model also yields negative effects

for the variance of the DR estimator by the following theorem.
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Theorem 4. The variance of DR estimator exhibits an upper bound
proportional to the square of the calibration error of the imputation
model.

Var[EDR] ≤ 𝜔max ·
(
ECE(𝑔𝜙 )

)
2

,

Var[EDR] ≤
𝜔max

|D| ·
(
MCE(𝑔𝜙 )

)
2

,

where 𝜔max = max(𝑢,𝑖 ) ∈D |𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 ) (𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
)2/𝑝2

𝑢,𝑖
|.

The above theorem implies that the calibration of the imputation

model is also able to reduce the upper bound on the variance of

the DR estimator. We expect this theorem to give us a new remedy

for bias-variance trade-off in the DR estimator as calibrating the

pseudo label of the imputation model can reduce both the bias and

the variance of the DR estimator simultaneously.

On the other hand, as shown in Lemma 1, the accuracy of the

propensity model does not have any relation with the variance

of the DR estimator. Nevertheless, the variance is inversely pro-

portional to 𝑝2

𝑢,𝑖
, which can be problematic when the estimated

propensity scores are exceptionally low. Indeed, current propensity

models often produce too low propensity scores as they can easily

be over-confident [11, 21], i.e., over-confidence for non-observation.

While existing methods [23, 25, 33] incorporate a propensity clip-

ping technique [37] to curtail extremely low propensities, this ap-

proach does not address the underlying issue of overconfidence.

Instead, we argue that model calibration can effectively mitigate the

variance amplification problem, as a calibrated propensity model

is less likely to produce extremely low propensities compared to a

miscalibrated one.

3.2 Empirical Evidence
In this section, we demonstrate that the imputation and propen-

sity models deployed in recent methods are miscalibrated and

thus limit the effectiveness of DR estimators, which can be ex-

plained by our theoretical analysis. We adopt two DR estimators

including DR-JL [40] and TDR [23], and two kinds of imputation

and propensity models, including simple heuristics and model-

based approaches. (1) For the heuristic approach, we use 𝑝𝑢,𝑖 =

(∑𝑢∈U 𝑌𝑢,𝑖/max𝑖∈I
∑
𝑢∈U 𝑌𝑢,𝑖 )0.5

[33] for the propensity scores

and 𝑒𝑢,𝑖 = 𝜔 |𝑟𝑢,𝑖 −𝛾 | [36] for the imputed errors (𝜔 and 𝛾 are hyper-

parameters). (2) For the model-based approach, we adopt the neural

collaborative filtering [13] for the imputation and the propensity

models. We train the imputation model 𝑔𝜙 (𝑥𝑢,𝑖 ) = 𝑟𝑢,𝑖 by using the

imputation loss adopted in [25, 40]:

Limp (𝜙) =
1

|D|
∑︁
𝑢,𝑖∈D

𝑜𝑢,𝑖 (𝑒 (𝑟, 𝑟 ) − 𝑒 (𝑟, 𝑟 ))2

𝑝𝑢,𝑖
, (9)

and train the propensity model ℎ𝜓 (𝑥𝑢,𝑖 ) = 𝑝𝑢,𝑖 through binary

classification between O and D \ O, as done in [23].

We investigate the miscalibration of the adopted imputation and

propensity models and the performance of DR estimators when

they deploy each of the above imputation and propensity models.

For the quantitative measurement of the miscalibration, we adopt

ECE defined in Eq.8. However, since we cannot observe the true

propensity E[𝑜 |ℎ𝜓 (𝑥) = 𝑝] = 𝑃 (𝑜 = 1|ℎ𝜓 (𝑥) = 𝑝), we cannot

directly compute Eq.8. Instead, we partition the [0,1] range of 𝑝

into𝑀 bins and aggregate the value of pairs in each bin as done in

Figure 1: Performance of DR estimators with various impu-
tation/propensity models on Yahoo!R3 dataset.

[11, 28]:

ECE𝑀 (ℎ𝜓 ) =
𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑁

����∑(𝑢,𝑖 ) ∈𝐵𝑚 𝑜𝑢,𝑖
|𝐵𝑚 | −

∑
(𝑢,𝑖 ) ∈𝐵𝑚 𝑝𝑢,𝑖

|𝐵𝑚 |

���� (10)

where 𝐵𝑚 is𝑚-th bin and𝑁 is the number of samples. The first term

in the absolute value symbols denotes the ground-truth proportion

of observations in 𝐵𝑚 and the second term denotes the average

predicted propensity score of 𝐵𝑚 . We use𝑀 = 15 as done in [11, 21].

Figure 1 shows the performance of DR estimators with various

imputation and propensity models on Yahoo!R3 dataset
1
. TDR_Cal

denotes TDR with our calibrated imputation model and calibrated

propensity model (we show this point as a reference). Please note

that figures for MSE vs ECE(ℎ𝜓 ) and AUC vs ECE(𝑔𝜙 ) can be read-

ily reconstructed by Figure 1. We have the following findings: (1)

Existing approaches for estimating imputed errors and propen-

sity scores produce poorly calibrated probabilities. This finding is

consistent with the previous work [11, 21] concerning that the out-

put of machine learning models, from logistic regression to neural

networks, does not necessarily indicate the accurate correctness

likelihood. (2) The performance of DR estimators is positively cor-

related with the calibration of the imputation and the propensity

models. We observe that even a naive DR estimator with the model-

based approach outperforms TDR with the heuristic approach. This

experimental result serves as evidence to support our theoretical

analysis in Section 3.1.

