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ABSTRACT

Large language models (LMs) are capable of generating free-text rationales
to aid question answering. However, prior work 1) suggests that useful self-
rationalization is emergent only at significant scales (e.g., 175B parameter GPT-
3); and 2) focuses largely on downstream performance, ignoring the semantics of
the rationales themselves, e.g., are they faithful, true, and helpful for humans? In
this work, we enable small-scale LMs (∼200x smaller than GPT-3) to generate
rationales that not only improve downstream task performance, but are also more
plausible, consistent, and diverse, assessed both by automatic and human evalu-
ation. Our method, MARIO (Multi-rewArd RatIOnalization), is a multi-reward
conditioned self-rationalization algorithm that optimizes multiple distinct proper-
ties like plausibility, diversity and consistency. Results on five difficult question-
answering datasets StrategyQA, QuaRel, OpenBookQA, NumerSense and QASC
show that not only does MARIO improve task accuracy, but it also improves the
self-rationalization quality of small LMs across the aforementioned axes better
than a supervised fine-tuning (SFT) baseline. Extensive human evaluations con-
firm that MARIO rationales are preferred vs. SFT rationales, as well as qualitative
improvements in plausibility and consistency1.

1 INTRODUCTION

Question: Malini is cutting bread with a bread 
knife which creates a smooth cut, while cutting cake 

with a bread knife creates a rough cut. This means 
that the ___ has less resistance (A) bread (B) cake

Answer: 
(A)

GPT-3 Rationale: When 
something has less resistance, it is 
easier to cut through. Thus, the 

bread has less resistance, making it 
easier to cut with the bread knife.

Existing 
Rationalizers

What we do

(1) Large Size
(2) Focus only on task 

performance
GPT-3

MaRio Rationale: Less 
resistance implies ease in 

cutting through. So, it is easier 
to cut through bread.

��

  SFT Rationale: Less resistance 
implies ease in cutting through. So 
the bread has a smooth cut as it is 

more resistant.

👎 + Plausibility ⬆
+Consistency ⬆

+Diversity ⬆

GPT-3

Rationale 
Properties 🏆

Figure 1: Our proposed approach, MARIO. While existing self-rationalizing pipelines require
exorbitantly large LMs that are used to primarily improve task performance, MARIO is a small LM
that is initially distilled from rationales generated by GPT-3, following by multi-reward training that
improves its rationale quality w.r.t three properties: plausibility, diversity and consistency.

In recent years, there has been a surge of interest in self-rationalizing LMs, LMs that generate
fluent, human-like, free-text rationales that can explain their decision (Wiegreffe et al., 2021). Early
approaches in self-rationalizing involved collecting human-written gold rationales and using them
as supervision for training LMs (Wiegreffe et al., 2021; Narang et al., 2020). Now, with the advent

1inklab.usc.edu/MaRio/
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of large LMs, chain-of-thought prompting (Wei et al., 2022; Marasovic et al., 2022; Kojima et al.,
2022) has revolutionized the landscape of self-rationalization; now, with just a few well-designed
prompts and demonstrations, LMs can generate explanations for their predictions. The presence
of rationales can make LMs both more interpretable (Lertvittayakumjorn & Toni, 2021) and more
usable (Joshi et al., 2023) from the perspective of users.

However, prior work in self-rationalization has largely overlooked the quality of generated rationales
themselves; instead, their utility is justified by measuring downstream task performance (Wei et al.,
2022; Zelikman et al., 2022). This is particularly problematic, as downstream models and users
may use these rationales as justifications for the predicted answer, which can further propagate these
negative quality outcomes (Atanasova et al., 2023; Joshi et al., 2023; Hovy & Prabhumoye, 2021).
Furthermore, it is observed that rationalization comparable to human quality is only observed with at
a significant LM parameter scales (∼100B or more) (Wei et al., 2022). Despite some recent interest
in using smaller LMs for rationalization (Chen et al., 2023b), it is still unclear if smaller LMs can
be used to generate similarly high-quality rationales.

In this work, we propose MARIO, a method that focuses on tailoring small-sized LMs (< 1B param-
eters) to be strong rationalizers both in terms of improved downstream performance, and in terms of
desireable properties of the rationales themselves. Instead of relying on human rationale labelling
(Wiegreffe et al., 2021), MARIO considers a setting where a small LM only has access to rewards
that measures factors underlying rationale quality, e.g. a trained LM that judges the plausibility
of a rationale and provides a numerical score. MARIO first starts with training a small LM to self-
rationalize, with the help of GPT-3 (Brown et al., 2020) (TEXT-DAVINCI-003)2 generated rationales
as initial supervision, which are shown to be of higher quality Sun et al. (2022). It then casts the
problem into a multi-reward conditioned rationale generation problem, where the LM is optimized
to maximize quality rewards. In order to achieve this, MARIO extends QUARK proposed by Lu
et al. (2022) to a multi-reward setup, where generations from an LM are binned according reward
values; the LM learns distributions conditioned on ‘control-tokens’ corresponding to every reward
and high-quality generations can be obtained via conditioning on the highest-reward token.

We determine that high-quality rationales should have three necessary properties: plausibility
(makes logical sense), diversity (is not repetitive) and consistency (supports the correct answer for
the instance). Generated rationales’ rewards are assessed through automated metrics for each of the
three quality properties. We then evaluate MARIO on three question-answering datasets, and ob-
serve that small LMs like T5-LARGE can be effectively trained to generate rationales that satisfy all
of the quality requirements, while also leading to improvements in task performance over supervised
fine-tuned self-rationalizers (SFT). Via human evaluation, we also observe that rationales generated
by MARIO are more preferred over those generated by SFT, across all datasets.

We note that tailoring small LMs with multiple quality rewards is a challenging task. Some of these
issues include finding high-quality, stable rewards that can be effectively incorporated in a self-
rationalizing pipeline. We also observed that a lot of additional desirable properties in rationales
(like factuality and completeness) do not have reliable automated rewards. Furthermore, improving
task accuracy (which is the primary goal while generating rationales for a lot of these tasks) is
challenging in a multi-reward setup, and show that adding task accuracy as an additional reward term
leads to the best configuration of MARIO. By using small LMs to generate high-quality rationales
that are also supported by human evaluations, we believe our findings can help guide future work in
efficient, real-world situated methods in rationale generation and evaluation.

