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Abstract

Non-convex minimization problems are univer-
sally considered hard, and even guaranteeing
that a computed solution is locally minimizing
is known to be NP-hard. In this general context,
our paper focuses on the problem of finding sta-
tionary points that satisfy an approximate second-
order optimality condition, which serves to ex-
clude strict saddles and other non-minimizing sta-
tionary points. Our main result is that the problem
of finding approximate second-order stationary
points (SOSPs) is PLS-complete, i.e., of the same
complexity as the problem of finding first-order
stationary points (FOSPs), thus resolving an open
question in the field. In particular, our results im-
ply that, under the widely believed complexity
conjecture that PLS ≠ FNP, finding approximate
SOSPs in unconstrained domains is easier than
in constrained domains, which is known to be
NP-hard. This comes in stark contrast with ear-
lier results which implied that, unless PLS = CLS,
finding approximate FOSPs in unconstrained do-
mains is harder than in constrained domains.

1 Introduction
Background and motivation. The vast majority of ma-
chine learning models (from logistic regression to empirical
risk minimization and training deep neural networks) ul-
timately boils down to solving a continuous optimization
problem of the form

minimize
𝑥∈X

𝑓 (𝑥) (Opt)
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where X , the problem’s search domain, is a subset of ℝ𝑑

(often ℝ𝑑 itself) and 𝑓 : X → ℝ is the problem’s objective
function. In many – if not most – applications, 𝑓 is high-
dimensional and innately non-convex, thus giving rise to a
very rich, diverse and challenging optimization landscape,
often with an exponential number of saddle points and other
spurious solutions.

The central question in the field is the design and analysis
of optimization algorithms that can solve (Opt) efficiently.
However, since finding even a local minimum of 𝑓 is well-
known to be nondetermistic polynomial time (NP)-hard
[27], the focus of most optimization algorithms is to reach a
critical point of 𝑓 , or even an approximation thereof. Here,
depending on the gradient information available to the op-
timizer, standard gradient methods with black-box access
to a first-order oracle output an 𝜀-approximate critical point
in time which ranges between O(1/𝜀2) and O(1/𝜀4) in the
deterministic and stochastic cases respectively, and with
a polynomial dependence on the dimension, cf. [21] and
references therein.

A key obstacle in the above is the existence of stationary
points of negative curvature, i.e., points where the Hessian
has at least one negative eigenvalue. Such points are com-
monly referred to as (strict) saddle points, and they have
long been regarded as a major obstacle for solving non-
convex optimization problems in continuous domains. In
fact, in many applications and cases of practical interest,
it is well known that the number of saddle points signifi-
cantly exceeds the number of local minimizers [33], and
solutions associated with worst-case saddle points are con-
siderably worse than those associated with worst-case local
minima [30]. And, even though it has been shown that gra-
dient descent with random initialization or injected random
noise can provably avoid saddle points [15, 19, 23], the com-
putational complexity of finding stationary points that do
not have negative curvature – i.e., second-order stationary
points (SOSPs) – remains unknown.

We are thus led to the following natural question, which is
the overarching motivation of our work:

What is the computational complexity of
finding a second-order stationary point?
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Our contributions in the context of related work. To
put this question on a formal footing that also accounts for
the bit complexity of function queries, we focus on a white-
box description of the problem in terms of polynomial-
time Turing machines and arithmetic circuits for repre-
senting functions, as in [11, 13, 16]. In this context,
the corresponding question for computing (approximate)
Karush–Kuhn–Tucker (KKT) points in problems with a
compact domain was recently shown to be complete in the
class PPAD ∩ PLS [13], which was shown in the same paper
to be equal to the class CLS introduced by [10].

Moving to the unconstrained setting, conventional wisdom
in optimization would suggest that the problem of finding
an approximate first-order stationary point (FOSP) is easier
than in the constrained case, because the optimizer does
not need to worry about the subtleties of having to satisfy
an added set of convex inequalities. However, in a very
recent paper, Hollender & Zampetakis [16] showed that
finding an approximate FOSP in the unconstrained case
is, in fact, PLS-complete, and hence presumably harder
than the corresponding constrained version of the problem
(which, as we mentioned above is CLS-complete, and CLS
is widely believed to be strictly included in PLS).

By contrast, the second-order landscape is decidedly differ-
ent: In particular, as was shown in [31], the computational
complexity of finding an approximate SOSP over a compact
polyhedron is NP-hard. This is (presumably) a huge jump
in complexity, but seeing as many problems of interest in
machine learning and data science are formulated as uncon-
strained optimization problems (i.e., X = ℝ𝑑), the above
result cannot be applied in many cases of practical interest.
Accordingly, our paper seeks to fill this gap by determin-
ing the computational complexity of finding approximate
SOSPs in the unconstrained version of (Opt), a question that
was stated as an open problem in [16].

In view of the increase in hardness from constrained to un-
constrained problems in the first-order setting – that is, from
CLS to PLS – one might expect that finding an approximate
SOSP in the unconstrained version of (Opt) must also be
NP-hard. However, our first result below show that this
intuition is false:
Theorem (Informal version of Theorem 1). Given a twice
differentiable function 𝑓 , bounded, with Lipschitz gradient
and Hessian, the problem of computing an approximate
second-order stationary point of 𝑓 lies in PLS.

This result goes against the first-order computational com-
plexity trend, but it reconnects with the familiar intuition
that unconstrained instances of (Opt) are, in general, con-
siderably easier than its constrained instances; as such, the
natural question that arises is whether the membership result
above is tight. On the one hand, the PLS-completeness result
of [16] for finding approximate FOSPs would suggest that

Problem Unconstrained Constrained
𝜀-FOSPs PLS-complete [16] CLS-complete [13]
𝜀-SOSPs PLS-complete♯ NP-hard [31]

Table 1: The computational complexity results of finding first and
second-order stationary points. Recall that CLS ⊆ PLS ⊆ TFNP ⊆
FNP. The inclusions are believed to be strict. (FNP has problems
whose decision versions lie in NP). ♯Our work.

the problem of finding an approximate SOSP is at least as
hard, in which case our PLS membership result is tight, and
the problem is PLS-complete. On the other hand, since we
assume second-order smoothness (potentially accessible via
a Turing machine), it is not clear if this is a valid comparison:
indeed, if 𝑓 is convex, Monteiro and Svaiter [25] showed
that an approximate minimizer of 𝑓 can be computed in
O(1/𝜀2/7) oracle calls, improving in this way by almost
two orders of magnitude the corresponding O(1/

√
𝜀) rate

which is known to be tight for first-order algorithms under
first-order smoothness. Thus, when more information and
structure is present, and working in a setting that is not com-
plicated by constraint satisfaction issues, the actual hardness
of the problem could be – and, in fact, could be expected to
be – lower than PLS.

Our second result shows that this is not the case either:

Theorem (Informal version of Theorem 2 ). Given a twice
differentiable function 𝑓 , bounded, with Lipschitz gradient
and Hessian, the problem of computing an approximate
second-order stationary point of 𝑓 is PLS-hard.

In fact, we have shown a stronger result: The problem of
finding an approximate FOSP remains hard for PLS even
with the extra assumption of Hessian Lipschitzness and
second-order oracles. In view of all this, our main contribu-
tion can be summarized as follows:

The problem of finding an approximate SOSP in
unconstrained problems is PLS-complete.

We demonstrate the above complexity results in Table 1.

Technical overview. Our work focuses throughout on the
computational complexity of finding SOSPs as defined for-
mally in Problem 4) in unconstrained optimization and is
split into two parts: First, we show the problem is in PLS
(Theorem 1) and, subsequently, we show that the problem
is hard for PLS (Theorem 2). In a nutshell, we illustrate our
reductions in Fig. 1.

For the membership in PLS, we show that the SOSP prob-
lem reduces to LOCALOPT (see Problem 1), the problem
defining the PLS class. First, we examine the LOCALOPT
instance used in [16] to prove the PLS membership of the
problem of finding first-order stationary points (denoted

2



The Computational Complexity of Finding Second-Order Stationary Points

Figure 1: The problem reductions used in our work.

by FOSP, see Problem 3). We show that there exist SOSP
instances where a solution of LOCALOPT is not a solu-
tion of SOSP. The cause of this failure is the fact that this
LOCALOPT instance does not use any second-order infor-
mation for the function for which we aim to solve SOSP.
To overcome this issue, we allow the neighbor function of
LOCALOPT to alternate between steepest coordinate descent
and negative curvature directions (motivated by a standard
algorithm for finding SOSPs, see Algorithm 1), both of
which are shown to decrease the potential function (see
Lemma 1 and Lemma 2). A key point is that LOCALOPT
can only be defined on a bounded subdomain of the input
function of SOSP. To achieve this, we center LOCALOPT
around zero and exclude from the search space the points
that cannot be reached from Algorithm 1 when starting at
zero (see Lemma 3).

To prove PLS-hardness, we make a reduction from ITER (a
PLS-complete problem, cf. Problem 2) to HESSIAN–FOSP
(Problem 5), a problem identical to FOSP but with the
extra requirement for Hessian Lipschitzness. Since HES-
SIAN–FOSP trivially reduces to SOSP, we derive the PLS-
hardness of SOSP. For the reduction we embed the ITER
instance into a 2D-grid and then define a smooth C2 con-
tinuous function over the plane of the grid by interpolating
between the values of the grid points. Analogously to [16],
the values on the grid points are chosen in such a way that
the resulting function could only have stationary points in
areas close to the solutions of the embedded ITER instance.
However, the standard bicubic interpolation method used
in previous works [13, 16] fails to preserve the required
second order continuity. We overcome this issue by using a
significantly more involved biquintic interpolation scheme
(Lemma 4), for which we show that no unwanted stationary
points are introduced and thus HESSIAN–FOSP solutions
can only occur in the areas of ITER solutions (Lemma 5).

Further related work. Many algorithms have been pro-
posed for computing 𝜀-approximate first-order stationary
points for a given 𝑓 . Those algorithms are allowed to get
evaluations from 𝑓 and its gradients and typically have run-
ning time that is polynomial in 1/𝜀 and the dimension 𝑑 of
the domain of 𝑓 . Probably the most well-known method that
runs in time O

(
1/𝜀2) and is dimension-free, as long as 𝑓 is

smooth, is Gradient Descent [28]. With the extra assumption
that 𝑓 has Lipschitz Hessian, faster algorithms have been
proposed [1, 6] and achieve running time O

(
log(1/𝜀7/4)

)
.

These works have been improved further in [5]. Last but
not least, if second-order information is used, Nesterov and

Polyak [29] designed an algorithm that can achieve even
faster rates via cubic regularization (see also [8, 37] for
other works). Moreover, a significant corpus of work in the
literature has focused on providing guarantees for avoiding
spurious, non-minimizing first-order stationary points of 𝑓 .
Depending on the context, these avoidance results may con-
cern deterministic [12, 22, 32], stochastic [9, 17, 18, 24, 34],
and even adaptive algorithms (like AdaGrad and its variants)
[3, 36]. Last but not least, aiming to find better solutions
when second-order information is not enough, other ap-
proaches require higher-order derivatives [4, 7].

As for relevant computational complexity results,
Daskalakis et. al [11] showed that the linearly constrained
min-max optimization problem with nonconvex-nonconcave
objectives is PPAD-complete. Fearnley et. al showed
that any problem that can be solved by performing
Gradient Descent on a bounded convex polytopal domain is
CLS-complete [13]. A more recent result is that the problem
of finding a KKT point of a quadratic polynomial over box
constraints is also CLS-complete [14]. As for higher-order
optimization results, the problem of finding fourth-order
stationary points has been proven to be NP-hard [2].

2 Preliminaries
Our goal in this section is to describe our blanket assump-
tions for 𝑓 and to introduce some basic elements from com-
plexity theory that we will need throughout the sequel. In
terms of notational conventions, we will write ⟦𝑎, 𝑏⟧ for
the set of all integers between 𝑎, 𝑏 ∈ ℝ, [2𝑛] as a shorthand
for {0, 1}𝑛, and len(𝑥) for the number of bits in the binary
representation of 𝑥 ∈ ℝ. Also, given a function 𝑓 : ℝ𝑑 → ℝ,
we will write 𝑢1 (𝑥) for any eigenvector corresponding to
the minimum eigenvalue 𝜆1 ≡ 𝜆min (∇2 𝑓 (𝑥)). Finally, we
will write ∥·∥2 for the ordinary Euclidean norm on ℝ𝑑 and
the Frobenius norm on ℝ𝑑×𝑑 .

2.1. Blanket assumptions and definitions. We begin by
defining the function class that we will work with in the rest
of our paper.

Assumption 1. The objective function 𝑓 : ℝ𝑑 → ℝ of (Opt)
satisfies the following conditions for some 𝐵, 𝐿, 𝜌 > 0 and
for all 𝑥, 𝑦 ∈ ℝ𝑑:

(a) Boundedness:

| 𝑓 (𝑥) | ≤ 𝐵 (1a)
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(b) Smoothness:

∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥ (1b)

(c) Second-order smoothness: (Hessian Lipschitzness)
∥∇2 𝑓 (𝑥) − ∇2 𝑓 (𝑦)∥ ≤ 𝜌∥𝑥 − 𝑦∥ (1c)

These assumptions are the same as in e.g., [16], and they
are fairly standard in the field of white-box complexity; for
convenience, we will denote this class as F ≡ F (𝐵, 𝐿, 𝜌).

Now, to access 𝑓 and its derivatives, we will assume that
the optimizer has access to polynomial-time Turing ma-
chines C 𝑓 , C∇ 𝑓 and C∇2 𝑓 which, when queried at 𝑥 ∈ ℝ𝑑 ,
respectively return 𝑓 (𝑥), ∇ 𝑓 (𝑥) and ∇2 𝑓 (𝑥). More pre-
cisely, given a query point 𝑥 ∈ ℝ𝑑 that is representable in
len(𝑥) = 𝑏 bits, a Turing machine runs in time that is upper-
bounded by some polynomial in 𝑏 and outputs approximate
values for 𝑓 (𝑥), ∇ 𝑓 (𝑥) or ∇2 𝑓 (𝑥), depending on the context.
Note that the gradients and Hessians can be estimated with
arbitrary accuracy using zero order oracles and the finite
difference method, but for simplicity we will assume that
they will be directly computed by Turing machines. Finally,
as is standard in the white box setting, we will assume that
the above is encoded by Boolean circuits 𝐶 : [2𝑛] → [2𝑛]
with 𝑛 inputs and 𝑛 outputs, and that are allowed to use
the logic gates AND, OR and NOT. Otherwise, if the bit
complexity is not relevant and the optimizer has access to
a mechanism that can output 𝑓 (𝑥), ∇ 𝑓 (𝑥) and ∇2 𝑓 (𝑥) to
perfect accuracy in O(1) time, we will refer to the model as
a black-box setting.

With all this in hand, the solution concepts that we will
focus on are as follows:

Definition 1 (Approximate stationarity). Let 𝑓 : ℝ𝑑 → ℝ

be a function in F (𝐵, 𝐿, 𝜌), and fix some precision target
𝜀 > 0. Then a point 𝑥∗ ∈ ℝ𝑑 is said to be an:

1. 𝜀-first-order stationary point (𝜀-FOSP) if ∥∇ 𝑓 (𝑥∗)∥ ≤
𝜀.

2. 𝜀-second-order stationary point (𝜀-SOSP) if it is an 𝜀-
FOSP and, in addition, 𝜆min (∇2 𝑓 (𝑥∗)) ≥ −√𝜌𝜀.

The definition of 𝜀-FOSPs is standard in the literature and,
in the unconstrained case, it coincides with the definition of
an 𝜀-KKT point, so it is a measure of approximate critical-
ity. The definition of an 𝜀-SOSP implies that the minimum
eigenvalue of ∇2 𝑓 (𝑥) has no arithmetically significant neg-
ative part, so it serves to exclude strict saddle points (points
with at least one negative Hessian eigenvalue) and, as such,
it can be seen as an indicator of local optimality. Histor-
ically, this measure was first introduced by [29], and the
terminology second-order stationary point seems to be due
to [19]. We note however that, even if 𝑥∗ is an 𝜀-SOSP for
all 𝜀 > 0, it may still be non-minimizing (for example, if
𝑓 (𝑥) = −𝑥3 and 𝑥∗ = 0); however, the value of 𝑓 in the

vicinity of 𝑥∗ will grow at most as 𝑜(∥𝑥 − 𝑥∗∥2), which is
presumed acceptable to second order. In particular, as we
will see in Section 3, an important property of SOSPs for
a function 𝑓 ∈ F (𝐵, 𝐿, 𝜌) is that (Opt) always admits an
𝜀-SOSP with bit representation poly(log(𝐵, 𝐿, 𝜌, 1/𝜀)).

2.2. Basic notions from complexity theory. By our blan-
ket assumptions, it follows that (Opt) always exists a solu-
tion, so the problem belongs to the total search problems
that are captured by subclasses of the class TFNP. In partic-
ular, TFNP is a subclass of the FNP class, which contains all
search problems where all solutions have size polynomial
in the size of the instance and any solution can be checked
in polynomial time. In other words, FNP contains search
problems whose decision version lies in NP. Since a prob-
lem in TFNP always has a solution, then its decision version
cannot be NP-hard unless NP =co-NP [13, 20].

In this paper, we are interested in the class PLS (Polyno-
mial Local Search), as defined in [20]. In particular, PLS
is defined as the set of all TFNP problems that reduce in
polynomial time (see Appendix A.6) to the PLS-complete
problem LOCALOPT below:

Problem 1: LOCALOPT

Require: Boolean circuits 𝑁, 𝑃 : [2𝑛] → [2𝑛]
# 𝑁: neighbor function; 𝑃: potential function

1: Find: 𝑣 ∈ [2𝑛] such that 𝑃(𝑁 (𝑣)) ≥ 𝑃(𝑣)

As a problem, LOCALOPT embodies local search over the
node set [2𝑛] and captures the problem of unconstrained
minimization over a discrete domain. The output of the
circuit 𝑃 represents here a potential value, so our goal is
to find a node 𝑣 ∈ [2𝑛] that minimizes 𝑃(𝑣). The circuit
𝑁 represents the search for an improving node in some
small (polynomial-size) neighbourhood. The procedure
terminates by finding 𝑣 ∈ [2𝑛] such that 𝑃(𝑁 (𝑣)) ≥ 𝑃(𝑣).

In the sequel, we will also require another PLS-complete
problem known as ITER [26]. This is defined as follows:

Problem 2: ITER

Require: Boolean circuit 𝐶 : [2𝑛] → [2𝑛] with 𝐶 (1) > 1
Find: 𝑣 ∈ [2𝑛] such that either
𝐶 (𝑣) < 𝑣 or 𝐶 (𝑣) > 𝑣 and 𝐶 (𝐶 (𝑣)) = 𝐶 (𝑣).

