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Abstract

Handling ambiguity and underspecification is an important challenge in
natural language interfaces, particularly for tasks like text-to-SQL semantic
parsing. We propose a modular approach1 that resolves ambiguity using
natural language interpretations before mapping these to logical forms
(e.g., SQL queries). Although LLMs excel at parsing unambiguous utter-
ances, they show strong biases for ambiguous ones, typically predicting only
preferred interpretations. We constructively exploit this bias to generate
an initial set of preferred disambiguations and then apply a specialized
infilling model to identify and generate missing interpretations. To train the
infilling model, we introduce an annotation method that uses SQL execu-
tion to validate different meanings. Our approach improves interpretation
coverage and generalizes across datasets with different annotation styles,
database structures, and ambiguity types.

1 Introduction

Natural language utterances are often ambiguous, vague, or underspecified, giving rise to
multiple valid interpretations. Figure 1 shows an ambiguous request (“return the rating of
each hotel”) in the context of natural language interfaces. In the example, “rating” could
refer to the number of stars hotels receive as an indication of their quality (e.g., 4 stars) or
guest reviews on booking websites (e.g., 8.5 out of 10), or both. Ignoring such ambiguity
can lead to incomplete or incorrect results, undermining user trust and limiting the practical
usefulness of any conversational system.

While state-of-the-art large language models (LLMs) demonstrate remarkable performance
on tasks like question answering, text-to-SQL parsing, and natural language inference, recent
studies (Liu et al., 2023; Floratou et al., 2024) have shown they are not adept at handling
ambiguity. They display systematic biases in their choice of interpretation (Kamath et al.,
2024; Stengel-Eskin et al., 2024; Saparina & Lapata, 2024a), typically defaulting to a single
interpretation when multiple ones exist.

What are the response strategies LLMs should adopt to address ambiguity? An approach
might be to respond with a clarification question, which directly engages users and ensures
accurate resolution of the ambiguity but introduces additional interaction turns. Alterna-
tively, presenting multiple possible interpretations (an “overton response”) would allow
users to select the most relevant answer themselves. This approach minimizes interruptions,
caters to users with different levels of expertise, and provides interpretability by making the
system’s reasoning explicit. For tasks like semantic parsing (see Figure 1), a hypothetical re-
sponse should not only include interpretations in their final form (e.g., SQL queries) but also
their different readings in natural language. From a modeling perspective, interpretations
serve as explanations (of the system’s output) and as intermediate representations, providing a
way to decompose complex semantic parsing problems into simpler steps.

1Our code and data are available at github.com/saparina/disambiguate-then-parse
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Figure 1: Disambiguate first, parse later: we disambiguate ambiguous questions into natural
language interpretations (by generating an initial set and filling in missing ones), and then a
parser translates each interpretation into SQL.

In this work, we focus on text-to-SQL parsing of ambiguous questions, and propose a
two-stage approach that first disambiguates by generating all possible meanings in natural
language, and then parses each unambiguous interpretation. Separating the disambiguation
and parsing tasks allows us to use existing semantic parsers that perform generally well
on unambiguous inputs. We obtain interpretations, by prompting an LLM to generate all
possible meanings for an utterance. These initial interpretations are often incomplete due
to inherent biases stemming from statistical patterns found in LLM training data, lack of
intrinsic knowledge, and different alignment preferences. Rather than attempting to correct
these biases, we introduce an infilling model that reviews the ambiguous question and
initial interpretations, and then generates any missing ones.

The infilling model is trained on pairs of default interpretations and missing readings.
Problematically, existing datasets provide (multiple) SQL parses for ambiguous questions
without explicitly verbalising the interpretations they correspond to. We create synthetic
reference interpretations for AmbiQT (Bhaskar et al., 2023), a recently proposed benchmark
for parsing ambiguous questions into SQL. We exploit the fact that generated interpretations
can be converted to SQL queries which we execute to verify whether they are correct and
to establish which interpretations are missing, i.e., whether there exist gold SQL parses
for which no interpretation was found. We evaluate our approach on Ambrosia (Saparina
& Lapata, 2024a), a dataset different from AmbiQT in terms of database content and the
types of ambiguity it represents. Our contributions are summarized as follows:

• We propose a modular approach that uses natural language to spell out ambiguity
before mapping individual interpretations to logical forms (e.g., SQL queries).

• We use LLMs to generate an initial set of preferred disambiguations and then apply
a specialized infilling model to identify and generate missing interpretations.

• Experiments show that our “disambiguate first, parse later” strategy improves
the coverage of interpretations for ambiguous questions and generalizes across
annotation styles, database structures, and ambiguity types.

2 Disambiguate First, Parse Later

2.1 Problem Formulation

Semantic parsing is the task of mapping a natural language utterance u to formal expression e
in grammar G, where e captures the intended meaning of u. The expression e can be then
executed in an environment E to produce a denotation JeK. In the unambiguous case, there
is a single valid expression e that corresponds to the user’s intent. However, when u is
ambiguous, there are multiple valid expressions {e1, ..., en} where JeiK ̸= JejK for some i, j,
with each ei representing a valid interpretation of the user’s intent.