2 SELF-RATIONALIZATION

Throughout this work, we refer to self-rationalizers as LMs that are trained or prompted to specif-
ically generate free-text rationales, along with their predictions. These free-text rationales are
treated as explanations for their predictions. For the purpose of our experiments, we explore self-
rationalization on the question answering (QA) task. Specifically, given a question, the LM must
first generate a free-text rationale that explains the LM’s reasoning process, followed by an answer
to the given question. Table 1 shows examples of inputs and outputs by these self-rationalizing LMs
for five QA datasets: STRATEGYQA (Geva et al., 2021), QUAREL (Tafjord et al., 2019), OPEN-

2note that whenever we mention GPT-3 in this work, we are referring to TEXT-DAVINCI-003
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Table 1: Sample Inputs and Outputs for Self-Rationalizing LMs. We use an I-RO setting for
all our experiments. This table shows one example each from the training set of STRATEGYQA,
OPENBOOKQA, QUAREL, NUMERSENSE and QASC. The rationales shown here are the ones
sampled from GPT-3.

STRATEGYQA
INPUT (I): Could someone in Tokyo take a taxi to the The Metropolitan Museum of Art?
OUTPUT (RO): The Metropolitan Museum of Art is in New York City, USA. Tokyo, Japan is over 6,000 miles
away. So the answer is no.

OPENBOOKQA INPUT (I): Our only star provides us with energy that is (a) temporary (b) inferior (c) expensive (d) reusable
OUTPUT (RO): The energy from the sun is renewable and reusable. So the answer is (d).

QUAREL

INPUT (I): Cutting bread with a bread knife creates a smooth cut, while cutting cake with a bread knife creates
a rough cut. This means that the has less resistance (A) bread (B) cake
OUTPUT (RO): When something has less resistance, it is easier to cut through. Thus, the bread has less resis-
tance, making it easier to cut with the bread knife. So the answer is (A).

NUMERSENSE
INPUT (I): Fungi reproduce in <mask> ways. (A) no (B) zero (C) one (D) two (E) three (F) four (G) five (H)
six (I) seven (J) eight (K) nine (L) ten
OUTPUT (RO): Fungi reproduce by sexual or asexual reproduction. So the answer is (D).

QASC

INPUT (I): Bees are necessary to (A) haploid plants (B) genetic diversity (C) spread flower seeds (D) prevent
evolution (E) Reproduction (F) eat weeds (G) chew flowers (H) important habitats
OUTPUT (RO): Bees are necessary to spread flower seeds. Bees pollinate flowers, which helps the flowers re-
produce and spread their seeds. So the answer is (C).

BOOKQA (Mihaylov et al., 2018), NUMERSENSE Lin et al. (2020) and QASC Khot et al. (2020).
These datasets were chosen over others which have existing human written rationales because all of
them require certain level of implicit or logical reasoning in order to arrive at the answer. As we
depict in the examples, we follow the I-RO format (Wiegreffe et al., 2021), wherein the input to the
LM is the question, and the output is the joint generation of the rationale and the predicted answer.

In order to determine whether these generated rationales are of good quality, we focus on three
properties that are necessary for any rationale to have, agnostic of the task it is meant for. First,
we note that a rationale should be plausible. We define plausibility as the rationale making sense
on its own – whether it be common, logical or factual sense depending on the dataset at hand. For
example, if a rationale states ‘Cows can fly’, it is not plausible. Next, we identify that a rationale
should be diverse, where the rationale is clean and not repetitive. Lastly, we note that a rationale
should be consistent with the gold label for the input. Consistency is important to ensure that a
rationale does not spew irrelevant information, and that it supports the gold answer. Furthermore,
we focus on consistency with respect to the gold label, as misleading rationales are unhelpful as
both LM justifications, and for human utility (Joshi et al., 2023). We formalise these properties
as rewards in §4 and while these are necessary properties for any rationale, we also discuss other
good-to-have properties in §5.

All of these properties are agnostic of the actual prediction made by the LM. Since our self-
rationalization setup generates a rationale first, followed by its prediction, we aim to generate ratio-
nales with good quality, which should ideally improve the answer generated by the LM. Therefore,
we focus on improving self-rationalization along these three properties, as well as on task accuracy.
Along with the above rationale properties, we also consider task correctness as a necessary property
of rationales, that they should try to improve over as a byproduct.

3 MARIO: OPTIMIZING FOR MULTIPLE REWARDS

To improve an LMs’ rationalization across multiple properties, we leverage QUARK (Lu et al., 2022),
a reinforcement learning-like framework effective on tasks such as unlearning toxicity in genera-
tions. We propose Multi-rewArd RatIOnalization (MARIO), an extension of QUARK to multiple
rewards concurrently. We further propose two variants of MARIO: CLASSIC and ADDITIVE, that
explore different ways of using QUARK for in a multi-reward setup. Figure 2 shows a running
example of MARIO. Appendix B shows a second, more technical illustration of the same.

QUARK QUARK (Lu et al., 2022) is a reinforcement learning-like algorithm that trains LMs using
unique control tokens prepended to the generated text. The QUARK algorithm works iteratively:
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Question: Malini is cutting bread with a bread 
knife which creates a smooth cut, while cutting 

cake with a bread knife creates a rough cut. 
This means that the ___ has less resistance (A) 

bread (B) cake

Rationale: When something 
has less resistance, it is easier to 
cut through. Thus, the bread 
has less resistance, making it 
easier to cut with the bread 

knife.

GPT-3

Less resistance implies ease 
in cutting through. So the 

bread has a smooth cut as it 
is less resistant.

Reward-based 
updating

Distil
lation

So the answer 
is (A).[P] [D] [C]

Prefixed 
Reward 
Tokens

Rationale Task 
Output+

Single Reward

[Plausibility]

Multi Reward - Canonical

Multi Reward - Additive

[Diversity] [Consistency]

+

[Plausibility]

[Plausibility]

[Diversity][Plausibility]

[Diversity] [Consistency][Plausibility]

��

Figure 2: MARIO pipeline. MARIO uses rationales generated by a larger LM like GPT-3 as
initial supervision, and uses rewards corresponding to three rationale properties: PLAUSIBILITY,
DIVERSITY and CONSISTENCY, to improve self-rationalization of smaller LMs like T5-LARGE.

(1) sampling the a pre-trained LM to generate more training data, (2) scoring the generated data
using a chosen reward metric, and (3) using instance-level scores to sort and bin the data into a fixed
number of bins, each of which correspond to a unique control token. During training, the LM learns
to associate each control token with the quality (as determined by the reward metric) of the data it
is assigned to. During inference, in order to obtain the best quality generations, QUARK samples
the LM using the control token corresponding to the highest reward measure. We provide a more
detailed description of how QUARK works in Appendix B.

3.1 CLASSIC MARIO

Since QUARK is designed only for single reward optimizations, what if we are interested in improv-
ing the rationales along multiple rewards? In order to do this, we first propose a direct extension
to the QUARK algorithm: instead of assigning each instance just one unique control token (which
corresponds to one specific property), we now assign each instance multiple unique control tokens
at once; now, each control token corresponds to a different property we want to train the LM on. We
call this the CLASSIC MARIO. The order in which properties are represented in this method is a
design decision that we can choose, and we expand on this further in Appendix C.