4 DOUBLY CALIBRATED ESTIMATOR
We propose a Doubly Calibrated Estimator on the basis of our

comprehensive analysis on the correlation between the perfor-

mance of DR estimators and the calibration of the imputation and

the propensity models. A doubly calibrated estimator entails the

calibration of both the imputation and propensity models, achieved

through the calibration experts (Section 4.2). These experts are si-

multaneously optimized alongside prediction and imputation mod-

els within our tri-level joint learning framework (Section 4.3).

4.1 Motivation
As elaborated upon in Section 3, current imputation and propensity

models are miscalibrated, which, as substantiated by our theoret-

ical findings, could potentially constrain the effectiveness of DR

estimators. Therefore, DR estimators can benefit from the calibra-

tion of imputation and propensity models. The straightforward

1
http://research.yahoo.com/Academic_Relations
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approach for the calibration is to adopt a post-processing calibra-

tion function 𝑐𝜔 : [0, 1] → [0, 1] that maps the miscalibrated

𝑟𝑢,𝑖 = 𝑔𝜙 (𝑥𝑢,𝑖 ) or 𝑝𝑢,𝑖 = 𝑓𝜓 (𝑥𝑢,𝑖 ) to the well-calibrated probabil-

ity. Among various forms of calibration functions, we adopt Platt

scaling 𝑐𝜔 (𝑝) = 𝜎 (𝑎 ·𝜎−1 (𝑝) +𝑏) [30], a general form of the temper-

ature scaling [11]. Here, 𝜎−1
is the inverse of the sigmoid function

and 𝜎−1 (𝑝) represents the logit of the probability 𝑝 . Platt scaling
has found widespread application across diverse domains, includ-

ing computer vision [9, 27], natural language processing [7], and

recommender system [21].

However, employing a single global calibration function for

all users falls short of achieving satisfactory performance. The

learning parameters 𝜔 = {𝑎, 𝑏} represent the characteristics of

the logit distribution [20], e.g., 𝑎 = 𝜇1/𝜎2

1
− 𝜇0/𝜎2

0
, where 𝜇 and

𝜎 is the mean and the variance of the logit distribution. As a re-

sult, a global calibration function would blend information from

users with varying preferences, unable to fully capture the distinct

logit distribution of individual users. A naive solution to this chal-

lenge is to create a dedicated calibration function for each user:

𝑐𝜔𝑢
(𝑝) = 𝜎 (𝑎𝑢 · 𝜎−1 (𝑝) + 𝑏𝑢 ), ∀𝑢 ∈ U. Here, the user-specific

parameters𝜔𝑢 = {𝑎𝑢 , 𝑏𝑢 } account for the unique logit distributions
of user 𝑢. Nevertheless, this approach also has a limitation. Each

calibration function requires training using the respective user’s in-

teractions and therefore cold-start users with minimal interactions

may not possess sufficient training signals for their calibration func-

tion. In the following subsection, we present our solution to strike a

balance between the single global calibration and the user-specific

calibration.

4.2 Calibration Experts
We introduce calibration experts that consider distinct logit dis-

tributions across users while alleviating the cold-start problem of

user-specific calibration. Inspired by Mixture-of-Experts [15], we

deploy𝐾 calibration experts, denoted as {𝑐𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] ,

2
with each

expert assigned to a specific group of users. By doing so, each expert

can learn specialized knowledge about its group for the calibration

of imputation and propensity models and also get enough training

signals from the users in the group.

Specifically, we devise an assignment network to assign each

user to an expert, bymapping the user embedding to the assignment

probability:

𝐴(𝐸𝑢 ) = 𝛼𝑢 ∈ R𝐾 , (11)

where 𝐴 : R𝑑 → R𝐾 is the assignment network with a softmax

output layer. 𝐸𝑢 ∈ R𝑑 is the user embedding and 𝛼𝑢 ∈ R𝐾 is the

assignment probability vector of 𝑢. Each element of the assignment

probability vector 𝛼𝑢,𝑘 represents the probability of the user𝑢 being

assigned to expert 𝑐𝜔𝑘
(𝑝). Then, we sample an assignment vector

from the assignment probability vector.

𝛽𝑢 ∼ Categorical(𝛼𝑢 ), (12)

where 𝛽𝑢 is a 𝐾-dimensional one-hot assignment vector sampled

from the categorical distribution with the probability {𝛼𝑢,𝑘 }𝑘∈[𝐾 ] .
However, the sampling process is non-differentiable and blocks the

gradient flow. To tackle this challenge, we adopt Gumbel-Softmax

[16], a continuous relaxation with the reparameterization trick.

