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Abstract

We introduce MLRC-BENCH, a benchmark designed to quantify how effec-
tively language agents can tackle challenging Machine Learning (ML) Research
Competitions, with a focus on open research problems that demand novel method-
ologies. Unlike prior work, e.g., AI Scientist [40], which evaluates the end-to-end
agentic pipeline by using LLM-as-a-judge, MLRC-BENCH measures the key steps
of proposing and implementing novel research methods and evaluates them with
rigorous protocol and objective metrics. Our curated suite of 7 competition tasks re-
veals significant challenges for LLM agents. Even the best-performing tested agent
(gemini-exp-1206 under MLAB [22]) closes only 9.3% of the gap between baseline
and top human participant scores. Furthermore, our analysis reveals a misalignment
between the LLM-judged innovation and their actual performance on cutting-edge
ML research problems. MLRC-BENCH is a dynamic benchmark, which is de-
signed to continually grow with new ML competitions to encourage rigorous and ob-
jective evaluations of AI’s research capabilities. Our leaderboard and code are pub-
licly available at https://huggingface.co/spaces/launch/MLRC_Bench.

1 Introduction

Evaluating large language model (LLM) research agents [2, 35, 40] has so far been restricted to
two directions. One involves tasking the agent with end-to-end scientific discovery: proposing a
research idea, writing implementation code, running experiments, and eventually producing a full
paper as done by AI Scientist [40]. One issue with such evaluation is the lack of reliable baseline
method that enables objective evaluation of the proposed approach. The second direction, on the
other hand, evaluates the agent’s ability to produce code that solves a Kaggle-style machine learning
(ML) engineering competition, skipping idea proposal and paper writing altogether [22, 7]. While
evaluation in this case is straightforward, this setup rarely demands genuine research novelty beyond
existing methods. Consequently, neither of these setups paints a full picture of whether LLM research
agents can design research ideas that are both novel and effective, which we aim to address here.

Competitions at ML conferences and workshops provide a valuable testbed for evaluating research
agents by assessing both novelty and effectiveness against established baselines. Unlike Kaggle-
style contests, these challenges address unresolved and important problems recognized by the ML
community. In addition, public leaderboards facilitate objective comparisons to human experts. If an
algorithm truly outperforms known baselines, improvements in benchmark scores provide a reliable
signal as to the effectiveness of the proposed method.

Therefore, this paper introduces MLRC-BENCH as a benchmark to evaluate the ability of LLM-
based research agents to propose and implement novel methods. Drawing on tasks from recent ML
conference competitions, MLRC-BENCH enables the evaluation of both novelty and effectiveness
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Table 1: 7 MLRC-BENCH tasks representing cutting-edge machine learning research. For each
competition, we show the venue where the competition is held, research area, data modality, per-
formance metric, along with the constraints presented to the agents, including maximum allowed
runtime and GPU memory based on our hardware configurations. Detailed task descriptions are given
in Appendix A.

Competition Venue Research Area Modality Metric Test Runtime GPU Memory

LLM Merging [52] NeurIPS
2024 Efficient LLM Text Accuracy,

ROUGE 1 hour 48 GB

Backdoor Trigger Recovery [60] NeurIPS
2024 LLM Safety Text REASR,

Recall 0.5 hour 48 GB

Temporal Action Localisation [20] ECCV 2024
Workshop

Multimodal
Perception

Video,
Audio mAP 0.5 hour 16 GB

Rainfall Prediction [19] NeurIPS
2023 AI for Science Satellite Data Critical Success Index 0.5 hour 48 GB

Machine Unlearning [54] NeurIPS
2023 Data Privacy Image Forgetting Quality,

Accuracy 0.5 hour 16 GB

Next Product Recommendation [28] KDD Cup
2023

Recommendation
System Text Mean Reciprocal Rank 0.5 hour 16 GB

Cross-Domain Meta Learning [6] NeurIPS
2022

Few-Shot
Learning Image Accuracy 3.5 hours 16 GB

of research agents’ ideas compared to a reliable baseline method and the top human solution.
In particular, it emphasizes objective metrics on tasks such as LLM merging [52] and machine
unlearning [54], closely mirroring ongoing research challenges. Moreover, the challenges in MLRC-
BENCH can dynamically grow by incorporating new competitions from future ML conferences.

We curate MLRC-BENCH starting with 7 competition tasks in Table 1. We pick tasks that involve
novel and high-impact problems, spanning areas including LLM safety, multimodal perception, and
few-shot learning. Our experimental findings reveal that even the best-performing tested LLM agents,
such as gemini-exp-1206 [46] under the MLAB [22] scaffolding, closes only 9.3% of the gap between
baseline and top human participant score. Additionally, our analysis highlights a poor correlation
between the novelty judged by LLM and practical effectiveness of agents’ solutions, questioning the
reliability of LLM-as-a-judge for research idea evaluation. These results underscore the limitations
of current AI research agents in generating and implementing innovative ML solutions, providing a
crucial benchmark for future advancements.

Our contributions can be summarized as below:

• We introduce MLRC-BENCH, a dynamic benchmark suite curated from ML conference
competitions, featuring open research problems that are both impactful and objectively
measurable, and that demand the development of novel methodologies;

• We conduct large-scale, objective evaluations for a wide array of frontier LLMs with
representative agent scaffoldings, highlighting their inability to propose and implement
innovative solutions with notable performance gains;

• We pinpoint the flaws in subjective evaluations of LLM-based research agents, by showing
that the LLM-judged idea novelty is misaligned with empirical effectiveness.

2 Related Work

Scientific discovery in machine learning typically includes four main stages: Problem Identification,
where gaps in existing methods are recognized; Method Proposal, which introduces a new approach
to address the issue; Experiment Design, involving the selection of datasets, baselines, and metrics
for evaluation; and Code Implementation, where the method is realized through executable code.
While prior work [40, 49] covers Problem Identification and Experiment Design, evaluation could
be subjective based on idea proposal or final paper. Instead, MLRC-BENCH focuses on the critical
stages of proposing and implementing novel methods, enabling objective performance assessment.
While there are recent benchmarks that focus on code generation in machine learning domain,
they do not always require methodological innovation. Works like MLAgentBench [22] and MLE-
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Table 2: Comparison between MLRC-BENCH and existing work on automated scientific discovery
in machine learning with LLM agents. “∼” means that some but not all of the tasks in that benchmark
require the indicated capability. “Compute Constraints” indicates whether the solution code must
adhere to specified runtime and GPU memory limitations.

Problem
Identification

Method
Proposal

Experiment
Design

Code
Implementation

Evaluation
Method

Evaluation
Object

Compute
Constraints

Continual
Updates

AI Scientist [40] ! ! ! !
LLM &

Human Judge Paper

Can LLMs Generate Novel
Research Ideas? [49] ! ! ! Human Judge Idea

Proposal

DiscoPOP [39] ! !
Performance

-Based
Function-Level

Code

MLAgentBench [22] ∼ !
Performance

-Based
Single-Script

Code

MLE-Bench [7] ∼ !
Performance

-Based
Single-Script

Code

MLGym-Bench [43] ∼ !
Performance

-Based
Single-Script

Code

RE-Bench [59] ! !
Performance

-Based
Single-Script

Code !

MLRC-BENCH (Ours) ! !
Performance

-Based
Repository

-Level Code ! !

Bench [7] evaluate agents on Kaggle-style ML tasks but prioritize code implementation over novel
research contributions. MLE-Bench requires the final submission to be a CSV file, limiting the data
modality. Broader benchmarks such as ScienceAgentBench [13] and DiscoveryBench [42] span
multiple scientific domains but lack granularity for ML-specific challenges, while CHIME [18] and
OpenD5 [15] target auxiliary tasks like literature review or hypothesis generation. DSBench [29]
and AAAR-1.0 [38] extend evaluations to data science and general R&D workflows but still fall
short of addressing cutting-edge ML research innovation. RE-Bench [59] and MLGym [43] provide
ML research task environments but mostly cover outdated or narrow domains (e.g., CIFAR-10 [32]),
with six of seven RE-Bench tasks focusing on language modeling. As its tasks are manually curated
by experts, RE-Bench is difficult to update and often lags behind emerging research trends. In
contrast, MLRC-Bench sources tasks directly from ML conference competitions, ensuring continual
inclusion of cutting-edge problems. Moreover, while RE-Bench evaluates single-script solutions, our
benchmark features repository-level coding to better reflect real-world research workflows. Besides,
existing benchmarks often fail to specify computation constraints (e.g. runtime and GPU memory
limit), which are important to encourage efficient yet effective solutions.

Unlike DiscoPOP [39] and DA-Code [23], which focus on function-level programming or data-science
workflows, MLRC-BENCH targets repository-level code comprehension and generation, more
faithfully reflecting the skills needed to navigate complex research codebases. This setup supports
advanced development behaviors, such as generating and editing multiple interdependent files [41] and
reusing existing utilities [36]. Consequently, many ML-agent frameworks [26, 53, 37] built for single-
file solutions struggle with the richer challenges posed by our benchmark. While general-purpose
coding agents like MLAB [22], OpenHands [58], and RepoMaster [56] can handle repository-
level tasks and produce valid implementations, they still find it difficult to iteratively optimize
algorithmic effectiveness. Moreover, the repository-level design enables multi-agent collaboration,
where specialized agents for literature review, idea generation, coding, and evaluation can jointly
refine solutions [21, 17, 65, 48, 62].