3.2 ADDITIVE MARIO

We now propose a step-by-step multi-reward QUARK: instead of training the LM on all the prop-
erties at the same time, we introduce them into training pipeline additively, in a predefined order
of properties. For example, say that we have properties P1, P2, P3, and that we want the LM to
focus on P3 first, before moving on to P1 and then later P2. In this method, we use multiple sets of
control tokens as in CLASSIC MARIO, but, we introduce each set of tokens into the training pipeline
successively. For example, we train the LM with only P3 for the first t steps, then we train the LM
on P3 and P1 from the t-th step to the 2t-th step, and then from the 2t-th step onwards, we train the
LM on P3, P1 and P2. We call this method the ADDITIVE MARIO. Again, the order in which we
add the control tokens of different rewards to the training pipeline, and whether each new control
token is added to the left or right of the existing control tokens are decision choices, and we expand
on it further in Appendix C.

4 EXPERIMENTS

4.1 DATASETS

As we mention in Section 2, We conduct experiments on 5 QA datasets: STRATEGYQA, QUAREL,
OPENBOOKQA, NUMERSENSEand QASC; the task is to generate a rationale followed by the pre-
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dicted answer. We report details of train, val and test splits in Appendix D. We do not require
human-written gold rationales; we sample GPT-3 for silver rationales for supervision. We use chain-
of-thought prompts from prior works on these datasets (refer Appendix I, E for the full prompts) and
sample 5 rationale generations for each training set instance with a temperature of 0.9; for super-
vision we use only the instances where the answer predicted by GPT-3 is correct. We use these
silver rationales in three places: (1) to train SFT, (2) we use SFT as the reference model for the KL
divergence loss in MARIO’s training process (Appendix B, E), (3) we also add these silver rationales
to the overall data pool of MARIO (Appendix B provides an expanded explanation for the same).

4.2 RATIONALE PROPERTY REWARDS AND TASK CORRECTNESS

We formalize our chosen rationale properties (from §2) with their implementations that we use as
rewards within MARIO. Let Q be the input question, R̂ represent the LM’s generated rationale, and
O and Ô represent the gold answer and the LM’s predicted answer respectively. The formulations
of each reward are as follows:

• PLAUSIBILITY via VERA (Liu et al., 2023a): VERA is a trained commonsense statement
verification T5-11B model, that provides a numerical score between 0 and 1, indicating
the plausibility of declarative sentences.

PLAUSIBILITY(R̂) = VERA(R̂) (1)

We use the VERA release from HuggingFace 3.
• CONSISTENCY via (Wiegreffe et al., 2021): Wiegreffe et al. (2021) provide a framework

to evaluate the association between a rationale and a label with the help of two reference
LMs that are trained to predict the answer with (MQR) and without (MQ) the rationale in
the input. More formally,

CONSISTENCY(R̂) = PMQR(O∣Q, R̂) − PMQ(O∣Q) (2)

CONSISTENCY is a numerical score between −1 and 1 that indicates the faithfulness of
the rationale towards the gold answer, like the implementation by Wiegreffe et al. (2021).
Hyperparameters and training guidelines for the LMs involved in generating the CONSIS-
TENCY score is in Appendix E.

• DIVERSITY via n-gram uniqueness in Li et al. (2022): Li et al. (2022) calculate diversity
of generated text by determining the fraction of unique n-grams generated. DIVERSITY
is a numerical score between 0 and 1 that indicates the lexical diversity of the rationale;
this metric also serves the purpose of ensuring that the rationale does not contain repeated
phrases or sentences.

DIVERSITY(R̂) =
4

∏
n=2

unique n-grams(R̂)
total n-grams(R̂)

(3)

• TASK-CORRECTNESS: As our last reward, we add task correctness of the answer that is
generated following the rationale. This is a binary 0/1 score, referring to the wrong and
right predicted answer respectively.

TASK-CORRECTNESS(R̂) = 1[Ô = O] (4)

We evaluate/report these metrics for all our baselines and experiments. To simplify comparisons,
we also report an average normalized relative gain (NRG) (Chan et al., 2022) (Appendix E).

4.3 HUMAN PREFERENCE EVALUATION

We first present human preference studies comparing rationales generated by MARIO and the super-
vised fine-tuned baseline SFT for all five datasets. For each instance, we ask three distinct annotators
from a pool of qualified annotators to compare the two rationales across three settings, for a given
question and correct answer pair: PLAUSIBILITY and CONSISTENCY, which are defined in the

3https://huggingface.co/liujch1998/vera
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Table 2: Demonstrative examples for the rationale properties

QUESTION
Malini is cutting bread with a bread knife which creates a smooth cut, while cutting
cake with a bread knife creates a rough cut. This means that the has less resistance
(A) bread (B) cake

PLAUSIBILITY
 Less resistance implies that the item would be difficult to cut through. Therefore,
cake has less resistance.
 Less resistance implies ease in cutting through. So the bread has a smooth cut as it
is less resistant.

CONSISTENCY
 Less resistance implies ease in cutting through. So the cake has a smooth cut as it is
less resistant.
 Less resistance implies ease in cutting through. So the bread has a smooth cut as it
is less resistant.

DIVERSITY
 Less resistance implies ease in ease in ease in cutting through. Ease in cutting
through. Answer is bread.
 Less resistance implies ease in cutting through. So the bread has a smooth cut as it
is less resistant.

same manner as the rewards, and an overall PREFERENCE rating. PREFERENCE is meant to indi-
cate that the annotators pick the rationale that they would find acceptable (Wiegreffe et al., 2022)
for the given question. In Figure 3, we plot the % of instances where majority of annotators prefer
only MARIO’s rationales, only SFT’s rationales, both or none. We note human annotators prefer
MARIO’s only rationales for 83.15%, 75.3%, 71.49%, 67.44% and 66.6% of instances respectively
for STRATEGYQA, QUAREL OPENBOOKQA, NUMERSENSE and QASC. Human annotators also
find MARIO’s rationales to be considerably more plausible and consistent than SFT

4. We use Ama-
zon MTurk5 for all our human studies, and Appendix J provides further details on the same.

Figure 3: Results of human studies comparing MARIO with SFT. Here, we plot the % of in-
stances in the test set wherein annotators prefer MARIO, SFT, both or none, with respect to PREF-
ERENCE, PLAUSIBILITY and CONSISTENCY. We find that human annotators vastly prefer MARIO’s
rationales, and also find them to be much more plausible and consistent.