In our text-to-SQL task, grammar G defines valid SQL queries for a given database schema S.
The database schema and table descriptions provide context C that can help disambiguate
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some queries. We focus on questions that remain ambiguous even when C is known,
i.e., there exist multiple valid SQL queries {e1, ..., en} that respect S and produce different re-
sult sets JeiK when executed on the database. In the example in Figure 1, the question u = “re-
turn the rating of each hotel” remains ambiguous for a given schema S (see first table), as “rat-
ing” could refer to star ratings and guest reviews even when the database content is known.

2.2 Natural Language Interpretations for Explicit Disambiguation

We propose to resolve ambiguity prior to generating SQL expressions with natural language
interpretations. More formally, for ambiguous utterance u, we first produce a set of unam-
biguous natural language interpretations {û1, ..., ûn}, where each ûi captures one meaning
of u. We then map each ûi to formal expression ei. For example, given u = “return the rating
of each hotel”, our goal is to produce û1 = “How many stars were assigned to each hotel?”,
û2 = “How did the customers review each hotel?” and û3 = “Show me the guest scores and
star rating of each hotel” and map them to corresponding SQL queries e1, e2 and e3 (see
Figure 1). This approach has several advantages:

• Unambiguous interpretations ûi are easier to translate into formal expressions, as
they can be handled by existing semantic parsers (e.g., text-to-SQL models);

• Natural language interpretations provide transparency, making the system’s inter-
nal working explicit to users;

• The modular design allows us to optimize the disambiguation and formal expres-
sion mapping components independently.

Building on this modular approach, we propose to further decompose explicit disam-
biguation into two steps: initial interpretation generation followed by infilling of missing
interpretations. Our core idea is based on the observation that modern LLMs, like humans,
resolve ambiguous questions by gravitating toward preferred, default interpretations
(Kamath et al., 2024; Stengel-Eskin et al., 2024; Saparina & Lapata, 2024b). We leverage this
tendency by using LLMs to generate preferred interpretations. We then train a specialized
model that, given an ambiguous question and its default interpretations, identifies and
generates missing readings to ensure all valid meanings are covered.

2.3 Default Interpretation Generation

LLMs exhibit strong biases in interpretation generation, consistently favouring certain types
while missing others. We take advantage of these biases by using LLMs to generate an
initial set of interpretations for ambiguous utterances.

The first component of our approach is a prompt-based interpretation generator that
produces candidate interpretations given utterance u and database context C. We prompt
an LLM to identify and list all semantically different interpretations of u. In practice, LLMs
generate only a subset of possible interpretations, typically the most straightforward
ones. We refer to them as preferred or default interpretations. The prompt is designed
to handle both ambiguous and unambiguous cases, allowing the model to return a single
interpretation when appropriate. As we rely on the LLM’s ability to disambiguate to its
default interpretations, no additional training is required. The output of this module is a
set of natural language interpretations {û1, ..., ûk}, which are mapped to formal expressions
{e1, ..., ek} using an existing semantic parser. For text-to-SQL tasks, executing these queries
allows us to identify paraphrases (interpretations that lead to identical execution results)
and filter redundancy.

2.4 Interpretation Infilling

While initial interpretations from LLMs capture a common understanding of queries, they
often miss valid alternative meanings. We propose to address this issue by introducing a
specialised model that identifies and generates missing interpretations.

Given utterance u, database context C, and default interpretations {û1, ..., ûk}, our model
determines whether additional interpretations exist and generates these accordingly. The
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Figure 2: The Infilling Model receives an ambiguous question and initial default interpre-
tations as input and generates missing interpretations as output. Supervision comes from
comparing SQL queries for default interpretations with gold SQL queries to identify which
disambiguations are not captured.

output is a set of interpretations {ûl , ..., ûm} which complement the initial set. These inter-
pretations are then also mapped to formal expressions {el , ..., em} (SQL queries in our case)
using an existing semantic parser. We train the infilling model in a supervised manner. For
now, let us assume we have access to reference interpretations and corresponding gold SQL
queries. By comparing the set of default interpretations with reference interpretations, we
identify which meanings are missing from the initial set. Reference interpretations absent
from the default set serve as target outputs for the infilling model.

Determining whether two sentences have the same meaning, given some (database) context,
is an extremely challenging task. However, instead of comparing natural language expres-
sions directly, we compare their corresponding SQL queries. In particular, we know which
gold SQL queries are associated with each reference interpretation. Similarly, we can obtain
SQL queries predicted by a text-to-SQL parser for the initial set of default interpretations.
By executing these queries and comparing their results, we determine which interpretations
match and are thus covered by the initial set. Reference interpretations absent from this
set serve as training targets for the infilling model which also explicitly indicates when
all interpretations are covered by the initial set, and there is nothing to add (the target
output in this case is the sentence: “All interpretations are covered.”) Figure 2 illustrates the
annotation process just described.