In ITER, the nodes in [2𝑛] lie on a line from left to right,
and the goal is to find any node 𝑣 that is mapped to the left
by 𝐶, or any node 𝑣 that is mapped to the right such that
𝐶 (𝐶 (𝑣)) = 𝐶 (𝑣); in other words, 𝐶 (𝑣) is a fixed point of
𝐶. Since 𝐶 (1) > 1, it is easy to verify that ITER is total
because a solution exists in any instance of ITER.
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Finally, we also define FOSP and SOSP, the computational
problem of finding 𝜀-FOSPs and 𝜀-SOSP in unconstrained
optimization, see below.

Problem 3: FOSP
Require: precision parameter 𝜀 > 0

𝐵, 𝐿 > 0 and 𝑓 ∈ F (𝐵, 𝐿,∞)
Turing machines representing 𝑓 and ∇ 𝑓

Find: 𝑥∗ ∈ ℝ𝑑: ∥∇ 𝑓 (𝑥∗)∥ ≤ 𝜀

Problem 4: SOSP
Require: precision parameter 𝜀 > 0

𝐵, 𝐿, 𝜌 > 0 and 𝑓 ∈ F (𝐵, 𝐿, 𝜌)
Turing machines representing 𝑓 , ∇ 𝑓 and ∇2 𝑓

Find: 𝑥∗ ∈ ℝ𝑑: ∥∇ 𝑓 (𝑥∗)∥ ≤ 𝜀, 𝜆1 (∇2 𝑓 (𝑥∗)) ≥ −√𝜌𝜀

As shown in the main results of [16], FOSP is PLS-complete.
Finally, SOSP captures the computational complexity prob-
lem for finding an 𝜀-SOSP in the unconstrained optimization
setting under the assumptions we discussed in Section 2.1,
and it will be our primary focal point in the sequel.

3 PLS-membership of Finding 𝜀-SOSPs in
Unconstrained Optimization

In this section, we show the membership of SOSP in PLS.
We summarize the main result in the following theorem.

Theorem 1 (Membership). SOSP is in PLS.

3.1. Warm Up: An example that the LOCALOPT in-
stance used in [16] fails. Before showing the membership
of SOSP in PLS, we examine the LOCALOPT instance de-
scribed in [16], used for showing the membership of FOSP
in PLS. We show a counterexample function where a solu-
tion of this LOCALOPT instance is an 𝜀-FOSP but not an
𝜀-SOSP of the function.

To show the membership of FOSP in PLS, [16] constructed
a LOCALOPT instance within an orthocanonical grid of 2𝑛
discrete points (values of LOCALOPT), centered at (0, 0),
with step 𝛾 (without loss of generality, consider that 𝛾 = 1),
where for any function 𝑓 : (a) the potential function at a valid
point 𝑣 of the grid equals 𝑓 (𝑣), and (b) the neighbor function
of 𝑣 equals the immediate neighbor of that point on the grid
whose value is less than 𝑓 (𝑣) and is also the minimum
among the values of all candidate immediate neighbors.

We now aim to show that the above LOCALOPT instance is

Algorithm 1: An algorithm for finding an 𝜀-SOSP on an
ortho-canonical grid with step 𝛾

Require: 𝑓 , ∇ 𝑓 and ∇2 𝑓 , 𝛾 = min
{

𝜀

2
√
𝑑 (
√
𝜀
√
𝜌+2𝐿)

, 𝜀√
𝑑𝐿

}
, 𝐵,

𝐿, 𝜌, 𝑑, 𝑟 = 3
√
𝜀√
𝑝

.
1: 𝑡 ← 0
2: while TRUE do
3: 𝜆1 ← 𝜆𝑚𝑖𝑛 (∇2 𝑓 (𝑥𝑡 ))
4: if ∥∇ 𝑓 (𝑥𝑡 )∥ > 𝜀 then
5: 𝑖 ← arg min𝑖∈[𝑑 ],𝑠∈{0,1} ⟨∇ 𝑓 (𝑥𝑡 ), (−1)𝑠𝑒𝑖⟩
6: 𝑥𝑡+1 ← 𝑥𝑡 + 𝛾 · (−1)𝑠𝑒𝑖
7: else if ∥∇ 𝑓 (𝑥𝑡 )∥ ≤ 𝜀 and 𝜆1 < −

√︁
4𝜌𝜀 then

8: 𝑢1← the eigenvector corresponding to 𝜆1
9: 𝑥𝑡 ← 𝑥𝑡 + 𝑟𝑢1

10: 𝑥𝑡+1 ← round(𝑥𝑡 )
11: else
12: return 𝑥𝑡
13: end if
14: 𝑡 ← 𝑡 + 1
15: end while

a counterexample for the SOSP problem. We define:

𝑓 (𝑥, 𝑦) =

𝑥2𝑦 − 𝑥𝑦 𝑥, 𝑦 ∈ [−1, 1]
−1 𝑥, 𝑦 ∈ (−∞,−2] ∪ [2,∞)
𝑔(𝑥, 𝑦) otherwise

where 𝑔(𝑥, 𝑦) is a 𝐶2 function, which is derived by applying
biquintic interpolation on each grid cell of the defined re-
gion. Biquintic interpolation will help us show our hardness
theorem, which we will describe in detail in Section 4. We
note that biquintic interpolation guarantees that 𝑓 is also
a 𝐶2 function, with Lipschitz gradient and hessian, thus
satisfying the input conditions described in Problem 4. We
describe and illustrate the above function in Appendix D.

Now, observe that (0, 0) is a solution of FOSP, since
∇ 𝑓 (0, 0) = 0 but not a solution of SOSP because:
𝜆𝑚𝑖𝑛 (∇2 ( 𝑓 (0, 0))) = −1 and the Hessian-Lipschitz con-
stant 𝜌 = 2

√
2. Hence, by letting 𝜀 = 0.001, we get

𝜆𝑚𝑖𝑛 (∇2 ( 𝑓 (0, 0))) < −√𝜌𝜖 . Now, observe that each neigh-
bor of (0, 0) (i.e. (0, 1), (0,−1), (1, 0) and (−1, 0)) has
potential 0, which is equal to the potential of (0, 0) and thus
(0, 0) is a solution of FOSP, but not a solution of SOSP.

Given the failure of the above LOCALOPT instance, in order
to show the membership of SOSP in PLS we need the reduc-
tion to construct a new LOCALOPT instance where every
solution of that instance is always a solution of SOSP.

3.2. Warm Up: An algorithm that finds an 𝜀-SOSP.
First, we present an algorithm (presented in Algorithm 1),
indicative of the methodology we follow to show the mem-
bership of SOSP in PLS. The algorithm runs on an ortho-
canonical grid with step 𝛾 and finds a grid point that is
an 𝜀-SOSP. Depending on the current point 𝑥𝑡 , similar to
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[8, 19], the algorithm alternates between steepest coordi-
nate descent and negative curvature steps as follows: If the
current point 𝑥𝑡 is not an 𝜀-FOSP, as in [16], we take a step
along the coordinate 𝑒𝑖 that guarantees sufficient decrease
in the value of 𝑓 (Steps 4-6). If the algorithm has reached an
𝜀-FOSP, we check the condition for 𝜀-SOSP by computing
the minimum eigenvalue (denoted by 𝜆1) of the Hessian
on 𝑥𝑡 (Step 8). If the condition is met, the algorithm first
follows the direction of the negative curvature on 𝑥𝑡 (Steps
9-10) and then performs rounding on the resulted point, so
that each coordinate of the point is rounded down to the
closest multiple, 𝛼, of 𝛾 (Step 10). Otherwise, the algorithm
has reached an 𝜀-SOSP and terminates (Step 12).

Algorithm 1 will be helpful for proving the membership
of SOSP in PLS, as it finds an 𝜀-SOSP in time O(1/𝜀

√
𝜀)

and also guarantees that both update steps sufficiently de-
crease the value of 𝑓 . The latter indicates that the objective
function is a potential and that there exists an algorithm that
decreases the potential at each step.

3.3. Main Components of the Proof of Theorem 1. In
this section, we will define the main components that we
need for the proof of Theorem 1.

3.3.1 DESCENT LEMMAS.

We start with the following lemmas that analyse the de-
scent steps of Algorithm 1. These lemmas will later consti-
tute our main arguments for showing that any solution of
LOCALOPT is a solution of SOSP.

Lemma 1 (Steepest Coordinate Descent). If ∥∇ 𝑓 (𝑥𝑡 )∥ >

𝜀, then for: 𝛾 = min
{

𝜀

2
√
𝑑 (
√
𝜀
√
𝜌+2𝐿)

, 𝜀√
𝑑𝐿

}
, 𝑖, 𝑠 =

arg min𝑖∈[𝑑 ],𝑠∈{0,1} ⟨∇ 𝑓 (𝑣), (−1)𝑠𝑒𝑖⟩ and 𝑥𝑡+1 = 𝑥𝑡 + 𝛾 ·
(−1)𝑠𝑒𝑖 , we have 𝑓 (𝑥𝑡+1) ≤ 𝑓 (𝑥𝑡 ) − 𝜀𝛾

2
√
𝑑

.

Lemma 2 (Negative Curvature Descent). If ∥∇ 𝑓 (𝑥𝑡 )∥ ≤ 𝜀,
then for: 𝜆𝑚𝑖𝑛 (∇2 𝑓 (𝑥𝑡 )) < −

√︁
4𝜌𝜀, 𝑟 = 3

√
𝜀√
𝜌

, 𝑥𝑡 = 𝑥𝑡 + 𝑟𝑢1

and 𝑥𝑡+1 = round(𝑥𝑡 ), we have 𝑓 (𝑥𝑡+1) ≤ 𝑓 (𝑥𝑡 ) − 3𝜀
√
𝜀

4√𝜌 .

3.3.2 CONSTRUCTION OF THE LOCALOPT INSTANCE.

Now we are ready to construct the LOCALOPT instance,
where we will next show that any solution of the LOCALOPT
instance must always be a solution of SOSP.

Grid. First, we define the following quantities: T𝑁𝐶 =
4𝐵√𝜌
3𝜀
√
𝜀

, T𝐶𝐷 = 2𝐵
√
𝑑

𝛾𝜀
and �̃� = 𝛾T𝐶𝐷 (T𝑁𝐶 + 1) + 𝑟T𝑁𝐶 .

Specifically, Algorithm 1 needs at most T𝐶𝐷 steps to find an
𝜀-FOSP starting from an arbitrary non 𝜀-FOSP, and at most
T𝑁𝐶 steps to escape from a point that is an 𝜀-FOSP but not
an 𝜀-SOSP. Therefore, the algorithm always terminates at a
point which is an 𝜀-SOSP and the maximum distance from

the starting point 𝑥0 that the algorithm can reach is at most
�̃� = 𝛾T𝐶𝐷 (T𝑁𝐶 + 1) + 𝑟T𝑁𝐶 .

Let 𝛾 = min
{

𝜀

2
√
𝑑 (
√
𝜀
√
𝜌+2𝐿)

, 𝜀√
𝑑𝐿

}
, 𝑚 =

⌈
𝑅
𝛾

⌉
and 𝑅 =

max
{

10𝐵
√
𝑑

𝜀
,

10𝐵(𝑟+𝛾
√
𝑑)

𝜀𝑟
, �̃�

}
= 𝑚𝛾. We define the follow-

ing grid of [−𝑅, 𝑅]𝑑:

𝐺𝛾 =
{
𝛾 · 𝑎 | 𝑎 ∈ ⟦−𝑚, 𝑚⟧𝑑

}
More specifically, 𝐺𝛾 is the ortho-canonical grid of
[−𝑅, 𝑅]𝑑 with step 𝛾 between two neighboring vertices
of the grid. The following proposition guarantees that the
defined grid always contains a solution of SOSP.

Proposition 1 (Feasibility). 𝐺𝛾 has at least one 𝜀-SOSP.

From the definition of SOSP we are given a Turing machine
C 𝑓 that on input 𝑥 runs in time poly(len(𝑥)) and outputs the
value of 𝑓 (𝑥). For every 𝑣 ∈ 𝐺𝛾 we define Γ(𝑣) to be the
set of immediate neighbours of 𝑣 as follows

Γ(𝑣) =
{
𝑤 ∈ 𝐺𝛾 | 𝑣 ≠ 𝑤, ∥𝑢 − 𝑤∥ = 𝛾

}
.

It is clear that |Γ(𝑣) | ≤ 2𝑑, where we have exact equality for
all the points of the grid in the interior of the box [−𝑅, 𝑅]𝑑
and inequality for the points on the boundary.

Valid and Invalid points. We define the set of valid points
V𝛾 , which is a subset of the grid points 𝐺𝛾 , as follows:

Definition 2 (Valid points). A grid point 𝑣 ∈ 𝐺𝛾 is valid,
i.e. 𝑣 ∈ V𝛾 , if:

𝑓 (𝑣) ≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
,

𝜀𝑟

4(𝑟 + 𝛾
√
𝑑)

}
∥𝑣∥.

where 𝑟 =
3
√
𝜀√
𝑝

. We also define the set of invalid points
I𝛾 to be I𝛾 = 𝐺𝛾\V𝛾 . Intuitively, invalid are the points
on the grid which Algorithm 1 cannot reach when starting
at zero; otherwise the algorithm would have achieved a
total decrease resulting in a value less than −𝐵. We use
Definition 2 to properly bound the feasible search space.

Proposition 2 (Boundary). All the points of 𝐺𝛾 that lie on
the boundary of [−𝑅, 𝑅]𝑑 are invalid. Thus, for every valid
point 𝑣 ∈ V𝛾 it holds that |Γ(𝑣) | = 2𝑑.

Our next goal is to define the neighbor function 𝑁 : 𝐺𝛾 →
𝐺𝛾 and the potential function 𝑃 : 𝐺𝛾 → [−𝐵 − 1, 𝐵 + 1]
such that every point 𝑥 ∈ 𝐺𝛾 with 𝑃(𝑁 (𝑥)) ≥ 𝑃(𝑥) is a
solution of SOSP for function 𝑓 .

The neighbor function 𝑵. First we define the function
𝐷 𝑓 (𝑣, 𝑠, 𝑢) = ⟨∇ 𝑓 (𝑣), (−1)𝑠 𝑢−𝑣

∥𝑢−𝑣∥ ⟩, with 𝑠 ∈ {0, 1}, which
is the directional derivative of 𝑓 at 𝑣 in the direction of unit
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vector (−1)𝑠 𝑢−𝑣
∥𝑢−𝑣∥ . Then, we define the neighbor function

𝑁 on the valid points of the grid, as follows:

𝑁 (𝑣) =


arg min
𝑢∈Γ (𝑣)

min
𝑠∈{0,1}

𝐷 𝑓 (𝑣, 𝑠, 𝑢) ∥∇ 𝑓 (𝑣)∥ > 𝜀

round(𝑣 + 𝑟𝑢1 (𝑣)) ∥∇ 𝑓 (𝑣)∥ ≤ 𝜀
𝜆1 (𝑣) < −

√︁
4𝜌𝜀

and also 𝑁 (𝑣) = 0 if 𝑣 is invalid. In the above definition, we
have used the notation 𝜆1 (𝑣) for the minimum eigenvalue
of the Hessian of 𝑓 at 𝑣 and 𝑢1 (𝑣) for the corresponding
eigenvector. Note that it is allowed for the neighbor function
𝑁 to have access to ∇ 𝑓 (𝑣) and ∇2 𝑓 (𝑣), as this happens only
when 𝑣 is valid because it is necessary to hold 𝑃(𝑣) = 𝑓 (𝑣).
Lemma 3 (Validity). If point 𝑣 ∈ V𝛾 , then 𝑁 (𝑣) ∈ V𝛾 .

The potential function 𝑃. For a valid point 𝑣 we define
𝑃(𝑣) to be the output of the Turing machine C 𝑓 on 𝑣, i.e.,
𝑃(𝑣) = 𝑓 (𝑣). For any 𝑣 ∈ I𝛾 , we define 𝑃(𝑣) = 𝐵 + 1.

3.4. Proof Sketch of Theorem 1.

Proof. Using the components we defined in Section 3.3, we
will show that that any solution of the LOCALOPT instance
with inputs 𝑃, 𝑁 yields a solution of the SOSP problem.

Let 𝑣 ∈ 𝐺𝛾 . We will show that if 𝑣 is not a solution of SOSP,
then 𝑃(𝑁 (𝑣)) < 𝑃(𝑣). Specifically, the following hold:

• If 𝑣 is invalid then 𝑣 cannot be a solution of the defined
LOCALOPT instance, since 𝑃(𝑣) = 𝐵 + 1 and 𝑁 (𝑣) = 0,
and thus 𝑃(0) ≤ 𝐵 < 𝐵 + 1 = 𝑃(𝑉).

• If 𝑣 is valid and ∥∇ 𝑓 (𝑣)∥ > 𝜀, then there exist 𝑖 ∈ [𝑑]
and 𝑠 ∈ {0, 1} such that ⟨∇ 𝑓 (𝑣), (−1)𝑠𝑒𝑖⟩ ≤ −𝜀/

√
𝑑,

where 𝑒𝑖 is the unit vector along the selected coordi-
nate. From Proposition 2, 𝑁 (𝑣) ∈ Γ(𝑣) and since
𝑁 (𝑣) ≡ arg min

𝑢∈Γ (𝑣)
min

𝑠∈{0,1}
𝐷 𝑓 (𝑣, 𝑠, 𝑢), then we get 𝑁 (𝑣) ≤

⟨∇ 𝑓 (𝑣), (−1)𝑠𝑒𝑖⟩ ≤ −𝜀/
√
𝑑. Let (−1)𝑠′𝑒𝑖′ be the unit

vector along the coordinate of 𝑁 (𝑣) starting at 𝑣, where
𝑠′ ∈ {0, 1} and 𝑖′ ∈ [𝑑]. Then we define 𝑤 = 𝑣 + 𝛾 ·
(−1)𝑠′𝑒𝑖′ , where by definition 𝑤 ≡ 𝑁 (𝑣). From Lemma 3
𝑤 is valid and thus 𝑃(𝑤) = 𝑓 (𝑤), and from Lemma 1 we
obtain that 𝑃(𝑁 (𝑣)) = 𝑓 (𝑥) < 𝑓 (𝑣) = 𝑃(𝑣).

• If 𝑣 is valid and ∥∇ 𝑓 (𝑣)∥ ≤ 𝜀 and 𝜆𝑚𝑖𝑛 (∇2 𝑓 (𝑣)) <
−
√︁

4𝜌𝜀, let 𝑤 = round(𝑣 + 𝑟0𝑒1) be the output of 𝑁 (𝑣).
From Lemma 3, 𝑤 is also valid and thus 𝑃(𝑤) = 𝑓 (𝑤). Us-
ing Lemma 2, we get the sufficient decrease 𝑓 (𝑥) < 𝑓 (𝑣),
which yields 𝑃(𝑁 (𝑣)) = 𝑓 (𝑥) < 𝑓 (𝑣) = 𝑃(𝑣).