2 [𝐾 ] denotes {1, ..., 𝐾 }

With Gumbel-Softmax, the assignment vector 𝛽𝑢 can be pseudo-

sampled as follows:

𝛽𝑢,𝑘 =
exp((log𝛼𝑢,𝑘 + 𝑔𝑘 )/𝜏)

Σ𝐾
𝑙=1

exp((log𝛼𝑢,𝑙 + 𝑔𝑙 )/𝜏)
∀𝑘 ∈ [𝐾], (13)

where 𝑔 is i.i.d drawn from Gumbel distribution with (location = 0,

scale = 1), and 𝜏 is the temperature of the softmax. We use a simple

exponential annealing 𝜏 = 𝑇0 (
𝑇𝑄
𝑇0

)
𝑞

𝑄
, where 𝑞 is the current epoch,

𝑄 is the total epochs,𝑇0 is initial temperature and𝑇𝑄 is the terminal

temperature (𝑇0 >> 𝑇𝑄 ). With a large 𝜏 the assignment network

explores the combinations of the calibration experts, and with a

small 𝜏 the assignment network can select a specific calibration

expert for a user.

It is noted that we distinguish the set of calibration experts for

imputation and propensitymodels.We represent {𝑐 imp

𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] as

calibration experts for the imputation model and {𝑐prop𝜔𝑘
(𝑝)}𝑘∈[𝐾 ]

as calibration experts for the propensity model. Accordingly, the

assignment network for the imputation model 𝐴imp
takes the em-

bedding of the imputation model 𝑔𝜙 as an input and the assignment

network for the propensity model 𝐴prop
takes the embedding of

the propensity model ℎ𝜓 as an input. Calibration experts and as-

signment networks are trained in an end-to-end manner as follows:

(1) For the imputation model, {𝑐 imp

𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] and 𝐴

imp
are trained

by the loss

L
impcal

(𝑐 imp

𝜔𝑘
, 𝐴imp) =

∑︁
(𝑢,𝑖 ) ∈Oval

−
𝑟𝑢,𝑖

𝑝𝑢,𝑖
log(

𝐾∑︁
𝑘=1

𝛽
imp

𝑢,𝑘
· 𝑐 imp

𝜔𝑘
(𝑟 ))

− (1 −
𝑟𝑢,𝑖

𝑝𝑢,𝑖
)log(1 −

𝐾∑︁
𝑘=1

𝛽
imp

𝑢,𝑘
· 𝑐 imp

𝜔𝑘
(𝑟 )),

(14)

where 𝑟𝑢,𝑖 = 𝑔𝜙 (𝑥𝑢,𝑖 ) is the miscalibrated pseudo label of the im-

putation model and 𝑝𝑢,𝑖 =
∑𝐾
𝑘=1

𝛽
prop

𝑢,𝑘
· 𝑐prop𝜔𝑘

(𝑝) is the calibrated
propensity score. O

val
is the set of observed pairs in the validation

set. It is a common practice to adopt validation set as the calibra-

tion set [9, 11, 20, 21]. We use the binary cross-entropy loss, a

widely adopted loss function for the calibration of binary classifiers

[11, 20, 21]. (2) For the propensity model, similarly, {𝑐prop𝜔𝑘
(𝑝)}𝑘∈[𝐾 ]

and 𝐴prop
are trained by the loss

L
propcal

(𝑐prop𝜔𝑘
, 𝐴prop) =

∑︁
(𝑢,𝑖,𝑜 ) ∈Dval

−𝑜𝑢,𝑖 log(
𝐾∑︁
𝑘=1

𝛽
prop

𝑢,𝑘
· 𝑐prop𝜔𝑘

(𝑝))

− (1 − 𝑜𝑢,𝑖 )log(1 −
𝐾∑︁
𝑘=1

𝛽
prop

𝑢,𝑘
· 𝑐prop𝜔𝑘

(𝑝)),

(15)

where 𝑝𝑢,𝑖 = ℎ𝜓 (𝑥𝑢,𝑖 ) is the miscalibrated propensity score and

D
val

= {(𝑢, 𝑖, 𝑜𝑢,𝑖 = 1) | (𝑢, 𝑖) ∈ O
val

} ∪ {(𝑢, 𝑖, 𝑜𝑢,𝑖 = 0) | (𝑢, 𝑖) ∈
D \ (O

val
∪ O)}. During the training of the calibration experts,

the imputation model 𝑔𝜙 (𝑥𝑢,𝑖 ) = 𝑟𝑢,𝑖 and the propensity model

ℎ𝜓 (𝑥𝑢,𝑖 ) = 𝑝𝑢,𝑖 are frozen.

4.3 Tri-Level Joint Learning Framework
We introduce a tri-level joint learning framework where the pro-

posed calibration experts can be simultaneously optimized along
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Algorithm 1: Tri-level Joint Learning Framework

Input :D, O, O
val

, pre-trained propensity model 𝑓𝜓 ,

pre-trained calibration experts {𝑐prop𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] ,

pre-trained assignment network 𝐴prop
.