2.5 Discussion

The strength of our proposal lies in its modular design, consisting of three separate compo-
nents: default interpretation generation, infilling, and text-to-SQL parsing. Only infilling
requires training, since we resort to existing pre-trained models for generating interpreta-
tions and parsing these into SQL. This plug-and-play functionality allows us to experiment
with different LLMs and text-to-SQL parsers, without retraining. Moreover, any improve-
ments in the infilling module should in theory translate into improved coverage.

A potential limitation is that infilling requires reference interpretations and SQL queries,
which may be difficult to come by. In the next section, we demonstrate how reference
interpretations can be synthetically generated. In addition, the text-to-SQL parser may occa-
sionally introduce errors, leading to duplicate interpretations in the final set, coming from
the initial generator and infilling model. However, this redundancy can improve robustness
by providing multiple formulations of the same meaning. Note that the infilling does not
filter any interpretations from the initial set, so, in some cases, incorrect interpretations
may persist. We believe this is not a major concern in practice, as users can simply ignore
irrelevant interpretations.

When questions are unambiguous, the initial set contains a single interpretation (or
paraphrases with the same meaning, which can be filtered as duplicates), and the infilling
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model simply outputs “All interpretations are covered.” This means that our approach
naturally handles both ambiguous and unambiguous cases.

3 Experimental Setup

3.1 Evaluation Datasets

We evaluate our approach on two recent benchmarks aiming to assess the capabilities of
text-to-SQL parsers when faced with ambiguous questions: AmbiQT (Bhaskar et al., 2023)
and Ambrosia (Saparina & Lapata, 2024a). Examples can be found in Appendix A.

AmbiQT builds upon the widely used Spider dataset (Yu et al., 2018). Specifically, am-
biguity is injected by generating synonyms for column and table names (via ChatGPT
and heuristically), by having tables with overlapping column names (which leads to join
ambiguities), and by introducing columns which are aggregates of certain values in addition
to aggregating values with the group-by clause of the SELECT statement. AmbiQT inherits
from Spider diverse SQL queries and real-world databases, but also introduces redundancy
as the databases can contain duplicates (e.g., identical columns “singer” and “performer”).
It features two types of ambiguity, namely lexical ambiguity (based on ambiguous column
and table names) and structural ambiguity in SQL queries (due to join and pre-computed
aggregates). While the AmbiQT test set contains 3K examples, we filter out those that yield
empty execution results, leaving a final set of 1.8K non-trivial examples.

Ambrosia showcases three different types of ambiguity: scope ambiguity, attachment ambi-
guity, and vagueness. It contains human-written questions, SQL queries either manually
written or based on templates, and synthetically generated databases. In addition to ambigu-
ous questions and SQL queries, Ambrosia has explicit interpretations in natural language.
The official test set has 1K ambiguous questions and 2K interpretations. We use the am-
biguous subset in all experiments unless otherwise stated. Notably, AmbiQT and Ambrosia
handle vagueness differently: AmbiQT consistently provides two valid interpretations,
whereas Ambrosia may provide up to three interpretations for vague questions.

3.2 Evaluation Metrics

Our primary metric is Full Interpretation Coverage, which measures the proportion
of examples where all valid SQL interpretations are present in the output. This metric
aligns with the “All Found” metric from Ambrosia and “BothInTopK” from AmbiQT. Full
Coverage is the most informative and relevant metric for our task, as it directly measures
the system’s ability to recover the full set of available interpretations. We also report
Single Interpretation Coverage, i.e., the proportion of examples where at least one valid
interpretation is found (“EitherInTopK” from AmbiQT), as well as Precision and Recall.
We compare SQL queries based on their execution results.

3.3 Training Data

To train the infilling model, we need three components: (1) generated default interpre-
tations, (2) reference SQL queries, and (3) reference interpretations to identify missing
interpretations from the default set. It is straightforward to elicit default interpretations
from an LLM and SQL queries are available in many text-to-SQL datasets. To collect
reference interpretations, we propose a novel approach that extends the data generation
process in AmbiQT (Bhaskar et al., 2023).

AmbiQT relies on ChatGPT to generate two synonyms for a selected column or table in
an SQL query which naturally renders the corresponding question vague. The original SQL
mentions are replaced with their synonyms, resulting in two gold SQL queries. Building
upon this approach, we use these synonyms and prompt an LLM (with three in-context
examples) to replace the original mentions in the questions with their synonyms. Our
experiments use the instruction tuned Llama 3.1 8B (Dubey et al., 2024). The full prompt is
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AmbiQT Ambrosia

Single Full Recall Precision Single Full Recall Precision

0-shot Prompt 62.3 12.3 37.3 58.1 29.4 0.9 15.0 21.9
3-shot Prompt 44.3 10.9 27.6 33.0 35.7 1.3 17.5 21.3
SFT 82.1 63.2 72.7 74.3 38.0 0.4 20.0 29.4

Interp. Prompt 81.8 26.0 53.4 31.8 81.9 16.9 49.0 29.1
w. Self-Correction 77.4 13.9 45.7 46.0 65.7 5.9 34.5 29.4
Gold Interp. SFT 87.4 61.2 74.1 79.6 62.6 0.3 32.1 49.5
Ours 92.3 53.2 72.8 38.2 84.4 18.8 51.9 24.2

Table 1: Single and Full Interpretation Coverage, Recall and Precision (%) on AmbiQT and
Ambrosia datasets.

provided in Appendix B. We verify the quality of the synthetically generated interpretations
by attempting to generate correct SQL queries using a specialized code generation LLM
(instruction-tuned Qwen2.5-Coder 32B; Hui et al. 2024). We only accept examples where
both interpretations succeed within five attempts.