Therefore, we conclude that 𝑣 cannot be a solution of
LOCALOPT, unless 𝑣 is a solution of SOSP. ■

4 PLS-hardness of Finding 𝜀-SOSPs in
Unconstrained Optimization

In this section we show that the problem SOSP is PLS-
hard even when the number of dimensions is 𝑑 = 2. We
summarize the main result in the following theorem.

Theorem 2 (Hardness). SOSP is PLS-hard.

To show our hardness result, we first define the HESSIAN-
FOSP problem. HESSIAN-FOSP is similar to FOSP but
differs on the input: It also requires the function 𝑓 to be 𝜌-
Hessian-Lipschitz. More formally, we define the HESSIAN-
FOSP problem as follows:

Problem 5: HESSIAN-FOSP
Require: precision parameter 𝜀 > 0

𝐵, 𝐿, 𝜌 > 0 and 𝑓 ∈ F (𝐵, 𝐿, 𝜌)
Turing machines representing 𝑓 , ∇ 𝑓 and ∇2 𝑓

Find: 𝑥∗ ∈ ℝ𝑑: ∥∇ 𝑓 (𝑥∗)∥ ≤ 𝜀

To prove Theorem 2, we will first show that ITER reduces
to HESSIAN-FOSP (which implies that HESSIAN-FOSP
is PLS-hard). Moreover, HESSIAN-FOSP trivially reduces
to SOSP (because an 𝜀-SOSP is also an 𝜀-FOSP), which
implies that SOSP is PLS-hard.

4.1. Finding 𝜀-FOSPs of 𝐶2 continuous functions is
also hard for PLS in Unconstrained Optimization. In
this subsection, we will focus on showing the hardness
of HESSIAN-FOSP for PLS. We will show that the PLS-
hardness holds even for 𝑑 = 2.

Theorem 3. HESSIAN-FOSP is PLS-hard.

High-level Proof Sketch of Theorem 3. We will con-
struct the function 𝑓 , such that 𝑓 satisfies the input condi-
tions of Problem 5, and we will incorporate ITER instances
in the domain of ℝ2 such that every 𝜀-FOSP of 𝑓 (i.e. any
solution of the HESSIAN-FOSP problem) corresponds to a
solution of an ITER instance. The full proof of Theorem 3
can be found in Appendix B.

Combining Theorem 3 (and more formally, Theorem 4, see
Appendix E) with the PLS-completeness of finding 𝜀-FOSPs
[16], we get the following corollary.

Corollary 1. There is an efficient polynomial-time reduction
from finding approximate FOSPs of𝐶2 continuous functions
to finding approximate FOSPs of 𝐶1 continuous functions
in unconstrained optimization. The inverse also holds.

The above corollary is interesting because it implies that
even if we add access to an extra Turing machine, i.e. C∇2 𝑓

that computes ∇2 𝑓 , the white box problem of finding 𝜀-
FOSPs in unconstrained optimization remains hard for PLS.
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Figure 2: PLS-Hardness construction overview

One would might expect that when given access to the
second-order oracles, the problem would be easier.

4.1.1 MAIN COMPONENTS OF THE PROOF OF
THEOREM 2

Overview of the construction of 𝑓 . We will construct
𝑓 so as to be a periodic function, as follows: We define
the function 𝑔 over a square [0, 𝑀]2, where 𝑀 = O(2𝑛)
and [2𝑛] represents the domain of the values of an ITER
instance. We denote this square by tile. Then, 𝑓 is obtained
by repeating copies of 𝑔 in the whole ℝ2 plane. If 𝑔 satisfies
some necessary boundary properties then repeating 𝑔 this
way yields a function 𝑓 that is bounded, smooth and Hessian-
Lipschitz. So, the main question is how to construct the
function 𝑔 in order to obtain 𝑓 .

Tile and Small Boxes. We illustrate a tile in Fig. 2.
The tile contains a 2-dimensional discrete grid, namely
⟦0, 𝑀⟧, which consists of small boxes of length 1. In
order to define 𝑔, we first define the discrete functions
Φ,Φ𝑥 ,Φ𝑦 : ⟦0, 𝑀⟧ → ℝ. The above discrete functions
are defined on the four corners of the small boxes contained
inside the tile (see an example of a small box in Appendix B,
Fig. 5). We want the following to hold at the four corners
of each small box: 𝑔 = Φ, 𝑔𝑥 = Φ𝑥 , 𝑔𝑦 = Φ𝑦. Fig. 2 shows
the values of 𝑔 and the direction of its negative gradients
at the corners of the small boxes of the tile. Specifically,
at the corners of the small boxes, the values of 𝑔 are orga-
nized in five ordered colors and the corresponding values of
∇𝑔 = [Φ𝑥 ,Φ𝑦]𝑇 can be either [−1/2, 0]𝑇 or [0,−1/2]𝑇 .

Given the fact that 𝑔 is a periodic 𝐶2 continuous function,
the function must attain at least one local minimum and one
local maximum in each tile. Similar to [16], we construct
the corners of the small boxes such that their colors and

the negative gradients will ensure that the function 𝑔 attains
local optima in specific regions of the tile. At the areas
where the optima can be formed, we locate two arbitrary
ITER instances inside PLS “gadgets” (as in [13, 16]); namely
the MIN-PLS Box (for the local minima) and the MAX-PLS
Box (for the local maxima). Intuitively, we want the function
𝑔 to allow the following: (a) If we begin at any point in the
background (i.e. regions in the tile colored in white) and
we are looking for a local minimum then by following the
direction of the negative gradients we will necessarily move
to the MIN-PLS Box, and (b) If we begin at any point in
the background and we are looking for a local maximum
then by following the direction of the gradients we will
necessarily move to the MAX-PLS Box.

The challenge now is how to construct the function 𝑔, so that
it is bounded, 𝐶2 continuous, smooth and Hessian-Lipschitz,
while allowing the stationary points to be formed only in
places where an ITER solution inside a PLS Box exists.

Biquintic Interpolation. To address the above question,
we will construct one polynomial for each small box based
on the specified function and gradient values of 𝑔 on the four
corners of the small box. To ensure C2 over the whole tile,
apart from the corner constraints, the polynomials should
satisfy 𝐶2 continuity constraints over the common edges
between adjacent small boxes.

Standard approaches, such as [13, 16], leverage the bicubic
interpolation schema [35]. However, in our case, bicubic
interpolation does not allow the function 𝑔 (and thus 𝑓 )
to satisfy the input requirements of the HESSIAN-FOSP
problem, because the number of free parameters of the
polynomial is less than the number of constraints on the
corners. In particular, for small box 𝑠𝑚(𝑎, 𝑏)1 there are 12
constraints for the target function and gradient values on the
4 corners and 9 constraints for the Hessian values on the
three corners that are common either with 𝑠𝑚(𝑎 − 1, 𝑏) or
with 𝑠𝑚(𝑎, 𝑏 − 1). This gives a total of 21 independent con-
straints, while bicubic interpolation has 16 free parameters.

To overcome this issue, we need higher degree interpolation
schemes. It turns out that the minimal degree required for
variable 𝑥 and variable 𝑦 is 5. We can see this by consid-
ering the marginalisation of the polynomial on the edges
of the box, which is a one variable polynomial of 𝑥 or 𝑦,
depending on the edge. The marginal polynomial on a box
edge should satisfy 6 constraints, corresponding to its value,
first and second derivative on the two corners of the edge.
Polynomials of degree less than 5 could not satisfy these
constraints, thus marginals should have degree at least 5.

1We denote by 𝑠𝑚(𝑎, 𝑏) the small box which has: the point
(𝑎, 𝑏) as the bottom left corner, the point (𝑎, 𝑏 + 1) as the top left
corner, the point (𝑎 + 1, 𝑏) as the bottom right corner and the point
(𝑎 + 1, 𝑏 + 1) as the top right corner.
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In doing so, we utilize the biquintic interpolation schema.
The general form of the biquintic interpolation on 𝑠𝑚(𝑎, 𝑏)
is the following:

𝑔𝑎,𝑏 (𝑥, 𝑦) =
5∑︁
𝑖=0

5∑︁
𝑗=0
𝑐
𝑎,𝑏
𝑖, 𝑗
(𝑥 − 𝑎)𝑖 (𝑦 − 𝑏) 𝑗

for every 𝑎, 𝑏 ∈ ⟦0, 𝑀 − 1⟧, where we used 𝑔𝑎,𝑏 to denote
the function 𝑔 defined on 𝑠𝑚(𝑎, 𝑏). Now, to determine
the unknown coefficients 𝑐𝑎,𝑏

𝑖, 𝑗
based on the corner values

and derivatives we consider the matrix 𝑉𝑎,𝑏, containing
the target function and derivative values on the corners.
More specifically, the box 𝑉𝑎,𝑏

𝑖:𝑖+1, 𝑗: 𝑗+1, for 𝑖 = 0, 2, 4, 𝑗 =

0, 2, 4, contains the target values of 𝜕(𝑖+ 𝑗)/2𝑔𝑎,𝑏 (𝑥,𝑦)
𝜕𝑥𝑖/2 ,𝜕𝑦 𝑗/2 on the

four corners. For this construction we set all higher order
derivatives equal to zero on the corners.

The corner constraints for polynomial 𝑔𝑎,𝑏 (𝑥, 𝑦) give a
system of equations which can be written in matrix form
as: 𝐴 · 𝐶𝑎,𝑏 · 𝐴𝑇 = 𝑉𝑎,𝑏, where 𝐶𝑎,𝑏 is the matrix
of the unknown coefficients 𝑐𝑎,𝑏

𝑖, 𝑗
and 𝐴 is a constant in-

vertible matrix. Since 𝐴 is invertible the system is solv-
able and the coefficients are calculated using the formula
𝐶𝑎,𝑏 = 𝐴−1 · 𝑉𝑎,𝑏 · (𝐴−1)𝑇 . We will now focus on the
continuity and boundedness constraints.

Lemma 4. If we apply biquintic interpolation on each small
box of the tile, the function 𝑓 , defined on the whole ℝ2, is
215𝑀-bounded, 222𝑀-smooth and 223𝑀-Hessian-Lipschitz.

The key idea of the reduction is to construct the continuous
function 𝑓 in such a way that it can only have 𝜀-SOSPs
in areas that correspond to solutions of the ITER. It suf-
fices to show that small boxes that do not lie close to an
ITER solution do not have any 𝜀-FOSPs (i.e. solutions of
HESSIAN-FOSP). Since the number of these boxes scales
with the dimension of the ITER instance, we want to reduce
the number of cases that we need to check. Thus, we con-
sider some general conditions based on the colors and the
gradients on the four corners of a small box and show that
these conditions imply the inexistence of 𝜀-FOSPs in the
box. We also show that all small boxes that do not lie close
to an ITER solution satisfy these conditions.

Lemma 5. Biquintic interpolation does not introduce any
0.001-FOSP in areas where an ITER solution does not exist.

The above lemma is the final component for our proof and
implies that through biquintic interpolation a solution of
HESSIAN-FOSP inside the tile can exist only in the areas
where there exists a solution of ITER.

4.2. Query Complexity: Lower Bound for 𝑑 = 2. Let
T (A; (𝑥0, 𝑦0); 𝑓 ) be the query complexity of the algorithm
𝐴 using (𝑥0, 𝑦0) and 𝑓 as inputs. From the construction
of 𝑓 we used to prove our hardness result, we obtain the

following corollary, which indicates the lower bound query
complexity for finding an 𝜀-SOSP for 𝑑 = 2 in the uncon-
strained optimization setting.
Corollary 2. For any deterministic algorithm A that com-
putes 𝜀-SOSPs and any starting point (𝑥0, 𝑦0) ∈ ℝ2, it
holds that there exists a 1-bounded, 1-Lipschitz, 1-smooth
and 1-Hessian-Lipschitz function 𝑓 : ℝ2 → ℝ, such that
T (A; (𝑥0, 𝑦0); 𝑓 ) ≥ Ω(1/𝜀).

It is worth noting that for 𝜖-FOSPs in the unconstrained
setting, Hollender & Zampetakis [16] showed that the query
lower bound is Ω(1/𝜖) which matches the query lower
bound for 𝜖-SOSPs.

5 Conclusion
In this paper, we showed that the problem of finding ap-
proximate second-order stationary points is PLS-complete,
answering an open question asked in [16]. There are many
possible open questions for future consideration: (a) What
is the computational complexity of third-order stationary
points in the white box and black box models? (b) Is there
a relaxed notion of second-order stationarity in restricted
domains that is not NP-hard (as in [31]) but belongs in PLS
or CLS instead?
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A Missing Proofs of Section 3

A.1. Proof of Lemma 1.

Proof. Using the Taylor’s theorem on the smoothness of 𝑓 we get:

𝑓 (𝑥𝑡+1) ≤ 𝑓 (𝑥𝑡 ) + ⟨∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡+1 − 𝑥𝑡 ⟩ +
𝐿

2
∥𝑥𝑡+1 − 𝑥𝑡 ∥2

= 𝑓 (𝑥𝑡 ) + 𝛾 ⟨∇ 𝑓 (𝑥𝑡 ), (−1)𝑠𝑒𝑖⟩ +
𝐿𝛾2

2
∥(−1)𝑠𝑒𝑖 ∥2

≤ 𝑓 (𝑥𝑡 ) −
𝜀𝛾
√
𝑑
+ 𝐿𝛾

2

2

≤ 𝑓 (𝑥𝑡 ) −
𝜀𝛾

2
√
𝑑

where we used the fact that 𝛾 ≤ 𝜀√
𝑑𝐿

.

■

A.2. Proof of Lemma 2.

Proof. Using the Taylor’s theorem on the Lipschitzness of ∇2 𝑓 [29] we get:

𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥𝑡 ) + ⟨∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡 − 𝑥𝑡 ⟩ +
1
2
⟨∇2 𝑓 (𝑥𝑡 ) (𝑥𝑡 − 𝑥𝑡 ), 𝑥𝑡 − 𝑥𝑡 ⟩ +

𝜌

6
∥𝑥𝑡 − 𝑥𝑡 ∥3

≤ 𝑓 (𝑥𝑡 ) + 𝑟 ⟨∇ 𝑓 (𝑥𝑡 ), 𝑢1⟩ +
𝑟2𝜆1

2
+ 𝑟

3𝜌

6

< 𝑓 (𝑥𝑡 ) + 𝑟𝜀 − 𝑟2√𝜌𝜀 + 𝑟
3𝜌

6

where we used the fact that 𝑥𝑡 = 𝑥𝑡 + 𝑟𝑢1, with 𝑢1 being the unit eigenvector of ∇2 𝑓 (𝑥𝑡 ) corresponding to the smallest
eigenvalue (denoted by 𝜆1), and ∥∇ 𝑓 (𝑥𝑡 )∥ ≤ 𝜀. Next by letting 𝜉 (𝑟) = 𝑟𝜀 − 𝑟2√𝜌𝜀 + 𝑟3𝜌

6 , we get 𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥𝑡 ) + 𝜉 (𝑟). By

assigning 𝑟 = 𝑟0 =
3
√
𝜀√
𝜌

, we get the sufficient decrease 𝜉 (𝑟0) = − 3𝜀
√
𝜀

2√𝜌 .

Using the Taylor’s theorem now on the smoothness of 𝑓 we get:

𝑓 (𝑥𝑡+1) ≤ 𝑓 (𝑥𝑡 ) + ⟨∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡+1 − 𝑥𝑡 ⟩ +
𝐿

2
∥𝑥𝑡+1 − 𝑥𝑡 ∥2

= 𝑓 (𝑥𝑡 ) + ∥∇ 𝑓 (𝑥𝑡 )∥ ·
√
𝑑 · 𝛾 + 𝐿𝑑𝛾

2

2

≤ 𝑓 (𝑥𝑡 ) + (𝜀 + 𝐿𝑟)
√
𝑑𝛾 + 𝜀

√
𝑑𝛾

2

= 𝑓 (𝑥𝑡 ) +
(
3
2
𝜀
√
𝑑 + 3𝐿

√
𝜀
√
𝑑

√
𝜌

)
𝛾

where we used the fact that 𝛾 ≤ 𝜀√
𝑑𝐿

and | |∇ 𝑓 (𝑥𝑡 ) | | ≤ 𝜀 + 𝐿𝜌.

Let 𝜉′ =
(

3
2𝜀
√
𝑑 + 3𝐿

√
𝜀
√
𝑑√

𝜌

)
𝛾. Now we can guarantee sufficient decrease in 𝑓 (𝑥𝑡+1), since 𝜉′ − |𝜉 (𝑟0) | ≤ − 3

4
𝜀
√
𝜀√
𝜌

, which

implies that 𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥𝑡 ) − 3
4
𝜀
√
𝜀√
𝜌

.

■
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A.3. Proof of Lemma 3.

Proof. Let 𝑣 be a valid of 𝐺𝛾 . We examine the two following cases:

Let 𝑣 be a valid of 𝐺𝛾 . Let 𝑤 = 𝑁 (𝑣). We examine the two following cases:

• If ∥∇ 𝑓 (𝑣)∥ > 𝜀, from Lemma 1 we get:

𝑓 (𝑤) ≤ 𝑓 (𝑣) − 𝜀𝛾

2
√
𝑑

= 𝑓 (𝑣) − 𝜀

2
√
𝑑
∥𝑤 − 𝑣∥

≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
,

𝜀𝑟

4(𝑟 + 𝛾
√
𝑑)

}
∥𝑣∥ − 𝜀

2
√
𝑑
∥𝑤 − 𝑣∥

≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
,

𝜀𝑟

4(𝑟 + 𝛾
√
𝑑)

}
(∥𝑣∥ − ∥𝑤 − 𝑣∥)

≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
,

𝜀𝑟

4(𝑟 + 𝛾
√
𝑑)

}
∥𝑤∥

where we have used the fact that 𝛾 = ∥𝑤 − 𝑣∥, 𝜀

2
√
𝑑
≥ min

{
𝜀

2
√
𝑑
, 𝜀𝑟

4(𝑟+𝛾
√
𝑑)

}
and ∥𝑤 − 𝑣∥ ≥ ∥𝑤∥ − ∥𝑣∥.

• Following similar steps as above, if ∥∇ 𝑓 (𝑣)∥ ≤ 𝜀 and 𝜆𝑚𝑖𝑛 (∇2 𝑓 (𝑣)) < −
√︁

4𝜌𝜀, using Lemma 2 we get:

𝑓 (𝑤) ≤ 𝑓 (𝑣) − 3𝜀
√
𝜀

4√𝜌

= 𝑓 (𝑣) − 𝜀𝑟
4

≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
,

𝜀𝑟

4(𝑟 + 𝛾
√
𝑑)

}
∥𝑣∥ − 𝜀𝑟

4

≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
,

𝜀𝑟

4(𝑟 + 𝛾
√
𝑑)

}
∥𝑣∥ − 𝜀𝑟 ∥𝑣 − 𝑤∥

4(𝑟 + 𝛾
√
𝑑)

≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
,

𝜀𝑟

4(𝑟 + 𝛾
√
𝑑)

}
∥𝑤∥

Therefore, from the above we conclude that 𝑤 is always valid in either case.