4.4 BASELINES VS. MARIO

All our baselines and MARIO are built on top of T5-LARGE LMs (0.7B). We present and compare
our method with four strong baseline models:

1. Supervised Fine-tuned Self-Rationalizer (SFT): A fine-tuned T5-LARGE, which serves as
the supervised learning baseline (we use the training data as described in §4.1), trained to
generate rationales and answers.

2. Product of Rewards (PRODUCT): A multi-reward baseline where we consolidate the re-
wards into a single representative metric by taking their product and apply QUARK. Ag-

4We do not perform human studies for DIVERSITY and TASK ACCURACY since they are auto-
matic/straightforward metrics

5https://www.mturk.com/
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Table 3: Baselines vs. MARIO Results. For each dataset, the best averaged NRG (across TASK
ACCURACY, PLAUSIBILITY, DIVERSITY and CONSISTENCY) is highlighted in bold, and each
best individual metric is underlined. Cells marked with a * shows significant improvement for the
corresponding MARIO configuration over SFT (p < 0.05).

Method → Baselines MARIO

Dataset ↓ Metric SFT PRODUCT FILT-ACC FILT-ALL CLASSIC ADDITIVE

STRATEGYQA

Acc. 57.64 62.01 61.57 61.35 60.26 65.07
Plau. 0.33 0.35 0.34 0.36 0.38 0.39∗

Div. 0.95 0.92 0.92 0.94 0.95 0.97∗

Cons. -0.02 0.00 0.00 0.00 0.01 0.04∗

Avg. NRG 58.66 59.75 59.39 60.34 60.94 63.27

QUAREL

Acc. 76.99 79.53 79.53 76.45 79.89 78.99
Plau. 0.71 0.72 0.71 0.73 0.77∗ 0.75
Div. 0.95 0.95 0.95 0.95 0.97∗ 0.97

Cons. 0.18 0.21 0.20 0.17 0.19 0.20
Avg. NRG 75.50 76.71 76.38 75.74 78.35 77.75

OPENBOOKQA

Acc. 63.65 61.65 65.86 56.63 66.06 65.55
Plau. 0.53 0.52 0.55 0.47 0.55 0.55
Div. 0.98 0.99 0.99 0.99 0.99∗ 0.98

Cons. 0.05 0.07 0.08 0.01 0.09∗ 0.09
Avg. NRG 66.79 66.54 68.47 63.28 68.64 68.29

NUMERSENSE

Acc. 46.23 50.75 51.76 46.73 55.28 54.27
Plau. 0.60 0.60 0.61 0.58 0.63∗ 0.63
Div. 1.00 1.00 1.00 1.00 1.00 0.99

Cons. 0.17 0.20 0.21 0.16 0.23∗ 0.23
Avg. NRG 66.18 67.69 68.32 65.68 69.95 69.44

QASC

Acc. 58.64 57.88 57.78 57.02 60.15 59.61
Plau. 0.44 0.43 0.39 0.42 0.47∗ 0.47
Div. 0.96 0.95 0.96 0.96 0.99∗ 0.99

Cons. 0.19 0.17 0.17 0.17 0.19 0.19
Avg. NRG 64.54 63.60 62.82 63.38 66.41 66.28

gregating several rewards into one is common in prior work and is often done through via
product (Lu et al., 2023) or weighted average (Wu et al., 2023).

3. Filtering rationales that lead to correct answers (FILT-ACC): This is a variant of STAR (Ze-
likman et al., 2022). We iteratively train and sample new training data from a T5-LARGE,
similar to QUARK, but instead of using any control tokens, we filter out the instances which
have the wrong predicted label. We train this model with only cross-entropy loss.

4. Multi-reward variant of FILT-ACC (FILT-ALL): Again, we iteratively train and sample
new training data from a T5-LARGE, and instead of using control tokens, we filter out the
instances which have the wrong predicted label and instances that fall under a specified
threshold value for PLAUSIBILITY, DIVERSITY and CONSISTENCY. The threshold value
is tuned as a hyperparameter. We train this model with only cross-entropy loss.

Table 3 shows the comparisons between MARIO and the baselines. For all five datasets, we note that
MARIO is the overall best setup as noted by both the individual metrics and the averaged NRG met-
ric. ADDITIVE MARIO is found to be the best performing method for STRATEGYQA, and CLASSIC
MARIO is found to be the best method for the other 4 datasets (hyperparameter configurations in
Appendix E). It is important to note that not only does the rationale get better (as seen via the ratio-
nale metrics), but the task accuracy also shows a marked improvement over the baselines. We show
some representative examples of rationales generated by training with MARIO, in comparison with
those generated by SFT in Table 8. We also release the rationales generated by SFT and MARIO.6

6https://drive.google.com/drive/folders/1bWBxdiwce8US5y_
G6d9-Eki7ObllpR80?usp=sharing
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4.5 REFERENCE LARGE LMS VS. MARIO

We now consider 3 strong reference LLMs that are used in practice for self-rationalization: GPT-3
(175B), FLAN-T5 (Chung et al., 2022) (sizes, L, XL, XXL) and LLAMA (Touvron et al., 2023)
(sizes 7B, 65B); we compare MARIO with them in terms of both average NRG (Figure 4) and in-
dividual metric scores (Table 10). All these LMs apart from FLAN-T5-L are orders of magnitude
larger than our T5-LARGE LM trained with MARIO; we include FLAN-T5-L in our comparison
even though it’s of the same size as MARIO because FLAN-T5-L is instruction-finetuned, and few-
shot prompted to generate rationales, with the same set of demonstrations used by other large LMs
(shown in Appendix I). Ideally, we want a small-sized LM (for efficiency) that achieves high perfor-
mance, which corresponds to the top-left portion of the graph in Figure 4. Hence, to compare two
LMs’ performance, the LM which is relatively to the left and to the top is practically a better choice.
We note that for QUAREL, MARIO results in an LM that is of a very small size (0.7B) but has a
very high performance, almost equivalent to that of GPT-3. For NUMERSENSE, MARIO beats all
models except for FLAN-T5-XXL and GPT-3, and for QASC, MARIO beats all models except for
FLAN-T5-XXL, LLAMA-65B and GPT-3. For OPENBOOKQA , we see that MARIO beats LMs
such as FLAN-T5-L, FLAN-T5-XL and LLAMA-7B. For STRATEGYQA we see that our LM beats
FLAN-T5-L, while performing only a little worse than FLAN-T5-XL.

Figure 4: Reference Large LMs vs. MARIO Results: Here, we show the comparison of Avg.
NRG values w.r.t the LM size (in the order of billion parameters) for all the datasets.