This approach is particularly effective for AmbiQT and other datasets based on Spider (Yu
et al., 2018) as it contains many questions which directly mention table and column names
(Deng et al., 2021; Suhr et al., 2020; Gan et al., 2021), making synonym substitution natural
and fail-safe. We generate interpretations for approximately 5K examples from a subset
of the Spider training data. Although our experiments focus primarily on AmbiQT, the
proposed interpretation generation method can be applied to other domains and datasets
(together with AmbiQT’s approach of generating ambiguous examples using synonyms).

3.4 Implementation Details

The first component of our method is to generate default interpretations for an ambiguous
question. We design a zero-shot prompt that uses the provided database and question to
generate interpretations (see Appendix C). We use instruction-tuned Llama-3.1 8B, as it
produced the most coherent interpretations among similarly sized models.

The second component is the infilling model which takes the database, question, and
default interpretations as input, and outputs missing interpretations. We train a LoRA
adapter (Hu et al., 2022) on top of the instruction-tuned Llama-3.1 8B (see Appendix D).

The final component is a text-to-SQL model for which we select the instruction-tuned
Qwen2.5-Coder-32B, a specialized model for code generation. We also use this model to
match and identify missing interpretations (Section 2.4). A zero-shot prompt is provided in
Appendix E. Thanks to our modular structure, any component of our system can be easily
replaced with a more powerful or more efficient model if needed.

4 Experimental Results

It is better to disambiguate first and parse later both in in-domain and out-of-domain
settings. Table 1 presents our main experimental results on AmbiQT and Ambrosia. We
compare our approach with both prompt-based and fine-tuning baselines. Note that for
methods requiring fine-tuning, AmbiQT represents in-domain evaluation, whereas evalu-
ation on Ambrosia is out of domain. All methods use the same model, instruction-tuned
Llama-3.1 8B, and those that require training are fine-tuned using a LoRA adapter on the
same AmbiQT subset, augmented with interpretations.

Table 1 is split into two sections. The first one presents end-to-end approaches, which at-
tempt to directly predict multiple SQL queries for ambiguous questions. We report results for
zero-shot prompting, few-shot prompting, and end-to-end fine-tuning (SFT). For prompting,
we follow Saparina & Lapata (2024a) and explicitly instruct the model to generate multiple
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Interpretations AmbiQT Ambrosia

Llama 3.1 8B 26.0 16.9
w. infilling 53.2 18.8

Qwen 2.5 7B 25.9 12.4
w. infilling 48.6 13.6

Gemma 2 9B 17.3 2.9
w. infilling 55.9 5.3

Gold Interp. — 49.0

Table 2: Full Coverage (%) on AmbiQT and
Ambrosia when comparing different models
for default interpretation generation, both
with and without infilling. We also include
an upper bound obtained using gold inter-
pretations from Ambrosia.

Text-to-SQL Model AmbiQT Ambrosia

Qwen2.5-Coder-32B 53.2 18.8
Qwen2.5-Coder-7B 40.2 10.9

Table 3: Full Coverage (%) when swapping
the text-to-SQL model.

Error Type AmbiQT Ambrosia

Redundant interp. 23.3 20.0
Overly general interp. 16.7 20.0
Intent mismatch 26.7 30.0
SQL generation errors 33.3 30.0

Table 4: Error distribution (%).

SQL queries if the question is ambiguous. For few-shot prompting, we sample 3 random
examples from the corresponding dataset. The second section in Table 1 lists methods which
use natural language interpretations to disambiguate first and then rely on text-to-SQL pars-
ing of unambiguous questions. We report results for generating all possible interpretations
through LLM prompting (which corresponds to our method without infilling), applying
self-correction to this approach (details are in Appendix F), a fine-tuning method which is
trained to generate reference interpretations instead of SQL queries, and our proposal which
uses infilling to augment the set of default interpretations. We use an instruction-tuned
Qwen2.5-Coder 32B for text-to-SQL generation.

As can be seen in Table 1, prompting (0-shot, 3-shot) performs poorly on ambiguous
questions, which is consistent with the findings of Saparina & Lapata (2024a). Fine-tuning
achieves excellent results on in-domain evaluation (AmbiQT), but fails to generalize to
Ambrosia, which suggests that the model overfits specific patterns in AmbiQT. Interpre-
tation generation (via prompting) shows promising results on both datasets compared
to end-to-end methods. Self-correction increases precision but also eliminates some valid
interpretations, suggesting that the filtering task is non-trivial and requires further research.
Fine-tuning on interpretations behaves very similarly to fine-tuning on SQL queries, but
provides higher precision and single-interpretation coverage, which suggests it is more
accurate in predicting at least one correct interpretation.