■

A.4. Proof of Proposition 1.

Proof. It suffices to show that the maximum distance from starting point 𝑥0 = 0 that Algorithm 1 can reach is bounded by
�̃�; i.e ∥𝑥0 − 𝑥∗∥ ≤ �̃�. It is easy to see that Algorithm 1 terminates at a point 𝑥∗ which is an 𝜀-SOSP.

We define Steps 4-6 as the FIND-FOSP routine and Steps 7-10 as the ESCAPE routine. From Lemma 1, we get that the
algorithm needs at most T𝐶𝐷 steps to find an 𝜀-FOSP starting from an arbitrary non 𝜀-FOSP (i.e. it needs at most T𝐶𝐷

steps to complete a FIND-FOSP routine). From Lemma 2, we get that the algorithm needs at most T𝑁𝐶 steps to escape
an 𝜀-FOSP but not 𝜀-SOSP and find an 𝜀-SOSP. Since the ESCAPE routine may only happen after the termination of a
FIND-FOSP routine, the algorithm may run the ESCAPE routine at most T𝑁𝐶 times and the FIND-FOSP routine at most
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T𝑁𝐶 + 1 times. Moreover, a FOSP routine can be completed within a radius of at most 𝛾T𝐶𝐷 , while a single update of the
ESCAPE routine uses a constant radius of 𝑟. Therefore, the algorithm terminates at a point which is an 𝜀-SOSP and the
maximum distance from starting point 𝑥0 that the algorithm can reach is at most �̃� = 𝛾T𝐶𝐷 (T𝑁𝐶 + 1) + 𝑟T𝑁𝐶 .

■

A.5. Missing Proof of Proposition 2.

Proof. To show this claim we use arguments similar to [16]. More specifically, any point 𝑤 on the boundary of [−𝑅, 𝑅]𝑑
satisfies that ∥𝑤∥ ≥ 𝑅. For the sake of contradiction we assume that a point 𝑤 on the boundary is valid. Then it should
hold that 𝑓 (𝑤) ≤ 𝑓 (0) −min

{
𝜀

2
√
𝑑
, 𝜀𝑟

4(𝑟+𝛾
√
𝑑)

}
∥𝑤∥. Since | 𝑓 (0) | ≤ 𝐵, we get that 𝑓 (𝑤) ≤ 𝐵 −min

{
𝜀

2
√
𝑑
, 𝜀𝑟

4(𝑟+𝛾
√
𝑑)

}
𝑅. But

also we have that 𝑅 = max
{

10𝐵
√
𝑑

𝜀
,

10𝐵(𝑟+𝛾
√
𝑑)

𝜀𝑟
, �̃�

}
, which implies that 𝑓 (𝑤) < −𝐵. This is a contradiction, due to the

boundedness assumption | 𝑓 (𝑤) | ≤ −𝐵. Thus, we conclude that each point 𝑤 on the boundary is invalid.

■

A.6. The reduction is polynomial-time in the input.

Lemma A.1 (Transformation to boolean circuits). The defined neighbor function 𝑁 and potential function 𝑃 can be
transformed from Turing machines to boolean circuits and their domain and range to [2𝑛] for some 𝑛 ∈ ℕ.

Proof. We use arguments similar to [16]. Specifically, first, observe that the binary representation of the points in 𝑣 ∈ 𝐺𝛾 is
len(𝑣) ≤ 𝑑 · log(𝑅/𝛾). Hence, the output 𝑓 (𝑣) for any 𝑣 ∈ 𝐺𝛾 has len( 𝑓 (𝑣)) = 𝑞(len(𝑣)) where 𝑞 is some polynomial that
is specified together with the description of C 𝑓 . We can then pick 𝑛 = 𝑞(len(𝑣)) and we can map the set [2𝑛] to describe
both 𝐺𝛾 and the possible outputs of the Turing machine 𝑃 that we described above. This way we can make 𝑁, 𝑃 to be
mappings from [2𝑛] to itself and have running time 𝑟 (𝑛) for some polynomial 𝑟 . We note that this is feasible because finding
the eigenvalues and eigenvectors of Hessian requires polynomial time in 𝑑 (e.g. via spectral decomposition). Finally, we
utilize classical transformations of Turing machines with running time 𝑟 (𝑛) to boolean circuits with size 𝑟 (𝑛) log(𝑟 (𝑛)). ■

To finish the proof of Theorem 1, we use Lemma A.1 to transform the Turing machines of 𝑁 and 𝑃 into boolean circuits, as
required in Problem 1. This completes the reduction of SOSP to LOCALOPT. Based on the above, it is easy to see that the
reduction is polynomial-time in the input, i.e., the size of the Turing machines C 𝑓 , C∇ 𝑓 , C∇2 𝑓 , and polylogarithmic in the
parameters 𝐵, 𝐿, 𝜌, and 1/𝜀.

Remark A.1. Observe that to decide whether a point 𝑣 ∈ 𝐺𝛾 is valid, we need time poly(len(𝑥)). If it were not for that
requirement, we could have simply defined as valid only the points that Algorithm 1 traverses starting at 0, all the remaining
points of the grid as invalid and grid’s radius 𝑅 = �̃� (i.e. equal to the maximum distance that Algorithm 1 may cover to
find an 𝜀-SOSP). This would guarantee that the LOCALOPT instance has exactly one solution (that is the the point that
Algorithm 1 reached), but it would require to decide whether a point is valid in time poly(1/𝜀) which is prohibitive for
polynomial-time Turing machines.

B Hardness: Proof of Theorem 3
Our goal is to construct a function 𝑓 that satisfies the input conditions of HESSIAN-FOSP (Problem 5), while incorporating
ITER instances in the domain of ℝ2 in a way that every 𝜀-FOSP of 𝑓 corresponds to a solution of an ITER instance. This
reduces ITER to HESSIAN-FOSP, thus proving the PLS-hardness.

Our construction in Subsections B.1 and B.2 follows the one in [16]. The main technical challenge we address here, which
is not covered by the techniques in [16], is the interpolation step which guarantees the 𝐶2-continuity of 𝑓 , along with
boundedness, smoothness and Hessian-Lipschitzness.

B.1. Defining the function on the grid. In this subsection we will define a function 𝑔 : [0, 𝑀]2 → ℝ, which is later used
as a repeated "tile" for the construction of the function 𝑓 over ℝ2 (see Appendix B.5). Since ITER is a combinatorial problem,
it is easier to define 𝑔 on a grid [[0, 𝑀]]2 and then extend it to a continuous tile via interpolation (see Appendix B.3).
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Let 𝑁 = 2𝑛+3, 𝑀 = 3𝑁 + 4 and 𝐾 = 𝑀/2, where 𝑛 is given by the ITER instance, i.e. the ITER instance contains 2𝑛 nodes.
In the next subsection it will become clear why we chose this value for 𝑁 .

The definition of 𝑔 on [[0, 𝑀]]2 contains colored lines (whose color corresponds to the function’s values), two PLS Boxes
(in which the ITER instance is encoded) and a white background. See Fig. 2 for the complete definition of 𝑔 or Fig. 4 for the
definition of 𝑔 outside of the PLS Boxes. Note that the PLS Boxes have width 𝑁 and the thin white strips between the border
and the PLS Boxes have width 2.

At this point we will describe the position, the function values Φ(𝑎, 𝑏) and the gradients (Φ𝑥 (𝑎, 𝑏),Φ𝑦 (𝑎, 𝑏)) of each region.
The two piecewise functions below summarize all of this information. See Fig. 2 for the relationship between function
values and colors, as well as Fig. 4 for the direction of the negative gradient at each grid point.

1. PLS Boxes: These are squares of width 𝑁 , where the ITER instance is encoded. MIN-PLS Box contains 𝑔’s minima
and MAX-PLS Box contains 𝑔’s maxima. Their exact description will be given in Appendix B.2. For now, we consider
them as black boxes with function values Φ𝑀𝐼𝑁−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏) and Φ𝑀𝐴𝑋−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏) respectively and gradients
Φ𝑥𝑦,𝑀𝐼𝑁−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏) and Φ𝑥𝑦,𝑀𝐴𝑋−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏) respectively. Note that MIN-PLS Box includes all points in
[[2𝑁 + 2, 3𝑁 + 2]]2 and MAX-PLS Box includes all points in [[2, 𝑁 + 2]]2.

2. Colored Lines: There are lines of four different colors: blue, green, orange and red. Note that function values increase
per color, in the aforementioned order. We denote the colored lines by B,G,O,R respectively. We also use T B, T O for
the short blue and orange lines at the top of the grid. All colored lines have width 2. We now define the following:

• Line Positions: As can be seen in Fig. 4, a red and a green line exit the MAX-PLS Box and, after curving first by
−90◦ and then by 90◦, they reach the middle of the top of the grid. Note that at the top of the grid there are two short
lines (orange and blue), starting at the end of the red and green lines respectively. These short lines will “connect” with
the orange and blue lines of the next repetition of 𝑔 above. The orange and blue lines begin at the middle of the bottom
of the grid and, after curving first by −90◦ and then by 90◦, they enter the MIN-PLS Box. Note that the blue and red
lines touch at the middle of the grid. All of the above information is summarized in the first piecewise function below,
where the exact locations of the colored lines are also shown.

• Function Values: We define the function values for each of the six lines as shown below. Note that we treat the top
blue and orange lines as regular blue and orange lines because their values are very similar and therefore they function
the same for the purpose of our proofs.

– ΦB (𝑎, 𝑏) = −𝑥 − 𝑦 − 6𝑀

– ΦG (𝑎, 𝑏) = −𝑥 − 𝑦 − 3𝑀

– ΦO (𝑎, 𝑏) = −𝑥 − 𝑦 + 3𝑀

– ΦR (𝑎, 𝑏) = −𝑥 − 𝑦 + 6𝑀

– ΦT B (𝑎, 𝑏) = −𝑥 − (𝑦 − 𝑀 − 1) − 6𝑀

– ΦT O (𝑎, 𝑏) = −𝑥 − (𝑦 − 𝑀 − 1) + 3𝑀

• Gradients: For every colored point, its gradient is defined as either (−1/2, 0) or (0,−1/2). Generally, a colored
point has gradient (−1/2, 0) if it is adjacent to a white point, otherwise it has gradient (0,−1/2). This rule has a few
exceptions (see Fig. 4), therefore we define the gradient values more strictly in the second piecewise function below,
(Φ𝑥 (𝑎, 𝑏),Φ𝑦 (𝑎, 𝑏)).

3. White Background: This region includes every point not mentioned in the above, i.e. the white points. Note that white
points have larger values than blue and green points, but smaller than orange and red points. We denote white points
by W . For the function values of the background we use Φ𝑊 (𝑥, 𝑦) = −𝑥 + 𝑀 · 𝟙{𝑥 ≥ 𝐾} + 𝑀. The gradients of the
background are always (−1/2, 0).
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Φ(𝑎, 𝑏) =



ΦB (𝑎, 𝑏), for 𝐾 − 2 ≤ 𝑎 ≤ 𝐾 and 0 ≤ 𝑏 ≤ 𝐾,
𝐾 − 2 ≤ 𝑎 ≤ 2𝑁 + 4 and 𝐾 − 2 ≤ 𝑏 ≤ 𝐾,
2𝑁 + 2 ≤ 𝑎 ≤ 2𝑁 + 4 and 𝐾 ≤ 𝑏 ≤ 2𝑁 + 2

ΦO (𝑎, 𝑏), for 𝐾 ≤ 𝑎 ≤ 𝐾 + 2 and 0 ≤ 𝑏 ≤ 𝐾 − 2,
𝐾 ≤ 𝑎 ≤ 2𝑁 + 4 and 𝐾 ≤ 𝑏 ≤ 𝐾 + 2,
2𝑁 + 4 ≤ 𝑎 ≤ 2𝑁 + 6 and 𝐾 − 4 ≤ 𝑏 ≤ 2𝑁 + 2

ΦG (𝑎, 𝑏), for 𝐾 − 2 ≤ 𝑎 ≤ 𝐾 and 𝐾 + 2 ≤ 𝑏 ≤ 𝑀 − 2,
𝑁 − 2 ≤ 𝑎 ≤ 𝐾 and 𝐾 + 2 ≤ 𝑏 ≤ 𝐾 + 4,
𝑁 − 2 ≤ 𝑎 ≤ 𝑁 and 𝑁 + 2 ≤ 𝑏 ≤ 𝐾 + 4

ΦR (𝑎, 𝑏), for 𝐾 ≤ 𝑎 ≤ 𝐾 + 2 and 𝐾 ≤ 𝑏 ≤ 𝑀 − 2,
𝑁 ≤ 𝑎 ≤ 𝐾 + 2 and 𝐾 ≤ 𝑏 ≤ 𝐾 + 2,
𝑁 ≤ 𝑎 ≤ 𝑁 + 2 and 𝑁 + 2 ≤ 𝑏 ≤ 𝐾 + 2

ΦT B (𝑎, 𝑏), for 𝐾 − 2 ≤ 𝑎 ≤ 𝐾 and 𝑀 − 1 ≤ 𝑏 ≤ 𝑀

ΦT O (𝑎, 𝑏), for 𝐾 ≤ 𝑎 ≤ 𝐾 + 2 and 𝑀 − 1 ≤ 𝑏 ≤ 𝑀

Φ𝑀𝐴𝑋−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏), for 2 ≤ 𝑎 ≤ 𝑁 + 2 and 2 ≤ 𝑏 ≤ 𝑁 + 2

Φ𝑀𝐼𝑁−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏), for 2𝑁 + 2 ≤ 𝑎 ≤ 3𝑁 + 2 and 2𝑁 + 2 ≤ 𝑏 ≤ 3𝑁 + 2

ΦW (𝑎, 𝑏), elsewhere
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(Φ𝑥 (𝑎, 𝑏),Φ𝑦 (𝑎, 𝑏)) =



(
− 1

2 , 0
)
, for 𝑎 = 𝐾 − 3/2 and 0 ≤ 𝑏 ≤ 𝐾 (B),

𝐾 − 2 ≤ 𝑎 ≤ 2𝑁 + 3 and 𝑏 = 𝐾 − 1/2 (B),
𝑎 = 2𝑁 + 5/2 and 𝐾 ≤ 𝑏 ≤ 2𝑁 + 2 (B),
𝑎 = 𝐾 + 3/2 and 0 ≤ 𝑏 ≤ 𝐾 − 3 (O),
𝐾 + 1 ≤ 𝑎 ≤ 2𝑁 + 5 and 𝑏 = 𝐾 − 7/2 (O),
𝑎 = 2𝑁 + 11/2 and 𝐾 − 4 ≤ 𝑏 ≤ 2𝑁 + 2 (O),
𝑎 = 𝐾 − 3/2 and 𝐾 + 3 ≤ 𝑏 ≤ 𝑀 (G, T B),
𝑁 − 2 ≤ 𝑎 ≤ 𝐾 − 1 and 𝑏 = 𝐾 + 7/2 (G),
𝑎 = 𝑁 − 3/2 and 𝑁 + 2 ≤ 𝑏 ≤ 𝐾 + 4 (G),
𝑎 = 𝐾 + 3/2 and 𝐾 ≤ 𝑏 ≤ 𝑀 (R, T O),
𝑁 + 1 ≤ 𝑎 ≤ 𝐾 + 2 and 𝑏 = 𝐾 + 1/2 (R),
𝑎 = 𝑁 + 3/2 and 𝑁 + 2 ≤ 𝑏 ≤ 𝐾 + 1 (R)

(
0,− 1

2

)
, for 𝑎 = 𝐾 − 1/2 and 0 ≤ 𝑏 ≤ 𝐾 − 1 (B),

𝐾 − 1 ≤ 𝑎 ≤ 2𝑁 + 4 and 𝑏 = 𝐾 − 3/2 (B),
𝑎 = 2𝑁 + 7/2 and 𝐾 − 1 ≤ 𝑏 ≤ 2𝑁 + 2 (B),
𝑎 = 𝐾 + 1/2 and 0 ≤ 𝑏 ≤ 𝐾 − 2 (O),
𝐾 ≤ 𝑎 ≤ 2𝑁 + 5 and 𝑏 = 𝐾 − 5/2 (O),
𝑎 = 2𝑁 + 9/2 and 𝐾 − 3 ≤ 𝑏 ≤ 2𝑁 + 2 (O),
𝑎 = 𝐾 − 1/2 and 𝐾 + 2 ≤ 𝑏 ≤ 𝑀 (G, T B),
𝑁 − 1 ≤ 𝑎 ≤ 𝐾 and 𝑏 = 𝐾 + 5/2 (G),
𝑎 = 𝑁 − 1/2 and 𝑁 + 2 ≤ 𝑏 ≤ 𝐾 + 1 (G),
𝑎 = 𝐾 + 1/2 and 𝐾 + 1 ≤ 𝑏 ≤ 𝑀 (R, T O),
𝑁 ≤ 𝑎 ≤ 𝐾 + 1 and 𝑏 = 𝐾 + 3/2 (R),
𝑎 = 𝑁 + 1/2 and 𝑁 + 2 ≤ 𝑏 ≤ 𝐾 + 2 (R)

Φ𝑥𝑦,𝑀𝐴𝑋−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏), for 2 ≤ 𝑎 ≤ 𝑁 + 2 and 2 ≤ 𝑏 ≤ 𝑁 + 2

Φ𝑥𝑦,𝑀𝐼𝑁−𝑃𝐿𝑆 𝐵𝑂𝑋 (𝑎, 𝑏), for 2𝑁 + 2 ≤ 𝑎 ≤ 3𝑁 + 2 and 2𝑁 + 2 ≤ 𝑏 ≤ 3𝑁 + 2(
− 1

2 , 0
)
, elsewhere (W)

B.2. PLS Boxes. In order to complete the description of 𝑔, we will explain how the PLS Boxes are constructed. We will
show how to map an ITER instance to the two PLS Boxes included in each repetition of 𝑔. As an example, we will use the
ITER instance shown in Fig. 3a and Fig. 3b. Note that in these figures each column corresponds to the node that is aligned
with it in the accompanying ITER instance.

The purpose of this construction is to allow the optima of 𝑔 to appear only in the regions corresponding to ITER solutions.
This is essential for proving Theorem 2. Note that these regions are marked with a black rectangle labeled "MIN" or "MAX"
in Fig. 3a and Fig. 3b.

