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Abstract

Modern large language models (LLMs) have established state-of-the-art perfor-1

mance through architectural improvements, but still require significant computa-2

tional cost for inference. In an effort to reduce the inference cost, post-training3

quantization (PTQ) has become a popular approach, quantizing weights and acti-4

vations to lower precision, such as INT8. In this paper, we reveal the challenges5

of activation quantization in GLU variants [40], which are widely used in feed-6

forward network (FFN) of modern LLMs, such as LLaMA family. The problem is7

that severe local quantization errors, caused by excessive magnitudes of activation8

in GLU variants, significantly degrade the performance of the quantized LLM. We9

denote these activations as activation spikes. Our further observations provide a10

systematic pattern of activation spikes: 1) The activation spikes occur in the FFN of11

specific layers, particularly in the early and late layers, 2) The activation spikes are12

dedicated to a couple of tokens, rather than being shared across a sequence. Based13

on our observations, we propose two empirical methods, Quantization-free Module14

(QFeM) and Quantization-free Prefix (QFeP), to isolate the activation spikes during15

quantization. Our extensive experiments validate the effectiveness of the proposed16

methods for the activation quantization, especially with coarse-grained scheme, of17

latest LLMs with GLU variants, including LLaMA-2/3, Mistral, Mixtral, SOLAR,18

and Gemma. In particular, our methods enhance the current alleviation techniques19

(e.g., SmoothQuant) that fail to control the activation spikes.120

1 Introduction21

Large language models (LLMs) have become a key paradigm in natural language processing, acceler-22

ating the release of variations within the community [49, 58]. Furthermore, latest LLMs establish23

state-of-the-art performance by training with increased scale, as well as by adopting architectural24

improvements such as GLU [40], RoPE [41], GQA [2], and MoE [21]. Especially, GLU (Gated25

Linear Unit) variants (e.g., SwiGLU, GeGLU) has been adopted in the most of modern LLM archi-26

tectures (e.g., LLaMA family [46]), due to training efficiency [31, 40]. Although LLMs broaden27

foundational capabilities in natural language tasks and potential for various applications, billions of28

parameters in the large models impose considerable computational costs on end users in practice. To29

reduce GPU memory requirements and accelerate inference speed, post-training quantization (PTQ)30

offers an affordable solution by quantizing weights and activations into a lower precision (e.g., INT8)31

without a need for expensive retraining steps [17, 19, 30]. However, recent studies have revealed that32

large magnitude values at certain coordinates exist in the activations of LLMs, which are often called33

outliers, posing a key challenge in activation quantization [1, 12, 50, 51]. Another line of works34

attempts to explain the role of outlier values in the attention mechanism [9, 42]. Nevertheless, current35

research on the impact of evolving LLM architectures on the outliers remains insufficient.36

1Code is available at https://anonymous.4open.science/r/activation-spikes-EDF0.

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



In this paper, we present our discovery that the GLU architecture in the feed-forward network (FFN)37

generates excessively large activation values, which are responsible for significant local quantization38

errors. Specifically, we observe that these problematic activation values occur in specific linear39

layers and are dedicated to a couple of tokens, which will be discussed in Section 3. To distinguish40

the excessive GLU activations from the outliers, we refer to them as activation spikes. In light of41

our observations, we propose two empirical methods to mitigate the impact of activation spikes42

on quantization: Quantization-free Module (QFeM) and Quantization-free Prefix (QFeP). QFeM43

aims to partially exclude quantization for linear layers (or modules) where large quantization errors44

occur, instead of quantizing the entire linear modules in the LLM. By scoring the extent of scale45

disparity, QFeM selects linear modules to exclude. On the other hand, QFeP identifies the prefix that46

triggers activation spikes and preserves its context as a key-value (KV) cache, thereby preventing the47

recurrence of activation spikes in subsequent tokens. It is noteworthy that both QFeM and QFeP rely48

on calibration results to capture activation spikes in advance, without any modifications to the target49

LLM. This indicates that our methods can be integrated into any existing quantization methods.50

In our comprehensive experiments, we demonstrate that recently released LLMs incorporating51

GLU variants struggle with activation spikes when applying activation quantization. Consequently,52

the proposed methods, QFeM and QFeP, substantially enhance the performance of the primitive53

quantization method, the round-to-nearest (RTN) method. Furthermore, we observe that current54

outlier alleviation methods [50, 51] are exposed to the activation spikes and benefit from our proposed55

methods. Compared to the strong baseline of fine-grained activation quantization [55], our methods56

show competitive performance, achieving reduced latency and memory footprint.57

In summary, the contributions of our work are as follows:58

• We find that the GLU architecture in modern LLMs systematically generates excessive activation59

values, which are responsible for significant performance degradation in activation quantization.60

• Based on our observations, we propose two empirical methods, QFeM and QFeP, which effectively61

exclude the activation spikes during quantization, with negligible computational overhead and62

compatibility with any existing quantization techniques.63

• Our extensive experimental results validate the detrimental impact of the activation spikes on activa-64

tion quantization, while our proposed methods consistently enhance the quantization performance.65

2 Related Works66

Outlier Values in LLMs. Previously, outlier values have been observed in the transformer-based67

language models such as BERT [14] and early GPT [36] models through numerous studies [8, 24,68

27, 35, 45]. Since the advent of LLMs [10, 57] rooted in the GPT, recent studies by [1, 12, 51] have69

tackled the existence of outlier values in LLMs. According to them, these outliers exhibit a large70

magnitude of values at the shared dimensions of hidden states across tokens. More recently, [9, 42]71

explain that the outliers attribute to the vertical pattern in the attention mechanism [25, 52], which72

influences the performance of LLMs. In particular, [42] claims a different type of outlier existing in73

the hidden states of specific tokens. However, prior studies merely focus on the superficial hidden74

states between the decoder layers. Our work provides a module-level investigation where quantization75

is applied practically, focusing on different LLM architectures.76

Post-training Quantization for LLMs. Post-training quantization (PTQ) refers to the quantization77

of a neural network model to low precision, such as INT8, without additional parameter updates [17,78

19]. Especially for LLMs, this approach cost-effectively achieves inference with low memory usage79

and faster inference latency by quantizing the weights and activations used in matrix multiplication80

(e.g., linear layer). However, because of the challenges in activation quantization of LLMs, many81

recent works are mainly focused on the weight-only quantization [11, 13, 15, 23, 26, 39, 54].82

Otherwise, the activation quantization faces inherent outliers, which hinder accurate quantization83

by reducing representation resolution. To address this challenge, [12] proposes a mixed-precision84

quantization method where the outlier dimensions are computed in high precision. [50, 51] approach85

migration of scale from activation to weights to alleviate the scale of outlier activations. Along this86

line of research, we propose to enhance the activation quantization based on our observations.87
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Figure 1: Calibration results on GLU-implemented and non GLU-implemented LLMs. We present
the maximum magnitudes of input activations for each linear modules and layer-wise hidden states.
For more results on different LLMs, see Appendix A.2, A.3.