Interpretation generation with infilling further improves single and full interpretation
coverage on both datasets. While it does not achieve the highest full coverage on AmbiQA,
it substantially improves over end-to-end prompting reaching 53%, while delivering the
best single interpretation coverage of 92%. It effectively generalises to new domains and
ambiguity types, showing the best results on Ambrosia among all methods across three
out of four evaluation metrics. However, the full coverage on Ambrosia is still relatively
low (at 19%). Ambrosia is a challenging benchmark on its own but it is also possible that
some interpretations are missed due to annotation differences between the two datasets.

The results in Table 1 show that recall closely mirrors full coverage, offering little additional
insight. Precision, on the other hand, can be misleadingly inflated when systems rarely
predict all valid interpretations at once. For this reason, in subsequent experiments, we only
report full coverage as the most informative metric. See Appendix G for additional results.

Infilling boosts performance across interpretation generation models. We next analyze
key components of our approach through ablation studies. Table 2 focuses on the first
stage of our method, namely disambiguation. We compare default interpretations from
three different instruction-tuned models of similar size: Qwen-2.5 7B (Yang et al., 2024),
Llama-3.1 8B, and Gemma-2 9B (Riviere et al., 2024). We observe that Llama-3.1 8B provides
the best default interpretations and our infilling model improves upon all interpretations,
irrespective of the generation model.
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Method Coverage

0-shot Prompt 35.9
3-shot Prompt 43.0
SFT 44.5

Interp. Prompt 75.1
Ours 77.9

Table 5: Coverage (%) on unambiguous
subset of Ambrosia test set.

Method AmbiQT Ambrosia*

Text-to-SQL FT 10.2 66.4
Interp. Prompt 26.0 16.9
Gold Interp. SFT 4.1 38.9
Ours 30.0 30.5

Table 6: Full Coverage (%) on AmbiQT and
Ambrosia* ( * denotes our split of Ambrosia).
Models are fine-tuned on Ambrosia* train.

Text-to-SQL parsing is hard even with gold interpretations! To provide an upper bound
for our approach, we use gold interpretations from Ambrosia and evaluate how well
the text-to-SQL parser performs when all interpretations are correct. The results are, as
expected, significantly higher, indicating room for improvement in interpretation generation.
However, since the full coverage reaches only 49%, a substantial number of errors may
come from the unambiguous text-to-SQL parsing alone.

Table 3 compares our text-to-SQL model, the instruction-tuned Qwen-2.5 Coder 32B, with
its smaller 7B variant. Results drop substantially when the weaker model is used. As our ap-
proach is modular, we anticipate our results would improve with a better text-to-SQL parser.

Generalisation to new ambiguity types remains an open challenge. To better understand
our system’s limitations, we performed a manual error analysis on 50 randomly sampled
examples with errors (30 from AmbiQT and 20 from Ambrosia). Table 4 summarizes the
distribution of these errors. Redundant interpretations refer to near-paraphrases that differ
slightly in structure. If their SQL queries yield the same result, we typically filter them out;
however, minor variations (e.g., extra columns) can lead to execution mismatches, which
are considered errors. Additionally, some interpretations remain overly vague, failing to
fully disambiguate the input. These two error categories mostly originate from default
interpretations ( 75%). We also observed SQL errors for valid interpretations, with 57%
stemming from infilled interpretations, including incorrect joins and column mismatches.
Syntax errors occurred in up to 20% of cases.

Most AmbiQT failures are due to join and aggregate ambiguities, which are not represented
in the training data. Ambrosia presents even greater challenges with scope and attachment
ambiguities, which remain particularly difficult.

Disambiguation also improves coverage for unambiguous questions. While our ap-
proach does not specifically target unambiguous examples, in Table 5 we examine how
different methods perform when the input question is unambiguous, i.e., when it has one
interpretation and one SQL query. In this case, full coverage simply shows whether the gold
SQL query was found. Note that we do not penalize additional queries in the answer.

As Table 5 shows, the methods that first disambiguate show better results than the the end-
to-end systems by a wide margin, and our proposed method achieves the best score of 77.9%.
Explicit disambiguation serves as an intermediate representation of the question, thereby
clarifying its meaning. Our results further demonstrate that generating a single interpreta-
tion is less challenging than handling multiple valid ones simultaneously (compare Table 1).

The infilling module is robust to different interpretation types. We now evaluate our
approach when the infilling model is trained on Ambrosia. Specifically, we re-split Ambrosia
to use 80% for training, 10% for validation, and 10% for testing . All databases in the test
set are unseen during training, similar to the original split. Note that in this setting the
infilling model is trained on human-written interpretations which Ambrosia provides. Thus,
Ambrosia becomes the in-domain test set, whereas AmbiQT is out-of-domain.