We will first describe the MIN-PLS Box. Recall that the input for ITER is a boolean circuit 𝐶 : [2𝑛] → [2𝑛] with 𝐶 (1) > 1,
for some natural number 𝑛. We want to partition the PLS Box into regions corresponding to each of the ITER nodes. We
partition the grid into 2𝑛 horizontal and 2𝑛 vertical strips of width 8, each corresponding to a node of the ITER input (recall
that each PLS Box has width 𝑁 = 2𝑛+3). Hence, the grid is split into 2𝑛 × 2𝑛 medium boxes of size 8 × 8. We refer to
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(a) MIN-PLS BOX (b) MAX-PLS BOX

Figure 3: PLS Boxes

Figure 4: PLS-Hardness construction overview
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medium boxes by using coordinates (𝑖, 𝑗), indicating that the box is the intersection of horizontal strip 𝑖 and vertical strip 𝑗
(with (1, 1) being the lower left box).

Note that the 𝑖 = 𝑗 diagonal contains 2𝑛 medium boxes, each of which will contain a minimum if and only if the
corresponding ITER node is a solution. Our construction must guarantee that minima can only appear in this diagonal, which
is colored light blue in Fig. 3a.

For simplicity, we will partition the PLS box into the regions described below:

1. Base: This region is independent of the ITER instance. It consists of a long horizontal orange line.

As can be seen in Fig. 4, a blue and an orange line enter the MIN-PLS Box from the middle of the medium box (1, 1).
From that point, we draw a horizontal orange line, all the way to the medium box (1, 2𝑛). Like all other lines, it has
width 2, lying on the bottom two rows of the first horizontal strip. This line ends at the 7th column of the medium box
(1, 2𝑛), leaving the last column empty (white).

2. Nodes: Each node will have a corresponding region, which will contain a minimum if and only if the node is a solution
(nodes 3, 6 in our example).

• For each node 𝑖 we draw two vertical lines (a blue and an orange one) starting from the base, lying on the 4 middle
columns of the 𝑖-th vertical strip. The lines go up to the middle of the medium box (𝑖, 𝑖), i.e. to the 4th row of the
medium box. Note that for the first node this means extending the two lines that enter the box, up to the middle of the
box (1, 1).

• The above construction is only used for nodes that do not have a self-loop. For nodes with a self-loop, we leave the
respective vertical strip empty. In our example, these are the nodes 4, 7, 8.

3. Node Connections: These regions correspond to the edges of the ITER graph.

• For each node 𝑖 with 𝐶 (𝑖) = 𝑗 > 𝑖 and 𝐶 ( 𝑗) > 𝑗 , we draw a horizontal blue line of width 2, starting right above the blue
line corresponding to the node 𝑖 (thus lying the 5th and 6th rows of the 𝑖-th horizontal strip). This line is terminated
when it reaches the vertical blue line in the medium box (𝑖, 𝑗), as can be seen, e.g., with the line connecting the regions
of nodes 5 and 6 of our example in Fig. 3a.

• If this horizontal blue line encounters some pair of vertical blue-orange lines belonging to a node other than 𝑗 , then it
is overwritten by the vertical line in the intersection. This happens with the line corresponding to the edge (2, 6) in our
example, where it is overwritten by the vertical lines belonging to nodes 3 and 5.

4. Background: All other grid points are defined in the same way as the "white" points outside of the PLS Boxes (see
Appendix B.1).

The function values of the grid points are defined exactly as in Appendix B.1 for each color. It remains to describe the
gradient values for each region.

1. Base orange line: For each node 𝑖 with 𝐶 (𝑖) > 𝑖, the gradient of the two middle points (4th and 5th) of the the 2nd row
of the medium box (1, 𝑖) (i.e. the upper half of the orange line) is (0,−1/2). Everywhere else, it is (−1/2, 0).

2. Vertical lines: The gradients in the "outer" half of each colored line (i.e. the half that touches the white background) are
(−1/2, 0). The gradients in the inner half are (0,−1/2).

3. Blue horizontal lines: For each node 𝑖 with 𝐶 (𝑖) = 𝑗 > 𝑖 and 𝐶 ( 𝑗) > 𝑗 , the gradient of the two middle points (4th and
5th) of the 5th row of the medium box (𝑖, 𝑖) (i.e. the lower half of the blue line) is (0,−1/2). Everywhere else, it is
(−1/2, 0).

4. Background: The gradient is (−1/2, 0) for every grid point in the background.

The MAX-PLS Box is the same as the MIN-PLS Box, rotated by 180◦. Its construction is almost identical, with the
following minor differences:

• Orange lines are now green and blue lines are red.

• The green/red lines now enter the box from the upper right, therefore the numbering of the medium boxes begins from the
upper right corner and increases while going down or left. This is why the ITER instance is written from right to left in
Fig. 3a.
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• Gradients are unaffected by the 180◦ rotation, as shown in Fig. 3a, where the red and green arrows still point up or to the
right, despite the shape’s rotation. The purpose of this is to make the box contain a maximum instead of a minimum.

Non-grid points inside the PLS Boxes are defined by the biquintic interpolation shown in Appendix B.3. This completes the
construction of the PLS Boxes.

B.3. Biquintic Interpolation. Given the function and gradient values on the points of the 𝑀 × 𝑀 grid, we want to
construct a 𝐶2 continuous function on the whole tile that takes the specified values on the grid points. For this purpose,
similar to [13, 16], we will use polynomial interpolation. In particular, we will construct one polynomial for each small
box based on the specified function and gradient values on the 4 corners of the box. Apart from the corner constraints, the
polynomials should satisfy 𝐶2 continuity constraints over the common edges between adjacent small boxes. Let 𝑔𝑎,𝑏 (𝑥, 𝑦)
be the polynomial function inside the box with corners (𝑎, 𝑏), (𝑎 + 1, 𝑏), (𝑎 + 1, 𝑏 + 1), (𝑎, 𝑏 + 1), which we denote as
𝑠𝑚(𝑎, 𝑏). The continuity equations for a box in the interior of the grid are the following:

• Zero order continuity:

– 𝑔𝑎,𝑏 (𝑎, 𝑦) = 𝑔𝑎−1,𝑏 (𝑎, 𝑦)
– 𝑔𝑎,𝑏 (𝑎 + 1, 𝑦) = 𝑔𝑎+1,𝑏 (𝑎 + 1, 𝑦)
– 𝑔𝑎,𝑏 (𝑥, 𝑏) = 𝑔𝑎,𝑏−1 (𝑥, 𝑏)
– 𝑔𝑎,𝑏 (𝑥, 𝑏 + 1) = 𝑔𝑎,𝑏+1 (𝑥, 𝑏 + 1)

• First order continuity:

– 𝑔
𝑎,𝑏
𝑥 (𝑎, 𝑦) = 𝑔𝑎−1,𝑏

𝑥 (𝑎, 𝑦), 𝑔
𝑎,𝑏
𝑦 (𝑎, 𝑦) = 𝑔𝑎−1,𝑏

𝑦 (𝑎, 𝑦)
– 𝑔

𝑎,𝑏
𝑥 (𝑎 + 1, 𝑦) = 𝑔𝑎+1,𝑏𝑥 (𝑎 + 1, 𝑦), 𝑔

𝑎,𝑏
𝑦 (𝑎 + 1, 𝑦) = 𝑔𝑎+1,𝑏𝑦 (𝑎 + 1, 𝑦)

– 𝑔
𝑎,𝑏
𝑥 (𝑥, 𝑏) = 𝑔𝑎,𝑏−1

𝑥 (𝑥, 𝑏), 𝑔
𝑎,𝑏
𝑦 (𝑥, 𝑏) = 𝑔𝑎,𝑏−1

𝑦 (𝑥, 𝑏)
– 𝑔

𝑎,𝑏
𝑥 (𝑥, 𝑏 + 1) = 𝑔𝑎,𝑏+1𝑥 (𝑥, 𝑏 + 1), 𝑔

𝑎,𝑏
𝑦 (𝑥, 𝑏 + 1) = 𝑔𝑎,𝑏+1𝑦 (𝑥, 𝑏 + 1)

• Second order continuity:

– 𝑔
𝑎,𝑏
𝑥𝑥 (𝑎, 𝑦) = 𝑔𝑎−1,𝑏

𝑥𝑥 (𝑎, 𝑦), 𝑔𝑎,𝑏𝑥𝑦 (𝑎, 𝑦) = 𝑔𝑎−1,𝑏
𝑥𝑦 (𝑎, 𝑦), 𝑔𝑎,𝑏𝑦𝑦 (𝑎, 𝑦) = 𝑔𝑎−1,𝑏

𝑦𝑦 (𝑎, 𝑦)
– 𝑔

𝑎,𝑏
𝑥𝑥 (𝑎 + 1, 𝑦) = 𝑔𝑎+1,𝑏𝑥𝑥 (𝑎 + 1, 𝑦), 𝑔𝑎,𝑏𝑥𝑦 (𝑎 + 1, 𝑦) = 𝑔𝑎+1,𝑏𝑥𝑦 (𝑎 + 1, 𝑦), 𝑔𝑎,𝑏𝑦𝑦 (𝑎 + 1, 𝑦) = 𝑔𝑎+1,𝑏𝑦𝑦 (𝑎 + 1, 𝑦)

– 𝑔
𝑎,𝑏
𝑥𝑥 (𝑥, 𝑏) = 𝑔𝑎,𝑏−1

𝑥𝑥 (𝑥, 𝑏), 𝑔𝑎,𝑏𝑥𝑦 (𝑥, 𝑏) = 𝑔𝑎,𝑏−1
𝑥𝑦 (𝑥, 𝑏), 𝑔𝑎,𝑏𝑦𝑦 (𝑥, 𝑏) = 𝑔𝑎,𝑏−1

𝑦𝑦 (𝑥, 𝑏)
– 𝑔

𝑎,𝑏
𝑥𝑥 (𝑥, 𝑏 + 1) = 𝑔𝑎,𝑏+1𝑥𝑥 (𝑥, 𝑏 + 1), 𝑔𝑎,𝑏𝑥𝑦 (𝑥, 𝑏 + 1) = 𝑔𝑎,𝑏+1𝑥𝑦 (𝑥, 𝑏 + 1), 𝑔𝑎,𝑏𝑦𝑦 (𝑥, 𝑏 + 1) = 𝑔𝑎,𝑏+1𝑦𝑦 (𝑥, 𝑏 + 1)

We observe that it suffices to guarantee the continuity constraints on the edge between boxes 𝑠𝑚(𝑎, 𝑏) and 𝑠𝑚(𝑎 − 1, 𝑏)
and the edge between boxes 𝑠𝑚(𝑎, 𝑏) and 𝑠𝑚(𝑎, 𝑏 − 1) for all (𝑎, 𝑏) ∈ ⟦0, 𝑀 − 1⟧2 (see Fig. 5). This way, inductively, all
constraints will be satisfied. The resulting set of constraints is minimal, as all constraints are independent.

The standard bicubic interpolation scheme, which has been used in other similar constructions [13, 16] fails to

Figure 5: A small box and its neighbours on the left and at the bottom

preserve Hessian-Lipschitzness, because the number of free parameters is less than the number of constraints on the
corners. In particular, for 𝑠𝑚(𝑎, 𝑏) there are 12 constraints for the target function and gradient values on the 4 corners
and 9 constraints for the second order derivatives on the three corners that are common either with box 𝑠𝑚(𝑎 − 1, 𝑏) or
𝑠𝑚(𝑎, 𝑏 − 1). This gives a total of 21 independent constraints, while bicubic interpolation has 16 free parameters. Thus, we
will need higher degree interpolation schemes. The minimal degree required for variable 𝑥 and variable 𝑦 is 5. We can

20



The Computational Complexity of Finding Second-Order Stationary Points

see this by considering the marginalisation of the polynomial on the edges of the box. Such a marginalisation is a one
variable polynomial of 𝑥 or 𝑦, depending on the edge. The marginal polynomial on a box edge should satisfy 6 constraints,
corresponding to its value, first and second derivative on the two corners of the edge. Polynomials of degree less than 5
could not satisfy any arbitrary value of such constraints, thus marginals wrt 𝑥 and 𝑦 should have degree at least 5. It turns
out that degree 5 for 𝑥 and 𝑦 suffices to satisfy all corner and edge constraints. This scheme is called biquintic interpolation.
Next, we will show the exact formulae that we used. The general form of the polynomial is the following:

𝑔𝑎,𝑏 (𝑥, 𝑦) =
5∑︁
𝑖=0

5∑︁
𝑗=0
𝑐
𝑎,𝑏
𝑖, 𝑗
(𝑥 − 𝑎)𝑖 (𝑦 − 𝑏) 𝑗 ∀𝑎 ∈ ⟦0, 𝑀 − 1⟧, 𝑏 ∈ ⟦0, 𝑀 − 1⟧

To determine the unknown coefficients 𝑐𝑎,𝑏
𝑖, 𝑗

based on the corner values and derivatives, we apply the following:
We consider matrix 𝐴 as follows:

𝐴 :=



1 0 0 0 0 0
1 1 1 1 1 1
0 1 0 0 0 0
0 1 2 3 4 5
0 0 2 0 0 0
0 0 2 6 12 20


Also, we consider matrix 𝑉𝑎,𝑏 as follows:

𝑉𝑎,𝑏 :=



Φ(𝑎, 𝑏) Φ(𝑎, 𝑏 + 1) Φ𝑦 (𝑎, 𝑏) Φ𝑦 (𝑎, 𝑏 + 1) 0 0
Φ(𝑎 + 1, 𝑏) Φ(𝑎 + 1, 𝑏 + 1) Φ𝑦 (𝑎 + 1, 𝑏) Φ𝑦 (𝑎 + 1, 𝑏 + 1) 0 0
Φ𝑥 (𝑎, 𝑏) Φ𝑥 (𝑎, 𝑏 + 1) 0 0 0 0

Φ𝑥 (𝑎 + 1, 𝑏) Φ𝑥 (𝑎 + 1, 𝑏 + 1) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


with 𝑉𝑎,𝑏 containing the target function and derivative values on the corners. In general, box 𝑉𝑎,𝑏

𝑖:𝑖+1, 𝑗: 𝑗+1, for 𝑖 = 0, 2, 4, 𝑗 =

0, 2, 4, contains the target values of 𝜕(𝑖+ 𝑗)/2𝑔𝑎,𝑏 (𝑥,𝑦)
𝜕𝑥𝑖/2𝜕𝑦 𝑗/2 on the four corners. For this construction we set all higher order

derivatives equal to zero on the corners. Finally we write the set of unknown polynomial coefficients in matrix form:

𝐶𝑎,𝑏 :=



𝑐
𝑎,𝑏

0,0 𝑐
𝑎,𝑏

0,1 𝑐
𝑎,𝑏

0,2 𝑐
𝑎,𝑏

0,3 𝑐
𝑎,𝑏

0,4 𝑐
𝑎,𝑏

0,5
𝑐
𝑎,𝑏

1,0 𝑐
𝑎,𝑏

1,1 𝑐
𝑎,𝑏

1,2 𝑐
𝑎,𝑏

1,3 𝑐
𝑎,𝑏

1,4 𝑐
𝑎,𝑏

1,5
𝑐
𝑎,𝑏

2,0 𝑐
𝑎,𝑏

2,1 𝑐
𝑎,𝑏

2,2 𝑐
𝑎,𝑏

2,3 𝑐
𝑎,𝑏

2,4 𝑐
𝑎,𝑏

2,5
𝑐
𝑎,𝑏

3,0 𝑐
𝑎,𝑏

3,1 𝑐
𝑎,𝑏

3,2 𝑐
𝑎,𝑏

3,3 𝑐
𝑎,𝑏

3,4 𝑐
𝑎,𝑏

3,5
𝑐
𝑎,𝑏

4,0 𝑐
𝑎,𝑏

4,1 𝑐
𝑎,𝑏

4,2 𝑐
𝑎,𝑏

4,3 𝑐
𝑎,𝑏

4,4 𝑐
𝑎,𝑏

4,5
𝑐
𝑎,𝑏

5,0 𝑐
𝑎,𝑏

5,1 𝑐
𝑎,𝑏

5,2 𝑐
𝑎,𝑏

5,3 𝑐
𝑎,𝑏

5,4 𝑐
𝑎,𝑏

5,5


The corner constraints for polynomial 𝑔𝑎,𝑏 (𝑥, 𝑦) give a system of equations which can be written in matrix form as follows:

𝐴 · 𝐶𝑎,𝑏 · 𝐴𝑇 = 𝑉𝑎,𝑏

Matrix 𝐴 is invertible and thus the system is solvable and the coefficients are calculated using the formula:

𝐶𝑎,𝑏 = 𝐴−1 · 𝑉𝑎,𝑏 · (𝐴−1)𝑇

It is easy to validate that this interpolation scheme satisfies the edge constraints that we described earlier. The idea is that the
marginalisation of 𝑔𝑎,𝑏 (𝑥, 𝑦) and its derivatives on box edges are one variable polynomials, the corners of the edge impose
𝑑 + 1 (independent) constraints on the marginal polynomial, where 𝑑 is its degree, and these constraints are the same in the
two adjacent boxes. Thus, the resulting polynomials of two adjacent boxes on the common edge are uniquely determined
by the corner constraints and are equal, since the constraints are the same. We will give some illustrative examples of this
argument, focusing on the edge 𝑦 = 𝑏, 𝑎 ≤ 𝑥 ≤ 𝑎 + 1, which is shared by boxes (𝑎, 𝑏) and (𝑎, 𝑏 − 1) :
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• First, let’s study the zero-order continuity condition. We want to show that 𝑔𝑎,𝑏 (𝑥, 𝑦 = 𝑏) = 𝑔𝑎,𝑏−1 (𝑥, 𝑦 = 𝑏) for all
𝑥. Both of these functions are polynomials of 𝑥 of degree at most 5. The 6 constraints are 𝑔𝑎,𝑏 (𝑎, 𝑏) = 𝑔𝑎,𝑏−1 (𝑎, 𝑏) =
Φ(𝑎, 𝑏), 𝑔𝑎,𝑏 (𝑎 + 1, 𝑏) = 𝑔𝑎,𝑏−1 (𝑎 + 1, 𝑏) = Φ(𝑎 + 1, 𝑏), 𝑔

𝑎,𝑏
𝑥 (𝑎, 𝑏) = 𝑔𝑎,𝑏−1

𝑥 (𝑎, 𝑏) = Φ𝑥 (𝑎, 𝑏), 𝑔
𝑎,𝑏
𝑥 (𝑎 + 1, 𝑏) =

𝑔
𝑎,𝑏−1
𝑥 (𝑎 + 1, 𝑏) = Φ𝑥 (𝑎 + 1, 𝑏), 𝑔

𝑎,𝑏
𝑥𝑥 (𝑎, 𝑏) = 𝑔

𝑎,𝑏−1
𝑥𝑥 (𝑎, 𝑏) = Φ𝑥𝑥 (𝑎, 𝑏) and 𝑔𝑎,𝑏𝑥𝑥 (𝑎 + 1, 𝑏) = 𝑔

𝑎,𝑏−1
𝑥𝑥 (𝑎 + 1, 𝑏) =

Φ𝑥𝑥 (𝑎 + 1, 𝑏). The two polynomials of degree at most 5 satisfy the same 6 independent constraints, thus they are equal.