3 Activation Spikes: Excessive Magnitude of GLU Activations88

For clarity, "hidden states" refer to the output tensor of a transformer layer (or block), while "input89

activations" or "activations" denote the input tensor of a linear layer (or module) in the remain of this90

paper. Recent work [42] has investigated a novel type of outlier existing in the hidden states across91

modern LLMs. Although these outliers of hidden states play a crucial role in the attention mechanism92

[9, 42, 52], their relationship with input activations for quantization has not been fully explored.93

Importantly, because recent LLMs adopt Pre-LN [4, 53], which normalizes hidden states before self-94

attention and feed-forward network (FFN) blocks, the scale of hidden states does not reflect the scale95

of input activations within the transformer block. Therefore, we focus on the input activations fed into96

each linear module within the transformer block to connect to activation quantization. Specifically, we97

examine the four linear (projection) layers: query (parallel to key and value), out, up (parallel to98

gate), and down modules. For detailed illustration of Pre-LN transformer, please see Appendix D.1.99

3.1 Existence of Activation Spikes in GLU Variants100

To analyze the input activations, we employ a calibration method, which is used to estimate the101

quantization factors such as scale and zero-point. For the calibration data, we use 512 samples102

randomly collected from the C4 [37] training dataset. Afterwards, we feed each sample into the LLM103

and monitor each hidden state and input activation through the decoder layers. To estimate the scale104

factor, we use absolute maximum value. The tested LLMs are listed in Appendix A.1.105

GLU-implemented LLMs exhibit activation spikes at specific layers. In Figure 1a, we display106

the calibrated scale factors for the LLMs that implement GLU variants (e.g., SwiGLU, GeGLU).107

Across models, we observe a shared pattern of scale from the results. Within the early and late108

layers, the down modules in the FFN show noticeable magnitudes of input activations. Note that109

these input activations are derived from the Hadamard Product within GLU. Thus, the GLU variants110

generate activation spikes at the specific layers. Interestingly, we notice a high correlation between the111

emergence of activation spikes and intermediate hidden states of large scale. This indicates that the112

FFN contributes to amplifying the hidden states via the addition operation in the residual connection113

[18]. Once the magnitude of the hidden states is exploded, it persists through layers until encounter114

the activation spikes at late layers.115

Non GLU-implemented LLMs show modest scale distribution. Figure 1b illustrates the cali-116

bration results for LLMs with the original feed-forward implementation in Transformer [48]. We117

observe that the LLMs continue to generate the large-scale hidden states, regardless of the GLU118

implementation. This corresponds to the observations in [42]. More importantly, our module-level119

results elaborate that the scale of hidden states is not transferable to the input activations of inner120

linear modules. Instead, we reveal that GLU variants are associated with the hidden states and121

generate activation spikes. This clarifies the quantization challenge of the GLU-implemented LLMs122

concentrated in the early and late layers. Because excessive scales of activation spikes have the123

potential to hinder the accurate quantization, we conduct an in-depth analysis to better understand124

these activation spikes in the following sections.125
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Figure 2: Token-wise scales in a specific layer with an activation spike. When quantizing the input
activations using a per-tensor scale, the scale of the activation spike dominates the scales of the other
tokens. For more examples, see Appendix D.2.

3.2 Token-level Scale Analysis within Activation Spikes126

In the previous section, we observed the excessive scale of the input activations derived from GLU127

activation. When quantizing the input activations, the variance of input activation scales for each128

token affects the quantization performance [55]. To delve into the disparity between token-wise129

scales in the activation spikes, we unroll them through the sequence of tokens. Figure 2 illustrates130

the individual input activation scales where the activation spike appears. Given a token sequence,131

the large magnitudes of input activations are observed in a couple of tokens, such as the BOS token,132

newline (\n), and apostrophe ('). These specific tokens coincide with the observations of [42], which133

suggests that such tokens exhibit massive values in the hidden states. Thus, the activation spike is134

associated with the process of assigning a special role to these tokens in later transformer layers.135

However, the excessive scale of specific token hinders the estimation of scale factor for the other136

tokens, such as in per-tensor quantization. Additionally, the largest scale is dedicated to the first137

instance of the specified token, while the following usage exhibits a modest scale. This phenomenon138

makes the quantization more complicated, as the activation spikes dynamically occur depending on139

the current input sequence.140

3.3 Effect of Quantization on Activation Spikes141

We explore the impact of local quantization errors caused by activation spikes on LLM outputs. To142

identify the layers where activation spikes occur, we utilize a ratio between the maximum and median143

values of the token-wise input activation scales, instead of using the maximum scale value alone.144

The max-median ratio for linear layer m can be formulated as r(m) = max(S(m))

median(S(m))
, where S(m)145

represents the token-wise input activation scales incoming to module m ∈ M . This max-median146

ratio captures the extent to which maximum scale dominate the other token scales. For comparison,147

we choose the activation quantization targets as the top-4, middle-4, and bottom-4 modules, based on148

the max-median ratio in descending order. Then, we evaluate the perplexity and mean-squared error149

(MSE) using the calibration dataset. Here, the MSE is calculated for the last hidden states between150

the original (FP16) and partially quantized LLM. As shown in Table 1, quantization on the top-4 rated151

modules solely degrades the LLM performance by significant margins, while the other cases exhibit152

negligible performance changes. We consider these quantization-sensitive input activations (inter alia153

activation spikes) to be the quantization bottleneck, which, in this paper, refers to the quantization154

error caused by outliers.155

Furthermore, the activation spikes are conditioned on the specific context of the input sequence as156

discussed in Section 3.2. Altogether, such dynamic bottlenecks must be handled with caution to157

enhance the quantization performance of LLMs.158

Table 1: Perplexity and MSE of partial activation quantization of LLMs

Model
Perplexity(↓) MSE(↓)

FP16 Top 4 Middle 4 Bottom 4 Top 4 Middle 4 Bottom 4

LLaMA-2-7B 7.37 11.77 7.38 7.40 1908.80 1.03 12.90
LLaMA-2-13B 6.84 15.09 6.84 6.84 4762.11 0.91 10.38

Mistral-7B 8.35 69.45 8.35 8.36 218.60 0.02 0.18
Gemma-7B 10.85 85.83 10.94 10.87 213.93 1.60 1.07
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Figure 3: Overview of QFeM and QFeP. (Left): QFeM excludes the modules whose r(m) is larger than
the hyperparameter α from quantization. (Right): QFeP computes in advance the prefix of activation
spikes and utilizes solely their KV cache during the quantization phase, effectively preventing further
activation spikes in subsequent sequences.