Table 6 shows the full interpretation coverage for an end-to-end fine-tuned text-to-SQL
model, and three variants of the disambiguate first parse later framework: a model fine-
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tuned on gold (Ambrosia) interpretations, a prompt-based model that generates default inter-
pretations without infilling, and the full model with infilling. The latter achieves the best re-
sult on the out-of-domain AmbiQT test set. However, the full coverage on Ambrosia is much
lower than the end-to-end fine-tuned baseline. Manual examination of the predicted inter-
pretations revealed that some correct interpretations are parsed incorrectly during the text-
to-SQL stage, which relies on zero-shot prompting and may not capture dataset-specific con-
ventions. This finding is supported by the results of the model fine-tuned on interpretations,
which also performs significantly worse than end-to-end fine-tuning. Finally, we found that
training on both datasets leads to results similar to the in-domain setting (see Appendix G).

5 Related Work

Ambiguity Resolution in NLP Numerous studies have focused on ambiguity in natural
language tasks using strategies like generating multiple answers (Min et al., 2020), asking
clarification questions (Lee et al., 2023; Zhang et al., 2024), and estimating uncertainty (Cole
et al., 2023). Similar to our work, Sun et al. (2023) use iterative prompting to refine and
generate alternative interpretations in the context of question answering, while Kim et al.
(2024) first detect ambiguous questions and then resolve them through clarification requests.

Ambiguity in Semantic Parsing Ambiguity has been studied across semantic parsing
tasks, from code generation (Li et al., 2023; Mu et al., 2024) to λ-calculus translation (Ras-
mussen & Schuler, 2020), and logical form prediction (Stengel-Eskin et al., 2024). In the
domain of text-to-SQL parsing, recent work has emphasized the fact that benchmarks often
overlook ambiguity by providing single interpretations (Floratou et al., 2024; Pourreza &
Rafiei, 2023). Existing approaches focus on detecting column ambiguity through counter-
factual examples Wang et al. (2023), special-purpose decoding (Bhaskar et al., 2023), and
resolving ambiguity through clarification questions (Dong et al., 2024). Our work uses
explicit disambiguation before parsing and thus extends to different types of ambiguities,
question styles, and database formats.

Intermediate Representations in Text-to-SQL Intermediate representations are commonly
used to bridge the gap between natural language and database queries. Several approaches
decompose complex questions into a sequence of simpler operations expressed in natural
language Wolfson et al. (2022); Saparina & Osokin (2021), modular execution plans Eyal et al.
(2023), or simplify the task by augmenting questions with SQL keywords that mention re-
quired computations Liu & Tan (2024); Caferoglu & Ulusoy (2024). We also use intermediate
representations to make implicit information explicit but focus on resolving ambiguity.

Learning to Correct LLM Outputs More recently, various approaches have been pro-
posed to correct systematic biases in LLM outputs. For example, Ji et al. (2024) propose a
model-agnostic module that learns correctional residuals between preferred and dispre-
ferred outputs. Welleck et al. (2023) use a corrector model to iteratively review imperfect
generations from a base model. Similarly, critique generators can be developed using rein-
forcement learning Wadhwa et al. (2024a) or through fine-grained feedback Wadhwa et al.
(2024b). Such correction approaches are most effective when guided by external tools Kamoi
et al. (2024). We follow this paradigm using an infilling model to correct systematic LLM
biases towards certain interpretations and validate our output through SQL execution.

6 Conclusion

In this work, we present a novel approach for handling ambiguity in text-to-SQL semantic
parsing. We first disambiguate questions by explicitly verbalising their interpretations and
then use LLM capabilities to predict all valid SQL queries. A generator (LLM) provides an
initial set of default interpretations, which are then augmented with a specialized infilling
model. We propose a method for training this model based on automatic annotations
obtained by comparing SQL execution results rather than natural language interpretations.
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Our results on AmbiQT and Ambrosia demonstrate the effectiveness of our approach. Our
method achieves the highest single interpretation coverage on both datasets and maintains
consistent full coverage in both in-domain and out-of-domain evaluation. However, gener-
ating all valid interpretations remains challenging. Future work could explore the use of
query execution as a signal for training or test-time search.
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A AmbiQT and Ambrosia Examples

We provide samples from the AmbiQT Bhaskar et al. (2023) and Ambrosia Saparina &
Lapata (2024a) evaluation sets.

AmbiQT contains column and table ambiguities, join ambiguity, and ambiguity due to
precomputed aggregates. Ambrosia covers scope and attachment ambiguities, and vague-
ness. Note that column and table ambiguities from AmbiQT correspond to vagueness in
Ambrosia, although they differ in the number of gold queries provided (2 in AmbiQT versus
3 in Ambrosia).

AmbiQT is publicly available under the MIT license and Ambrosia is under the CC BY 4.0
license.

AmbiQT Examples
Column Ambiguity

Database singer: singer id, artist name, performer name, song name, age, country . . .
Question Show name, country, age for all singers ordered by age from the oldest to the youngest.
SQL Query 1 SELECT artist name, country, age FROM singer ORDER BY age DESC

SQL Query 2 SELECT performer name, country, age FROM singer ORDER BY age DESC

Table Ambiguity

Database Canine Breeds: breed name, breed code
Dog Types: breed name, breed code
dogs : owner id, breed code . . .