5 DISCUSSION

5.1 PROPERTIES AND METRICS

While the properties we explored in this work are necessary for high rationale quality, the question
of what are the complete set of properties remains an open problem (Joshi et al., 2023; Wiegreffe
et al., 2022; Golovneva et al., 2022). Some recent works on other necessary rationale properties are
REV Chen et al. (2023a) (novelty of information, faithfulness towards the predicted label), ROSCOE
Golovneva et al. (2022) / ReCEval Prasad et al. (2023) (score steps of reasoning), LAS Hase et al.
(2020) (faithfulness towards predicted labels) etc. Further, there are also properties which do not
have widespread implementations (to the best of our knowledge) such as factual-correctness, com-
pleteness of rationales (existing metrics require gold rationales which are not easily available, and
which cannot score any alternate reasoning to the answer), etc. As future work, we hope to collect
an extended set of properties and corresponding metrics, and improve them with MARIO.

5.2 MULTI-REWARD HACKING

As additional experimentation with alternate properties relevant to our chosen QA datasets, we
worked on a set of experiments focusing on factual-correctness and lexical diversity; specifically
for STRATEGYQA which requires historical or factual correctness of the rationale (this is different
from common-sense or logical correctness measured by PLAUSIBILITY, as explained in VERA(Liu
et al., 2023a)). We started with a fact verification metric LOREN (Chen et al., 2022) - while effec-
tive, we couldn’t use this metric in practice since each score prediction required a Web API call,
which is inefficient given MARIO’s iterative data generation and scoring. We tried a weaker metric
- querying the rationale with a larger LM, FLAN-T5-XXL and asking if the rationale was factually
correct or not (probability of ‘yes’ under yes/no). We noticed that applying QUARK/MARIO with
this metric led to some interesting reward hacking, as we show in the first two rows of Table 4.
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Trying to improve on just factuality caused the LM to start generating repetitive text, as an easy way
of generating factual statements. When we tried to counter this by training MARIO on factuality and
lexical diversity together, the LM started generating incomplete rationales. We further noted that this
kind of repetitive generation is observed even in larger LMs which on surface seem much better (as
seen in rows 3 and 4 in Table 4). Therefore, we note that selecting strong rewards, as well as careful
qualitative investigation is extremely important to prevent this kind of reward hacking – where an
increase in individual numerical reward scores do not guarantee overall qualitative improvements.

Table 4: Reward Hacking observed in training using QUARK: We show examples of how if
the rewards used are very weak or incompatible with each other, they can lead to strange reward
hacking where the score numerically increase, but the rationales become worse qualitatively.

Question and Rationale Errors by other LMs
Question: Can a snow leopard swim?
Rationale: The snow leopard is a cat. The snow leopard is a cat. T5-LARGE Repetition

Question: Would someone on Venus be unlikely to experience hypothermia?
Rationale Hypothermia is a condition in which the body is unable to produce enough heat. T5-LARGE Incomplete

Question: Did Cleopatra have ethnicity closer to Egyptians than Greeks?
Rationale: Cleopatra was a member of the Roman dynasty of Egypt.
The Roman dynasty of Egypt was a branch of the Roman Empire.
The Roman Empire was a branch of the Roman Empire.

FLAN-T5-XL Repetition

Question: Is Fiat Chrysler gaining a new overall corporate identity?
Rationale: Fiat Chrysler is a brand of automobiles. Fiat Chrysler is a brand of cars. FLAN-T5-XL Repetition

5.3 IS ACCURACY ENOUGH OF AN INDICATOR FOR RATIONALE QUALITY?

As we discuss in §1, many contemporary works on self-rationalization ignore the independent qual-
ity of the generated rationale, and focus entirely on how the rationale can contribute to the task
performance. In this discussion, we analyze the reverse: if an LM is trained only with respect to
task performance, what does this mean for the rationale? We refer back to our main results, Ta-
ble 3; we specifically look at the rows SFT, FILT-ACC and MARIO. We first see that both FILT-ACC
and SFT both improve upon the TASK ACCURACY on all five datasets, as intended. We then see
that for STRATEGYQA, QUAREL, NUMERSENSE and QASC, the average quality of the rationales
generated by MARIO is decidedly better than the rationales generated by FILT-ACC, as seen by the
values of the individual rationale quality metrics. For OPENBOOKQA, the analysis from just the
metrics is inconclusive; hence, we perform human studies comparing FILT-ACC and MARIO, in the
same manner as in §4.3. We find that human annotators prefer MARIO’s rationales highly over that
of FILT-ACC: for 69.65% of the questions, majority of the annotators prefer MARIO’s rationales (as
opposed to 22.88% of preference for FILT-ACC’s rationales, and 7.46% preference for both). We
further performed human studies for PLAUSIBILITY and CONSISTENCY, and again, MARIO’s ra-
tionales were found to be distinctly better (PLAUSIBILITY: 49.5% preference for MARIO, 32.58%
for SFT, 13.43% both, 0.99% neither; CONSISTENCY: 48% preference for MARIO, 37.31% for
SFT, 9.45% both, 2.48% neither). In conclusion, we find that optimizing for task performance does
not naturally improve rationale performance, which further motivates the introduction of MARIO.

6 CONCLUSION AND FUTURE WORK

Existing self-rationalization LMs use rationales as a means for improving downstream task accuracy,
with the help of large-scale LMs. In this work, we propose MARIO, an algorithm that performs
multi-reward optimization of small self-rationalizing LMs to jointly improve the quality of their
rationales as well as their task accuracy. We present strong experimental results on a small LM, T5-
LARGE, over competitive baselines, on datasets STRATEGYQA, QUAREL OPENBOOKQA, NU-
MERSENSE and QASC. In addition to a strong improvement in task accuracy, we see that rationales
produced by training an LM with our method are strongly preferred by human annotators. Lastly,
we discuss intricacies of reward-conditioned rationale generation for small LMs, issues faced with
selecting appropriate rewards, as well as shortcuts taken by QUARK to improve reward scores that
do not translate well to qualitative improvement. As future work, we hope to extend our algorithm to
improving rationales along more dimensions like completeness, factuality as well as human utility.
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ETHICAL CONSIDERATIONS

Like any natural language generation system/algorithm, MARIO can unintentionally lead to toxic
and harmful text; it is up to the user of the algorithm to use it responsibly, with non-harmful reward
metrics, to prevent the generation of biased and malicious outputs. As noted in McGuffie & New-
house (2020), this is a deliberate misuse of text generation models, and we strongly denounce such
practices.

Data. All the datasets that we use in our work are released publicly for usage and have been duly
attributed to their original authors.

Crowdsourcing. All our crowdworkers are from countries where English is the primary language.
For all our human studies, the task is setup in a manner that ensure that the annotators receive com-
pensation that is above minimum wage ($20/hour). Since we conduct extensive qualification tasks
before annotations, crowdworkers that participate in the qualification are compensated more than the
task, given the time taken to read and understand task instructions and examples. Furthermore, we
ensure that we correspond with crowdworkers over email to address their queries. Crowdworkers
have also been given bonuses for flagging errors in the task, or consistently providing good-quality
annotations.