Automated end-to-end research workflows like The AI Scientist [40, 61] and MLR-Copilot [35] rely
largely on subjective reviews of papers or research proposals for evaluating success. In parallel, Re-
searchAgent [2] iteratively refines ideas through multi-agent feedback, and Chain-of-Idea-Agent [34]
organizes literature into progressive chains to stimulate ideation. However, it remains unclear how
subjectively evaluated “novel” ideas translate into actual performance gains. In contrast, we explicitly
investigate how such subjective assessments of novelty or idea quality align or fail to align with
measurable performance improvements. The differences between our benchmark and existing work
on automating ML research workflow with LLM agents are presented in Table 2.
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Task Description

Develop a method for merging several pretrained 

language models into a generalist model … 

Human Idea
TIES Merging (Yadav et al., 2023) involves three 

steps: … The merged task vector is then scaled 

and added to the base model:

NeurIPS 2024 LLM Merging Competition

Underlying Idea
It identifies key parameters via dynamic 

importance, adaptively reduces them …

LLM Judge

Scorer

Effectiveness

Simplicity

Efficiency

Objective

ClarityValidity

Rigorousness

Innovativeness

Generalizability

Subjective

Language Agent
Ideation   Coding   Execution   Debugging   …

MLRC-Bench7 ×Machine Learning Conference Competitions

environment/

├── data

│   ├── dev.jsonl

│   └── test.jsonl

├── evaluation.py

├── main.py

└── methods

    ├── BaseMethod.py

    └── MyMethod.py

Starter Code
read-only no-read

Implementation
environment/

├── data

│   └── test.jsonl

├── ...

└── methods

    └── MyAwesomeMethod.py

edited

LLM Explainer

Correlation?

Figure 1: Overview of MLRC-BENCH and its evaluation pipeline. MLRC-BENCH standardizes ML
conference competitions into an agent-agnostic framework featuring repository-level code execution
under compute constraints. Its evaluation relies on objective metrics (effectiveness, efficiency,
simplicity) while using subjective LLM-judge scores only to analyze their correlation with objective
metrics for assessing LLM-judge reliability (Section 4.3).

3 MLRC-BENCH

3.1 Task Environment

MLRC-BENCH offers a modular, agent-agnostic environment for specifying and automatically
evaluating agents on research tasks. As shown in Figure 1, for each task, we provide:

• Task Description. A detailed description of the research problem, including essential
terminology, data format, desired model outputs, and constraints (e.g., limitations of model
size or training time).

• Starter Code. Refactored from official competition repositories, it contains: 1) a simple,
baseline model for comparison; 2) a python environment with the necessary ML frame-
works/packages; 3) scripts for training, inference, and offline or online evaluation; 4) train,
development and test data splits. Training data may not be available for some competitions.

• Human Idea. Insights from state-of-the-art papers or top-participant solution reports are
included. Agents can optionally utilize these ideas to refine or inspire their own solutions.

Task-Agonistic Starter Code Structure. Because our primary goal is to focus on method develop-
ment, we simplify ML experimentation by refactoring each competition starter kit into a standardized,
well-organized format, comparable to common ML research project layouts (Figure 1). The resulting
codebase allows users to launch experiments with a single command: python main.py –method
my_awesome_method –phase dev/test, which applies the specified method to the task and eval-
uates the result in both development and test phases. To ensure a fair comparison and preserve the
integrity of evaluations, the repository enforces file permission management: agents may only modify
the methods/ directory (where the algorithmic logic resides in MyMethod.py), while evaluation
scripts remain read-only. Additionally, files containing held-out test data are invisible to agents during
development phase.

Development and Test Splits. We prioritize preventing overfitting by providing explicit develop-
ment and test splits for each competition. Agents can choose to refine their implementations based on
the development set and then submit their best-performing solution to a hidden test set. Wherever
possible, we use the original competition test set (via local evaluation or online leaderboard API).
Otherwise, we partition the existing development data into custom dev and test sets, reproduce the
top human solution if available, and evaluate it on our new test split for a valid comparison.
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3.2 Task Selection

MLRC-BENCH prizes high-quality competitions that are both non-trivial and reproducible. To form
our dataset, we screen competitions held at recent machine learning, natural language processing,
data mining, and computer vision conferences or workshops using the following criteria: 1) Novel
Research-Focused: The tasks should require genuine methodological innovation, rather than being
solvable through purely brute-force or superficial engineering approaches, such as exhaustive search
for hyperparameters or features without any theoretical motivation or problem understanding. 2)
Non-Trivial: The problem must involve complexity so that it will not be solved by simply applying
standard ML algorithms, e.g., calling the XGBoost classifier [11] on a new dataset or prompt
engineering with LLMs. 3) Feasible: Starter code, data splits, and evaluation procedures must be
publicly available so that researchers, either human or agentic AI, can reproduce the experiments
while keeping computational costs manageable.

The current version of MLRC-BENCH comprises seven tasks adapted from existing ML research
competitions.2 These tasks span a diverse landscape of applied ML research, covering topics from
LLM safety to multimodal perception (Table 1), and are carefully curated to reflect unsolved, high-
impact challenges that demand genuine algorithmic creativity rather than incremental tuning or
ensembling. Rather than emphasizing breadth across numerous tasks [7], MLRC-BENCH prioritizes
depth and research-grade complexity, where solving even a single task signifies meaningful scientific
progress.

In addition, we have the following three considerations for MLRC-BENCH design. Continual
Updates. MLRC-BENCH evolves with the field by adding new ML conference competitions and
retiring tasks where performance has saturated, ensuring alignment with frontier research. We also
provide standardized templates and contribution guidelines to encourage community expansion.3
Data Contamination Mitigation. Moreover, since competition solutions are typically shared only as
summary reports rather than full implementation code, their content rarely appears in LLM pretraining
data, minimizing contamination. Regular updates further ensure that the benchmark evaluates genuine
research ability rather than memorized solutions. Computational Constraints. Finally, each task
enforces explicit runtime and GPU memory limits that mirror real-world competition settings,
ensuring fairness and encouraging efficient, resource-conscious methods.

3.3 Objective Evaluation Metrics

MLRC-BENCH supports objective evaluation based on three dimensions. We measure Effectiveness
by the performance metric (e.g., accuracy) defined by the competition organizer, Efficiency by the
solution runtime during training (if applicable) and inference, and Simplicity in terms of logical
lines of code (LLoC) [44], inspired by standard practice in software estimation [44]. LLoC excludes
comments and blank lines, focusing on executable statements. This metric, while imperfect, offers a
rough gauge of code complexity and maintainability [3]. For better readability, we refer to LLoC as
“lines of code” throughout this paper.

Main Metric: Relative Improvement to Human Solution. Quantitative performance comparisons
across competitions can be tricky, as each task may differ significantly in its intrinsic difficulty, and
the official baseline may be weaker or stronger. To address this, we use the Relative Improvement
to Human Solution as our main leaderboard metric that convert each raw performance score sagent

into a normalized score s
′

agent, using a linear transformation [5, 59]. Therefore, the score of the
baseline solution will be 0, and the top human solution in competition is set to 100. Formally, the
normalization is computed as:

s
′

agent =
sagent − sbaseline

stop_human − sbaseline
× 100(%)

2While numerous competitions have been hosted at recent ML/AI conferences, only a limited subset was
selected due to factors such as certain challenges being considered solved with the rapid advancement of
foundation models, missing or irreproducible evaluation data/code, qualitative rather than quantitative evaluation,
insufficient recency, or limited emphasis on algorithmic innovation.

3https://tinyurl.com/MLRC-Task-Template
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3.4 Evaluation Protocol

Our evaluation protocol is designed to prevent AI agents from test set overfitting. Agents will
submit their implementation in the form of an edited codebase, particularly within their proposed
method in the methods/ directory. Specifically, in a single trial, an agent can iteratively modify
the codebase multiple times. We store snapshots of the codebase immediately after each change.
Whenever an execution occurs on the development set, we record the resulting metrics and the
name of evaluated method for that snapshot. At the end of this iterative development phase, we
pick the snapshot with the best development performance i.e., Effectiveness. We then evaluate the
method contained in that snapshot on the test set for our final result.4 This approach strictly follows
standard ML practice and ensures reproducible experimentation. Future work may explore more
sophisticated multi-objective selection criteria that additionally weigh runtime (Efficiency) or lines
of code (Simplicity) of implementations.

4 Experiments and Results

To evaluate the capability of LLM agents in solving ML research tasks, we conduct comprehensive
experiments across different agent scaffoldings and language models. Each agent trial is conducted
either on a single NVIDIA Quadro RTX 8000 GPU with 48GB of memory (for llm-merging,
backdoor-trigger and rainfall-pred tasks) or a Tesla V100 GPU with 16GB memory (for all other
tasks), determined by the size of the base model used in each task. Unless otherwise specified, we
perform 8 trials5 per configuration and report the best attempt.

4.1 Agent Scaffolding Comparison

In addition to allowing agents to directly propose and implement ideas, we investigate whether pro-
viding AI-generated or human-sourced ideas can enhance agent performance. Due to computational
cost constraints, we follow the practice of MLE-Bench [7] to evaluate a commonly used model for
agentic tasks, GPT-4o [24], under three scaffolding configurations:

• MLAB: We adopt the general-purpose MLAB framework [22] as our primary agent for
evaluation.6 MLAB is a ReAct-style [63] agent that alternates between reasoning steps
(e.g., reflection, research planning, fact-checking) and actions (e.g., file operations or Python
execution) to implement machine learning methods. Notably, MLAB does not include any
built-in web search capability; it operates entirely over local resources such as code files,
the Python runtime, and its internal memory.

• CoI-Agent Idea + MLAB: We augment MLAB with ideas generated by Chain-of-Ideas
(CoI) [34], an LLM-based ideation agent that structures relevant literature into progressive
reasoning chains. CoI-Agent is equipped with web-based tools, including access to the
Semantic Scholar API for retrieving up-to-date research papers. We use OpenAI’s o1 [25]
model as its backbone to encourage more creative and literature-grounded ideation. By
evaluating CoI-Agent-generated ideas with MLAB, we effectively study how agents can
leverage web-based retrieval to tackle machine learning research challenges.

• Human Idea + MLAB: To test whether agents can achieve stronger performance when
given high-quality conceptual guidance, we provide MLAB with human-curated ideas
manually extracted from state-of-the-art papers or top-performing participants’ reports.