1 while epochs remain or stopping criteria is not satisfied do
2 for mini-batch O𝑠 of O do
3 Update imputation model 𝑔𝜙 with Lcal

𝑖𝑚𝑝
(Eq.16)

4 Sample a batch of user-item pairs from D
5 Update prediction model 𝑓𝜃 with Ecal

𝐷𝑅
(Eq.17)

6 for mini-batch O𝑠
val

of O
val

do
7 Update calibration experts {𝑐 imp

𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] and

assignment network 𝐴imp
with L

impcal
(Eq.14)

with the existing DR estimators. We have four core components in-

cluding predictionmodel 𝑓𝜃 (𝑥𝑢,𝑖 ) = 𝑟𝑢,𝑖 , imputationmodel𝑔𝜙 (𝑥𝑢,𝑖 ) =
𝑟𝑢,𝑖 , propensity model ℎ𝜓 (𝑥𝑢,𝑖 ) = 𝑝𝑢,𝑖 , and calibration experts

{𝑐𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] for the proposed doubly calibrated estimator. Among

them, the propensity model can be trained by itself as the other

three components are not related to its optimization process. In

this paper, we train the propensity model through binary classifi-

cation between O and D \ O, as done in Section 3.2. Then, on top

of the frozen propensity model, we train the calibration experts

{𝑐prop𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] and the assignment network 𝐴prop

with L
propcal

in Eq.15.

The other components need to be trained together since their

loss functions incorporate predictions from others. In our tri-level

joint learning framework, each component is trained as follows:

(1) The imputation model 𝑔𝜙 (𝑥𝑢,𝑖 ) = 𝑟𝑢,𝑖 is optimized by using

the imputation loss function with the calibrated propensity scores.

For illustrative purposes, we show the imputation loss adopted in

[25, 40] with the calibrated propensity scores:

Lcal

imp
(𝜙) = 1

|D|
∑︁
𝑢,𝑖∈D

𝑜𝑢,𝑖 (𝑒 (𝑟, 𝑟 ) − 𝑒 (𝑟, 𝑟 ))2

𝑝𝑢,𝑖
, (16)

where 𝑝𝑢,𝑖 =
∑𝐾
𝑘=1

𝛽
prop

𝑢,𝑘
·𝑐prop𝜔𝑘

(𝑝) is the calibrated propensity score.
(2) The calibration experts {𝑐 imp

𝜔𝑘
(𝑝)}𝑘∈[𝐾 ] and the assignment

network𝐴imp
are trained with L

impcal
in Eq.14 on top of the frozen

imputation model. (3) Lastly, the prediction model 𝑓𝜃 is trained with

the calibrated imputed errors and the calibrated propensity scores:

Ecal

DR
(𝜃 ) = 1

|D|
∑︁
𝑢,𝑖∈D

(
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

)
, (17)

where 𝑝𝑢,𝑖 is the calibrated propensity score and 𝑒𝑢,𝑖 = 𝑒 (𝑟, 𝑟 ) is
the calibrated imputed error with calibrated pseudo label 𝑟𝑢,𝑖 =∑𝐾
𝑘=1

𝛽
imp

𝑢,𝑘
· 𝑐 imp

𝜔𝑘
(𝑟 ). Algorithm 1 presents the entire procedure of

the tri-level joint learning framework. It is noted that the proposed

method is orthogonal to existing DR estimators and can be used

in tandem with them. We can adopt any other existing imputation

loss [5, 12, 23] instead of Eq.16, by substituting the miscalibrated

propensity score 𝑝 with our calibrated propensity score 𝑝 .

Table 1: Data statistics.

Dataset #Users #Items #Training data #Test data

Coat 290 300 6,960 4,640

Yahoo!R3 15,401 1,001 311,704 54,000

KuaiRec 7,163 10,596 201,171 117,113

5 EXPERIMENTS
5.1 Experiment Setup
5.1.1 Datasets. To evaluate the performance of unbiased recom-

mendations, we need an unbiased test set along with an MNAR

training set. Following recent studies [5, 23, 35, 40], we adopt two

real-world datasets, including Coat [35] and Yahoo!R3
3
. Addition-

ally, we adopt KuaiRec [10], a recently published dataset that has

a separate unbiased test set where the users are asked to rate all

test items. For Coat and Yahoo!R3, the observed rating 𝑟𝑢,𝑖 is set to

1 if the explicit rating is greater than 3 and is set to 0 otherwise,

as done in compared studies [5, 23, 25, 31]. For KuaiRec, the rating

𝑟𝑢,𝑖 is set to 1 if the watching ratio is greater than 1 and is set to

0 otherwise. Data statistics are presented in Table 1. We hold out

10% of the training set as the validation set.

5.1.2 Compared methods. We validate the superiority of Doubly

Calibrated Estimator with various debiasing methods as follows:

(1) IPS estimators: IPS [35], SNIPS [38], AT [31], (2) EIB estimator:

CVIB [42], (3) Multi-task approaches: Multi-DR [43], ESCM
2
-DR

[39], (4) DR estimators: DR-JL [40], MRDR-JL [12], BRD-DR [6], MR

[22], DR-MSE [5], StableDR [25], TDR-CL [23]. Please note that we

exclude methods utilizing a fraction of the unbiased test set in the

training phase [2, 4, 8, 24, 41] for a fair comparison.

5.1.3 Implementation details.
Compared methods. For all methods compared, we use their au-

thor codes and strictly follow the parameters and configurations as

documented in their papers and codes. For methods without any

public source code, we use PyTorch [29] for the implementation. Ad-

ditionally, in cases where the best configurations are not provided

for each dataset, we perform a grid search for hyperparameters on

the validation set. Following previous studies [23, 25, 31, 33, 35, 40],

the base architectures of the prediction, imputation, and propensity

models are chosen from either matrix factorization [19] or neural

collaborative filtering [13], based on the validation performance. It

is noted that we do not use the unbiased test set for the propensity

estimation for a fair comparison.