Question What is the name of the breed with the most dogs?
SQL Query 1 SELECT T1.breed name

FROM Canine Breeds T1 JOIN dogs T2 . . . ORDER BY COUNT(*) DESC LIMIT 1

SQL Query 2 SELECT T1.breed name
FROM Dog Types T1 JOIN dogs T2 . . .
ORDER BY COUNT(*) DESC LIMIT 1

Join Ambiguity

Database country: surfacearea, indepyear, name, population, code . . .
country surfacearea: surfacearea , code . . .

Question What are the name, independence year, and surface area of the country with the
smallest population?

SQL Query 1 SELECT T1.name, T2.surfacearea, T1.indepyear FROM country T1
JOIN country surfacearea T2
ON T1.code = T2.code
ORDER BY population LIMIT 1

SQL Query 2 SELECT name, surfacearea, indepyear FROM country
ORDER BY population LIMIT 1

Precomputed Aggregates

Database show: result, attendance, show id . . .
show attendance: avg attendance, sum attendance . . .

Question What is the average attendance of shows?
SQL Query 1 SELECT AVG(attendance)

FROM show

SQL Query 2 SELECT avg attendance
FROM show attendance
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Ambrosia Examples
Scope Ambiguity

Database Spa: spa id, name, address
Treatments: treatment id, name . . .
Spa Treatments: spa treatment id, spa id, treatment id

Question What treatment options do we have for each spa?
SQL Query 1 SELECT T.name FROM Spa Treatments ST

JOIN Treatments T . . . JOIN Spa S . . .
GROUP BY ST.treatment id HAVING
COUNT(DISTINCT ST.spa id) =
(SELECT COUNT(*) FROM Spa)

SQL Query 2 SELECT S.name, T.name
FROM Spa Treatments ST
JOIN Treatments T . . . JOIN Spa S . . .

Attachment Ambiguity

Database EventSpaces: id, Name, Event Space, Capacity, Address, ContactInfo . . .
Question List all banquet halls and conference rooms with a 200 person capacity.
SQL Query 1 SELECT ES.Name FROM EventSpaces ES

WHERE
(ES.Event Space = "Banquet Hall"
OR ES.Event Space = "Conference Room")
AND ES.Capacity = 200

SQL Query 2 SELECT ES.Name FROM EventSpaces ES
WHERE
ES.Event Space = "Banquet Hall"
OR ES.Event Space = "Conference Room"
AND ES.Capacity = 200

Vagueness

Database hospitals: id, name, city, neighborhood, phone number . . .
Question Where are the clinics located?
SQL Query 1 SELECT neighborhood

FROM hospitals
WHERE name LIKE ’%Clinic%’

SQL Query 2 SELECT city
FROM hospitals
WHERE name LIKE ’%Clinic%’

SQL Query 3 SELECT neighborhood, city
FROM hospitals
WHERE name LIKE ’%Clinic%’

B Prompt for Annotating AmbiQT with Interpretations

We use the following prompt with three in-context examples to generate natural language
interpretations for ambiguous questions in AmbiQT:

Your task is to rewrite the question using a given word or phrase.

Examples:
Question: Show titles of songs and names of singers.
Please rewrite using "stage name":
Give me titles of songs and stage names of singers.

Question: Show the name of the conductor that has conducted the most number of
orchestras.
Please rewrite using "director":
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List the name of the director who has conducted the most number of orchestras.

Question: Return the id of the document with the fewest paragraphs.
Please rewrite using "passages":
What is the id of the document with the fewest passages?

Please provide rewritten question for the following instance. Do not add any
explanation or description, output only the rewritten question.

Question: ...
Please rewrite using ...

C Prompt for Default Interpretation Generation

The following prompt is used to generate default interpretations:

You are tasked with analyzing questions and providing their possible interpretations.
The questions are related to database queries and may be ambiguous or unambiguous.

Your task:
- List every distinct way the question could be understood
- Be thorough and consider all possible meanings
- Explore different ways the question could be interpreted
- Don't limit yourself to obvious interpretations

Important:
- List each interpretation on a separate line
- Do not include explanations or reasoning
- Focus on semantically different interpretations
- Be specific and precise in wording

Given the following database context:
...

Provide interpretations for this question:
...

D Interpretation Infilling Details

We use the following instructions for the model:

The task is to review the provided context, question, and existing interpretations,
and determine if any additional interpretations are missing. If there are missing
interpretations, list them on separate lines without explanations. If all
interpretations have already been covered, simply state: "All possible
interpretations are covered."

Given the following context: ...

Question: ...

Existing interpretations: ...

Provide any missing interpretations or confirm that all possible interpretations are
covered.
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We fine-tune the instruction-tuned Llama 3.1 8B model using LoRA (Hu et al., 2022) with
rank 16 (α = 16) and NEFTune (Jain et al., 2024) (noise α = 5). The model is trained for 15
epochs using a cosine learning rate schedule with an initial learning rate of 5e-5, weight
decay of 0.01, and a warmup ratio of 0.01. Training is performed on a single NVIDIA A100
GPU with a batch size of 8 and gradient clipping at 0.3. The total time for training and
evaluation of one run is under 10 hours. We sample 10% of the training data as development
set and select the best-performing model from a single run for final evaluation.