For all tasks, MLAB agents are limited to 50 steps and 5 hours per trial, except for Rainfall Prediction,
which allows 100 steps and 10 hours to match the longer training time of the official baseline. This
ensures fair comparison, as the baseline requires more epochs to converge due to a larger dataset. As
shown in Table 3, incorporating additional ideas, whether generated by AI or proposed by humans,
does not consistently improve performance. This underscores the challenges agents face not only in

4Concretely, we execute the command python main.py –method best_dev_method –phase test.
5The number of trials is limited to 8 due to budget constraints on API usage.
6While existing ML agent frameworks, including AIDE [26], SELA [14], and AutoML-Agent [55], demon-

strate strong performance on Kaggle-style tasks that yield single-file solutions, their design assumptions differ
substantially from our repository-level coding setup, necessitating careful adaptation for effective use.
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Table 3: For each competition and agent, we report the test-phase relative improvement to the human
solution. Best performing agent in each task is highlighted in bold. Our results indicate that providing
additional ideas, whether sourced from AI or humans, does not consistently yield performance
improvements. The best-performing configuration, gemini-exp-1206 under MLAB, achieves only
9.3% of the human-level improvement over baseline on average, underscoring the inherent difficulty
of these research tasks. See Table 4 in Appendix B for absolute improvements to baseline solution.

Agent temporal
-action-loc

llm
-merging

meta
-learning

product
-rec

rainfall
-pred

machine
-unlearning

backdoor
-trigger Avg

MLAB (gemini-exp-1206) -0.5 5.0 -1.1 0.1 43.1 5.6 12.9 9.3
MLAB (llama3-1-405b-instruct) 0.5 -1.0 -4.9 0.0 31.5 6.2 11.5 6.3
MLAB (o3-mini) 0.3 -1.0 -4.9 0.1 25.1 3.6 6.2 4.2
MLAB (claude-3-5-sonnet-v2) 0.8 5.0 -4.9 3.0 14.6 -94.7 39.9 -5.2
MLAB (gpt-4o) 0.3 2.0 -4.9 0.6 47.5 -18.0 10.4 5.4

w/ Human Idea 0.5 -1.0 -4.9 2.2 12.3 6.8 8.8 3.5
w/ CoI-Agent Idea (o1) 0.4 -1.0 -4.9 0.1 39.4 11.8 4.0 7.1

generating high-quality ideas but also in effectively implementing them, even when the ideas originate
from humans.

4.2 Model Comparison

Taking MLAB as our major scaffold, we evaluate five prominent LLMs: Claude 3.5 Sonnet v2 [1],
gemini-exp-1206 [46]7, Llama 3.1 405B Instruct [16], o3-mini-high [45] and GPT-4o (2024-11-
20) [24]. The results in Table 3 show varying success rates across models and tasks. Among all
models, Gemini-exp-1206 performs the best overall, closing 9.3% of the gap between baseline
and top human participant scores. Claude 3.5 Sonnet V2 performs the best on most tasks but fails
significantly on machine unlearning. A case study of its final solution (Appendix C.1) suggests that
the failure stems from treating the removal of unwanted data and the preservation of useful knowledge
as separate objectives, rather than jointly optimizing both to maintain model performance.

Table 3 also reveals that agent solutions’ performance gains remain modest compared to human
solutions in many cases, if not degrading baseline performance. There are, however, a few notable
exceptions. For instance, MLAB (gpt-4o) achieves a score of 47.5 on the rainfall prediction task,
likely because similar solutions (e.g., variants of U-Net [47]) are readily available online. In the
backdoor-trigger task, the baseline GCG method [68] performs poorly, where it essentially makes
random predictions, thereby lowering the bar for agents to surpass it with more meaningful solutions.
This substantial gap highlights the current limitations of AI agents in generating novel, effective
methods, underscoring the need for further advances to match or surpass human-led research efforts.

4.3 Reliability of Subjective Evaluations with LLM-as-a-Judge

Our benchmark enables an investigation of whether LLM-as-a-judge evaluations [33, 66] can reliably
assess the quality of research ideas by comparing subjective judgments against objective performance.
As illustrated in Figure 1, we first prompt an LLM to explain each implementation’s underlying
idea.8 Following a peer-reviewed rubric [2], an LLM then assigns 1–5 Likert scores for the ex-
plained ideas on five dimensions: validity, clarity, rigorousness, generalizability, and
innovativeness. These scores are all the higher the better. The prompts used for this evaluation
are shown in Appendix E. We adopt OpenAI’s o1 [25] model as both the idea explainer and the judge
for its strong reasoning and coding capabilities. The subjective scores serve only to analyze potential
biases in LLM-based evaluation; they are not part of the benchmark evaluation protocol.

Furthermore, we examine how the presence of code influences the assessments through two settings.
(1) Without Code, in which the LLM judges only access the task description and the proposed
idea; and (2) With Code, in which the judges also see the code implementation. We then compute
Spearman’s correlation [51] for each pair of objective and subjective metrics, using data from all
valid implementations that include test-phase scores.

7Gemini-exp-1206 is renamed to Gemini 2.0 Pro afterwards.
8We prompt the MLAB agent to include detailed comments in the code to enable faithful explanations.
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Figure 2: Radar plots of objective and subjective evaluations for agent-generated solutions across
seven research tasks. Each dimension is normalized on a 1–5 scale, where higher values indicate
better performance. Objective metrics include Effectiveness, Efficiency, and Simplicity (Simp.),
which are highlighted in bold. The rest are subjective metrics, assessed by prompting o1 as a judge.
Notably, more effective solutions identified by agents tend to be more complex and time-consuming
(e.g., in backdoor trigger recovery). Additionally, overlapping scores in subjective dimensions suggest
that LLM-based evaluation struggles to distinguish the research capabilities of different models.

Effectiveness Efficiency Simplicity

Clarity

Validity

Rigorousness

Innovativeness

Generalizability

-0.01 0.10 -0.00

-0.20 0.16 0.06

-0.09 0.07 0.10

-0.06 -0.19 0.37

-0.22 0.14 -0.05

w/ code

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Co
rre

la
tio

n

Figure 3: Correlation heatmap between objec-
tive (x-axis) and subjective (y-axis) metrics
for agent-generated solutions across all tasks.
Code is included when prompting the LLM
to evaluate subjective dimensions. No strong
correlation is observed, suggesting that LLM-
judged subjective metrics may not reliably
indicate empirical performance gains.

Figure 2’s radar plots provide a holistic view of agent
performance across both subjective and objective di-
mensions. The plots show that while agents occasion-
ally produce effective solutions, they often struggle to
balance other criteria such as efficiency and simplic-
ity. For instance, on the backdoor-trigger task, Claude
3.5 Sonnet V2 scores well on effectiveness but poorly
on efficiency and simplicity, suggesting that agent-
generated solutions tend to be more complex and
time-consuming. Notably, agents generally underper-
form compared to the baseline when evaluated using
objective metrics. However, when subjective metrics
are used and judged by LLMs, they often receive
more favorable ratings. This discrepancy highlights
a risk of overly optimistic conclusions when relying
solely on subjective evaluations.

Figures 3 and 7 (in Appendix B) illustrate the cor-
relation heatmaps for both settings.9 The overall
correlations remain weak. For example, there is a
near-zero correlation (-0.06) between innovativeness
and effectiveness, implying that an agent’s ability to generate novel ideas, as judged by an LLM,
does not necessarily equate to success in practical tasks. Consequently, our finding indicates that
LLM-based evaluations alone are not a reliable proxy for real-world research impact. While LLM
agents can certainly assist in generating creative ideas, relying solely on LLM-based evaluations to
gauge agents progress in improving machine learning research may lead to misinterpretations. This
again highlights the importance of employing objective metrics to ensure that proposed solutions are
not only novel but also effective.

9We find that removing the code leads to similar correlation results and does not significantly affect the
conclusion we make.
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Figure 4: We track the percentages of changes of performance, runtime, and lines of code compared
to baseline across iterative refinement of implementations within a trial of LLM-based MLAB agent
on the development set. Performance improvement is the higher the better, while increased runtime
and lines of code are the lower the better. These figures show the averaged metrics across all tasks.
For results breakdown on each task, please refer to Figure 9 and 10 in Appendix B. Together, these
figures show that agents tend to over-refine their solutions over time, leading to increased complexity
and runtime without proportional performance gains.

4.4 Solution Development Analysis

Figure 4 illustrates how performance, runtime, and code complexity evolve as agents iteratively
refine their implementations within a single trial. Three major patterns are observed: (1) GPT-4o and
Claude gradually improve their performance through refinement, while other models plateau after
a few iterations; (2) runtime consistently increases, probably because models are exploring more
complicated solutions over time, which may naturally conflate with better solutions; and (3) code size
expands over time, reflecting increasingly complex solutions that do not yield proportional perfor-
mance gains. Together, these trends suggest that agents tend to over-refine their solutions, resulting
in more complex and time-consuming implementations without further performance improvements.
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Figure 5: We perform a cost-effectiveness analysis
of various setups. On the x-axis, we plot API
cost, where lower is better, and on the y-axis, we
show relative improvement to human (Section 3.3),
where higher is better.

We further analyze the agent traces (gemini-exp-
1206 with MLAB) in Appendix F to understand
its behavioral patterns and limitations. Two key
insights emerge. First, a significant portion of
action errors (11.5% of all steps) stem from
incorrect tool arguments, where the model ei-
ther hallucinates or misidentifies expected pa-
rameter names. This highlights the need to im-
prove the agent’s tool-usage capabilities. Sec-
ond, the agent was able to fix only 17.2% of
the errors encountered during code execution,
revealing the challenge of self-debugging in com-
plex, repository-level ML codebases [12].