4 Mitigating Quantization Quality Degradation Based on the Observation159

To address the quantization bottleneck, our approach is based on the deterministic occurrence patterns160

of activation spikes. First, we utilize the observation that bottlenecks occur at a few specific layers.161

This implies that naive full quantization of LLMs is affected by these bottlenecks. Second, we exploit162

the phenomenon that the activation spike is derived from the first occurrence of specific tokens. Thus,163

the planned occurrence prevents recurrence in the subsequent and possibly future tokens. In the164

following sections, we propose two methods inspired the above insights.165

4.1 Quantization-free Module (QFeM)166

In the full quantization of LLM, all linear layers within the LLM are quantized. Among these167

linear layers, we propose omitting the quantization of input activations for linear layers where168

significant quantization errors are caused by activation spikes. To be noted, increasing the number of169

unquantized modules exhibits a trade-off between the inference latency and the model performance.170

Thus, determining which module should be quantized (or left unquantized) is crucial to retain the171

efficacy of quantization. Here, we use the max-median ratio r(m) and define a set of unquantized172

modules, denoted as Munq, where the ratio r(m) of each linear layer is larger than threshold α. For173

instance, all linear layers in M are quantized if α = ∞. For clarity, we treat sibling linear layers,174

such as query-key-value, as a single linear layer. To control the impact of activation quantization only,175

we leave the weight parameters in unquantized linear layers as INT8 and dequantize them into FP16176

during matrix multiplication with the incoming activations, operating as weight-only quantization.177
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Figure 4: Trade-off between perplex-
ity (stands for performance) and |Munq|
(stands for latency) according to the
threshold α for LLaMA-2-13B model.

Optimizing the threshold α. To calculate the activation178

scale ratio for each linear layer, we first gather token-wise179

input activation scales from the calibration examples dis-180

cussed in Section 3.1. Exceptionally, for FFN experts in181

the mixture of experts (MoE) architectures like the Mix-182

tral model [21], calibration is performed separately. After183

determining these ratios, we use binary search to set the184

threshold value α, balancing inference latency and perfor-185

mance degradation. As a metric, we assess performance186

through perplexity measured on the same calibration ex-187

amples. For example, the relationship between threshold188

value α and its impact on performance is depicted in Fig-189

ure 4, demonstrating how full quantization can degrade190

performance. Rather than fully quantizing, we identify an191

optimal threshold by finding the intersection of two performance curves; in Figure 4, this threshold is192

approximately 16. Details on the QFeM implementation are provided in Table 2.193
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4.2 Quantization-free Prefix (QFeP)194

Orthogonal to the QFeM, we propose Quantization-free Prefix (QFeP) that mitigates the quantization195

errors by precomputing the prefix (or short prompt) corresponding to activation spikes. This method196

is based on the observations presented in Section 3.2, which indicate that significant quantization197

errors result from the overestimated scale factor of the first instance within the restricted token198

set. Inspired by this occurrence pattern of activation spikes, we aim to construct a prefix which199

stabilizes the quantization scale factor of the tokens that come after the prefix. In other words,200

once the prefix is fixed at the beginning, the activation spikes consistently occur within the prefix.201

Afterward, we employ key-value (KV) caching mechanism to process the activation spikes in advance.202

In practice, KV cache is utilized to optimize the decoding speed of causal language models by storing203

precomputed key and value states of the previous tokens [32, 34]. This approach provides a bypass204

of the quantization including activation spikes, while preserving the context of prefix through the205

KV cache. The KV cache for the prefix is precomputed once through the offline inference of LLM206

without quantization. Then, this KV cache is exploited in the quantization phases, such as calibration207

or dynamic quantization, even for quantized inference. The process of QFeP is illustrated in Figure 3.208

Prefix Search. To form a prefix of explicit activation spike, we first identify candidate token that209

represent the activation spike at the linear layer with the highest max-median ratio r(m). For instance,210

the candidate token can be apostrophe (') token for LLaMA-2-70B model, as highlighted in red in211

Figure 2. Once the candidate token is identified, we search the middle context token for between212

the BOS token and the candidate token in the prefix. This middle context provides dummy context,213

which is required to activate the candidate token. To find the middle context, we design a template214

[B, T1, C1, T2, C2] where B, Ti, and Ci denote the BOS token, context token, and candidate token in215

the vocabulary V , respectively. Then, we select the context token T where C1 triggers an activation216

spikes, while later instance of the same token C2 does not. When the context token for the activation217

spikes is varied, we choose the token that maximizes the activation scale ratio between the C1 and218

C2. Finally, we prepare the KV cache for searched prefix of [B, T,C]. Note that the latter sequence219

in the template can be replaced with sequences from dataset instead of repetition.220

Table 2: Specifications for QFeM and QFeP used
in experiments. |M | denotes the total number of
linear layers in the LLM, and |Munq| represents
the number of unquantized layers for QFeM.

Model Prefix α |Munq|/|M |
LLaMA-2-7B [BOS] all . 6.68 17 / 128
LLaMA-2-13B [BOS] then , 12.91 6 / 160
LLaMA-2-70B [BOS] I ’ 9.16 25 / 320
Mistral-7B [BOS] how \n 49.00 3 / 128
Mixtral-8x7B [BOS] ). \n 4.03 191 / 608
SOLAR-10.7B [BOS] a 1 6.48 11 / 192
Gemma-7B [BOS] . Più 10.65 5 / 112
LLaMA-3-8B [BOS] - nd 6.64 6 / 128
LLaMA-3-70B [BOS] and , 78.37 3 / 320

Implementation Details. During the prefix221

search phase, we exploit the calibration dataset222

used in Section 3.1. For the candidate tokens, we223

consider the tokens with the top three largest in-224

put activation magnitudes. Then, we search for225

the middle context token among top 200 most fre-226

quent tokens in the calibration dataset, which is227

the subset of the vocabulary V . Finally, with the228

search result, we prepare the KV cache for the229

target model in FP16 precision. Exceptionally, for230

the Mixtral [21] model, we use the scale of output231

hidden states instead of input activations, as the232

tokens are divided sparsely in a mixture of experts233

architecture. Table 2 presents the searched prefix.234

5 Experiments235

5.1 Experimental Setup236

Models. Our proposed methods, QFeM and QFeP, aim to mitigate the quantization bottleneck,237

which is discussed in Section 3.3, caused by the activation spikes, especially in the GLU variants. To238

validate the efficiency proposed methods, we tested publicly released LLMs that were implemented239

with GLU, according to their paper and source code. We recognize recent LLMs, including LLAMA-240

2-{7B, 13B, 70B} [47], LLaMA-3-{7B, 70B}, Mistral-7B [20], Mixtral-8x7B [21], SOLAR-10.7B241

[22], and Gemma-7B [43], utilize the GLU architecture. The LLMs with original FFN are not242

covered, as they suffer from the existing outliers rather than activation spikes. All models are sourced243

from the huggingface-hub2 repository.244

2https://huggingface.co/models
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Table 3: Perplexity and zero-shot evaluation for the quantization on LLaMA-2 models. FP16 denotes
the original model precision, and W8A8 denotes the model quantized to INT8 for both weights and
activations.