REPRODUCIBILITY

For all our experimental results and models, we report (1) the complete hyperparameter setting
and any bounds explored (Appendix E) as well as the sizes and versions/pretrained-model links of
all models used, (2) the time taken per experiment, and infrastructure used, (3) the mathematical
equations (§4.2, Appendix B) for all algorithms and metrics used, (4) descriptions of datasets, and
demonstrations used to sample rationales from GPT-3. All our codes and datasets are publicly re-
leased at https://github.com/INK-USC/RationaleMultiRewardDistillation.
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A RELATED WORK

Self-rationalization and rationale-based distillation. Model decisions can be explained in two
ways - by extracting rationales from the input text, or generating free-text rationales that may not be
grounded in the input. An extractive rationale explains a model’s output on a given task instance by
scoring input tokens’ influence on the model’s output (Denil et al., 2014; Sundararajan et al., 2017;
Li et al., 2016; Jin et al., 2019; Lundberg & Lee, 2017; Chan et al., 2022). This token scoring can
be done via input gradients (Sundararajan et al., 2017; Lundberg & Lee, 2017; Denil et al., 2014; Li
et al., 2015), input perturbation (Li et al., 2016; Poerner et al., 2018; Kádár et al., 2017), attention
weights (Pruthi et al., 2020; Stacey et al., 2022; Wiegreffe & Pinter, 2019), or learned rationale
extraction models (Lei et al., 2016; Chan et al., 2022; Jain et al., 2020; Situ et al., 2021; Liu et al.,
2023b). For the purpose of this work, we mainly focus on free-text rationales. There are two primary
methods adopted by prior works for generating free-text rationales. The first set of approaches use
gold human-written rationales to train a rationale generation model (Camburu et al., 2018; Narang
et al., 2020; Wiegreffe et al., 2021). The second set of approaches prompt large LMs with the help
of curated templates with or without demonstrations containing examples of rationale generation for
the task at hand (Wei et al., 2022; Kojima et al., 2023; Li et al., 2023c; Jung et al., 2022; Lightman
et al., 2023). Some approaches also leverage few-shot training approaches with a handful of gold
rationales (Marasovic et al., 2022; Chen et al., 2023b). Recent approaches also leverage rationales
generated by large LMs to distill small LMs to be better at the task or better rationalizers. (Pruthi
et al., 2022; Li et al., 2023b; Chan et al., 2023; Wang et al., 2023b; Saha et al., 2023; Hsieh et al.,
2023)

Evaluating free-text rationales. Existing works have conducted human and automatic evaluation
of free-text rationales based on their association with predicted labels (Wiegreffe et al., 2021), ac-
ceptability (Wiegreffe et al., 2022), informativeness (Chen et al., 2023a), benefits and human utility
(Sun et al., 2022; Joshi et al., 2023), simulatability (Rajani et al., 2019; Hase et al., 2020) and faith-
fulness (Atanasova et al., 2023; Wang et al., 2023a) to name a few. Some recent works have also
provided frameworks to evaluate logical correctness of reasoning chains, that are similar to free-text
rationales (Golovneva et al., 2022; Prasad et al., 2023).

Reward-conditioned text generation. Reinforcement learning has proven to be a reliable means
to optimize language models towards a specific objective. One such example, proximal policy op-
timization (PPO) (Schulman et al., 2017), has been commonly used for a variety of tasks, spanning
detoxification (Wu et al., 2023; Lu et al., 2022), RLHF (Dubois et al., 2023; Bai et al., 2022), im-
proving commonsense reasoning capabilities (Liu et al., 2022), and more. Adjacent to PPO, there
are several other lighter-weight algorithms which condition the policy language model directly on
the reward without the need for a value function (Lu et al., 2022; Gulcehre et al., 2023; Dong et al.,
2023; Lu et al., 2023; Zelikman et al., 2022). These methods rely on iterative, off-policy explo-
rations at fixed intervals to continuously aggregate new trajectories to learn from. Another line of
work improves the reward directly through iterative refinement on a frozen policy model (Madaan
et al., 2023). There are several algorithms and methods today to update text generation models with
rewards. Lu et al. (2022) that unlearns toxicity by specifically fine-tuning the model on what not to
do, Lu et al. (2023) which tailors the generation of extremely large LMs like GPT-3 using trained
policy adaptor models. Zelikman et al. (2022) that leverages a small number of demonstrations to
iteratively generate new data to train the model (new data such that the task prediction is correct).
Other recent work on controllable text generation revolves around creative text generation with sin-
gle and multiple rewards (Yang & Klein, 2021; Keskar et al., 2019; Zhang et al., 2023; Qian et al.,
2022; Yang et al., 2022)

B QUARK AND MARIO

Here, we describe QUARK and MARIO in more technical detail (refer the top and bottom pipelines
in Figure 5 respectively).

QUARK begins training with a pretrained trained language model P0(t∣x); QUARK also requires
a reference language model Pref(t∣x) (which can be the same as P0, or different), and a reward
function Rew(t, x) → R. Note that x = [x0, x1, . . . , xm−1] stands for the input text sequence,
and t = [t0, t1, . . . , tn−1] stands for the output sequence generation. Lastly, QUARK works with a
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Figure 5: Optimizing properties with QUARK (top) and MARIO (bottom)

data pool D which is constantly updated and added to over the course of training (as we describe
below); further, D can be initialized with gold-standard or silver-standard data, D = Dgold/silver =

(x, tgold/silver, r).

As we explain in Section 3, QUARK operates in an iterative fashion:

1. sampling P0 to generate more training data: Dnew = (x, tnew)

2. scoring the generated data using Rew(x, t): D
′

new = (x, tnew, r)
3. using these instance-level scores to sort and bin the data into a fixed number of

bins [b1, b2, . . . , b5] each of which correspond to a unique control token: D
′′

new =

(x, tnew, r, b),

4. Adding the now control-token attached data to the (growing) training data pool: D =

D ∪D
′′

new

During training, the model starts to associate each control token with its corresponding quality of
data (as given by Rew(x, t)), and to obtain the best quality generations during inference, QUARK
samples the trained P0 using the control token corresponding to the highest reward measure. QUARK
is trained using the following training objectives:

• Reward-based learning using implicit reward signals based on control tokens (which are
obtained by sorting the reward Rew(x, t) scores), as described above,

• Language model objective using supervised/cross-entropy loss with respect to the target
generation (as explained above, QUARKsamples training data in an online manner from P0;
however, if gold or silver offline training data is available, that can also be injected into the
training pipeline by scoring with Rew(x, t))

• Stable text generation using the KL divergence penalty of P0’s generation with respect to
Pref , and.