4.5 Cost-Effectiveness Analysis

In Figure 5, we analyze the agents’ success rates
in a cost-controlled setting, motivated by recent
work [30] emphasizing the importance of jointly
optimizing both performance and cost in agent
design.10 Llama 3.1 405b Instruct11 offers the
most favorable trade-off, achieving higher suc-
cess rates than GPT-4o and Claude 3.5 Sonnet
at a significantly lower cost. Although incorporating an ideation phase before implementation im-
proves overall performance compared to the implementation-only MLAB setting, it incurs additional
costs due to the generation of research ideas. Nevertheless, we believe the performance gain will

10We exclude the gemini-exp-1206 model from this figure because it was experimental and its pricing was
unavailable at the time of writing.

11We estimate the API cost for Llama models based on Amazon Bedrock service pricing.
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increasingly justify the added cost as base models continue to grow stronger, particularly for complex
research problems where strategic high-level planning leads to substantial gains in final outcomes.

4.6 Inference-Time Scaling on ML Research Tasks
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Figure 6: We measure Pass@k as we scale the
number of trials and ideas, running MLAB for
eight trials per idea. The total inference-time com-
putes are equivalent among these points: k = 4 for
one-idea line, k = 2 for two-idea line, k = 1 for
four-idea line, and k = 4 for the remaining lines.
For results breakdown on each task, please refer to
Figure 8 in Appendix B. Our results indicate that
1) providing high-quality ideas, especially human-
generated ones, significantly boosts an agent’s suc-
cess rate across multiple attempts, 2) while varying
the balance between idea exploration and exploita-
tion under a fixed budget yields similar outcomes
due to diminishing returns from repeated trials.

Increasing inference-time compute via repeated
sampling [7, 8, 4] has been shown to boost LLM
performance on reasoning and coding tasks.
Here we explore how LLM research agents scale
with more inference-time compute on both the
idea and solution spaces. We sample 4 ideas
for each task from CoI-Agent [34] and repeat
MLAB agent for 8 trials to implement each idea
into code.

Figure 6 plots pass@k [9], i.e., the probabil-
ity that at least one of k trials converges to a
successful implementation, defined as the agent
closes at least 5% of the gap between baseline
and top human participant scores (Relative Im-
provement to Human, Section 3.3). Our results
show that providing high-quality ideas enhances
an agent’s ability to generate meaningful solu-
tions when given multiple attempts, and human
ideas appear to be more effective than those
produced by AI.12 Furthermore, under a fixed
inference budget, we did not observe a signifi-
cant difference between allocating resources to
idea exploration versus exploitation. For exam-
ple, there is no significant pass@k difference
between using 4 ideas with 2 trials per idea, 2
ideas with 4 trials per idea, and 1 idea with 8
trials per idea. This phenomenon likely occurs
because once a high-quality idea is identified,
the performance gains from additional trials tend
to plateau, resulting in diminishing returns de-
spite further exploitation. We hypothesize that performance-informed tree-search that navigates the
vast space of possible solutions [26, 31] or allocating more computational resources [7] could offer
more promising scaling properties.

5 Conclusion

MLRC-BENCH draws upon the rigor of conference competitions to provide a scalable, objective,
and realistic benchmark for evaluating LLM agents in proposing and implementing novel algorithms
that advance research on impactful topics. Our benchmark features modular tasks, objective evalua-
tion metrics, tamper-proof evaluations, and ongoing updates as new suitable competitions become
available. Our results show that MLRC-BENCH presents a significant challenge for state-of-the-art
LLMs and agent scaffoldings. Our analysis highlights the misalignment between the LLM-judged
innovation and their actual performance on cutting-edge ML research problems. MLRC-BENCH will
evolve alongside the rapid pace of ML research and continuously support the pursuit of AI-assisted
or automated scientific discovery.

12As shown in Figure 8 of Appendix B, most tasks exhibit zero successes across all eight trials, suggesting
that further increasing the number of trials would not alter their Pass@k curves. To examine this more closely,
Appendix C.2 extends the scaling experiments to 16 trials on two representative tasks—backdoor-trigger-recovery
and machine-unlearning—revealing consistent conclusions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, they are accurate.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17



Justification: N/A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3.4 and 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is publicy available at https://github.com/yunx-z/MLRC-Bench.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 3.4 and 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report the best performance among 8 repeated trials in main result Table 3,
so statistical significance does not apply here.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Table 1 and Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes we adhere to NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix J.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: N/A.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all competitions in Table 1 and Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please see documentation at https://github.com/yunx-z/MLRC-Bench.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Description of Research Competitions

A.1 LLM Merging [52] [Link]

Develop a novel and effective LLM merging method to improve performance on held out test set
within the time constraints.

## Description
Training high-performing large language models (LLMs) from scratch is a notoriously expensive
and difficult task, costing hundreds of millions of dollars in compute alone. These pretrained LLMs,
however, can cheaply and easily be adapted to new tasks via fine-tuning, leading to a proliferation of
models that suit specific use cases. Recent work has shown that specialized fine-tuned models can be
rapidly merged to combine capabilities and generalize to new skills.

The competition will provide the participants with a list of expert models that have already been
trained on a task-specific dataset. The goal of this competition is to re-use the provided models to
create a generalist model that can perform well on a wide variety of skills like reasoning, coding,
maths, chat, and tool use. Along with these expert models, we have a set of hidden tasks that will be
used to evaluate the submissions from participants.

A.2 Backdoor Trigger Recovery [60] [Link]

**Backdoor Trigger Recovery for Code Generation Models**

## Description

Participants in this competition are tasked with developing algorithms to recover backdoor triggers
embedded within large language models (LLMs) used for code generation. Each provided backdoored
LLM contains multiple (trigger, target) pairs, where triggers are universal prompt injections designed
to induce the generation of malicious code specified by the targets. In the development phase,
participants receive a model finetuned with five known (trigger, target) pairs, while in the testing
phase, the models include tens of secret (trigger, target) pairs related to various categories of harmful
code generation. The objective is to predict the triggers corresponding to each provided target,
adhering to a maximum token constraint of 10 tokens per trigger. Submissions will be evaluated
using two metrics: recall, which measures the similarity between predicted and ground truth triggers,
and the Reverse-Engineering Attack Success Rate (REASR), which assesses the effectiveness of the
recovered triggers in eliciting the malicious code. Participants are provided with a starter dataset of
100 code generation queries and their correct outputs for method development and local evaluation,
with additional data encouraged for enhancing method robustness. However, any attempts to access
or guess the secret online evaluation dataset will be considered a rule violation.

A.3 Temporal Action Localisation [20] [Link]

# Second Perception Test Challenge (ECCV 2024 Workshop) – Temporal Action Localisation Track

## Description
The goal of this challenge is to develop methods that accurately **localize and classify actions** in
untrimmed videos (up to 35 seconds long, 30 fps, max resolution 1080p) from a predefined set of
classes.

—

## Data
- **Training Data: Multimodal List**
- 1608 videos
- Includes both **action** and **sound** annotations
- Contains **video and audio features**

- **Validation Set**
- 401 videos, used to tune hyperparameters.
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- **Test Set**
- Held-out set for final evaluation of your method’s performance containing 5359 videos.

—

## Output Format
For each video in test (or val), your model should output **all action segments**, with:
1. **Start timestamp**
2. **End timestamp**
3. **Predicted action class label**
4. **Confidence score**

—

## Evaluation
- The main metric is Mean Average Precision (mAP), computed over your detected segments and
averaged across:
- Different action classes
- IoU thresholds from 0.1 to 0.5 in increments of 0.1 (i.e., [0.1, 0.2, 0.3, 0.4, 0.5])
- You have separate splits for train, val, and test:
- Train on the training set.
- Use the validation set to tune, select models, etc.
- Evaluate final performance on the **test set**.

A.4 Rainfall Prediction [19] [Link]

Super-Resolution Rain Movie Prediction under Temporal Shifts

## Description
The aim of the Weather4cast competition is to predict quantitatively future high resolution rainfall
events from lower resolution satellite radiances. Ground-radar reflectivity measurements are used to
calculate pan-European composite rainfall rates by the Operational Program for Exchange of Weather
Radar Information (OPERA) radar network. While these are more precise, accurate, and of higher
resolution than satellite data, they are expensive to obtain and not available in many parts of the
world. We thus want to learn how to predict this high value rain rates from radiation measured by
geostationary satellites operated by the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT).

Competition participants should predict the exact amount of rainfall for the next 8 hours in 32 time
slots from an input sequence of 4 time slots of the preceeding hour. The input sequence consists
of four 11-band spectral satellite images. These 11 channels show slightly noisy satellite radiances
covering so-called visible (VIS), water vapor (WV), and infrared (IR) bands. Each satellite image
covers a 15 minute period and its pixels correspond to a spatial area of about 12km x 12km. The
prediction output is a sequence of 32 images representing rain rates from ground-radar reflectivities.
Output images also have a temporal resolution of 15 minutes but have higher spatial resolution, with
each pixel corresponding to a spatial area of about 2km x 2km. So in addition to predicting the
weather in the future, converting satellite inputs to ground-radar outputs, this adds a super-resolution
task due to the coarser spatial resolution of the satellite data.

We provide training and validation data from one Eureopean region in 2019, and testing data from
the same region in 2020, measuring a transfer learning performance under temporal shift. The task
is to predict exact amount of rain events 4 hours into the future from a 1 hour sequence of satellite
images. Rain rates computed from OPERA ground-radar reflectivities provide a ground truth.

A.5 Machine Unlearning [54] [Link]

# Machine Unlearning Challenge
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**One-sentence summary**
Develop efficient algorithms for “machine unlearning” such that, after forgetting certain training data,
the resulting model closely matches one that was never trained on that data in the first place.

—

## Description

We focus on **machine unlearning**, i.e., “removing the influence” of a subset of the training data
(the *forget set*) from a trained model, so that the resulting model behaves similarly to one trained
*without* that subset. This is especially relevant for privacy regulations (e.g., “right to be forgotten”),
where individuals can request removal of their data from a model.