Method WikiText-2
(ppl↓)

PIQA
(acc↑)

LAMBADA
(acc↑)

HellaSwag
(acc↑)

WinoGrande
(acc↑)

Avg
(acc↑)

LLaMA-2-7B

FP16 5.268 78.18% 73.67% 57.13% 69.46% 69.61%

W8A8 8.634 72.80% 62.27% 49.57% 63.69% 62.08%
+QFeM 5.758[-2.876] 78.02% 73.86% 56.32% 68.35% 69.14%[+7.06]
+QFeP 5.758[-2.876] 76.44% 73.57% 55.55% 69.22% 68.69%[+6.61]
+QFeM+QFeP 5.573[-3.061] 77.86% 74.58% 56.05% 69.38% 69.47%[+7.39]

LLaMA-2-13B

FP16 4.789 79.49% 76.54% 60.20% 72.38% 72.15%

W8A8 34.089 70.13% 49.66% 42.65% 58.72% 55.29%
+QFeM 5.241[-28.848] 77.58% 75.68% 59.13% 72.61% 71.25%[+15.96]
+QFeP 6.000[-28.089] 77.53% 73.94% 57.23% 70.96% 69.91%[+14.62]
+QFeM+QFeP 5.126[-28.963] 78.51% 75.86% 59.44% 72.61% 71.61%[+16.32]

LLaMA-2-70B

FP16 3.218 81.45% 79.45% 65.29% 80.43% 76.65%

W8A8 8.055 74.05% 70.27% 55.21% 67.96% 66.87%
+QFeM 3.830[-4.225] 81.23% 77.66% 64.15% 78.14% 75.30%[+8.43]
+QFeP 6.007[-2.048] 77.64% 73.26% 63.40% 76.16% 72.62%[+5.75]
+QFeM+QFeP 3.708[-4.347] 81.23% 77.82% 64.65% 77.11% 75.20%[+8.33]
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Figure 5: The average accuracy of zero-shot evaluation on other GLU-implemented LLMs. Most
models recover significantly compared to W8A8, with performance close to FP16.

Quantization. In the experiments, we quantize both the input activations and the weights of linear245

layers for INT8 matrix multiplication operations. Note that in Table 2, |M | denotes the total number246

of linear modules targeted for quantization. In these linear layers, we opt for dynamic per-tensor247

quantization as the quantization scheme of input activations, and per-channel quantization for weights,248

respectively. Regarding both input activations and weights, we symmetrically quantize the range249

using the absolute maximum value as the scale estimation function. For comparison, we use FP16250

and per-token activation quantization [55] as baselines. We refer the reader to Appendix B for Batch251

Matrix-Multiplication (BMM) quantization, which involves quantizing tensors in the self-attention.252

Evaluations. We evaluate the quantized LLMs with two metrics: zero-shot evaluation accuracy253

and perplexity. For zero-shot evaluation, we use the four datasets: PIQA [7], LAMBADA [33],254

HellaSwag [56], and WinoGrande [38]. We utilize the lm-evaluation-harness library [16] to evaluate255

zero-shot tasks. To measure perplexity, we use the WikiText-2 [28] dataset. In all cases, we use the256

[BOS] token as the starting token for each input sequence by default.257

5.2 Main Results258

LLaMA-2 Models. We report the evaluation results of quantization on LLaMA-2 models in Table 3.259

Compared to FP16 precision, quantizing both weights and activations (W8A8) degrades the overall260

performance. The results demonstrate that our proposed methods resolve the activation spikes261

and, surprisingly, restore the performance of the W8A8 close to that of FP16. For example, the262

LLaMA-2 7B model achieves less than a 1% performance drop from FP16. It is worth noting that the263

7



Table 4: Evaluation of outlier alleviation methods with QFeM and QFeP. We report perplexity on
WikiText-2 and averaged accuracy of four zero-shot tasks. The same quantization scheme for used
on both SQ and OSP. Per-tensor weight quantization results are provided in Appendix C.1.

Method
LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

ppl(↓) acc(↑) ppl(↓) acc(↑) ppl(↓) acc(↑)

SQ [51] 9.907 61.08% 34.869 59.45% 8.800 70.25%
+QFeM 5.534 69.65% 5.118 71.23% 3.599 75.93%
+QFeP 5.715 68.66% 6.551 69.33% 5.228 74.07%

OSP [50] 38.490 59.90% 5.148 71.29% 3.827 75.52%
+QFeM 5.493 69.37% 5.099 71.37% 3.559 75.92%
+QFeP 5.642 68.95% 5.144 71.05% 3.752 75.36%

proposed QFeM and QFeP improve at comparable levels. This indicates that the activation spikes264

present a direct cause of the significant decrease in quantization performance. Because the proposed265

methods are orthogonal, the performance slightly increases when incorporating both QFeM and QFeP266

compared to applying them individually.267

Other GLU-implemented LLMs. For other LLMs that incorporate GLU, we investigated the268

effectiveness of our methods in mitigating the quantization bottleneck. As can be seen in Figure 5,269

our methods consistently remedy the performance drop caused by activation spikes. Noticeably,270

the Mixtral model demonstrates robustness towards the performance degradation. This indicates271

that the mixture of experts architecture, which divides the MLP experts by tokens, helps to alleviate272

the impact of the activation spikes. Meanwhile, addressing the activation spikes is not a sufficient273

complement for the Gemma model compared to other models. We attribute this to the choice of274

activation function among GLU variants; specifically, Gemma uses GeGLU, while other models275

employ SwiGLU.276

5.3 Combining Outlier Alleviation Methods277

While our method focuses on the activation spikes, the inherent outlier values in the input activations278

remain. Here, we combine the prior outlier alleviation methods, such as SmoothQuant (SQ) [51]279

and OutlierSuppressionPlus (OSP) [50], to further improve the quantization error. In practice, our280

methods are utilized during the scale calibration phase of alleviation methods to mitigate the impact281

of activation spikes on scale migration between activations and weights. Table 4 demonstrates the282

evaluation results of applying the outlier alleviation methods solely and combining them with our283

methods. We find that there are cases where the alleviation method fails to recover the performance284

when quantizing the activations with per-tensor scheme.3 This indicates that alleviating the outlier285

scales, including the activation spikes, is challenging. With the QFeM, the activation spikes are286

excluded, and the accurate alleviation is enabled. In addition, the QFeP also benefits from the SQ287

method, as seen in the case of LLaMA-2 70B. Exceptionally, the OSP successfully addresses the288

activation spikes in the 13B and 70B cases.289

5.4 Ablation Study290

65

70
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(%
)
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50