Proposed method. For our Doubly Calibrated Estimator (DCE),

we devise two variants: DCE-DR utilizing Lcal

imp
in Eq.16 and DCE-

TDR utilizing the imputation loss of TDR [23] instead of Eq.16

with substituting the miscalibrated propensity score 𝑝 with our

calibrated propensity score 𝑝 . For the assignment network, we use

a single-layer MLP with the softmax output layer. For the Gumbel-

Softmax, the initial temperature is set to 1 and the terminal temper-

ature is set to 10
−3
. We set the batch size as 128 for Coat, 4096 for

Yahoo!R3 and KuaiRec. The other hyperparameters are tuned by

using grid searches on the validation set. We use Adam optimizer

[18] where the learning rate and weight decay are chosen from

the range [10
−4, 10

−1]. The number of experts 𝐾 is chosen from

3
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Table 2: Recommendation performance. The numbers in bold indicate the best results, while those underlined represent the
best competitor. * denotes the statistical significance of the paired t-test at a 0.05 level when compared to the best competitor.

Method

Coat Yahoo!R3 KuaiRec

MSE AUC N@5 N@10 MSE AUC N@5 N@10 MSE AUC N@50 N@100

Naive 0.2547 0.6828 0.6087 0.6747 0.2603 0.6528 0.6303 0.7584 0.2738 0.7510 0.7350 0.7571

SNIPS 0.2438 0.7061 0.6145 0.6875 0.2493 0.6815 0.6451 0.7701 0.2673 0.7608 0.7507 0.7844

IPS 0.2423 0.6935 0.6130 0.6824 0.2496 0.6757 0.6348 0.7641 0.2699 0.7601 0.7442 0.7768

CVIB 0.2311 0.7006 0.6221 0.6991 0.2438 0.6823 0.6487 0.7709 0.2702 0.7540 0.7381 0.7612

AT 0.2332 0.7020 0.6302 0.6984 0.2480 0.6816 0.6419 0.7667 0.2631 0.7581 0.7471 0.7803

DR-JL 0.2302 0.7122 0.6382 0.7042 0.2459 0.6837 0.6515 0.7731 0.2580 0.7683 0.7689 0.7932

± 0.0013 ± 0.0053 ± 0.0088 ± 0.0054 ± 0.0016 ± 0.0025 ± 0.0036 ± 0.0020 ± 0.0018 ± 0.0037 ± 0.0034 ± 0.0035

Multi-DR 0.2288 0.7201 0.6410 0.7081 0.2407 0.6863 0.6587 0.7712 0.2557 0.7714 0.7771 0.7985

MRDR-JL 0.2193 0.7192 0.6360 0.7016 0.2394 0.6842 0.6602 0.7727 0.2542 0.7705 0.7825 0.8023

ESCM
2
-DR 0.2201 0.7256 0.6353 0.7022 0.2401 0.6932 0.6683 0.7693 0.2520 0.7811 0.7921 0.8049

BRD-DR 0.2196 0.7286 0.6441 0.7094 0.2382 0.6850 0.6592 0.7708 0.2505 0.7831 0.7945 0.8051

MR 0.2181 0.7243 0.6436 0.7118 0.2312 0.6923 0.6691 0.7747 0.2496 0.7851 0.7912 0.8017

DR-MSE 0.2152 0.7214 0.6417 0.7089 0.2377 0.6872 0.6660 0.7724 0.2510 0.7792 0.7823 0.8067

± 0.0018 ± 0.0042 ± 0.0066 ± 0.0064 ± 0.0012 ± 0.0018 ± 0.0022 ± 0.0011 ± 0.0011 ± 0.0018 ± 0.0027 ± 0.0032

StableDR 0.2238 0.7167 0.6335 0.7073 0.2425 0.6891 0.6613 0.7699 0.2543 0.7714 0.7863 0.7976

± 0.0028 ± 0.0061 ± 0.0087 ± 0.0086 ± 0.0033 ± 0.0080 ± 0.0048 ± 0.0029 ± 0.0020 ± 0.0061 ± 0.0052 ± 0.0048

TDR-CL 0.2173 0.7302 0.6425 0.7121 0.2363 0.6951 0.6708 0.7763 0.2477 0.7885 0.7907 0.8037

± 0.0005 ± 0.0045 ± 0.0098 ± 0.0050 ± 0.0010 ± 0.0015 ± 0.0010 ± 0.0013 ± 0.0006 ± 0.0008 ± 0.0011 ± 0.0012

DCE-DR 0.2109 0.7384 0.6581 0.7232 0.2281 0.7041 0.6826 0.7923 0.2430 0.8058 0.8079 0.8122

± 0.0004 ± 0.0019 ± 0.0030 ± 0.0043 ± 0.0027 ± 0.0013 ± 0.0018 ± 0.0014 ± 0.0005 ± 0.0006 ± 0.0022 ± 0.0016

DCE-TDR 0.2054* 0.7412* 0.6623* 0.7258* 0.2247* 0.7087* 0.6901* 0.8014* 0.2394* 0.8097* 0.8162* 0.8249*
± 0.0006 ± 0.0032 ± 0.0045 ± 0.0061 ± 0.0014 ± 0.0015 ± 0.0016 ± 0.0012 ± 0.0010 ± 0.0012 ± 0.0021 ± 0.0026

{5, 10, 20} and the embedding size is chosen from {16, 32, 64}. We

will provide the GitHub repository of the proposed method in the

final version.