• Entropy regularization of the generated text as in Meister et al. (2020)

The objective function for QUARK is:

max
θ

Ek∼U(1,K)E(x,y)∼Dk [log pθ (y ∣ x, rk) − β
T

∑
t=1

KL (p0 (⋅ ∣ y<t, x) ∥pθ (⋅ ∣ y<t, x, rk))] (5)
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Here, the first term stands for the supervised cross-entropy loss, and the second term stands for the
KL divergence loss. Entropy regularization can also be added if/when needed. Note that x is the
input text, y is the generated output sequence and rk, k ∈ {1, . . . ,K} stands for the reward/control
token.

We extend QUARK to MARIO by using multiple sets of control tokens, each corresponding to a dis-
tinct reward/property, i.e., Rew1(x, t), Rew2(x, t), . . . , Rewk(x, t); the CLASSIC and ADDITIVE
methods use these control tokens either together, or in a step-by-step fashion as we explain in §3.1,
3.2. Further, we want to note that step-3 of the algorithm (wherein we use instance-level scores
to sort and bin the data) is done in MARIO separately for each reward; each reward/property goes
through an individual scoring + binning process and gets a distinct control token. Subsequently,
each reward/property also has its own set of control tokens (as depicted in Figure 5). The rest of the
training follows the same iterative process and training objectives as QUARK. The objective function
for MARIO is:

max
θ

Ej∼U(1,J),k∼U(1,K)E(x,y)∼Dk

[log pθ (y ∣ x, [.., rjk, ..]) − β
T

∑
t=1

KL (p0 (⋅ ∣ y<t, x) ∥pθ (⋅ ∣ y<t, x, [.., rjk, ..]))] (6)

Here again, the first term stands for the supervised cross-entropy loss, and the second term stands
for the KL divergence loss; entropy regularization can be added if/when needed. x is the input
text, y is the generated output sequence and rjk, j ∈ {1, . . . , J}, k ∈ {1, . . . ,K} stands for the
reward/control token corresponding to the j-th property and the k-th reward bin.

C ORDER OF TOKENS

As we explain in the above two sections, the order of the control tokens corresponding to each
reward we use in training our self-rationalizing LM is a design choice. Say for example, we have
three properties, along with control tokens corresponding to the task accuracy (as we do in this
paper, refer §4.2): this means that there are potentially 24 orders of these properties that we can
use in CLASSIC MARIO, and 48 possible variations that we can use for ADDITIVE MARIO (24
orders x 2 directions in which we can introduce the property to the training – left or right of the
existing control tokens, assuming we keep the direction of addition consistent throughout training).
It is impractical and inefficient to experiment with all these possible orders to pick the best possible
one. Hence, we propose a simple way of picking the order, based on the relative strengths of a
(supervised-trained) self-rationalizing LM in each of these properties.

For example, say we have four reward metrics R1, R2, R3, R4, and we determine through a prede-
fined method which property the LM is relatively stronger in (for example, say the LM is good at
generating lexically diverse statements, but is only moderately good at grammar, is broadly bad at
generating plausible statements, and even worse at producing concise rationales). For example, we
determine the relative strength of rewards based on how good the supervised finetuned baseline SFT
is on a particular metric on the validation set, as opposed to the maximum and minimum value of
the metric itself.

strength(Ri) =
max(Ri) − ri

max(Ri) − min(Ri)
(7)

Here Ri refers to the reward, ri refers to the value the SFT has on the property Ri on the validation
set, and max/min(Ri) refer to the maximum and minimum value taken by the reward metric Ri.

For example, let the relative order of the four reward metrics using the above approach is R2 < R1 <

R4 < R3. Hence, we experiment with training the LM with the order R2, R1, R4, R3 if we want
to allow the weaker rewards to improve on their own, before the stronger rewards are introduced
into the mix. Additionally, we can also use the opposite order R3, R4, R1, R2, so that the LM can
quickly optimize on the stronger rewards and then try to be better with the weaker rewards.
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D DATASET SPLITS

• For STRATEGYQA, since labels are not available for evaluation sets, we split the train set
into training, validation and test sets (taken from Joshi et al. (2023)), and report scores on
this test set.

• For OPENBOOKQA and QUAREL, we use the provided training dataset, tuned on the val-
idation set and report final performances on the test set7.

• For NUMERSENSE, we use the train, validation and test sets as in the official GitHub8

release.
• For QASC, we split the original train set into train and validation (900 questions chosen

randomly for validation), and use the original validation set as the test set9.

All datasets have multi-choice questions (yes/no for STRATEGYQA, a/b for QUAREL, a/b/c/d for
OPENBOOKQA, a/b/-/l for NUMERSENSE, a/b/-/h for QASC), and the task is to generate a rationale
followed by the predicted answer.

E HYPERPARAMETERS AND EVALUATION

We use T5-LARGE (0.7B parameters) for SFT and all our MARIO experiments, and we use T5-
BASE for our CONSISTENCY models (as used in the original work Wiegreffe et al. (2021)) - we
always start training with the pretrained model from HuggingFace10. Tables 5, 6 and 7 show the
hyperparameters used to train SFT, CONSISTENCY and MARIO respectively. Note that for our
MARIO training, we use SFT as the reference model (Pref(t∣x) from Appendix B) for the KL
divergence penalty. We also use the silver rationales sampled from GPT-3 as our initial data pool
D (from Appendix B). Further, during inference, we always use greedy decoding. We run all our
experiments on NVIDIA Quadro RTX 8000 GPUs. For training SFT and CONSISTENCY models,
we use 1 GPU per experiment; for training MARIO, we use 2 GPUs per experiment - the first GPU
to hold P0, Pref (notation from Appendix B), and the second GPU to hold the PLAUSIBILITY and
CONSISTENCY reward models.

Furthermore, we aggregate metrics using Normalized Relative Gain as mentioned in Chan et al.
(2022). NRG of a metric value zi (corresponding to the general property Z) is formally defined as:

NRG(zi) =
zi − min(Z)

max(Z) − min(Z) (8)

The average NRG of a set of metrics (such as with the four metrics in this work) is a simple mathe-
matical average of their individual NRG’s.

Table 5: SFT training details
Hyperparameter Value
Optimizer Adam
Adam epsilon 1e-8
Adam initial learning-rate 3e-5
Learning-rate scheduler linear with warmup
Warmup steps 1000
Gradient clipping 0.5
Train batch-size 4 / 8
Training time ∼ 4 hours on 1 GPU

Further, for our statistical significance tests, are done using one-tailed independent t-tests (using
scipy.stats.ttest ind).