60

70

Mistral-7B

65

70

SOLAR-10.7B

Random
BOS

QFeP (w/o context) QFeP (w/ context)

Figure 6: Prefix ablation. Y-axis represents
averaged accuracy of four zero-shot tasks.

For the QFeP, we designed a length-three prefix for291

the KV cache, including the BOS token, context to-292

ken, and extra token for activation spike. Because the293

KV cache consumes the capacity of the pretrained se-294

quence position, it raises a question about the length295

of the prefix. Therefore, we conduct ablation study296

for different prefixes for the KV cache. For the pre-297

fixes, we prepare random, BOS only, and both QFeP without and with the context token. We illustrate298

the results of ablation study in Figure 6. In all cases, the random prefix showcases the lowest perfor-299

mance. While the KV cache with the BOS token demonstrates inconsistent performance, our QFeP300

3In their papers, the activations of LLaMA models are quantized using only a per-token scheme.

8



270 280 290 300 310 320
Latency (ms)

30

40

50

60

70
Ac

cu
ra

cy
 (%

)

LLaMA-2-13B
(GPU=RTX4090, token length=2000)

Qauntization Scheme
FP16
AQ1
AQ2
AQ2 + QFeP
AQ2 + QFeM
AQ3
AQ3 + QFeP
AQ3 + QFeM

1350 1400 1450 1500
Latency (ms)

50

55

60

65

70

75

LLaMA-2-70B
(GPU=A100, token length=2000)

Qauntization Scheme
FP16
AQ1
AQ2
AQ2 + QFeP
AQ2 + QFeM
AQ3
AQ3 + QFeP
AQ3 + QFeM

Figure 7: Accuracy-latency comparison of different activation quan-
tization schemes: dynamic per-token (AQ1), dynamic per-tensor
(AQ2), and static per-tensor (AQ3).

Table 5: Memory footprint.

Method
SeqLen

1K 2K

LLaMA-2-7B

AQ1 8185MiB 9516MiB
AQ2 8148MiB 9474MiB
+QFeP 8149MiB 9478MiB
+QFeM 8148MiB 9474MiB

LLaMA-2-70B

AQ1 67756MiB 69037MiB
AQ2 67648MiB 68820MiB
+QFeP 67651MiB 68822MiB
+QFeM 67838MiB 68819MiB

consistently shows significant improvement. Importantly, the results imply that the sufficient prefix301

for the models exhibits differences. However, we emphasize that our KV design for QFeP shows302

improvements by large margins across all models.303

5.5 Computational Cost Analysis304

The proposed methods require additional resources to evict the activation spikes. Therefore, we ana-305

lyze the computational costs of the methods and compare them in various schemes. For comparison,306

we evaluate different activation quantization schemes: dynamic per-token, dynamic per-tensor, and307

static per-tensor, denoted as AQ1, AQ2, and AQ3, respectively. This distinction establishes strong308

baselines and demonstrates the potential of the methods. To calibrate the static scales, we estimate309

the absolute maximum value using the calibration dataset, which is used in Section 3.1.310

Inference Latency. For each setting, we present the accuracy of the zero-shot tasks and inference311

latency of the fixed token sequence, as shown in Figure 7. While the fine-grained scheme (AQ1) shows312

a negligible accuracy drop, the counterparts (AQ2, AQ3) degrade with the quantization bottleneck.313

However, by applying our methods, the coarse-grained schemes achieve a competitive performance314

gain. For example, the combination of AQ2 and QFeM demonstrates the performance close to315

the AQ1 but with faster latency. The results signify that addressing the quantization bottleneck316

is important to accelerate the inference latency with coarser granularity. Specifically, the naive317

static quantization (AQ3), the fastest scheme, exhibits a significant decline. We hope that our work318

contributes to the future works, which address the remaining challenges in static quantization.319

Memory Footprint. In Table 5, we record the maximum memory footprint of our methods. For320

QFeP, the additional memory is consistently required for the preserved KV cache. However, this321

memory overhead is much smaller than that used in the fine-grained quantization (AQ1), as QFeM322

utilizes only three tokens for the cache. Contrary to QFeP, QFeM shows inconsistent memory323

utilization. For example, the 7B model with QFeM exhibits memory usage similar to AQ2, while the324

70B model with QFeM incur additional consumption for a sequence length of 1K. This is attributed to325

the use of W8A16 for the unquantization modules in QFeM. To tailor the memory usage or inference326

speed, an alternative strategy can be utilized for QFeM, such as applying fine-grained activation327

quantization to the unquantization modules instead of using W8A16.328

6 Conclusion329

We explore the quantization challenge of GLU activations for modern LLMs. We find that the GLU330

variants generates excessive activation scales, which cause significant quantization bottlenecks at331

the specific layers. Based on the systematic generation pattern of the activation spikes, we propose332

methods that address the spikes in a layer-wise (QFeM) and token-wise manner (QFeP). In the333

experiments, we confirm that the proposed methods effectively resolve the quantization bottlenecks334

and result in a large performance gain. We expect that our work sheds light on the potential challenges335

in future studies regarding quantization and facilitates the development of efficient LLM systems.336

9



References337

[1] Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Zhen Stephen Gou, Phil338

Blunsom, Ahmet Üstün, and Sara Hooker. Intriguing properties of quantization at scale.339

Advances in Neural Information Processing Systems, 36:34278–34294, 2023.340

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and341

Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head342

checkpoints. arXiv preprint arXiv:2305.13245, 2023.343

[3] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxan-344

dra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin345

Malartic, et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867,346

2023.347

[4] Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.348

In International Conference on Learning Representations, 2018.349

[5] Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth350

Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, et al. Stable lm 2 1.6 b351

technical report. arXiv preprint arXiv:2402.17834, 2024.352

[6] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,353

Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward354

Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In355

International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.356

[7] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-357

ical commonsense in natural language. In Proceedings of the AAAI conference on artificial358

intelligence, volume 34, pages 7432–7439, 2020.359

[8] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming360

the challenges of efficient transformer quantization. In Marie-Francine Moens, Xuanjing361

Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on362

Empirical Methods in Natural Language Processing, pages 7947–7969, Online and Punta Cana,363

Dominican Republic, November 2021. Association for Computational Linguistics.364

[9] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers:365

Removing outliers by helping attention heads do nothing. Advances in Neural Information366

Processing Systems, 36, 2024.367

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,368

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are369

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.370

[11] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-371

tion of large language models with guarantees. Advances in Neural Information Processing372

Systems, 36, 2024.373

[12] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix374

multiplication for transformers at scale. Advances in Neural Information Processing Systems,375

35:30318–30332, 2022.376

[13] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh377

Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized378

representation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078,379

2023.380

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of381

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,382

2018.383

[15] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training384

quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.385

10



[16] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles386

Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas387

Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,388

Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework389

for few-shot language model evaluation, 12 2023.390

[17] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.391

A survey of quantization methods for efficient neural network inference. In Low-Power Com-392

puter Vision, pages 291–326. Chapman and Hall/CRC, 2022.393

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual394

networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The395

Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.396

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,397

Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for398

efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer399

vision and pattern recognition, pages 2704–2713, 2018.400

[20] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh401

Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile402

Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.403

[21] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris404

Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,405

et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.406

[22] Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeon-407

woo Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language408

models with simple yet effective depth up-scaling. arXiv preprint arXiv:2312.15166, 2023.409

[23] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W410

Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint411

arXiv:2306.07629, 2023.412

[24] Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. BERT busters: Out-413

lier dimensions that disrupt transformers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto414

Navigli, editors, Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,415

pages 3392–3405, Online, August 2021. Association for Computational Linguistics.416

[25] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the dark417

secrets of BERT. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings418

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th419

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages420

4365–4374, Hong Kong, China, November 2019. Association for Computational Linguistics.421

[26] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:422

Activation-aware weight quantization for llm compression and acceleration. arXiv preprint423

arXiv:2306.00978, 2023.424

[27] Ziyang Luo, Artur Kulmizev, and Xiaoxi Mao. Positional artefacts propagate through masked425

language model embeddings. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, edi-426

tors, Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics427

and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long428

Papers), pages 5312–5327, Online, August 2021. Association for Computational Linguistics.429

[28] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture430

models. arXiv preprint arXiv:1609.07843, 2016.431

[29] Javaheripi Mojan and Bubeck Sébastien. Phi-2: The surprising power of small language models,432

2023.433

11



[30] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,434

and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint435

arXiv:2106.08295, 2021.436

[31] Sharan Narang, Hyung Won Chung, Yi Tay, Liam Fedus, Thibault Fevry, Michael Matena,437

Karishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, Yanqi Zhou, Wei Li, Nan Ding,438

Jake Marcus, Adam Roberts, and Colin Raffel. Do transformer modifications transfer across439

implementations and applications? In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,440

and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in441

Natural Language Processing, pages 5758–5773, Online and Punta Cana, Dominican Republic,442

November 2021. Association for Computational Linguistics.443

[32] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,444

and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint445

arXiv:1904.01038, 2019.446

[33] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,447

Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA448

dataset: Word prediction requiring a broad discourse context. In Katrin Erk and Noah A. Smith,449

editors, Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-450

tics (Volume 1: Long Papers), pages 1525–1534, Berlin, Germany, August 2016. Association451

for Computational Linguistics.452

[34] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan453

Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.454

Proceedings of Machine Learning and Systems, 5, 2023.455

[35] Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and Felice Dell’Orletta. Outlier dimensions456

that disrupt transformers are driven by frequency. In Yoav Goldberg, Zornitsa Kozareva, and Yue457

Zhang, editors, Findings of the Association for Computational Linguistics: EMNLP 2022, pages458

1286–1304, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational459

Linguistics.460

[36] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.461

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.462

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,463

Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified464

text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.465

[38] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An466

adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.467

[39] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng468

Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantiza-469

tion for large language models. arXiv preprint arXiv:2308.13137, 2023.470

[40] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.471

[41] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:472

Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.473

[42] Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language474

models. arXiv preprint arXiv:2402.17762, 2024.475

[43] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya476

Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open477

models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.478

[44] MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially479

usable llms, 2023. Accessed: 2023-05-05.480

12



[45] William Timkey and Marten van Schijndel. All bark and no bite: Rogue dimensions in trans-481

former language models obscure representational quality. In Marie-Francine Moens, Xuanjing482

Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on483

Empirical Methods in Natural Language Processing, pages 4527–4546, Online and Punta Cana,484

Dominican Republic, November 2021. Association for Computational Linguistics.485

[46] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-486

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open487

and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.488

[47] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,489

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open490

foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.491

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,492

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information493

processing systems, 30, 2017.494

[49] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani495

Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large496

language models. arXiv preprint arXiv:2206.07682, 2022.497

[50] Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo,498

and Xianglong Liu. Outlier suppression+: Accurate quantization of large language models499

by equivalent and effective shifting and scaling. In Houda Bouamor, Juan Pino, and Kalika500

Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language501

Processing, pages 1648–1665, Singapore, December 2023. Association for Computational502

Linguistics.503

[51] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.504

SmoothQuant: Accurate and efficient post-training quantization for large language models. In505

Proceedings of the 40th International Conference on Machine Learning, 2023.506

[52] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming507

language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.508

[53] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,509

Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.510

In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.511

[54] Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn, and Yuxiong He. A comprehensive study512

on post-training quantization for large language models. arXiv preprint arXiv:2303.08302,513

2023.514

[55] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong515

He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.516

Advances in Neural Information Processing Systems, 35:27168–27183, 2022.517

[56] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a518

machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez, edi-519

tors, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,520

pages 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics.521

[57] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,522

Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained523

transformer language models. arXiv preprint arXiv:2205.01068, 2022.524

[58] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,525

Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv526

preprint arXiv:2303.18223, 2023.527

13



A Additional Calibration Results528

In this section, we provide details of LLMs when performing calibration, which is the step during529

quantization where the FP16 ranges are computed (Appendix A.1), and additional calibration results530

(Appendix A.2, A.3).531

A.1 Detailed Specification of LLMs532

In Section 3.1, we have performed the calibration method on various LLMs. We observe the533

calibration results by categorizing based on the presence of GLU in the LLMs. Table 6 shows the534

detailed structures of the LLMs. We refer notations for feed-forward implementiation from [40]. In535

the case of GLU-implemented LLMs, which is LLaMA-2, LLaMA-3, Mistral, Mixtral, SOLAR,536

StableLM-2, and Gemma, most models have SwiGLU for FFN activation, while only Gemma has537

GeGLU. On the other hand, in non GLU-implemented LLMs, most of them utilize GeLU for FFN538

activation, with the exception of OPT, which uses ReLU.539

Table 6: Architecture specification of LLMs. We categorize them into two groups depending on
whether GLU is implemented in the FFN. All LLMs in the table use Pre-LN for the LayerNorm
position.