### Goal

Our goal is to compare the strengths and weaknesses of different unlearning methods under a *shared*
and *standardized* evaluation. Participants receive:

1. A **pre-trained** model (trained on facial images, CASIA-SURF, to predict age group in test
phase, CIFAR-10 in dev phase).
2. A **forget set** (data samples to remove) and a **retain set** (the rest of training data).
3. A hidden **test set** for final scoring.

**Output**: An unlearned model that should:
- **Erase** the forget set’s influence to match the behavior of a retrained model that never saw those
forget samples.
- **Retain** good accuracy on the remaining data and on the test set.
- **Finish** within provided compute/runtime constraints.

### Data & Evaluation

- **Dataset**: CASIA-SURF, containing facial images labeled by age group (10 classes) in test
phase, CIFAR-10 in dev phase.
- **Pretrained model**: A classifier trained for 30 epochs on the entire dataset.
- **Forgetting**: Must “remove” any trace of the forget set.
- **Utility**: Must stay accurate on the retain data and a hidden test set.
- **Metrics**:
1. **Forgetting quality** – compares unlearned model θu to a model retrained from scratch θr
without the forget set.
2. **Utility** – checks retain/test accuracy relative to θr.
3. **Efficiency** – run under time constraints (< 8h on provided compute).

The challenge uses an *online* evaluation on Kaggle. Each submitted unlearning method will be
run multiple times against multiple “original” and “retrained-from-scratch” checkpoints, producing a
final score that balances forgetting quality and model utility.

A.6 Next Product Recommendation [28] [Link]

This task focuses on next product recommendation by predicting the most likely product a customer
will engage with based on session data and product attributes, using test data from English, German,
and Japanese locales.

## Description
For each session, the participant should predict 100 product IDs (ASINs) that are most likely to
be engaged with. The product IDs should be stored in a list and are listed in decreasing order of
confidence, with the most confident prediction at index 0 and least confident prediction at index 99.
Evaluation is performed using mean reciprocal rank where the rank in your list of the ground truth
next item is being assessed. For each session, you will be provided with the locale of the user and a
list of products already viewed in that session. A separate file has metadata about each product.
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A.7 Cross-Domain Meta Learning [6] [Link]

The competition focuses on cross-domain meta-learning for few-shot image classification, challenging
participants to develop scalable and robust models that can quickly adapt to diverse tasks with varying
numbers of classes (“ways”) and training examples per class (“shots”) across domains like healthcare,
ecology, and manufacturing.

## Description
Goal and Data
This competition challenges participants to develop meta-learning models that adapt quickly to
few-shot classification tasks across ten diverse domains (e.g., healthcare, ecology, manufacturing).
Drawing on the newly expanded Meta Album meta-dataset (10 image datasets unified at 128×128
resolution), the final evaluation tasks vary in “ways” (2–20 classes) and “shots” (1–20 training
examples per class). By combining such heterogeneous tasks, the challenge highlights the importance
of scalability, robustness to domain shifts, and flexible generalization in the “any-way any-shot”
meta-learning setting. 5 datasets will be used for training and 5 will be used for testing.
Participants develop a ‘MetaLearner‘ whose ‘meta_fit‘ function returns a ‘Learner‘ whose ‘fit‘
function returns a ‘Predictor‘ with a ‘predict‘ function.

Evaluation and Metric
Submissions are evaluated with blind testing on ten representative datasets. Each task includes a
support set (training) and a query set (testing), and the competition’s primary metric is a random-
guess normalized balanced accuracy. First, a balanced classification accuracy (bac) is computed by
averaging per-class accuracies (i.e., macro-average recall). Then, to account for varying numbers of
classes (ways), the bac is normalized by the expected performance of random guessing. This ensures
a fair comparison across tasks with different ways/shots configurations and highlights each model’s
true ability to learn effectively from limited examples in multiple domains.

B Additional Results

This section presents additional results that
complement the findings reported in the main
paper and appendix.

• Table 4 reports the absolute improve-
ment over the baseline, supplement-
ing the success rate results shown in
Table 3 (Section 4.2).

• Figure 7 displays the correlation
heatmap between objective and sub-
jective metrics when LLM-as-a-
Judge is applied without code as in-
put, complementing Figure 3 (Sec-
tion 4.3).

• Figure 8 shows inference-time scal-
ing results broken down by task,
complementing the aggregate results
in Figure 6 (Appendix 4.6).

• Figures 9 and 10 provide a task-level
analysis of the implementation pro-
cess, extending the results in Fig-
ure 4 (Appendix 4.4).
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Figure 7: Correlation heatmap between objective
and subjective metrics when LLM-as-a-Judge is
done without code as input. The “with code” ver-
sion is shown in Figure 3.

C Additional Analyses

C.1 Case Study

We present two case studies below to illustrate failed solutions implemented by LLM agents. Please
see Appendix G for the concrete code implemented by AI agents.
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Figure 8: For each task, we measure Pass@k as we scale the number of trials and ideas, running
MLAB for eight trials per idea. Pass@k is the probability that at least one of k trials converges to a
successful implementation, defined as the agent closes at least 5% of the gap between baseline and
top human participant scores.
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Figure 9: For each task, we track the percentages of changes of performance, runtime, and lines of
code compared to baseline across iterative refinement of implementations within a trial of LLM-based
MLAB agent.
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Table 4: For each research competition and agent, we report the test-phase best percentage im-
provement in the performance metric over the baseline among 8 trails provided in the starter code.
Additionally, we present the improvements achieved by the top human participants at the time of
competition under the same setup. Best performing agent in each task is highlighted in bold. Agents
can only achieve marginal performance gains compared to human experts, and in many cases, the
agents’ solutions even degrade baseline performance.

Agent temporal
-action-loc

llm
-merging

meta
-learning

product
-rec

rainfall
-pred

machine
-unlearning

backdoor
-trigger Avg

MLAB (gemini-exp-1206) -1.3 3.4 -3.2 0.6 91.4 3.5 80.4 25.0
MLAB (llama3-1-405b-instruct) 1.5 -0.7 -14.9 0.0 66.7 3.8 71.7 18.3
MLAB (o3-mini) 0.9 -0.7 -14.9 0.6 53.3 2.2 38.8 11.5
MLAB (claude-3-5-sonnet-v2) 2.2 3.4 -14.9 12.3 31.0 -58.6 247.9 31.9
MLAB (gpt-4o) 0.9 1.4 -14.9 2.6 100.8 -11.1 64.5 20.6

w/ Human Idea 1.5 -0.7 -14.9 8.9 26.1 4.2 54.5 11.4
w/ CoI-Agent Idea (o1) 1.0 -0.7 -14.9 0.6 83.6 7.3 24.9 14.5

Top Human in Competition 284.6 68.2 304.5 412.6 212.0 61.9 621.3 280.7
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Figure 10: (Cont’d) For each task, we track the percentages of changes of performance, runtime, and
lines of code compared to baseline across iterative refinement of implementations within a trial of
LLM-based MLAB agent.
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Table 5: Extended Pass@k results (up to 16 trials) on two representative tasks, backdoor-trigger-
recovery and machine-unlearning, across three system configurations (MLAB-only, CoI-Agent Idea +
MLAB, and Human Idea + MLAB). Consistent with the conclusion from Figure 6 in the main paper,
incorporating ideation, whether AI- or human-generated, substantially improves success rates over
the implementation-only baseline, with human ideas enabling faster and more consistent solution
discovery.

Task System pass@1 pass@4 pass@8 pass@12 pass@16

backdoor-trigger-recovery
MLAB 0.12 0.45 0.77 0.95 1.00
CoI-Agent Idea + MLAB 0.19 0.61 0.90 0.99 1.00
Human Idea + MLAB 0.31 0.82 1.00 1.00 1.00

machine-unlearning
MLAB 0.00 0.00 0.00 0.00 0.00
CoI-Agent Idea + MLAB 0.06 0.25 0.50 0.75 1.00
Human Idea + MLAB 0.12 0.45 0.77 0.95 1.00

LLM Merging Challenge: The objective is to develop a novel and effective algorithm to merge
several (in our case, two) expert models into a single model that demonstrates improved performance
on a held-out test set within the given time constraints. The MLAB agent (o3-mini) proposed a
median aggregation of parameters, which slightly underperforms the baseline of a mean aggregation.
We hypothesize that the median, while robust to extreme outliers, typically exhibits higher statistical
variability when merging multiple parameter sets, especially with fewer models.

Machine Unlearning Challenge: The goal is to develop efficient algorithms that enable a model
to “forget" specific training data, such that the resulting model closely resembles one that was never
trained on that data in the first place. The MLAB agent (claude-3-5-sonnet-v2) proposed a Gradient
Ascent Unlearning Algorithm, a two-phase approach combining gradient ascent for forgetting and
fine-tuning for retaining knowledge. Specifically, the algorithm first performs gradient ascent on the
forget set to maximize loss (achieving unlearning) and then fine-tunes the model on the retain set to
restore the desired knowledge. While this approach sounds promising in theory, it scored significantly
lower than the baseline. We hypothesize that by separating the gradient ascent on the forget set and
the fine-tuning on the retain set into two distinct phases, the model may not effectively balance these
two conflicting objectives. In contrast, a joint optimization approach—where both objectives are
optimized at each gradient update—might better balance the processes of “forgetting” and “retaining”
knowledge.

C.2 Extended Inference-time Scaling Experiment

In Section 4.6, we conduct inference-time scaling evaluation with 8 trials at most. As shown in
Figure 8, most tasks record zero successes across all eight trials, so we expect that increasing trials
would not change their Pass@k curves. To probe further, we extended two representative tasks,
backdoor-trigger-recovery and machine-unlearning, to 16 trials for all three settings: MLAB-only,
CoI-Agent Idea + MLAB, and Human Idea + MLAB. Results in Table 5 underscore the importance
of ideation: on both tasks, providing ideas, either from AI or human, consistently improves Pass@k
compared to the MLAB-only (implementation-only) setting, with human ideas enabling faster solution
discovery than AI-generated ones. This reinforces our conclusion in Section 4.6 that without true
innovation capabilities, simply increasing the number of trials is unlikely to yield better performance.