5.2 Performance Comparison
Table 2 shows the recommendation performance of the proposed

method and the compared debiasing methods. We use MSE [3],

AUC [14], NDCG@𝐾 (N@𝐾) [17] for the evaluation metrics, fol-

lowing the conventions in the recent studies [5, 23, 25]. Due to the

lack of space, we report standard deviation only for DR-JL and its

recent variants. We report the average result of five independent

runs. We first observe that both the IPS estimators and the EIB esti-

mator outperform the Naive estimator, indicating the importance of

addressing the MNAR problem in recommendation datasets. Also,

DR-JL and its variants perform better than the IPS and the EIB

estimator based on their double robustness. The state-of-the-art DR

estimators manipulate the imputed errors [5, 23] or the propensity

scores [25] for the better bias-variance trade-off and show enhanced

unbiased recommendation performance. However, their effective-

ness has been limited as they still utilize the miscalibrated imputed

errors and propensity scores. The proposed methods (DCE-DR and

DCE-TDR) employ calibration experts for both the imputation and

the propensity models, effectively generating calibrated estimates

which are critical requirements for ensuring the unbiasedness of

DR estimators. The calibration experts, the prediction model, and

the imputation model are optimized simultaneously in our tri-level

Figure 2: Ablation study on Yahoo!R3.

joint learning framework, and successfully increase the recommen-

dation performance from the existing DR estimators by up to 8.37%

(DCE-DR vs DR-JL in MSE on Coat).

5.3 Ablation Study
Figure 2 shows the ablation study of the proposed doubly cali-

brated estimator. We introduce four ablated methods crafted to

showcase the superiority of our design choices: (1) ’Global’ indi-

cates DCE-DR with global calibration function 𝑐𝜔 for all users. (2)

’User-specific’ represents DCE-DR with user-specific calibration

functions {𝑐𝜔𝑢
}𝑢∈U . (3) ’Only_ImpCal’ denotes DCE-DR with cali-

bration experts only for the imputation model. (4) ’Only_PropCal’

denotes DCE-DR with calibration experts only for the propensity

model.

First, we observe that our calibration experts outperform the

global and the user-specific calibration (i.e., DCE-DR vs Global,

User-specific). Calibration experts can consider distinct logit distri-

butions and learn specialized information about their group. Also,
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Table 3: Time and space analysis. Time denotes the wall time
(in s) used for the training and #params. denotes the number
of learnable parameters. Please note that the base model and
the embedding size are chosen with the grid search on the
validation set.

Method

Coat Yahoo!R3 KuaiRec

Time #params. Time #params. Time #params.

MF 8.16 9,440 98.87 524,864 211.47 1,136,576

IPS 12.14 18,913 217.32 1,049,793 481.25 2,273,281

DR-JL 19.04 28,353 460.04 3,149,313 538.39 3,409,857

DR-MSE 22.14 37,772 308.01 2,099,488 697.18 4,546,432

TDR-CL 24.58 28,354 319.86 1,574,660 702.74 3,409,864

DCE-DR 24.94 28,523 320.52 1,575,317 710.91 3,412,457

DCE-TDR 26.21 28,524 346.43 1,575,532 752.13 3,412,464

Figure 3: Hyper-parameter study on number of experts (𝐾)
with DCE-DR.

they alleviate the cold-start problem of user-specific calibration by

gathering enough training signals from the users in the group. As

a result, the calibration experts produce more calibrated imputed

errors and propensity scores (Figure 2 left), and accordingly, DCE-

DR with calibration experts outperforms DCE-DR with global or

user-specific calibration in terms of the unbiased recommendation

performance (Figure 2 right).

Second, we observe that employing calibration experts for both

the imputation and the propensity model is important for the effec-

tiveness of DCE-DR (i.e., DCE-DR vs Only_ImpCal, Only_PropCal).

As theoretically demonstrated in Section 3.1, the bias and the vari-

ance of DR estimators are positively correlated with the miscalibra-

tion of both the imputation and the propensity models. Moreover,

the calibrated propensity scores enhance the calibration (Eq.14) and

the optimization (Eq.16) of the imputation model. Therefore, DCE-

DR exhibits superior performance when utilizing both calibrated

imputed errors and calibrated propensity scores, as compared to

employing either one individually.

5.4 Time and Space Analysis
Table 3 shows the training time and the number of learnable param-

eters of compared methods. In this experiment, We use GTX Titan

Xp GPU and Intel Xeon(R) E5-2667 v4 CPU. First, we observe that

the proposed doubly calibrated estimators do not increase the train-

ing time significantly (less than 10% compared to TDR-CL). Each

calibration expert is equivalent to the logistic regression and can be

efficiently solved. Also, the calibrated experts are updated within 10-

20 iterations on the small validation set. Second, doubly calibrated

estimators introduce only marginal additional learning parameters

in comparison to existing methods. Each calibration expert has two

parameters and thus the total number of additional parameters is

(4 + 2𝑑)𝐾 (4𝐾 for calibration experts and 2𝑑𝐾 for the assignment

networks). Here, 𝑑 ≤ 64 and 𝐾 ≤ 20 (the hyper-parameter study

on 𝐾 is presented in Figure 3).