We apply the same fine-tuning procedure to all comparison methods, i.e., end-to-end text-to-
SQL fine-tuning and fine-tuning to predict interpretations. We observe that these methods
tend to overfit with more epochs and thus reduce the number of training epochs to 5.

E Text-to-SQL Parsing

To generate SQL queries for unambiguous questions (or interpretations), we use the follow-
ing prompt across all text-to-SQL tasks, including AmbiQT annotation validation, evaluation
of baseline models with interpretations, and our approach:

The task is to write SQL queries based on the provided questions in English.
Questions can take the form of an instruction or command. Do not include any
explanations, and do not select extra columns beyond those requested in the question.

Given the following SQLite database schema: ...

Answer the following: ...

F Self-Correction Prompt

We compare our approach against a self-correction method where the LLM is prompted
to review the generated interpretations (Appendix C), choose the valid ones, and add any
missing interpretations. The prompt is shown below:

The task is to review the provided context, question, and candidate interpretations,
and based on this information provide the interpretations that accurately reflect
the meaning (or one of the possible meanings) of the question. If any of the
candidate interpretations are correct, provide them as a list of interpretations. If
there are missing interpretations, provide them as well. Avoid providing
interpretations that are incorrect or duplicates. Do not provide any explanations.

Given the following context: ...

Question: ...

Candidate interpretations: ...

Provide the interpretations that accurately reflect the meaning (or one of the
possible meanings) of the question.

G Additional Results

Comparison with a larger-sized model Table 7 extends Table 1 by including a larger
baseline: the instruction-tuned Llama 3.1 70B model. While the 70B variant outperforms the
8B version overall, our system (based on the 8B model) still achieves higher coverage and
recall. We expect that larger models could further improve results, however, this comes at a
significantly higher computational cost.
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AmbiQT Ambrosia
Llama 3.1 70B

Single Full Recall Precision Single Full Recall Precision

0-shot Prompt 76.6 26.5 51.5 65.8 32.3 0.0 14.1 32.0
3-shot Prompt 75.7 28.0 51.9 69.2 57.5 3.9 28.1 50.9

AmbiQT Ambrosia
Llama 3.1 8B

Single Full Recall Precision Single Full Recall Precision

0-shot Prompt 62.3 12.3 37.3 58.1 29.4 0.9 15.0 21.9
3-shot Prompt 44.3 10.9 27.6 33.0 35.7 1.3 17.5 21.3
Ours 92.3 53.2 72.8 38.2 84.4 18.8 51.9 24.2

Table 7: Comparison of Llama 3.1 70B, Llama 3.1 8B and our approach on AmbiQT and
Ambrosia datasets. Our approach is based on Llama 3.1 8B and fine-tuned on AmbiQT
train.

AmbiQT Ambrosia*

Method Single Full Recall Precision Single Full Recall Precision

Text-to-SQL FT 56.1 10.2 33.2 52.7 77.1 66.4 71.6 73.3
Interp. Prompt 81.8 26.0 53.4 31.8 81.9 16.9 49.0 29.1
Gold Interp. SFT 81.9 4.1 43.0 79.5 71.0 38.9 53.7 61.5
Ours 88.0 30.0 58.5 35.3 87.8 30.5 59.7 26.3

Table 8: Single and Full Interpretation Coverage, Recall and Precision (%) on AmbiQT and
Ambrosia* test sets. Models are fine-tuned on Ambrosia* train. Symbol * denotes our split
of the Ambrosia test set into training, development, and testing.

AmbiQT Ambrosia*

Method Single Full Recall Precision Single Full Recall Precision

Text-to-SQL FT 81.0 63.1 72.1 73.3 83.2 69.5 76.2 78.1
Gold Interp. SFT 86.2 60.4 73.3 79.8 75.6 37.4 55.0 65.1
Ours 92.5 54.0 73.2 38.8 84.7 29.8 57.1 28.8

Table 9: Single and Full Interpretation Coverage, Recall and Precision (%) on AmbiQT
and Ambrosia* test sets. All models are fine-tuned on both AmbiQT and Ambrosia* train.
Symbol * denotes our split of the Ambrosia test set into training, development, and test.

Training on Ambrosia* Table 8 extends Table 6 with recall and precision. Consistent with
earlier findings, our approach achieves the highest coverage and recall on the AmbiQT test
set, demonstrating strong out-of-domain generalization.

Training on AmbiQT and Ambrosia* Table 9 provides results when the models are
trained on the maximum available data: the AmbiQT train set and re-split Ambrosia*
training set. As both test sets are in-domain, we would not expect to see any advantages
from our method in terms of full coverage. Nevertheless, it still provides the best single-
interpretation coverage. Overall, the results in Table 9 are very similar to those obtained in
the in-domain setting.
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