• Now let’s consider the continuity of the derivative w.r.t. 𝑦. We want to show that 𝑔𝑎,𝑏𝑦 (𝑥, 𝑦 = 𝑏) = 𝑔
𝑎,𝑏−1
𝑦 (𝑥, 𝑦 = 𝑏)

for all 𝑥. The 6 constraints are 𝑔
𝑎,𝑏
𝑦 (𝑎, 𝑏) = 𝑔

𝑎,𝑏−1
𝑦 (𝑎, 𝑏) = Φ𝑦 (𝑎, 𝑏), 𝑔

𝑎,𝑏
𝑦 (𝑎 + 1, 𝑏) = 𝑔

𝑎,𝑏−1
𝑦 (𝑎 + 1, 𝑏) =

Φ𝑦 (𝑎 + 1, 𝑏), 𝑔
𝑎,𝑏
𝑥𝑦 (𝑎, 𝑏) = 𝑔𝑎,𝑏−1

𝑥𝑦 (𝑎, 𝑏) = 0, 𝑔
𝑎,𝑏
𝑥𝑦 (𝑎 + 1, 𝑏) = 𝑔𝑎,𝑏−1

𝑥𝑦 (𝑎 + 1, 𝑏) = 0, 𝑔
𝑎,𝑏
𝑥𝑥𝑦 (𝑎, 𝑏) = 𝑔𝑎,𝑏−1

𝑥𝑥𝑦 (𝑎, 𝑏) =
0 and 𝑔𝑎,𝑏𝑥𝑥𝑦 (𝑎 + 1, 𝑏) = 𝑔𝑎,𝑏−1

𝑥𝑥𝑦 (𝑎 + 1, 𝑏) = 0. Again, the two polynomials have degree at most 5 and they satisfy the same
6 independent constraints, thus they are equal.

• Finally, let’s consider the continuity of the second derivative w.r.t. 𝑥. We want to show that 𝑔𝑎,𝑏𝑥𝑥 (𝑥, 𝑦 = 𝑏) = 𝑔𝑎,𝑏−1
𝑥𝑥 (𝑥, 𝑦 =

𝑏) for all 𝑥. The two polynomials have degree at most 4 and the 4 constraints are:

– 𝑔
𝑎,𝑏
𝑥𝑥 (𝑎, 𝑏) = 𝑔𝑎,𝑏−1

𝑥𝑥 (𝑎, 𝑏) = 0
– 𝑔

𝑎,𝑏
𝑥𝑥 (𝑎 + 1, 𝑏) = 𝑔𝑎,𝑏−1

𝑥𝑥 (𝑎 + 1, 𝑏) = 0
–

∫ 𝑎+1
𝑎

𝑔
𝑎,𝑏
𝑥𝑥 (𝑥, 𝑏) 𝑑𝑥 =

∫ 𝑎+1
𝑎

𝑔
𝑎,𝑏−1
𝑥𝑥 (𝑥, 𝑏) 𝑑𝑥 = Φ𝑥 (𝑎 + 1, 𝑏) −Φ𝑥 (𝑎, 𝑏)

–
∫ 𝑎+1
𝑎

(∫ 𝑥

𝑎
𝑔
𝑎,𝑏
𝑥𝑥 (𝑥′, 𝑏) 𝑑𝑥′ +Φ𝑥 (𝑎, 𝑏)

)
𝑑𝑥 =

∫ 𝑎+1
𝑎

(∫ 𝑥

𝑎
𝑔
𝑎,𝑏−1
𝑥𝑥 (𝑥′, 𝑏) 𝑑𝑥′ +Φ𝑥 (𝑎, 𝑏)

)
𝑑𝑥 =

Φ(𝑎 + 1, 𝑏) −Φ(𝑎, 𝑏)

B.4. Biquintic Interpolation does not introduce stationary points outside the areas of ITER solutions. The main idea
of the PLS-hardness construction is that approximate second order stationary points of the continuous function 𝑔(𝑥, 𝑦),
which is constructed by stitching together the small box polynomials 𝑔𝑎,𝑏 (𝑥, 𝑦), can only occur in areas that correspond to
solutions of the embedded ITER problem.

A brute-force approach to proving this would be to consider each small box individually, based on the exact for-
mula of its polynomial. We adopt a more efficient approach, similar to [16], where we assign the small boxes that do not
lie in an ITER solution region into 4 different groups (see figure...). Moreover, we define a fifth group, group 0, where
we assign all the boxes that lie close to an ITER solution. Boxes that belong to the same group have similar behaviour,
regardless of their exact position in the tile. For groups 1 − 4, the only information used to define a group is the direction of
the gradients on the four corners and (partial) information about the colors of the corners. The step allowing us to drop the
full information about the colours and only use a small set of conditions on the corner values is the use of symmetries
w.r.t a set of transformations. In particular, for small boxes that do not lie in an ITER solution region we need to show
that each possible combination of color and gradient direction on the corners creates a small box that is symmetric to the
representative of one of the groups 1 − 4. This means that applying a number of the transformations on the small box makes
it fit to the conditions of the group. This way it is possible to classify each small box that appears in the construction into
one of the 5 groups. At this point the only things we need to check is that:

(a) For each one of the groups 1 − 4 small boxes that satisfy the conditions of the group could not contain any stationary
points.

(b) The transformations we consider do not introduce spurious stationary points when applied to the small boxes.

First, we will focus on the transformations. Similarly to [16], the transformations we consider are the following:

1. Reflection with respect to the 𝑦 = 𝑏 + 1/2-axis. Applying this transformation moves the top two corners of the box at the
bottom (and vice-versa) and flips the sign of the 𝑦-coordinate of each arrow.

2. Reflection with respect to the 𝑥 = 𝑎 + 1/2-axis. Applying this transformation moves the left two corners of the box to the
right (and vice-versa) and flips the sign of the 𝑥-coordinate of each arrow.

3. Reflection with respect to the axis 𝑦 = 𝑥 − 𝑎 + 𝑏. Applying this transformation swaps the corners (𝑎, 𝑏 + 1) and (𝑎 + 1, 𝑏)
of the box and the 𝑥 - and 𝑦-coordinate of the arrows at all four corners.

4. Reflection with respect to the axis 𝑦 = −𝑥 + 𝑎 + 1 + 𝑏. Applying this transformation swaps the corners (𝑎, 𝑏) and
(𝑎 + 1, 𝑏 + 1) of the box and the 𝑥 - and 𝑦-coordinate of the arrows at all four corners and flips the sign of the 𝑥− and 𝑦−
coordinates of each arrow.
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Figure 6: Group 1

Figure 7: Group 2

5. Negation. Applying this transformation flips the sign of the values and the sign of the 𝑥− and 𝑦− coordinates of the
arrows at the four corners.

It is easy to validate that the above transformations "commute" with biquintic interpolation. Without loss of generality
we consider a box centered at (0, 0). Applying transformation 1 to the box and then taking the biquintic interpolation of
the reflected box yields the same result as taking the interpolation of the original box and then applying the reflection
to the interpolated function (which corresponds to considering (𝑥, 𝑦) → 𝑔𝑎,𝑏 (𝑥, 1 − 𝑦)). Similarly, transformation
2 has the same effect as taking 𝑔𝑎,𝑏 (1 − 𝑥, 𝑦), transformation 3 the same as taking 𝑔𝑎,𝑏 (𝑦, 𝑥), transformation 4 the
same as taking 𝑔𝑎,𝑏 (1 − 𝑦, 1 − 𝑥) and transformation 5 the same as taking −𝑔𝑎,𝑏 (𝑥, 𝑦). Obviously, if the interpo-
lation polynomial does not have any 𝜀-stationary points, then applying any reflection or taking the negation cannot
change that property. Thus, applying combinations of the above transformations does not introduce spurious stationary points.

Now it remains to classify all the small boxes that do not lie close to the ITER solutions into the four groups and
show that the conditions of each such group imply the inexistence of stationary points. The clustering of the boxes into the
four groups is given in Fig. 6, Fig. 7, Fig. 8 and Fig. 9. We have to ensure that all small boxes that belong to Groups
1-4 do not contain any approximate SOSP. Note that it suffices to focus on SOSPs of a fixed constant accuracy 𝜀0, e.g.
𝜀0 = 0.001, because this would imply that the construction works for all 𝜀 ≤ 𝜀0 and thus SOSP is PLS-hard for these values

Figure 8: Group 3
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Figure 9: Group 4

of 𝜀. Moreover, we observe that it suffices to show that boxes in Groups 1-4 do not contain any 𝜀0-FOSPs, as this would
imply that they also do not contain any 𝜀0-SOSPs. This is exactly what we prove in the following Lemma.

Lemma B.1. The polynomials 𝑔𝑎,𝑏 (𝑥, 𝑦) of small boxes that belong to Groups 1-4 do not contain any 0.001-FOSPs.

Proof. Let 𝜀0 := 0.001. We will examine one by one the groups 1-4. For each group we calculate the expression of the
polynomial, parameterised by the values 𝑎, 𝑏, 𝑐, 𝑑 on the corners. The gradients on the corners are fixed for each group (see
Fig. 10, Fig. 11, Fig. 12 and Fig. 13). Moreover, for groups 2,3,4, equality constraints hold for the polynomial values on the
corners. In this case, the number of free parameters (𝑎, 𝑏, 𝑐, 𝑑) is reduced, simplifying the analysis.
For group 1 the analysis is straightforward. We prove that the partial derivative w.r.t. 𝑥 is always less than 𝜀0. For the other
groups we need to divide the small box into two kinds of subregions: the ones where the derivative w.r.t. 𝑥 is provably less
than 𝜀0 and the ones where the derivative w.r.t. 𝑦 is less than 𝜀0.

The boxes in Group 1 are symmetric (w.r.t. transformations 1 − 5) to a box of the following form:

Conditions: 𝑎 ≥ 𝑏 + 1, 𝑐 ≥ 𝑑 + 1

Figure 10: Group 1 characteristic image

The expression of the polynomial in the small box is the following:

𝑃(𝑥, 𝑦) = 𝑐 + 𝑥5𝑦5 (−36𝑎 + 36𝑏 + 36𝑐 − 36𝑑) + 𝑥5𝑦4 (90𝑎 − 90𝑏 − 90𝑐 + 90𝑑) + 𝑥5𝑦3 (−60𝑎 + 60𝑏 + 60𝑐 − 60𝑑)
+ 𝑥5 (−6𝑐 + 6𝑑 + 3) + 𝑥4𝑦5 (90𝑎 − 90𝑏 − 90𝑐 + 90𝑑) + 𝑥4𝑦4 (−225𝑎 + 225𝑏 + 225𝑐 − 225𝑑)
+ 𝑥4𝑦3 (150𝑎 − 150𝑏 − 150𝑐 + 150𝑑) + 𝑥4 (15𝑐 − 15𝑑 − 15/2) + 𝑥3𝑦5 (−60𝑎 + 60𝑏 + 60𝑐 − 60𝑑)
+ 𝑥3𝑦4 (150𝑎 − 150𝑏 − 150𝑐 + 150𝑑) + 𝑥3𝑦3 (−100𝑎 + 100𝑏 + 100𝑐 − 100𝑑) + 𝑥3 (−10𝑐 + 10𝑑 + 5)
− 𝑥/2 + 𝑦5 (6𝑎 − 6𝑐) + 𝑦4 (−15𝑎 + 15𝑐) + 𝑦3 (10𝑎 − 10𝑐)

The expression for the derivative (after simplification) is the following:

𝑃𝑥 (𝑥, 𝑦) = (1 − 𝑥)2𝑥2 ((−180𝑎 + 180𝑏 + 180𝑐 − 180𝑑)𝑦5 + (450𝑎 − 450𝑏 − 450𝑐 + 450𝑑)𝑦4

+ (−300𝑎 + 300𝑏 + 300𝑐 − 300𝑑)𝑦3 − 30𝑐 + 30𝑑 + 15) − 1/2
= (1 − 𝑥)2𝑥2 ((𝑏 − 𝑎) (180𝑦5 − 450𝑦4 + 300𝑦3) + (𝑑 − 𝑐) (−180𝑦5 + 450𝑦4 − 300𝑦3 + 30) + 15) − 1/2

For 0 ≤ 𝑦 ≤ 1 we have:

• −180𝑦5 + 450𝑦4 − 300𝑦3 + 30 ≥ 0⇒
(𝑑 − 𝑐) (−180𝑦5 + 450𝑦4 − 300𝑦3 + 30) ≤ −(−180𝑦5 + 450𝑦4 − 300𝑦3 + 30)

• 180𝑦5 − 450𝑦4 + 300𝑦3 ≥ 0⇒ (𝑏 − 𝑎) (180𝑦5 − 450𝑦4 + 300𝑦3) ≤ −(180𝑦5 − 450𝑦4 + 300𝑦3)
• (1 − 𝑥)2𝑥2 ≥ 0
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Thus we obtain:

𝑃𝑥 (𝑥, 𝑦) ≤ (1 − 𝑥)2𝑥2 (−(180𝑦5 − 450𝑦4 + 300𝑦3) − (−180𝑦5 + 450𝑦4 − 300𝑦3 + 30) + 15) − 1/2
= −15(1 − 𝑥)2𝑥2 − 1/2
≤ −1/2 < −𝜀0

The boxes in Group 2 are symmetric to a box of the following form:

Conditions: 𝑐 = 𝑎 + 1, 𝑑 = 𝑏 + 1, 𝑐 ≥ 𝑑 + 1
The expression of the polynomial in the small box is the following:

Figure 11: Group 2 characteristic image with areas of gradient activation

𝑃(𝑥, 𝑦) =𝑐 + 𝑥5𝑦5 (−36𝑎 + 36𝑏 + 36𝑐 − 36𝑑 + 18) + 𝑥5𝑦4 (90𝑎 − 90𝑏 − 90𝑐 + 90𝑑 − 45)
+𝑥5𝑦3 (−60𝑎 + 60𝑏 + 60𝑐 − 60𝑑 + 30) + 𝑥5 (−6𝑐 + 6𝑑) + 𝑥4𝑦5 (90𝑎 − 90𝑏 − 90𝑐 + 90𝑑 − 45)
+𝑥4𝑦4 (−225𝑎 + 225𝑏 + 225𝑐 − 225𝑑 + 225/2) + 𝑥4𝑦3 (150𝑎 − 150𝑏 − 150𝑐 + 150𝑑 − 75) + 𝑥4 (15𝑐 − 15𝑑)
+𝑥3𝑦5 (−60𝑎 + 60𝑏 + 60𝑐 − 60𝑑 + 30) + 𝑥3𝑦4 (150𝑎 − 150𝑏 − 150𝑐 + 150𝑑 − 75)
+𝑥3𝑦3 (−100𝑎 + 100𝑏 + 100𝑐 − 100𝑑 + 50) + 𝑥3 (−10𝑐 + 10𝑑) − 3𝑥𝑦5 + 15𝑥𝑦4/2 − 5𝑥𝑦3

+𝑦5 (6𝑎 − 6𝑐 + 3/2) + 𝑦4 (−15𝑎 + 15𝑐 − 4) + 𝑦3 (10𝑎 − 10𝑐 + 3) − 𝑦/2

The expressions for the derivatives (after simplification) is the following:

𝑃𝑥 (𝑥, 𝑦) = −(1 − 𝑥)2𝑥2 (30𝑐 − 30𝑑 − 90𝑦5 + 225𝑦4 − 150𝑦3) − 3𝑦5 + 15𝑦4/2 − 5𝑦3

𝑃𝑦 (𝑥, 𝑦) = (1 − 𝑦)
(
(90𝑥5 − 225𝑥4 + 150𝑥3 − 15𝑥 − 43/2) (𝑦2 − 𝑦3) + 𝑦3 − 1

2
𝑦 − 1

2

)
For 𝑦 < 2

3 we have:

• 90𝑥5 − 225𝑥4 + 150𝑥3 − 15𝑥 − 43/2 < 0 and 𝑦3 < 𝑦2, thus
(90𝑥5 − 225𝑥4 + 150𝑥3 − 15𝑥 − 43/2) (𝑦2 − 𝑦3) < 0

• 𝑦3 − 1
2𝑦 −

1
2 <

8
27 −

1
2 = − 11

54

• 1 − 𝑦 > 1
3

Putting it all together we have 𝑃𝑦 < − 11
162 < −𝜀0

For 𝑦 > 2
3 we have:

• −(1 − 𝑥)2𝑥2 ≤ 0
• 30𝑐 − 30𝑑 ≥ 30 and −90𝑦5 + 225𝑦4 − 150𝑦3 ≥ −15, thus 30𝑐 − 30𝑑 − 90𝑦5 + 225𝑦4 − 150𝑦3 > 15 > 0
• −3𝑦5 + 15𝑦4/2 − 5𝑦3 ≤ − 32

81

Thus we have 𝑃𝑥 < − 32
81 < −𝜀0
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The boxes in Group 3 are symmetric to a box of the following form:

Conditions: 𝑑 = 𝑐 − 1, 𝑏 = 𝑎 − 1, 𝑎 = 𝑐 − 1
The expression of the polynomial in the small box is the following:

Figure 12: Group 3 characteristic image with areas of gradient activation

𝑃(𝑥, 𝑦) =𝑐 + 𝑥5𝑦5 (−36𝑎 + 36𝑏 + 36𝑐 − 36𝑑 + 18) + 𝑥5𝑦4 (90𝑎 − 90𝑏 − 90𝑐 + 90𝑑 − 87/2)
+𝑥5𝑦3 (−60𝑎 + 60𝑏 + 60𝑐 − 60𝑑 + 27) + 𝑥5 (−6𝑐 + 6𝑑) + 𝑥4𝑦5 (90𝑎 − 90𝑏 − 90𝑐 + 90𝑑 − 93/2)
+𝑥4𝑦4 (−225𝑎 + 225𝑏 + 225𝑐 − 225𝑑 + 225/2) + 𝑥4𝑦3 (150𝑎 − 150𝑏 − 150𝑐 + 150𝑑 − 70) + 𝑥4 (15𝑐 − 15𝑑)
+𝑥3𝑦5 (−60𝑎 + 60𝑏 + 60𝑐 − 60𝑑 + 33) + 𝑥3𝑦4 (150𝑎 − 150𝑏 − 150𝑐 + 150𝑑 − 80)
+𝑥3𝑦3 (−100𝑎 + 100𝑏 + 100𝑐 − 100𝑑 + 50) + 𝑥3 (−10𝑐 + 10𝑑) − 3𝑥𝑦5 + 15𝑥𝑦4/2 − 5𝑥𝑦3

+𝑦5 (6𝑎 − 6𝑐 + 3/2) + 𝑦4 (−15𝑎 + 15𝑐 − 4) + 𝑦3 (10𝑎 − 10𝑐 + 3) − 𝑦/2

The expressions for the derivatives (after simplification) is the following:

𝑃𝑥 (𝑥, 𝑦) = −(1 − 𝑥)2 ((−90𝑦5 + 435𝑦4/2 − 135𝑦3 + 30)𝑥2 + 𝑦3 (6𝑦2 − 30𝑦/2 + 10) (𝑥 + 1/2))
𝑃𝑦 (𝑥, 𝑦) = (1 − 𝑥)𝑦2 ((−90𝑥4 + 285𝑥3/2 − 45𝑥2/2 − 45𝑥/2 − 15/2)𝑦2 +
(174𝑥4 − 276𝑥3 + 44𝑥2 + 44𝑥 + 14)𝑦 − 81𝑥4 + 129𝑥3 − 21𝑥2 − 21𝑥 − 6) − 15𝑦2 (𝑦 − 1)2 − 1/2

One can validate (e.g. using Wolfram Mathematica) that the following inequalities hold:

• −90𝑥4 + 285𝑥3/2 − 45𝑥2/2 − 45𝑥/2 − 15/2 ≤ 0 for 𝑥 ∈ [0, 1]
• 174𝑥4 − 276𝑥3 + 44𝑥2 + 44𝑥 + 14 < 30, for 𝑥 ∈ [0, 1]
• −81𝑥4 + 129𝑥3 − 21𝑥2 − 21𝑥 − 6 ≤ 0, for 𝑥 ∈ [0, 1]
• −90𝑦5 + 435𝑦4/2 − 135𝑦3 + 30 > 20 for all 𝑦 ∈ [0, 1].
• 6𝑦2 − 30𝑦/2 + 10 ≥ 1 for all 𝑦 ∈ [0, 1].