6 RELATEDWORK
Over the past recent years, debiasing methods have been extremely

investigated for accurately approximating the ideal loss over the en-

tire population with only biased MNAR data. EIB estimator [36, 42]

and IPS estimator [33, 35] are two major approaches for designing

unbiased estimators. Lately, DR estimator [40] and its enhanced

variants [6, 12, 22, 23, 25, 39, 43] are proposed to merge EIB and IPS

estimators for double robustness, and have shown state-of-the-art

performance for various user behaviors including explicit ratings

[12, 35, 40], implicit feedback [31, 33, 44], uplift modeling [32, 34],

and post-click conversion rate [5, 23, 25, 43]. The recent trend is

focusing on the development of estimators that are robust to the

inaccurate estimation of imputed error and propensity score, rather

than achieving precise estimation of them. Recent studies enhance

the robustness of DR estimators bymanipulating the imputed errors

[5, 12, 23] and the propensity scores [25], or by adopting multiple

imputation and propensity models [22]. Nonetheless, their effec-

tiveness may be limited since they still depend on miscalibrated

imputed errors and propensity scores.

On the other hand, some debiasingmethods [2, 4, 8, 24, 26, 41] uti-

lize a small set of unbiased data during the training phase to enhance

debiasing performance. For instance, approaches like [25, 33, 35]

employ logistic regression on held-out unbiased data for accurate

propensity estimation. Other studies leverage unbiased data to ad-

dress unobserved confounding in selection bias [24, 41] and for

causal inference [2, 4]. These methods exhibit a slight improvement

compared to scenarios without unbiased uniform data, resulting

in a moderately accurate prediction model. Nonetheless, obtain-

ing unbiased data in real-world applications can be challenging,

as employing a random exposure policy may degrade user satis-

faction. Indeed, they utilize a small fraction of an unbiased test

set for utilizing held-out uniform data. In contrast, our doubly cali-

brated estimator operates without any unbiased data and effectively

estimates precise imputed errors and propensity scores.

7 CONCLUSION
We demonstrate that current estimators rely on miscalibrated im-

puted errors and propensity scores and provide theoretical analysis

that highlights the potential limitations of doubly robust estima-

tors when faced with miscalibration in imputation and propensity

models. Building upon these findings, we propose a Doubly Cali-

brated Estimator, which involves calibrating both the imputation

and propensity models. To achieve this, we introduce calibration

experts that consider different logit distributions across users. Fur-

thermore, we design a tri-level joint learning framework, enabling

the simultaneous optimization of calibration experts alongside pre-

diction and imputation models. Through extensive experiments

conducted on real-world datasets, we demonstrate the enhanced

performance of the doubly calibrated estimator in debiased recom-

mendation tasks. We anticipate that our doubly calibrated estimator

can be seamlessly integrated with various DR estimators in future

work.
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Appendix

A PROOFS
Theorem 2. The bias of DR estimator exhibits an upper bound

proportional to the calibration error of the propensity model.
Bias[EDR] ≤ 𝜌max · ECE(ℎ𝜓 ),
Bias[EDR] ≤ 𝜌max ·MCE(ℎ𝜓 ),

where 𝜌max = max(𝑢,𝑖 ) ∈D | (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )/𝑝𝑢,𝑖 |.

Proof.

(1)

Bias[EDR] =
1

|D|

��� ∑︁
𝑢,𝑖∈D

(𝑝𝑢,𝑖 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

)
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

���
≤ 1

|D|
∑︁
𝑢,𝑖∈D

|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |
���𝑒𝑢,𝑖 − 𝑒𝑢,𝑖

𝑝𝑢,𝑖

���
≤ 𝜌max ·

1

|D|
∑︁
𝑢,𝑖∈D

|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |,

where 𝜌max = max(𝑢,𝑖 ) ∈D | (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )/𝑝𝑢,𝑖 |. From Eq.8, we get the

empirical ECE over D.

ECE(ℎ𝜓 ) = E𝑝
[
|E[𝑜 |ℎ𝜓 (𝑥) = 𝑝] − 𝑝 |

]
=
∑︁
𝑝

|𝑃 (𝑜 = 1|ℎ𝜓 (𝑥) = 𝑝) − 𝑝 | · 𝑃 (𝑝)

=
1

|D|
∑︁
𝑢,𝑖∈D

|𝑃 (𝑜𝑢,𝑖 = 1) − 𝑝𝑢,𝑖 |

=
1

|D|
∑︁
𝑢,𝑖∈D

|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |

By combining the above two equations, we get

Bias[EDR] ≤ 𝜌max · ECE(ℎ𝜓 ).
(2)

Similar to (1), we get

Bias[EDR] ≤ 𝜌max ·
1

|D|
∑︁
𝑢,𝑖∈D

|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |

≤ 𝜌max · max

𝑢,𝑖∈D
|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |

MCE(ℎ𝜓 ) = max

𝑝∈[0,1]
|E[𝑜 |ℎ𝜓 (𝑥) = 𝑝] − 𝑝 |

= max

𝑝∈[0,1]
|𝑃 (𝑜 = 1|ℎ𝜓 (𝑥) = 𝑝) − 𝑝 |

= max

𝑢,𝑖∈D
|𝑃 (𝑜𝑢,𝑖 = 1) − 𝑝𝑢,𝑖 |

= max

𝑢,𝑖∈D
|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |.