D Limitations

Our work has certain limitations. First, the benchmark currently covers only seven competitions,
though we plan to expand it with new tasks as outlined in Section 3.2. Second, our evaluation focuses
solely on a general-purpose MLAB agent for code implementation, as some other agent frameworks
are currently unsuitable for our repository-level coding tasks (see Section 4.1). Nonetheless, recent
advancements in LLM agents, including improved debugging tools [64], inference-time scaling
techniques [57, 31], and reinforcement learning-based fine-tuning [67, 27, 10, 50], have the potential
to achieve substantially better performance at a lower cost than human researchers.
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E Prompts for LLM-as-a-Judge

Prompt for LLM Explainer in Figure 1

Analyze the following Python code with comments and generate a high-level idea proposal summarizing:
1. The main goal or purpose of the method or algorithm implemented.
2. The general approach or methodology used to achieve the goal.
3. Any core assumptions or requirements underlying the implementation.
Focus on providing a conceptual overview rather than implementation details.

Code:
{code}

Provide the summary as an idea proposal, avoiding references to the code itself. Focus on describing
the approach and methodology as a standalone concept.

Prompt for LLM Judge in Figure 1

You are an AI assistant whose primary goal is to assess the quality and soundness of scientific methods
across diverse dimensions, in order to aid researchers in refining their methods based on your evaluations
and feedback, thereby enhancing the impact and reach of their work.
You are going to evaluate a scientific method for its {metric} in addressing a research problem, focusing
on how well it is described in a clear, precise, and understandable manner that allows for replication
and comprehension of the approach.
As part of your evaluation, you can refer to the research problem, which will help in understanding the
context of the proposed method for a more comprehensive assessment.

Research problem: {researchProblem}

Now, proceed with your {metric} evaluation approach that should be systematic:
- Start by thoroughly reading the proposed method and its rationale, keeping in mind the context
provided by the research problem, and existing studies mentioned above.
- Next, generate a review and feedback that should be constructive, helpful, and concise, focusing on the
{metric} of the method.
- Finally, provide a score on a 5-point Likert scale, with 1 being the lowest, please ensuring a discerning
and critical evaluation to avoid a tendency towards uniformly high ratings (4-5) unless fully justified:

The criteria for {metric} evaluation: {criteria}
I am going to provide the proposed method with its code implementation, as follows:

Proposed method: {Method}
Code implementation:

{code}
After your evaluation of the above content, please respond **only** with a valid JSON object in the
following format: { “Review”: “Your review here”, “Feedback”: “Your feedback here”, “Rating”:
“Your rating here” }

F Agent Trace Analysis

In this section, we analyze the agent traces for Gemini-exp-1206 across different tasks. We collect
trajectories across 7 tasks with 8 runs for each task, resulting in a total of 56 trajectories.

F.1 Error Type Categorization

We categorize Gemini-exp-1206’s actions on MLRC-Bench tasks into two main types:

• Non-execute Steps: Steps where the action "Execute Script" was not invoked.

• Execute Steps: Steps where the action "Execute Script" was invoked.
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Figure 11: Distribution of environment and non-environment errors across different MLRC-Bench
tasks. Each task is represented with two pie charts: one for errors related to the environment (e.g.,
submission issues, argument mismatches) and another for non-environment errors (e.g., runtime
failures, memory issues) .

Non-execute errors are further classified into incorrect argument and incorrect
submissions. Execute errors include key errors, value errors, type errors, assertion
errors, runtime errors, attribute errors, out-of-memory errors, import errors,
and syntax errors.

We briefly explain the errors encountered:

• EnvError: Occurs when submissions do not match the leaderboard records, files are missing,
or arguments are passed incorrectly.

• KeyError: Results from passing incorrect argument names or not registering methods.
• ValueError: Triggered by invalid parameters, such as an improper learning rate or an empty

parameter list.
• TypeError: Occurs from unexpected keyword arguments.
• AssertionError: Occurs when conditions such as shape compatibility or divisibility are not

met.
• RuntimeError: Typically related to tensor shape issues.
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Figure 12: Error response distribution across tasks. For each task, errors are classified as Fixed
(fully resolved), Attempted (partially addressed), or Didn’t attempt (unresolved). These labels were
assigned by GPT-4o-mini after evaluating each error along with all its subsequent steps (action,
reflection, thought, and observation).

• AttributeError: Happens when a required attribute is missing.

• OutofmemoryError: Indicates a CUDA out-of-memory condition.

• ImportError: Occurs when a module cannot be imported.

• SyntaxError: Triggered by syntax issues, such as a missing comma.

Figure 11 shows that Gemini-exp-1206 successfully completes a considerable number of steps without
errors, yet its performance varies noticeably across tasks. In particular, while Meta Learning displays
relatively few issues, Rainfall Prediction exhibits a higher frequency of "hallucination" based errors
such as incorrect argument handling, non-existent file references, and invalid parameter choices. This
discrepancy indicates that certain tasks present greater challenges for the model, likely due to more
complex or less familiar contexts.

Within the Execute Steps, the most frequent error types are import, value, and type errors, reflecting
a tendency to reference nonexistent modules, pass invalid parameters, or supply arguments of the
wrong data type. On the Non-execute Steps side, incorrect arguments remain a recurring challenge,
showing another case where the agent seems to be "hallucinating" the argument names.

Taken together, these findings highlight the generally robust completion of tasks, but also highlight
the need to refine the agent’s internal checks to reduce parameter mismatches and submission errors.
Strengthening agent self-verification strategies could help mitigate hallucinations and further align its
outputs with the intended specifications of each task.

F.2 Error Response Distribution

Figure 12 presents an overview of how errors are handled across the seven tasks, highlighting
the proportion of errors that were fully resolved (Fixed), partially addressed (Attempted), or left
unaddressed (Did not attempt). These groupings were derived by passing each error along with all
its next steps— containing its action, reflection, thought and observation— to GPT-4o-mini, and
the error was then labeled based on whether it was successfully resolved, partially addressed, or not
addressed at all.

From Figure 12, we observe notable variations in error-handling effectiveness across tasks. Specifi-
cally, LLM Merging demonstrates the highest proportion of fully resolved (Fixed) errors, indicating
more effective resolution strategies, whereas Rainfall Prediction, Backdoor Trigger Recovery, Ma-
chine Unlearning, and Perception Temporal Action Localization predominantly exhibit errors that
are only partially addressed (Attempted). Meanwhile, Meta Learning has the largest share of er-
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Figure 13: Solve rate and average steps taken for resolving various error types. The top chart
shows the proportion of errors successfully resolved (Solve Rate), annotated with the total number of
instances per error type. The bottom chart illustrates the average number of steps required to achieve
resolution, only errors which were fixed were used to calculate average steps.

rors categorized as Did not attempt. These distinctions highlight task-specific differences in error
management.

We also observe a consistently high percentage of errors categorized as Attempted across nearly all
tasks, indicating that the agent often struggles to fully resolve errors. This broadly suggests challenges
in the agent’s comprehension or planning capabilities when addressing complex errors, potentially
pointing to difficulties in fully interpreting the underlying problem or effectively formulating correc-
tive actions. Additionally, the notable variability in fully resolved (Fixed) and unaddressed (Did not
attempt) errors across tasks implies that certain tasks inherently pose greater cognitive complexity or
ambiguity, further exacerbating the agent’s difficulty in error resolution. The prompts used for this
annotation are shown in Appendix I.

F.3 Error Solve Rate

To further expand on this analysis of errors, we also show which error types are more effectively
resolved and highlight their associated complexity during task execution. Errors which were cate-
gorised as Fixed are treated as solved while errors belonging to the other two categories are treated as
unsolved. Using the prompt in Appendix I, we also had GPT-4o-mini return the step at which the
error was fixed for those that were categorised as fixed.

Figure 13 provides insights into the solve rates across different error types, revealing variability in
the agent’s efficiency in resolving specific errors. Among the error types, Out of Memory Error
achieved the highest solve rate, suggesting that these errors are relatively straightforward for the
agent to diagnose and address. In contrast, Syntax Errors and Environment Errors demonstrated
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Figure 14: Distribution of Actions Taken Across Steps. This visualization depicts how frequently
different types of actions were taken at each step by the agent.

lower resolution rates, while Value Error, Runtime Error, and Assertion Error were never fixed,
highlighting their inherent complexity or ambiguity.

Additionally, the average number of steps taken to resolve errors further underscores these differences.
Notably, Out of Memory Errors required the highest average number of steps, indicating that, although
these errors are ultimately resolved at a high rate, their resolution involves a complex, multi-step
process. Conversely, when Syntax Errors and Environment Errors are fixed, they tend to be resolved
more quickly, suggesting that these issues, while more challenging to fix overall, can be diagnosed
and corrected with fewer steps when addressed successfully.

F.4 Per-Step Action Distribution

Figure 14 presents how frequently each action (List Files, Understand File, Edit Script (AI), Execute
Script, Copy File, Undo Edit Script, Inspect Script Lines, and Final Answer) is used over the maximum
allowed 50 steps. This breakdown helps us observe when the agent transitions from environment
exploration to iterative code refinement and debugging. In particular, Rainfall Prediction was not
used for this analysis, as it was run for 100 steps.

Early steps are dominated by environment-inspection actions, particularly List Files and Understand
File, which give the agent context about available files and their contents. As the trajectory progresses,
the agent increasingly relies on Edit Script (AI) and Execute Script for iterative code modifications
and testing, while Inspect Script Lines helps to target debugging. Undo Edit Script is used far less
frequently, suggesting that the agent rarely reverts to a previous state. This pattern highlights an
iterative development approach, but also indicates that the agent may underutilize rollback strategies
when encountering errors. Although Final Answer typically signals the end, some runs exhibit early
submission, indicating missed opportunities for further refinements.