Thus, the partial derivatives are upper-bounded as follows:

𝑃𝑥 ≤ −(1 − 𝑥)2 (20𝑥2 + 𝑦3 (𝑥 + 1/2))
𝑃𝑦 ≤ 30(1 − 𝑥)𝑦3 − 15𝑦2 (𝑦 − 1)2 − 1/2

For 0 ≤ 𝑥 ≤ 1
61 and 0 ≤ 𝑦 ≤ 1/5 we have 𝑃𝑦 ≤ 30(1/5)3 − 1/2 < −𝜀0.

For 1 − 1
61 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1 we have 𝑃𝑦 ≤ 30/61 − 1/2 < −𝜀0.

For 0 ≤ 𝑥 ≤ 1 − 1
61 and 1/5 ≤ 𝑦 ≤ 1 we have 𝑃𝑥 ≤ −(1 − 𝑥)2 (20𝑥2 + 5−3 (𝑥 + 1/2)) < −0.003 < −𝜀0.

For 1
61 ≤ 𝑥 ≤ 1 − 1

61 and 0 ≤ 𝑦 ≤ 1/5 we have 𝑃𝑥 ≤ −20𝑥2 (1 − 𝑥)2 ≤ −20
(

1
61

)2 (
1 − 1

61

)2
< −𝜀0.
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The boxes in Group 4 are symmetric to a box of the following form:

Conditions: 𝑐 − 𝑎 = 1, 𝑑 − 𝑏 = 1, 𝑐 − 𝑑 = 1, 𝑎 − 𝑏 = 1
The expression of the polynomial in the small box is the following:

Figure 13: Group 4 characteristic image with areas of gradient activation

𝑃(𝑥, 𝑦) =𝑐 + 36𝑥5𝑦5 (−𝑎 + 𝑏 + 𝑐 − 𝑑) + 3𝑥5𝑦4 (60𝑎 − 60𝑏 − 60𝑐 + 60𝑑 − 1)/2 + 3𝑥5𝑦3 (−20𝑎 + 20𝑏 + 20𝑐 − 20𝑑 + 1)
−3𝑥5𝑦 + 3𝑥5 (−4𝑐 + 4𝑑 + 1)/2 + 3𝑥4𝑦5 (60𝑎 − 60𝑏 − 60𝑐 + 60𝑑 + 1)/2 + 225𝑥4𝑦4 (−𝑎 + 𝑏 + 𝑐 − 𝑑)
+5𝑥4𝑦3 (30𝑎 − 30𝑏 − 30𝑐 + 30𝑑 − 1) + 15𝑥4𝑦/2 + 𝑥4 (15𝑐 − 15𝑑 − 4) + 3𝑥3𝑦5 (−20𝑎 + 20𝑏 + 20𝑐 − 20𝑑 − 1)
+5𝑥3𝑦4 (30𝑎 − 30𝑏 − 30𝑐 + 30𝑑 + 1) + 100𝑥3𝑦3 (−𝑎 + 𝑏 + 𝑐 − 𝑑) − 5𝑥3𝑦 + 𝑥3 (−10𝑐 + 10𝑑 + 3) + 3𝑥𝑦5

−15𝑥𝑦4/2 + 5𝑥𝑦3 − 𝑥/2 + 3𝑦5 (4𝑎 − 4𝑐 + 1)/2 + 𝑦4 (−30𝑎 + 30𝑐 − 7)/2 + 2𝑦3 (5𝑎 − 5𝑐 + 1)

The expressions for the derivatives (after simplification) is the following:

𝑃𝑥 (𝑥, 𝑦) = −(1 − 𝑥)2 ((15𝑦4/2 − 15𝑦3 + 15𝑦 + 45/2)𝑥2 + (1 − 𝑦)3 (6𝑦2 + 3𝑦 + 1) (𝑥 + 1/2))

𝑃𝑦 (𝑥, 𝑦) = (1 − 𝑥)3 (1 − 𝑦)2
(
−15

2
(𝑥 + 1)𝑦2 + (6𝑥2 + 3𝑥 + 1) (𝑦 + 1/2)

)
− 15𝑦2 (𝑦 − 1)2 − 1/2

• 15𝑦4/2 − 15𝑦3 + 15𝑦 + 45/2 ≥ 45/2 for 𝑦 ∈ [0, 1]
• (6𝑥2 + 3𝑥 + 1) (𝑦 + 1/2) ≤ (6 + 3 + 1) (1 + 1/2) = 15 for 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 1]

𝑃𝑥 ≤ −(1 − 𝑥)2
(

45
2 𝑥

2 + (1 − 𝑦)3 (𝑥 + 1/2)
)

𝑃𝑦 ≤ 15(1 − 𝑥)3 (1 − 𝑦)2 − 15𝑦2 (𝑦 − 1)2 − 1/2

For 𝑥 ∈ [0.1, 0.9] and 𝑦 ∈ [0, 1] we have 𝑃𝑥 ≤ − 45
2 (1 − 𝑥)

2𝑥2 < −0.1 < −𝜀0
For 𝑥 ∈ [0.9, 1] and 𝑦 ∈ [0, 1] we have 𝑃𝑦 ≤ 15(1 − 𝑥)3 − 1/2 < 15

1000 − 1/2 < −𝜀0

For 𝑥 ∈ [0, 0.1] and 𝑦 ∈ [0, 0.85] we have 𝑃𝑥 ≤ − 1
2 (1 − 𝑥)

2 (1 − 𝑦)3 ≤ − 1
2 (0.9)

2 (0.15)3 < −𝜀0
For 𝑥 ∈ [0, 0.1] and 𝑦 ∈ [0.85, 1] we have 𝑃𝑦 ≤ 15(1 − 𝑦)2 − 1/2 < 15 · (0.15)2 − 1/2 < −𝜀0

■

B.5. Periodic Structure of the function 𝑓 . We want our function 𝑓 to be bounded, even though it is defined over the
plane ℝ2. A simple solution for this is to make 𝑓 periodic. We choose to construct 𝑓 by repeating tiles of the function
𝑔 : [0, 𝑀] → ℝ2 defined in Appendix B.1, Appendix B.2 and Appendix B.3. Therefore 𝑓 is defined as:

𝑓 (𝑥, 𝑦) = 𝑔
(
𝑥 − 𝑀 ·

⌊ 𝑥
𝑀

⌋
, 𝑦 − 𝑀 ·

⌊ 𝑦
𝑀

⌋ )
By the definition of 𝑔, it follows that the equations below hold:
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𝑔(𝑥, 0) = 𝑔(𝑥, 𝑀) and 𝑔(0, 𝑦) = 𝑔(𝑀, 𝑦) for all 𝑥, 𝑦 ∈ [0, 𝑀]
∇𝑔(𝑥, 0) = ∇𝑔(𝑥, 𝑀) and ∇𝑔(0, 𝑦) = ∇𝑔(𝑀, 𝑦) for all 𝑥, 𝑦 ∈ [0, 𝑀]

∇2𝑔(𝑥, 0) = ∇2𝑔(𝑥, 𝑀) = 0 and ∇2𝑔(0, 𝑦) = ∇2𝑔(𝑀, 𝑦) = 0 for all 𝑥, 𝑦 ∈ [0, 𝑀]
More specifically, the construction of the grid guarantees the continuity between the right and the left side of the grid and
the continuity between the top and the bottom side of the grid. That is, the first two lines of the above equations hold for
the points of the grid. The continuity between the points along the sides of the tiles is guaranteed due to the continuity
properties of the biquintic interpolation described in Appendix B.3. In particular, if the values and gradients of two adjacent
small boxes are the same on their two common corners, then the polynomials as well as their gradients and Hessians are also
the same along their common side.

Thus, we ensure the 𝐶2 continuity of 𝑓 .

B.6. Lipschitz Constants and Boundedness.
Lemma B.2. The constructed function 𝑓 is 𝐵-bounded, 𝐿-smooth and 𝜌-Hessian Lipschitz in ℝ2 , with 𝐵 ≤ 215𝑀, 𝐿 ≤ 222𝑀
and 𝜌 ≤ 223𝑀 .

First, we bound the absolute values of the polynomial coefficients. As we saw earlier, the matrix containing them is
calculated by the formula

𝐶𝑎,𝑏 = 𝐴−1 · 𝑉𝑎,𝑏 · (𝐴−1)𝑇

We can bound the Frobenius norm of this matrix as follows:

∥𝐶𝑎,𝑏∥ ≤ ∥𝐴−1∥∥𝑉𝑎,𝑏∥∥(𝐴−1)𝑇 ∥

One can easily verify that ∥𝐴−1∥ = ∥(𝐴−1)𝑇 ∥ < 25. For the Frobenius norm of 𝑉𝑎,𝑏 we have ∥𝑉𝑎,𝑏∥ =√︂
4
(

1
2

)2
+Φ2 (𝑎, 𝑏) +Φ2 (𝑎 + 1, 𝑏) +Φ2 (𝑎, 𝑏 + 1) +Φ2 (𝑎 + 1, 𝑏 + 1) ≤

√︂
4
(

1
2

)2
+ 4(8𝑀)2 < 16𝑀 +1, where we used the

fact that |Φ(𝑥, 𝑦) | is upper bounded by 8𝑀 in the 𝑀 × 𝑀 tile. Putting it all together we have that ∥𝐶𝑎,𝑏∥ < 210 (16𝑀 + 1).
Next we will show that the polynomials inside each small box are 𝐶2 continuous and we will upper bound their smoothness
constant and Hessian Lipschitz constant. For the smoothness constant 𝐿 we have

𝐿 = max
𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1]

{𝜆𝑚𝑎𝑥 (Φ(𝑔𝑎,𝑏 (𝑥, 𝑦)))}

≤ max
𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1]

{∥Φ(𝑔𝑎,𝑏 (𝑥, 𝑦))∥}

≤ max
𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1]

{|𝑔𝑎,𝑏𝑥𝑥 (𝑥, 𝑦) | + |𝑔𝑎,𝑏𝑦𝑦 (𝑥, 𝑦) | + 2|𝑔𝑎,𝑏𝑥𝑦 (𝑥, 𝑦) |}

≤ (20 + 20 + 2 · 25)∥𝐶𝑎,𝑏∥
= 90∥𝐶𝑎,𝑏∥

For the last inequality we used the fact that for 𝑥 ∈ [𝑎, 𝑎 + 1] and 𝑦 ∈ [𝑏, 𝑏 + 1]:

• |𝑔𝑎,𝑏𝑥𝑥 (𝑥, 𝑦) | ≤
5∑
𝑖=0

5∑
𝑗=0
|𝑐𝑎,𝑏

𝑖, 𝑗
|𝑖(𝑖 − 1) (𝑥 − 𝑎)𝑖−2 (𝑦 − 𝑏) 𝑗 ≤

5∑
𝑖=0

5∑
𝑗=0

20|𝑐𝑎,𝑏
𝑖, 𝑗
| = 20∥𝐶𝑎,𝑏∥

• |𝑔𝑎,𝑏𝑦𝑦 (𝑥, 𝑦) | ≤
5∑
𝑖=0

5∑
𝑗=0
|𝑐𝑎,𝑏

𝑖, 𝑗
| 𝑗 ( 𝑗 − 1) (𝑥 − 𝑎)𝑖 (𝑦 − 𝑏) 𝑗−2 ≤

5∑
𝑖=0

5∑
𝑗=0

20|𝑐𝑎,𝑏
𝑖, 𝑗
| = 20∥𝐶𝑎,𝑏∥

• |𝑔𝑎,𝑏𝑥𝑦 (𝑥, 𝑦) | ≤
5∑
𝑖=0

5∑
𝑗=0
|𝑐𝑎,𝑏

𝑖, 𝑗
|𝑖 𝑗 (𝑥 − 𝑎)𝑖−1 (𝑦 − 𝑏) 𝑗−1 ≤

5∑
𝑖=0

5∑
𝑗=0

25|𝑐𝑎,𝑏
𝑖, 𝑗
| = 25∥𝐶𝑎,𝑏∥

Thus we have that the polynomial in each small box is 𝐿-smooth with 𝐿 ≤ 90∥𝐶𝑎,𝑏∥ < 222𝑀

Next we will bound the Hessian-Lipschitz constant of the polynomials in each small box. For this purpose we
bound the Lipschitz constant of each of the entries of the Hessian. For 𝑔𝑎,𝑏𝑥𝑥 we have:

𝐿𝑥𝑥,𝑎𝑏 = max
𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1]

∥∇𝑔𝑎,𝑏𝑥𝑥 (𝑥, 𝑦)∥

28



The Computational Complexity of Finding Second-Order Stationary Points

≤ max
𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1]

{|𝑔𝑎,𝑏𝑥𝑥𝑥 (𝑥, 𝑦) | + |𝑔𝑎,𝑏𝑥𝑥𝑦 (𝑥, 𝑦) |}

≤ max
𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1]

{
5∑︁
𝑖=0

5∑︁
𝑗=0
|𝑐𝑎,𝑏

𝑖, 𝑗
|𝑖(𝑖 − 1) (𝑖 − 2) (𝑥 − 𝑎)𝑖−3 (𝑦 − 𝑏) 𝑗 +

5∑︁
𝑖=0

5∑︁
𝑗=0
|𝑐𝑎,𝑏

𝑖, 𝑗
|𝑖(𝑖 − 1) 𝑗 (𝑥 − 𝑎)𝑖−2 (𝑦 − 𝑏) 𝑗−1}

≤ (5 · 4 · 3 + 5 · 4 · 5)∥𝐶𝑎,𝑏∥
= 160∥𝐶𝑎,𝑏∥

Similarly we obtain 𝐿𝑦𝑦,𝑎𝑏 = max𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1] ∥∇𝑔𝑎,𝑏𝑦𝑦 (𝑥, 𝑦)∥ ≤ 160∥𝐶𝑎,𝑏∥ and 𝐿𝑥𝑦,𝑎𝑏 =

max𝑥∈[𝑎,𝑎+1],𝑦∈[𝑏,𝑏+1] ∥∇𝑔𝑎,𝑏𝑥𝑦 (𝑥, 𝑦)∥ ≤ 200∥𝐶𝑎,𝑏∥.

For the Hessian Lipschitzness we have:

∥Φ(𝑔𝑎,𝑏 (𝑥1, 𝑦1)) −Φ(𝑔𝑎,𝑏 (𝑥2, 𝑦2))∥ ≤
√︃
(𝐿2

𝑥𝑥,𝑎𝑏
+ 𝐿2

𝑦𝑦,𝑎𝑏
+ 2𝐿2

𝑥𝑦,𝑎𝑏
)
(
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

)
≤ ∥𝐶𝑎,𝑏∥

√︁
2(1602 + 2002)

√︁
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

≤ 400∥𝐶𝑎,𝑏∥
√︁
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

≤ 211100(16𝑀 + 1)∥
√︁
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

From the above we can conclude that 𝜌 = 223𝑀 is a Lipschitz constant of the Hessian for all small+ boxes.

Finally we will show that the boundedness assumption is satisfied for the polynomial in each small box. For
𝑥 ∈ [𝑎, 𝑎 + 1] and 𝑦 ∈ [𝑏, 𝑏 + 1] we have:

|𝑔𝑎,𝑏 (𝑥, 𝑦) | ≤
5∑︁
𝑖=0

5∑︁
𝑗=0
|𝑐𝑎,𝑏

𝑖, 𝑗
| (𝑥 − 𝑎)𝑖 (𝑦 − 𝑏) 𝑗 ≤

5∑︁
𝑖=0

5∑︁
𝑗=0
|𝑐𝑎,𝑏

𝑖, 𝑗
| = ∥𝐶𝑎,𝑏∥ < 210 (16𝑀 + 1) < 215𝑀

Thus the polynomials in each small box are 𝐵 bounded with 𝐵 < 215𝑀 .

It remains to show that the boundedness and smoothness properties also hold for 𝑓 . Since 𝑓 is constructed by
tiling small boxes and 𝐵-boundedness holds for all small boxes it trivially holds for 𝑓 as well. The smoothness and Hessian
Lipschitzness constants 𝐿 and 𝜌 are also passed on from the small boxes to 𝑓 due to a simple argument that can be found in
the proof of Lemma 4.2 in [13]. The argument is originally stated for the smoothness constant 𝐿 but can it can be also
shown for 𝜌 following similar steps.

B.7. Turing machines that compute 𝑓 , ∇ 𝑓 , ∇2 𝑓 . The last part of the proof is to prove the following lemma.

Lemma B.3. The exist polynomial-time Turing machines C 𝑓 , C∇ 𝑓 , C∇2 𝑓 such that given two numbers 𝑥, 𝑦 ∈ [0, 1] with bit
complexity 𝑏 ≥ len(𝑥) and 𝑏 ≥ len(𝑦) we can compute the value, the gradient of 𝑓 and the hessian of 𝑓 at any point in time
that is polynomial in 𝑏 and in the size of the boolean circuit 𝐶 of ITER.