Combining the above two equations, we get

Bias[EDR] ≤ 𝜌max ·MCE(ℎ𝜓 ).
□

Corollary 3. The bias of DR estimator exhibits an upper bound
proportional to the calibration error of the imputation model.

Bias[EDR] ≤ 𝜋max · ECE(𝑔𝜙 ),
Bias[EDR] ≤ 𝜋max ·MCE(𝑔𝜙 ) .

where 𝜋max = max(𝑢,𝑖 ) ∈D | (𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 ) (𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
)/𝑝𝑢,𝑖 |.

Proof.

(1)

Bias[EDR] =
1

|D|

��� ∑︁
𝑢,𝑖∈D

(𝑝𝑢,𝑖 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

)
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

���
≤ 1

|D|
∑︁
𝑢,𝑖∈D

���𝑝𝑢,𝑖 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

���|𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 |
=

1

|D|
∑︁
𝑢,𝑖∈D

���𝑝𝑢,𝑖 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

���|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 | |𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
|

∵ 𝑒 − 𝑒 = 𝑃 (𝑟 = 1)𝑒 (1) + (1 − 𝑃 (𝑟 = 1))𝑒 (0) − 𝑟𝑒 (1) − (1 − 𝑟 )𝑒 (0)

= (𝑃 (𝑟 = 1) − 𝑟 ) (𝑒 (1) − 𝑒 (0) )

With 𝜋max = max(𝑢,𝑖 ) ∈D | (𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 ) (𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
)/𝑝𝑢,𝑖 |, we get

Bias[EDR] ≤ 𝜋max ·
1

|D|
∑︁
𝑢,𝑖∈D

|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |.

Also, similar to the proof of Theorem 2, we get

ECE(𝑔𝜙 ) =
1

|D|
∑︁
𝑢,𝑖∈D

|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |.

By combining the above two equations, we get

Bias[EDR] ≤ 𝜋max · ECE(𝑔𝜙 ) .
(2)

Similar to (1), we get

Bias[EDR] ≤ 𝜋max ·
1

|D|
∑︁
𝑢,𝑖∈D

|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |

≤ 𝜋max · max

𝑢,𝑖∈D
|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |

MCE(𝑔𝜙 ) = max

𝑟 ∈[0,1]
|E[𝑟 |𝑔𝜙 (𝑥) = 𝑟 ] − 𝑟 |

= max

𝑟 ∈[0,1]
|𝑃 (𝑟 = 1|𝑔𝜙 (𝑥) = 𝑟 ) − 𝑟 |

= max

𝑢,𝑖∈D
|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |.

By combining the above two equations, we get

Bias[EDR] ≤ 𝜋max ·MCE(𝑔𝜙 ) .
□
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Theorem 4. The variance of DR estimator exhibits an upper bound
proportional to the square of the calibration error of the imputation
model.

Var[EDR] ≤ 𝜔max ·
(
ECE(𝑔𝜙 )

)
2

,

Var[EDR] ≤
𝜔max

|D| ·
(
MCE(𝑔𝜙 )

)
2

,

where 𝜔max = max(𝑢,𝑖 ) ∈D |𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 ) (𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
)2/𝑝2

𝑢,𝑖
|.

Proof.

(1)

Var[EDR] =
1

|D|2
∑︁
𝑢,𝑖∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
𝑝2

𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2

=
1

|D|2
∑︁
𝑢,𝑖∈D

���𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
𝑝2

𝑢,𝑖

���|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |2 |𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
|2

≤ 𝜔max ·
1

|D|2
∑︁
𝑢,𝑖∈D

|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |2

≤ 𝜔max ·
1

|D|2

( ∑︁
𝑢,𝑖∈D

|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |
)

2

= 𝜔max ·
(
ECE(𝑔𝜙 )

)
2

,

where 𝜔max = max(𝑢,𝑖 ) ∈D |𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 ) (𝑒 (1)𝑢,𝑖
− 𝑒 (0)

𝑢,𝑖
)2/𝑝2

𝑢,𝑖
|. The

second equal comes from the proof (1) of the Corollary 3.

(2)

Similar to (1), we get

Var[EDR] ≤ 𝜔max ·
1

|D|2
∑︁
𝑢,𝑖∈D

|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |2

≤ 𝜔max ·
1

|D| max

𝑢,𝑖∈D
|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |2

= 𝜔max ·
1

|D| ·
(

max

𝑢,𝑖∈D
|𝑃 (𝑟𝑢,𝑖 = 1) − 𝑟𝑢,𝑖 |

)
2

=
𝜔max

|D| ·
(
MCE(𝑔𝜙 )

)
2

□
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