Model Size FFN Activation Normalization PE Vocabulary Size

GLU-implemented LLMs:
LLaMA-2 [47] 7B, 13B, 70B SwiGLU RMSNorm RoPE 32000
LLaMA-3 8B, 70B SwiGLU RMSNorm RoPE 128256
Mistral [20] 7B SwiGLU RMSNorm RoPE 32000
Mixtral [21] 8x7B SwiGLU RMSNorm RoPE 32000
SOLAR [22] 10.7B SwiGLU RMSNorm RoPE 32000
StableLM-2 [5] 12B SwiGLU LayerNorm RoPE 100352
Gemma [43] 7B GeGLU RMSNorm RoPE 256000

Non GLU-implemented LLMs:
OPT [57] 6.7B, 13B, 30B, 66B ReLU LayerNorm Learned 50272
MPT [44] 7B, 30B GeLU LayerNorm ALiBi 50432
Pythia [6] 6.9B, 12B GeLU LayerNorm RoPE 50432, 50688
Falcon [3] 7B, 40B GeLU LayerNorm RoPE 65024
Phi-2 [29] 2.7B GeLU LayerNorm RoPE 51200

A.2 Other Calibration Results on GLU-implementation540

Figure 8, 9 show the calibration result examples for various GLU-implemented LLMs that are not541

shown in the models in Figure 1a. In most GLU-implemented LLMs, we observe that the input542

activations have large values near the first and last layers. Unlike the typical GLU-implemented LLM543

architecture, Mixtral is composed of 8 feed-forward blocks in the single FFN, containing multiple544

gate linear units [21]. According to this structure, we can observe that one of the gates spikes in value545

in Figure 8.546
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Figure 8: Calibration results on GLU-implemented LLMs (Mixtral-8x7B).
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Figure 9: Calibration results on GLU-implemented LLMs.

Figure 10: Calibration results on Non GLU-implemented LLMs.
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A.3 Other Calibration Results on Non GLU-implementation547

Figure 10 shows the calibration result examples for various non GLU-implemented LLMs that were548

not shown in the models in Figure 1b. There are no activation spikes on non GLU-implemented549

LLMs.550

B BMM Quantization551

To achieve faster inference latency, BMM operations in the self-attention also can be computed as552

INT8 operation [51]. This requires a quantization on the query, key, and value states including the553

cached context. Because activation spikes produce a large magnitude of latent values, it is important554

to confirm the extent of quantization errors from KV quantization. This confirmation is necessary to555

gain advantages from BMM quantization. In Table 7, we examine the impact of BMM quantization on556

the W8A8 and QFeM. Regardless of the BMM quantization, the QFeM method consistently improves557

the quantization bottleneck. For example, the 13B and 70B models maintain their performance,558

while the 7B model shows a slight decrease. However, this decrease appears to be due to inherent559

quantization errors rather than a quantization bottleneck from activation spikes. As a result, we560

confirm that our QFeM method effectively improves the overall performance even in the BMM561

quantization scenario.562

Table 7: BMM quantization results.

Model Method BMM Quantization
No Yes

7B W8A8 62.08% 61.66%
+QFeP 68.69% 68.30%

13B W8A8 55.29% 55.43%
+QFeP 69.91% 69.77%

70B W8A8 66.87% 66.75%
+QFeP 72.62% 72.69%

C Supplementary Experiment Results563

C.1 Additional Results for Combining Outlier Alleviation Methods564

In Table 8, we provide additional results for Section 5.3 with coarse-grained quantization (i.e.,565

per-tensor quantization) scheme for weight quantization. Compared to the results obtained with per-566

channel weight quantization in Table 4, these results elucidate the negative impact of activation spikes567

on the performance of outlier alleviation methods. Furthermore, this suggests that the performance of568

OSP method resort to the weight quantization scheme. Nevertheless, the proposed methods, QFeM569

and QFeP, consistently improve the effectiveness of outlier alleviation methods by mitigating the570

impact of activation spikes.571

Table 8: Evaluation of outlier alleviation methods with QFeM and QFeP. We report perplexity on
WikiText-2 and averaged accuracy of four zero-shot tasks. Compared to Table 4, per-tensor weight
quantization and dynamic per-tensor activation quantization are used.

Method
LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

ppl(↓) acc(↑) ppl(↓) acc(↑) ppl(↓) acc(↑)

SQ [51] 24.661 56.87% 120.966 53.06% 8.435 67.08%
+QFeM 6.016 67.74% 5.464 70.04% 4.015 74.18%
+QFeP 6.122 67.22% 10.473 68.17% 5.998 72.54%

OSP [50] 9.131 63.61% 8.997 64.03% 6.492 71.13%
+QFeM 5.951 68.65% 5.284 70.67% 4.434 73.30%
+QFeP 5.821 68.25% 5.868 67.96% 4.976 73.57%
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D Miscellaneous572

D.1 Transformer Architecture.573

In Figure 11, we illustrate the Pre-LN transformer architecture and each sub-modules. We highlight574

with the same color the linear modules that accept identical input activations. Note that the hidden575

states are normalized before forwarding into the query and up linear modules.576
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Feed-Forward
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Figure 11: An illustration of Pre-LN transformer block and its sub-modules. Two feed-forward
implementation, GLU and Non-GLU, are visualized in (c) and (d) respectively. In feed-forward
network, σ denotes non-linear activation function, such as GeLU. We highlight the linear modules
where input activations are quantized.