F.5 Per-Step Stage Distribution

In this section, we analyze the per-step stage distribution, categorizing the steps into
seven stages based on GPT-4o annotations: Understanding & Exploration, Baseline
Assessment, Problem Analysis & Idea Generation, Implementation, Debugging &
Error Handling, Experimental Refinement, and Final Evaluation & Submission. Each
step in the agent’s trajectory—comprising its Reflection, Thought, Action Input, and Action—was
labeled by GPT-4o, which matched the step content to the most relevant stage criteria.

Figure 15 visualizes the distribution of these seven stages over the course of the maximum allowed
50 steps. In particular, Rainfall Prediction was not used for this analysis, as it was ran for 100 steps.
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Figure 15: Stage distribution across each step, annotated using GPT-4o and grouped into seven
distinct stages to illustrate shifts in task focus and activity over the course of all tasks.

The early steps are predominantly labeled Understanding & Exploration, reflecting the initial focus
of the agent on examining files, reviewing the environment, and clarifying task requirements. A
smaller portion of these early steps is allocated to Baseline Assessment, where the agent measures
the performance of the unmodified solution to establish a reference point.

As the agent progresses, the distribution shifts noticeably toward Implementation, reflecting a
transition from initial passive information gathering to active code modifications. Notably, the agent
dedicates very few steps to Problem Analysis & Idea Generation, suggesting a rapid move from
conceptual planning to execution. This change is often accompanied by a surge in Debugging &
Error Handling steps, as newly introduced modifications lead to runtime or logical errors that must
be diagnosed and fixed. The close interplay between Implementation and Debugging & Error
Handling underscores the iterative nature of the agent’s development process.

Interestingly, it should be noted that the agent continues to spend a substantial number of steps in the
Understanding & Exploration stage. This ongoing emphasis highlights the inherent complexity
and cognitive demands of repository-level tasks, which often require extensive file navigation and
conceptual understanding.

Toward the latter steps, a subset of runs proceeds to Experimental Refinement, engaging in repeated
re-runs, parameter tuning, and exploring alternative strategies to optimize performance. However, in
many cases, the agent transitions relatively quickly to Final Evaluation & Submission. This early
move towards final submission implies potential underuse of iterative enhancement cycles, indicating
an area for improvement in the agent’s approach. The prompts used for this annotation are shown in
Appendix H.

F.6 Stage Timelines

Using the stage annotation from the previous section, we now extend our analysis by visualizing
stage timelines for each task and run. Figure 16 depict the duration the model spends in each stage,
ranging from Understanding & Exploration to Final Evaluation & Submission, with block widths
proportional to the time allocated. The overall run durations are also displayed, providing context for
the stage-wise time distribution. Notably, Rainfall Prediction was not used for this analysis, as it was
ran for 10 hours.
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Run 1 1h 39m

Run 2 2h 2m

Run 3 1h 3m

Run 4 1h 16m
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Run 6 39m 8s

Run 7 2h 25m

Run 8 5h 3m

Backdoor Trigger Recovery

Run 1 1h 0m

Run 2 2h 1m

Run 3 1h 4m

Run 4 1h 6m

Run 5 2h 54m

Run 6 56m 32s

Run 7 2h 13m

Run 8 3h 4m

Perception Temporal Action Localization

Note: Block widths are proportional to time duration in each stage.
Total duration for each run is shown on the right of each timeline.

Stage 1: Understanding & Exploration
Stage 2: Baseline Assessment

Stage 3: Problem Analysis & Idea Generation
Stage 4: Implementation

Stage 5: Debugging & Error Handling
Stage 6: Experimental Refinement

Stage 7: Final Evaluation & Submission

Stage Timelines Across Multiple Tasks

Figure 16: Combined stage timelines across multiple tasks. Each timeline represents an individual
run, with block widths proportional to the time spent in each stage. The total duration of each run is
shown on the right.

Table 6: Highest Capability Levels Across Experimental Runs for Evaluated Agents. This table
reports the highest capability level, as defined by L1–L8 metric, achieved by each agent over eight
runs across seven distinct tasks. Each run is assigned a numeric score corresponding to its level (e.g.,
L6 = 6, L5 = 5, and so on).

Agent temporal
-action-loc

llm
-merging

product
-rec

rainfall
-pred

meta
-learning

machine
-unlearning

backdoor
-trigger

MLAB (gemini-exp-1206) 4 5 5 6 4 6 6
MLAB (llama3-1-405b-instruct) 5 3 5 6 3 6 6
MLAB (o3-mini) 5 3 5 6 3 5 6
MLAB (claude-3-5-sonnet-v2) 5 5 5 6 3 4 6
MLAB (gpt-4o) 5 5 5 6 3 4 6
Human Idea + MLAB (gpt-4o) 5 3 5 6 3 6 6
CoI-Agent (o1) Idea + MLAB (gpt-4o) 5 3 5 6 3 6 5
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F.7 Capability Level

We categorize each experimental run into one of eight capability levels (L1 to L8) based on its
performance relative to both a baseline and the top human solution. Definitions of each level are
described below:

• L1: No Valid Output. The agent fails to generate any valid evaluation outputs on either the
development or test set, indicating a complete inability to produce usable predictions.

• L2: Test Submission Failure. The agent processes the development set but fails to produce
a valid submission on the test set, meaning that while some processing occurs, the pipeline
does not yield a final result.

• L3: Unimproved but Valid. The agent produces valid predictions for both the development
and test sets yet remains below the baseline performance throughout the run.

• L4: Overfitting. The agent outperforms the baseline on the development set but falls short
on the test set, suggesting that the model may have overfitted to the development data.

• L5: Baseline-Comparable. The agent’s test performance surpasses the baseline but remains
under 5% of the margin by which the top human solution exceeds the baseline. In this range,
performance is very close to the baseline level.

• L6: Notable Gains. The agent’s test performance exceeds the baseline by an improvement
margin between 5% and 50% of the gap between the baseline and the top human solution. In
practical terms, this level is our “success” scenario because it indicates the agent has closed
a meaningful portion of the gap above the baseline.

• L7: Near Human-Level. The agent captures between 50% and 100% of the improvement
margin from the baseline to the top human solution, demonstrating that the performance is
approaching that of the best human score.

• L8: Superhuman. The agent exceeds top human performance not only by delivering
superior quantitative results, but also by demonstrating the creative ability to generate novel
ideas and implement them effectively. This level signifies that the agent can innovate beyond
established human benchmarks.

This metric places an agent’s performance on a tiered scale, relative to both the baseline and the
top human solution, ensuring that any level of improvement (or lack thereof) is still meaningfully
captured, even when the agent falls short of surpassing the baseline. Table 6 shows that rainfall-
pred and backdoor-trigger are relatively easier tasks in our benchmark as the agent can achieve a
meaningful improvement over the baseline (L6), though still far behind the human. The other tasks
appear to be very difficult for all agents, as they cannot achieve capability levels greater than L5.

G Agent Code Samples

Here we show the two examples of solutions generated by LLM agents mentioned in Section C.1.

1 # High -Level Overview:
2 # Purpose: This script merges multiple HuggingFace model checkpoints

into a single base model by computing the median
3 # of each corresponding parameter across different

checkpoints.
4 # Methodology:
5 # 1. Load multiple HuggingFace model checkpoints along with their

configurations.
6 # 2. For every parameter in the models , stack the corresponding

tensors along a new dimension and compute the median value.
7 # The median is computed in float precision and then cast back

to the original data type.
8 # 3. Load the base model and its tokenizer.
9 # 4. Update the base model’s parameters with the aggregated median

values and set the model to evaluation mode.
10 #
11 # Key Steps:
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12 # - Load checkpoints and configurations.
13 # - Iterate over each parameter , compute the median across

checkpoints with careful type conversion.
14 # - Load the base model and tokenizer.
15 # - Update the model state and prepare it for inference.
16

17 import torch
18 from methods.BaseMethod import BaseMethod
19 from peft import get_peft_model , set_peft_model_state_dict
20

21 class MedianMethod(BaseMethod):
22 """
23 MedianMethod performs the merging of multiple checkpoint models

by computing the median of each parameter.
24

25 This class extends the BaseMethod to load HuggingFace
checkpoints , compute a robust median -aggregated state ,

26 and update the base model accordingly.
27 """
28

29 def __init__(self , name):
30 """
31 Initialize the MedianMethod instance.
32

33 Parameters:
34 name (str): The identifier for this method instance.
35

36 Returns:
37 None
38 """
39 # Call the parent BaseMethod ’s initialization method.
40 super ().__init__(name)
41

42 def run(self):
43 """
44 Execute the merging pipeline and load the updated base model.
45

46 Detailed Steps:
47 1. Load HuggingFace model checkpoints and configurations.
48 - Uses a helper function to populate

’self.loaded_models ’ with state dictionaries from
different checkpoints.

49 2. Merge the checkpoints by iterating over each parameter
key:

50 - For each parameter , retrieve the corresponding
tensor from every loaded model.

51 - Detach the tensor from the computation graph and
move it to CPU.

52 - Stack these tensors along a new dimension (dim=0) to
form a single tensor.

53 - Convert the stacked tensor to float for precise
median computation ,

54 compute the median along the new dimension , and cast
the result back to the original data type.

55 3. Load the base model ’s architecture and its tokenizer
via helper functions.

56 4. Update the base model ’s parameters with the merged
state dictionary and set it to evaluation mode.

57

58 Returns:
59 torch.nn.Module: The updated base model , now containing

the median -aggregated parameters.
60 """
61
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62 # Step 1: Load HuggingFace model checkpoints and
configurations.

63 # This helper function populates self.loaded_models with
state dictionaries from different checkpoints.