Proof. It is easy to see that the computation of modulo 𝑧 ↦→ 𝑧 − 𝑀 ·
⌊

𝑧
𝑀

⌋
can be done in time polynomial in len(𝑧) and

len(𝑀). len(𝑧) will be bounded by 𝑏 and 𝑀 is a natural number such that 𝑀 = O (2𝑛). This gives len(𝑀) = O(𝑛). Since 𝐶
is a boolean circuit with 𝑛 inputs and 𝑛 outputs, we get that O(𝑛) is certainly polynomial in the size of 𝐶. Now it suffices to
show that we can compute 𝑔(𝑥, 𝑦) in polynomial time. To achieve this we need to identify the type of the small box where
(𝑥, 𝑦) belongs. To do this outside the PLS boxes, we need time linear in 𝑏. Inside the PLS boxes, on the other hand, we need
to evaluate the circuit 𝐶 with input 𝑢 that corresponds to the column of the medium box that (𝑥, 𝑦) belongs to, and with
input 𝑣 that corresponds to the row of the medium box that (𝑥, 𝑦) belongs to. Therefore, we need to evaluate 𝐶 (𝑢), 𝐶 (𝑣)
as well as 𝐶 (𝐶 (𝑢)), 𝐶 (𝐶 (𝑣)). If we have these values then we can identify the type of the small box that (𝑥, 𝑦) belongs
to. Thus we need to evaluate 𝐶 four times, which takes linear time in the size of 𝐶. Finally, once we identify the small
box, we need to compute the biquintic interpolation which involves solving a linear system and computing a five degree
polynomial with numbers that use at most max{𝑏, len(𝑀)} bits. Note that both of these can be done in time polynomial in
the description of the number and thus we conclude that there exists an efficient Turing machine that computes 𝑔 which
implies an efficient Turing machine that compute 𝑓 . In a similar manner, once we get the interpolation polynomial at the
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small box it is easy to also compute the gradient and the hessian of this polynomial, and thus we can get the polynomial-time
Turing machines that compute ∇ 𝑓 and ∇2 𝑓 .

■

C Proof of Theorem 2
Proof. From Theorem 3, we get that HESSIAN-FOSP is PLS-hard. Now, consider any SOSP instance. Let 𝑥∗ be a
solution to that SOSP instance. Since 𝑥∗ is an 𝜀-SOSP, then automatically is an 𝜀-FOSP, as well. Now we can construct a
HESSIAN-FOSP instance using the same inputs as in the SOSP instance above. Then, 𝑥∗ is trivially a solution to the FOSP
instance. Thus, HESSIAN-FOSP (polynomially) reduces to SOSP which implies that SOSP is PLS-hard.

■
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D Example where simple coordinate descent fails

(a) Continuous plot of 𝑓 (𝑥, 𝑦) (b) 𝑓 (𝑥, 𝑦) on the LOCALOPT grid

Figure 14: An example where simple coordinate descent fails to show the membership of SOSP in PLS: In the subplot (a) we illustrate
the continuous function derived after applying the biquintic interpolation. One can easily verify that the function is 𝐶2 continuous. In the
subplot (b) we illustrate the derived function on the grid of the LOCALOPT instance. The red “cross” demonstrates that the function has
equal (zero) values at (0, 0) and its immediate neighbors. Thus, coordinate-descent based LOCALOPT has a solution at (0, 0), a point that
is FOSP but not SOSP.

The exact function used in the counterexample is the following:

𝑓 (𝑥, 𝑦) =



𝑥𝑦(𝑥 − 1) if 𝑥, 𝑦 ∈ [−1, 1] × [−1, 1]
𝑃1 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [−2,−1]2

𝑃2 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [−2,−1] × [−1, 0]
𝑃3 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [−2,−1] × [0, 1]
𝑃4 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [−2,−1] × [1, 2]
𝑃5 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [−1, 0] × [−2,−1]
𝑃6 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [−1, 0] × [1, 2]
𝑃7 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [0, 1] × [−2,−1]
𝑃8 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [0, 1] × [1, 2]
𝑃9 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [1, 2] × [−2,−1]
𝑃10 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [1, 2] × [−1, 0]
𝑃11 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [1, 2] × [0, 1]
𝑃12 (𝑥, 𝑦) if 𝑥, 𝑦 ∈ [1, 2] × [1, 2]
−1 otherwise

where

• 𝑃1 (𝑥, 𝑦) = −162(𝑥 + 2)5 (𝑦 + 2)5 + 394(𝑥 + 2)5 (𝑦 + 2)4 − 248(𝑥 + 2)5 (𝑦 + 2)3 + 387(𝑥 + 2)4 (𝑦 + 2)5

− 941(𝑥 + 2)4 (𝑦 + 2)4 + 592(𝑥 + 2)4 (𝑦 + 2)3 − 237(𝑥 + 2)3 (𝑦 + 2)5 + 576(𝑥 + 2)3 (𝑦 + 2)4

− 362(𝑥 + 2)3 (𝑦 + 2)3 − 1

• 𝑃2 (𝑥, 𝑦) = 22𝑦(𝑥 + 2)5 − 53𝑦(𝑥 + 2)4 + 33𝑦(𝑥 + 2)3 + 6(𝑥 + 2)5 − 15(𝑥 + 2)4 + 10(𝑥 + 2)3 − 1
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• 𝑃3 (𝑥, 𝑦) = 22𝑦(𝑥 + 2)5 − 53𝑦(𝑥 + 2)4 + 33𝑦(𝑥 + 2)3 + 6(𝑥 + 2)5 − 15(𝑥 + 2)4 + 10(𝑥 + 2)3 − 1

• 𝑃4 (𝑥, 𝑦) = 22𝑦(𝑥 + 2)5 − 53𝑦(𝑥 + 2)4 + 33𝑦(𝑥 + 2)3 − 234(𝑥 + 2)5 (𝑦 − 1)5 + 596(𝑥 + 2)5 (𝑦 − 1)4

− 412(𝑥 + 2)5 (𝑦 − 1)3 + 6(𝑥 + 2)5 + 567(𝑥 + 2)4 (𝑦 − 1)5 − 1444(𝑥 + 2)4 (𝑦 − 1)4

+ 998(𝑥 + 2)4 (𝑦 − 1)3 − 15(𝑥 + 2)4 − 357(𝑥 + 2)3 (𝑦 − 1)5 + 909(𝑥 + 2)3 (𝑦 − 1)4

− 628(𝑥 + 2)3 (𝑦 − 1)3 + 10(𝑥 + 2)3 − 1

• 𝑃5 (𝑥, 𝑦) = 27𝑥(𝑦 + 2)5 − 66𝑥(𝑦 + 2)4 + 42𝑥(𝑦 + 2)3 − 9(𝑥 + 1)2 (𝑦 + 2)5 + 22(𝑥 + 1)2 (𝑦 + 2)4

− 14(𝑥 + 1)2 (𝑦 + 2)3 + 15(𝑦 + 2)5 − 37(𝑦 + 2)4 + 24(𝑦 + 2)3 − 1

• 𝑃6 (𝑥, 𝑦) = −9𝑥2𝑦5 + 68𝑥2𝑦4 − 198𝑥2𝑦3 + 276𝑥2𝑦2 − 184𝑥2𝑦 + 48𝑥2 + 9𝑥𝑦5 − 68𝑥𝑦4 + 198𝑥𝑦3

− 276𝑥𝑦2 + 184𝑥𝑦 − 48𝑥 − 6𝑦5 + 45𝑦4 − 130𝑦3 + 180𝑦2 − 120𝑦 + 31

• 𝑃7 (𝑥, 𝑦) = −9𝑥2 (𝑦 + 2)5 + 22𝑥2 (𝑦 + 2)4 − 14𝑥2 (𝑦 + 2)3 + 9𝑥(𝑦 + 2)5 − 22𝑥(𝑦 + 2)4

+ 14𝑥(𝑦 + 2)3 + 6(𝑦 + 2)5 − 15(𝑦 + 2)4 + 10(𝑦 + 2)3 − 1

• 𝑃8 (𝑥, 𝑦) = 𝑥2𝑦 − 9𝑥2 (𝑦 − 1)5 + 23𝑥2 (𝑦 − 1)4 − 16𝑥2 (𝑦 − 1)3 − 𝑥𝑦 + 9𝑥(𝑦 − 1)5 − 23𝑥(𝑦 − 1)4

+ 16𝑥(𝑦 − 1)3 − 6(𝑦 − 1)5 + 15(𝑦 − 1)4 − 10(𝑦 − 1)3

• 𝑃9 (𝑥, 𝑦) = −9𝑥(𝑦 + 2)5 + 22𝑥(𝑦 + 2)4 − 14𝑥(𝑦 + 2)3 + 2(𝑥 − 1)5 (𝑦 + 2)4 − 4(𝑥 − 1)5 (𝑦 + 2)3

− 9(𝑥 − 1)4 (𝑦 + 2)5 + 17(𝑥 − 1)4 (𝑦 + 2)4 − 4(𝑥 − 1)4 (𝑦 + 2)3 + 21(𝑥 − 1)3 (𝑦 + 2)5

− 48(𝑥 − 1)3 (𝑦 + 2)4 + 26(𝑥 − 1)3 (𝑦 + 2)3 − 9(𝑥 − 1)2 (𝑦 + 2)5 + 22(𝑥 − 1)2 (𝑦 + 2)4

− 14(𝑥 − 1)2 (𝑦 + 2)3 + 15(𝑦 + 2)5 − 37(𝑦 + 2)4 + 24(𝑦 + 2)3 − 1

• 𝑃10 (𝑥, 𝑦) = −4𝑥5𝑦 − 6𝑥5 + 31𝑥4𝑦 + 45𝑥4 − 93𝑥3𝑦 − 130𝑥3 + 134𝑥2𝑦 + 180𝑥2 − 92𝑥𝑦 − 120𝑥 + 24𝑦 + 31

• 𝑃11 (𝑥, 𝑦) = (𝑥 − 1) (−4𝑦(𝑥 − 1)4 + 11𝑦(𝑥 − 1)3 − 9𝑦(𝑥 − 1)2 + 𝑦(𝑥 − 1) + 𝑦 − 6(𝑥 − 1)4 + 15(𝑥 − 1)3 − 10(𝑥 − 1)2)

• 𝑃12 (𝑥, 𝑦) = 72𝑥5𝑦5 − 542𝑥5𝑦4 + 1572𝑥5𝑦3 − 2184𝑥5𝑦2 + 1456𝑥5𝑦 − 384𝑥5 − 549𝑥4𝑦5 + 4133𝑥4𝑦4 − 11988𝑥4𝑦3

+ 16656𝑥4𝑦2 − 11104𝑥4𝑦 + 2928𝑥4 + 1617𝑥3𝑦5 − 12174𝑥3𝑦4 + 35314𝑥3𝑦3 − 49068𝑥3𝑦2 + 32712𝑥3𝑦

− 8624𝑥3 − 2286𝑥2𝑦5 + 17212𝑥2𝑦4 − 49932𝑥2𝑦3 + 69384𝑥2𝑦2 − 46256𝑥2𝑦 + 12192𝑥2 + 1548𝑥𝑦5

− 11656𝑥𝑦4 + 33816𝑥𝑦3 − 46992𝑥𝑦2 + 31328𝑥𝑦 − 8256𝑥 − 408𝑦5 + 3072𝑦4 − 8912𝑦3 + 12384𝑦2

− 8256𝑦 + 2175

The above function is also illustrated in Fig. 14. It is 𝐶2 continuous, as it was constructed with biquintic interpolation and
tiling and as we have showed earlier, biquintic interpolation preserves second order continuity in tiling.
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E PLS-completeness of Finding Approximate FOSPs of 𝐶2 continuous functions in
Unconstrained Optimization

In Theorem 3 we have shown that the HESSIAN-SOSP problem is PLS-hard. We proceed with the following theorem that
shows that the problem is complete in PLS.

Theorem 4. HESSIAN-FOSP is PLS-complete.

Proof. From Theorem 3, we get that HESSIAN-SOSP problem is PLS-hard. Now it remains to show that the membership
of the problem in PLS: The membership of the HESSIAN-FOSP problem in PLS is easily derived as a consequence of the
membership of FOSP in PLS (proved in [16]), using the fact that the requirement for 𝑓 to be a 𝐶2 continuous function is
stronger than the requirement for 𝑓 to be a 𝐶1 continuous function.

■

F Proof of Corollary 2

For the query complexity we will consider the same construction of a 𝐶2 function 𝑓 that we used to show the PLS-Hardness.
Given an algorithm that calculates 𝜖-SOSPs, we embed an appropriate instance of the ITER that forces the algorithm into
making a number of queries exponential in the size of the ITER. The first step for this argument is that the black box version
of ITER has a query lower bound of 2𝑛.

Lemma F.1. For any algorithm A that solves the black box version of the ITER there exist an ITER instance of size 𝑛 that
requires 2𝑛 queries by the algorithm A to be solved.

The proof of this lemma can be found in the appendix section D of [16].

In Section Appendix B we construct a function 𝑓 , such that any 0.001-FOSP of 𝑓 reveals a solution to ITER with input 𝐶.
Thus, any algorithm that finds a 0.001-FOSP of 𝑓 could be used as an algorithm for solving ITER. Combining this property
with Lemma F.1, we conclude that any algorithm that finds a 0.001-FOSP of 𝑓 will in the worst-case make at least 2𝑛/𝑁𝑐

queries to 𝑓 , where 𝑁𝑐 is the maximal number of calls to 𝐶 per query. In our construction 𝑁𝑐 is equal to 4.

Next, we will establish a connection between the complexity 2𝑛−2 and the accuracy parameter 𝜀 of approximate
FOSP. The parameter 𝑀 that we use to construct 𝑓 satisfies 𝑀 = Θ (2𝑛), which means that any algorithm that finds a
0.001-stationary point in functions that we construct will in the worst-case take time at least Ω(𝑀). We consider the
normalised function 𝑓 (𝑥) = 1

𝑀
· 𝑓 (𝑥). Finding a 0.001-stationary point for 𝑓 is equivalent to finding a 1

1000𝑀 -stationary
point of 𝑓 so the new accuracy parameter 𝜀 is 1

1000𝑀 . 𝑓 is 𝐵−bounded with 𝐵 = 𝑂 (1), and has smoothness and Hessian
Lipschitzness constants 𝐿 = 𝑂 (1) and 𝜌 = 𝑂 (1). Still, any algorithm would need Ω(𝑀) time to find a 1

1000𝑀 -stationary
point. Hence, any algorithm that finds an 𝜀-FOSP for 𝑓 will need in the worst case Ω(1/𝜀) queries. This query complexity
continuous to hold for calculating 𝜀-SOSPs, since any approximate SOSP is also an approximate FOSP. This completes the
proof of Corollary 2.
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G Extra Definitions

G.1. Polynomial-time Reductions.

Definition 3 (Polynomial-time Reduction). A search problem 𝑃1 is polynomial-time reducible to 𝑃2 if there exist polynomial-
time computable functions 𝑓 : {0, 1}∗ → {0, 1}∗ and 𝑔 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ with the following properties: (a) if 𝑥
is an input to 𝑃1, then 𝑓 (𝑥) is an input to 𝑃2, and (b) if 𝑦 is a solution to 𝑃2 on input 𝑓 (𝑥), then 𝑔(𝑥; 𝑦) is a solution to 𝑃1 on
input 𝑥.

H Promise/Violation White Box Problem Definitions
There is no known way of syntactically enforcing a Turing machine to be Lipschitz-continuous, Hessian-continouous and/or
bounded. There are two ways to handle this issue: (a) consider the promise version of the problem (as we did in the main
body of the paper), where we restrict our attention to instances that satisfy these conditions, or (b) introduce violation
versions of the problem, following the work of Daskalakis and Papadimitriou [10], i.e. allow as a solution a witness of the
fact that one of the conditions is not satisfied. The first option is more natural, but the second option ensures that the problem
is formally in TFNP.

Problem 6: FOSP (Violation version)

Require: precision parameter 𝜀 > 0
𝐵, 𝐿 > 0 and 𝑓 ∈ F (𝐵, 𝐿,∞)
Turing machines representing 𝑓 and ∇ 𝑓

Find: 𝑥∗ ∈ ℝ𝑑: ∥∇ 𝑓 (𝑥∗)∥ ≤ 𝜀
Alternatively, we also accept one of the following violations as a solution:

• 𝑥, 𝑦 ∈ ℝ𝑑 that violate the smoothness of 𝑓 .

• 𝑥 ∈ ℝ𝑑 such that | 𝑓 (𝑥) | > 𝐵,

• 𝑥, 𝑦 ∈ ℝ𝑑 that certify that C∇ 𝑓 computes ∇ 𝑓 incorrectly.

Problem 7: HESSIAN-FOSP (Violation version)

Require: precision parameter 𝜀 > 0
𝐵, 𝐿, 𝜌 > 0 and 𝑓 ∈ F (𝐵, 𝐿, 𝜌)
Turing machines representing 𝑓 , ∇ 𝑓 and ∇2 𝑓

Find: 𝑥∗ ∈ ℝ𝑑: ∥∇ 𝑓 (𝑥∗)∥ ≤ 𝜀
Alternatively, we also accept one of the following violations as a solution:

• 𝑥, 𝑦 ∈ ℝ𝑑 that violate the smoothness of 𝑓 .

• 𝑥 ∈ ℝ𝑑 such that | 𝑓 (𝑥) | > 𝐵,

• 𝑥, 𝑦 ∈ ℝ𝑑 that certify that C∇ 𝑓 computes ∇ 𝑓 incorrectly.

• 𝑥, 𝑦 ∈ ℝ𝑑 that certify that C∇2 𝑓 computes ∇2 𝑓 incorrectly.
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Problem 8: SOSP (Violation version)

Require: precision parameter 𝜀 > 0
𝐵, 𝐿, 𝜌 > 0 and 𝑓 ∈ F (𝐵, 𝐿, 𝜌)
Turing machines representing 𝑓 , ∇ 𝑓 and ∇2 𝑓

Find: 𝑥∗ ∈ ℝ𝑑: ∥∇ 𝑓 (𝑥∗)∥ ≤ 𝜀, 𝜆𝑚𝑖𝑛 (∇2 𝑓 (𝑥∗)) ≥ −√𝜌𝜀
Alternatively, we also accept one of the following violations as a solution:

• 𝑥, 𝑦 ∈ ℝ𝑑 that violate the smoothness or the Hessian-Lipschitzness of 𝑓 .

• 𝑥 ∈ ℝ𝑑 such that | 𝑓 (𝑥) | > 𝐵,

• 𝑥, 𝑦 ∈ ℝ𝑑 that certify that C∇ 𝑓 computes ∇ 𝑓 incorrectly.

• 𝑥, 𝑦 ∈ ℝ𝑑 that certify that C∇2 𝑓 computes ∇2 𝑓 incorrectly.

Remark H.1. Our reductions also apply both to the promise and violation versions of SOSP and HESSIAN-FOSP.
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