D.2 Additional Results for Token-level Scale Analysis577

We provide additional results for token-level scale analysis (Section 3.2). In Figure 12 and Figure 13,578

the token for the activation spikes behind the BOS token does not exhibit the excessive activation579

scale.580
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Figure 12: Token-wise scales analysis for LLaMA-2-7B. The newline token behind the BOS token
does not exhibit the activation spikes.
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Figure 13: Token-wise scales from the unrolled activation spike of LLaMA-2-70B. The newline
token behind the BOS token does not exhibit the activation spikes.
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paper’s contributions and scope?584

Answer: [Yes]585

Justification: We clarify our research scope and contributions in abstract and introduction.586

Guidelines:587

• The answer NA means that the abstract and introduction do not include the claims588

made in the paper.589

• The abstract and/or introduction should clearly state the claims made, including the590

contributions made in the paper and important assumptions and limitations. A No or591

NA answer to this question will not be perceived well by the reviewers.592

• The claims made should match theoretical and experimental results, and reflect how593

much the results can be expected to generalize to other settings.594

• It is fine to include aspirational goals as motivation as long as it is clear that these goals595

are not attained by the paper.596

2. Limitations597

Question: Does the paper discuss the limitations of the work performed by the authors?598

Answer: [No]599

Justification: The limitation of our work is that our methods are based on the observations600

without theoretical validation. However, our extensive experimental results validate the601

effectiveness of our methods.602

Guidelines:603

• The answer NA means that the paper has no limitation while the answer No means that604

the paper has limitations, but those are not discussed in the paper.605

• The authors are encouraged to create a separate "Limitations" section in their paper.606

• The paper should point out any strong assumptions and how robust the results are to607

violations of these assumptions (e.g., independence assumptions, noiseless settings,608

model well-specification, asymptotic approximations only holding locally). The authors609

should reflect on how these assumptions might be violated in practice and what the610

implications would be.611

• The authors should reflect on the scope of the claims made, e.g., if the approach was612

only tested on a few datasets or with a few runs. In general, empirical results often613

depend on implicit assumptions, which should be articulated.614

• The authors should reflect on the factors that influence the performance of the approach.615

For example, a facial recognition algorithm may perform poorly when image resolution616

is low or images are taken in low lighting. Or a speech-to-text system might not be617

used reliably to provide closed captions for online lectures because it fails to handle618

technical jargon.619

• The authors should discuss the computational efficiency of the proposed algorithms620

and how they scale with dataset size.621

• If applicable, the authors should discuss possible limitations of their approach to622

address problems of privacy and fairness.623

• While the authors might fear that complete honesty about limitations might be used by624

reviewers as grounds for rejection, a worse outcome might be that reviewers discover625

limitations that aren’t acknowledged in the paper. The authors should use their best626

judgment and recognize that individual actions in favor of transparency play an impor-627

tant role in developing norms that preserve the integrity of the community. Reviewers628

will be specifically instructed to not penalize honesty concerning limitations.629

3. Theory Assumptions and Proofs630

Question: For each theoretical result, does the paper provide the full set of assumptions and631

a complete (and correct) proof?632
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Answer: [NA]633

Justification: We propose empirical methods based on our observation, rather than theoretical634

analysis.635

Guidelines:636

• The answer NA means that the paper does not include theoretical results.637

• All the theorems, formulas, and proofs in the paper should be numbered and cross-638

referenced.639

• All assumptions should be clearly stated or referenced in the statement of any theorems.640

• The proofs can either appear in the main paper or the supplemental material, but if641

they appear in the supplemental material, the authors are encouraged to provide a short642

proof sketch to provide intuition.643

• Inversely, any informal proof provided in the core of the paper should be complemented644

by formal proofs provided in appendix or supplemental material.645

• Theorems and Lemmas that the proof relies upon should be properly referenced.646

4. Experimental Result Reproducibility647

Question: Does the paper fully disclose all the information needed to reproduce the main ex-648

perimental results of the paper to the extent that it affects the main claims and/or conclusions649

of the paper (regardless of whether the code and data are provided or not)?650

Answer: [Yes]651

Justification: We precisely describe the process of the proposed methods in their respec-652

tive subsections. The models (LLMs) and datasets used in the experiments are publicly653

accessible.654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• If the paper includes experiments, a No answer to this question will not be perceived657

well by the reviewers: Making the paper reproducible is important, regardless of658

whether the code and data are provided or not.659

• If the contribution is a dataset and/or model, the authors should describe the steps taken660

to make their results reproducible or verifiable.661

• Depending on the contribution, reproducibility can be accomplished in various ways.662

For example, if the contribution is a novel architecture, describing the architecture fully663

might suffice, or if the contribution is a specific model and empirical evaluation, it may664

be necessary to either make it possible for others to replicate the model with the same665

dataset, or provide access to the model. In general. releasing code and data is often666

one good way to accomplish this, but reproducibility can also be provided via detailed667

instructions for how to replicate the results, access to a hosted model (e.g., in the case668

of a large language model), releasing of a model checkpoint, or other means that are669

appropriate to the research performed.670

• While NeurIPS does not require releasing code, the conference does require all submis-671

sions to provide some reasonable avenue for reproducibility, which may depend on the672

nature of the contribution. For example673

(a) If the contribution is primarily a new algorithm, the paper should make it clear how674

to reproduce that algorithm.675

(b) If the contribution is primarily a new model architecture, the paper should describe676

the architecture clearly and fully.677

(c) If the contribution is a new model (e.g., a large language model), then there should678

either be a way to access this model for reproducing the results or a way to reproduce679

the model (e.g., with an open-source dataset or instructions for how to construct680

the dataset).681

(d) We recognize that reproducibility may be tricky in some cases, in which case682

authors are welcome to describe the particular way they provide for reproducibility.683

In the case of closed-source models, it may be that access to the model is limited in684

some way (e.g., to registered users), but it should be possible for other researchers685

to have some path to reproducing or verifying the results.686
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.705
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• At submission time, to preserve anonymity, the authors should release anonymized709

versions (if applicable).710
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results?716

Answer: [Yes]717
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• The answer NA means that the paper does not include experiments.720
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that is necessary to appreciate the results and make sense of them.722
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Answer: [No]728
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Question: For each experiment, does the paper provide sufficient information on the com-754

puter resources (type of compute workers, memory, time of execution) needed to reproduce755
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Answer: [Yes]757

Justification: We provide a computational cost analysis in Section 5.5.758
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• The answer NA means that the paper does not include experiments.760
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from (intentional or unintentional) misuse of the technology.802
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Justification:812
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• The answer NA means that the paper poses no such risks.814

• Released models that have a high risk for misuse or dual-use should be released with815

necessary safeguards to allow for controlled use of the model, for example by requiring816

that users adhere to usage guidelines or restrictions to access the model or implementing817

safety filters.818

• Datasets that have been scraped from the Internet could pose safety risks. The authors819

should describe how they avoided releasing unsafe images.820

• We recognize that providing effective safeguards is challenging, and many papers do821

not require this, but we encourage authors to take this into account and make a best822

faith effort.823
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