64 super ()._load_huggingface_models_and_configs ()
65

66 # Step 2: Merge checkpoints by computing the median of each
parameter across all loaded models.

67 # Retrieve all model state dictionaries as a list.
68 all_models = list(self.loaded_models.values ())
69

70 # Assume all models share the same architecture; extract
parameter names from the first model.

71 all_parameter_names = all_models [0]. keys()
72

73 # Iterate over each parameter name.
74 for parameter_name in all_parameter_names:
75 # Retrieve the parameter tensor for the current parameter

from each model ,
76 # detaching from its computation graph and moving it to

CPU to ensure consistency in merging.
77 param_list = [model[parameter_name ]. detach ().cpu() for

model in all_models]
78

79 # Stack the tensors along a new dimension (dim=0) to
create a single tensor.

80 stacked_params = torch.stack(param_list , dim =0)
81

82 # Compute the median across the new dimension.
83 # The tensor is first cast to float for precision during

the median computation ,
84 # then the median result is cast back to the original

data type.
85 median_value = torch.median(stacked_params.float (),

dim =0) [0].to(stacked_params.dtype)
86

87 # Save the computed median tensor in the merged_model
dictionary for later use.

88 self.merged_model[parameter_name] = median_value
89

90 # Step 3: Load the base model ’s architecture and its
tokenizer.

91 # These helper functions initialize the base model and
configure its tokenizer.

92 self._load_base_model ()
93 self._load_tokenizer ()
94

95 # Step 4: Update the base model with the merged parameters.
96 # Load the merged state dictionary into the base model.
97 self.base_model.load_state_dict(self.merged_model)
98

99 # Set the base model to evaluation mode to disable
training -specific layers like dropout.

100 self.base_model.eval()
101

102 # Return the updated base model ready for inference.
103 return self.base_model

Listing 1: Median Merging Solution by MLAB (o3-mini) for the LLM Merging Challenge

1 """
2 Gradient Ascent Unlearning Algorithm
3 -----------------------------------
4 Purpose: Selectively unlearn specific training samples while

retaining knowledge of others
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5 Methodology: Two -phase approach combining gradient ascent and
fine -tuning

6 Key Steps:
7 1. Phase 1: Gradient ascent on forget set to maximize loss

(unlearning)
8 2. Phase 2: Fine -tuning on retain set to restore desired knowledge
9 """

10

11 from copy import deepcopy
12 import torch
13 from torch import nn, optim
14 from methods.BaseMethod import BaseMethod
15

16 DEVICE = ’cuda’ if torch.cuda.is_available () else ’cpu’
17

18 class GradientAscentUnlearning(BaseMethod):
19 def __init__(self , name):
20 """Initialize the unlearning method
21

22 Args:
23 name: Name identifier for the method
24 """
25 super ().__init__(name)
26

27 def get_name(self):
28 """Return the name of the unlearning method
29

30 Returns:
31 String identifier for the method
32 """
33 return "gradient_ascent_unlearning"
34

35 def run(self , net , retain_loader , forget_loader , val_loader):
36 """Implement two -phase unlearning using gradient ascent and

fine -tuning
37

38 Args:
39 net: The model to be unlearned
40 retain_loader: DataLoader for retained training data
41 forget_loader: DataLoader for data to be forgotten
42 val_loader: DataLoader for validation data
43

44 Returns:
45 The unlearned model
46 """
47 criterion = nn.CrossEntropyLoss ()
48

49 # Phase 1: Gradient Ascent on forget set
50 optimizer_forget = optim.SGD(net.parameters (), lr=0.0001 ,
51 momentum =0.9, weight_decay =5e-4)
52

53 for epoch in range (2): # 2 epochs for forgetting
54 net.train ()
55 for batch_idx , sample in enumerate(forget_loader):
56 # Handle different data formats (dict vs tuple)
57 if isinstance(sample , dict):
58 inputs = sample["image"]
59 targets = sample["age_group"]
60 else:
61 inputs , targets = sample
62 inputs , targets = inputs.to(DEVICE),

targets.to(DEVICE)
63

64 optimizer_forget.zero_grad ()
65 outputs = net(inputs)
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66 loss = criterion(outputs , targets)
67 # Multiply gradients by -1 for gradient ascent
68 loss.backward ()
69 for param in net.parameters ():
70 param.grad = -param.grad
71 optimizer_forget.step()
72

73 # Phase 2: Fine -tune on retain set
74 optimizer_retain = optim.SGD(net.parameters (), lr=0.01,
75 momentum =0.9, weight_decay =5e-4)
76 scheduler =

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_retain ,
T_max =1)

77

78 # 5 epochs for fine -tuning
79 for epoch in range (5):
80 net.train ()
81 for batch_idx , sample in enumerate(retain_loader):
82 # Handle different data formats (dict vs tuple)
83 if isinstance(sample , dict):
84 inputs = sample["image"]
85 targets = sample["age_group"]
86 else:
87 inputs , targets = sample
88 inputs , targets = inputs.to(DEVICE),

targets.to(DEVICE)
89

90 optimizer_retain.zero_grad ()
91 outputs = net(inputs)
92 loss = criterion(outputs , targets)
93 loss.backward ()
94 optimizer_retain.step()
95 scheduler.step()
96

97 net.eval()
98 return net

Listing 2: Gradient Ascent Unlearning Solution by MLAB (claude-3-5-sonnet-v2) for the Machine
Unlearning Challenge
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H Prompt for Stage Annotation

Prompt for LLM Stage Annotator

You are a researcher. You are given the following trace of an AI agent working on ML research
challenges:

{output_json_str}

Your task is to analyze every step in the trace and assign a stage to each step. Use the following 7 stages.
For each stage, use the reasoning guidelines provided to decide if a step belongs to that stage.

1. Understanding & Exploration:
- Description: Investigate the problem statement, explore the codebase, review data files, and understand
evaluation metrics. This stage is about gathering context and building a solid grasp of the task and
environment.
- Reasoning Guideline: Assign a step to this stage if it focuses on examining available resources, reading
documentation or files, exploring the code structure, or otherwise building an initial understanding of
the project.

2. Baseline Assessment:
- Description: Evaluate the unmodified baseline solution’s performance to collect performance metrics
and establish a reference benchmark.
- Reasoning Guideline: Assign a step to this stage if it focuses on measuring the performance of
the original, unaltered solution, collecting data for baseline comparison, and ensuring the initial
performance level is documented. Do not assign a step to this stage if it executes the solution after
changes have been made.

3. Problem Analysis & Idea Generation:
- Description: Analyze the baseline results to identify shortcomings and brainstorm potential
improvements or alternative strategies.
- Reasoning Guideline: Assign a step to this stage if it is centered on evaluating baseline outcomes,
identifying issues, or generating ideas and strategies for potential improvements.

4. Implementation:
- Description: Develop and integrate the proposed modifications into the codebase by editing, extending,
or refactoring the existing solution.
- Reasoning Guideline: Assign a step to this stage if it involves writing new code, modifying existing
code, or integrating changes aimed at improving the solution.

5. Debugging & Error Handling:
- Description: Identify, isolate, and fix any errors or unexpected behaviors introduced during
implementation to ensure the solution runs reliably.
- Reasoning Guideline: Assign a step to this stage if it is focused on diagnosing problems, investigating
error messages, or making corrections to ensure proper functionality.

6. Experimental Refinement:
- Description: Re-run experiments on an already implemented solution and iteratively test various
configurations, tune parameters, and compare alternative approaches to upgrade performance.
- Reasoning Guideline: Assign a step to this stage if it involves re-executing or adjusting an implemented
solution, making upgrades and modifications to improve performance after the initial implementation
has been established.

7. Final Evaluation & Submission:
- Description: Conduct a comprehensive evaluation of the refined solution against benchmarks and
prepare the solution for final submission.
- Reasoning Guideline: Assign a step to this stage if it involves performing a final, thorough evaluation
of the solution’s performance, verifying that all improvements meet the required criteria, and preparing
for submission.
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Your response must be a JSON object where the keys are the step numbers (as strings) and the values
are the corresponding stage numbers (from 1 to 7) that best describe the agent’s activity at that step.

IMPORTANT: When assigning a stage, review the steps before and after each step to understand the
broader context.

IMPORTANT: The original trace has {original_step_count} steps. Your response MUST contain
exactly {original_step_count} keys, numbered from "1" to "{original_step_count}".

Example output format:

{
"1": 1,
"2": 1,
"3": 4,
"4": 6,
"5": 7,
"6": 7,
...

}

I Prompt for Error Response Annotation

Prompt for LLM Error Response Annotator

Below is a detailed chain-of-thought from an agent after encountering an error message:

{error_step}

Based on the provided debugging steps, classify the agent response regarding the error as
follows:

1 -> Fixed the error: The agent identified the issue and implemented a solution that resolved
the error.
2 -> Tried to fix the error but didn’t: The agent attempted to address the error but the fix was
not successful.
3 -> Didn’t even try to fix the error and just went off doing something else: The agent did
not directly attempt to resolve the error but instead focused on other tasks unrelated to fixing it.

If the error was fixed (status -> 1), also identify which step number was the error fixed at.

Return a JSON with two fields:
- Status: The number (1, 2, or 3) corresponding to the classification
- FixedAtStep: The step number where the error was fixed (only if Status is 1, otherwise null)

J Impact Statement

The ability of AI agents to perform high-quality ML research could accelerate breakthroughs in
critical domains such as healthcare, climate modeling, and AI safety. However, agents capable of
autonomously generating novel methods at scale may also amplify risks if their outputs outpace
human understanding or oversight. While current agents underperform human researchers, MLRC-
BENCH highlights the need for ongoing monitoring of their capabilities to ensure alignment with
ethical standards and societal goals. By releasing this benchmark, we aim to enhance transparency and
encourage the development of safer, more reliable AI research agents. We caution against deploying
such systems without robust safeguards and urge the community to prioritize evaluations that balance
innovation with accountability.
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