7https://huggingface.co/datasets/openbookqa,https://huggingface.co/
datasets/QuaRel

8https://github.com/INK-USC/NumerSense/tree/main/data
9https://huggingface.co/datasets/qasc

10https://huggingface.co/t5-large,https://huggingface.co/t5-base
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Table 6: Training details for the MQR and MQ models used for CONSISTENCY

Hyperparameter Value
Optimizer Adam
Adam epsilon 1e-8
Adam initial learning-rate 3e-5
Learning-rate scheduler linear with warmup
Warmup steps 1000
Gradient clipping 0.5
Train batch-size 4 / 32
Training time ∼ 4 hours on 1 GPU

Table 7: QUARK and MARIO training details
Hyperparameter Value
Optimizer Adam
Adam epsilon 1e-8
Adam initial learning-rate 3e-5
Learning-rate scheduler linear with warmup
Warmup steps 1000
Gradient clipping 1.0
Gradient accumulation 2 steps
KL-divergence coef. 0.05 / 0.1
Entropy regularization coef. 0.05 / 0.0

Sampling rate
1 (QUAREL, NUMERSENSE, QASC)
or 2 (STRATEGYQA, OPENBOOKQA)
samples for every train sample

Frequency of exploration
every 300 (STRATEGYQA,
QUAREL) / 4000 (OPENBOOKQA,
NUMERSENSE, QASC) steps

Sampling strategy Top-p (0.7) sampling
Temperature for sampling 1.0

Number of distinct reward-bins 5 for rationale metrics,
2 for TASK ACCURACY

Train batch-size 4
Training time ∼ 1 day on 2 GPUs

Order of rewards

STRATEGYQA: strongest to weakest,
add to right
QUAREL: strongest to weakest,
OPENBOOKQA: weakest to strongest,
NUMERSENSE: weakest to strongest,
QASC: strongest to weakest

F REPRESENTATIVE EXAMPLES OF RATIONALES

Table 8 shows some examples of rationales generated by MARIO.

G SINGLE REWARD EXPERIMENTS

For completeness of analysis, we present single-reward QUARK experiments, where we focus on
improving just one property. Table 9 shows results on the same. We first note that in most of the
cases, MARIO achieves an equivalent or better improvement as compared to single-reward QUARK.
Further, we note that even if individually some properties are better when trained under single reward
QUARK as compared to MARIO, MARIO is the only experiment where all the properties improve as
compared to the SFT baseline. We also see that sometimes, single reward QUARK leads to improve-
ment in other metrics as well; this could be because the metrics are positively correlated for that
dataset. However, since we want to improve all metrics comprehensively, MARIO is a deterministic
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Table 8: Examples of Rationales: Here, we show rationales generated by MARIO and SFT for
some examples for the three datasets. We observe that sometimes, SFT generates longer rationales
which are not consistent, or logically correct, which is fixed by MARIO.

Dataset Examples

STRATEGYQA

Question: While on a liquid diet, are there some types of soup you cannot eat? Yes or No?
MARIO Rationale: While on a liquid diet, there are some types of soup you cannot eat, such as cream of mushroom soup,
which is a type of savory soup.
SFT Rationale: While on a liquid diet, there are certain types of soups that are not suitable for a liquid diet such as a liquid diet.

Question: Is a beard is moss that grows on a human? Yes or No?
MARIO Rationale: A beard is a type of hair that grows on a human.
SFT Rationale: A beard is a type of facial hair that grows from a root and is typically wavy to dark in color. It is not moss, but
a plant that provides shelter to the moss and helps it grow.

QUAREL

Question: A bus and a bicycle are both going the same direction. The bus is going 40mph faster than the bicycle. Will the bicycle
in one hour cover (A) more distance (B) less distance
MARIO Rationale: The bus is going faster than the bicycle. Thus, the bicycle will cover less distance in one hour.
SFT Rationale: When something is going faster, it covers more distance. Thus, the bicycle will cover more distance in one hour
because it is going faster than the bus.

Question: Jim and Joe are riding bikes. Jim stops after fifteen minutes and takes a break. Joe keeps on riding. Who went farther?
(A) Jim (B) Joe
MARIO Rationale: When someone is riding for a longer period of time, they will go farther. Jim stopped after fifteen minutes
and took a break, while Joe kept on riding. Thus, Joe went farther.
SFT Rationale: When someone is moving, they will go farther than someone who is not. Thus, Joe went farther because he
kept on riding.

OPENBOOKQA

Question: In order for crops to grow food safely, pesticides are used on them. When it floods, this causes t he what to be poisonous?
(a) air (b) Corn (c) Runoff (d) farmers
MARIO Rationale: When it floods, runoff from the crops is sprayed with pesticides, making them poisonous.
SFT Rationale: When it floods, pesticides are sprayed onto crops, which can make them poisonous.

Question: Plant growth may cause (a) an uptick in the number of leaves (b) a surge in leaf disease (c) a gradual decrease in leaves
(d) a rapid decline of the leaves
MARIO Rationale: Plant growth may cause an uptick in the number of leaves.
SFT Rationale: Plant growth is a process of adding new leaves to the plant. This process can cause a gradual decrease in
the number of leaves.

NUMERSENSE

Question: People have no more than <mask> legs. (A) no (B) zero (C) one (D) two (E) three (F) four (G) five
(H) six (I) seven (J) eight (K) nine (L) ten
MARIO Rationale: People have two legs.
SFT Rationale: People have four legs.

Question: One in <mask> also means a quarter. (A) no (B) zero (C) one (D) two (E) three (F) four (G) five
(H) six (I) seven (J) eight (K) nine (L) ten
MARIO Rationale: One in four is a quarter.
SFT Rationale: One in a quarter.

QASC

Question: What measures a meter? (A) meter stick (B) football field (C) tetraceratops (D) visibility (E) weather
(F) U.S. customary units (G) horses (H) lamphreys
MARIO Rationale:The metric system is based on the idea that a meter is equal to 100 centimeters.
SFT Rationale: A meter is a unit of length. The most common unit of measurement used in the United States is the meter.

Question: What can be used to navigate? (A) music (B) backbones (C) astrology (D) cilia (E) magic (F) sponges (G) astronomy (H) lamphreys
MARIO Rationale: Cilia are tiny hairs on the surface of the skin that can be used to navigate.
SFT Rationale: Navigating requires using a variety of tools and techniques. Some of these tools include compass, compass,
compass, compass, compass, compass, compass, compass, compass, compass, compass, compass, compass, compass, compass,
compass, compass, compass, compass, compass, compass, compass, compass, and com

way to achieve the same. (Note: We don’t run the experiment on NUMERSENSE DIVERSITY, since
SFT already achieves the best possible value of 1.0).

H EXTENDED COMPARISON WITH FEW-SHOT LLMS

In Table 10, we present the detailed performance metrics of different reference LMs as opposed to
MARIO. For QUAREL, MARIO beats all reference LLMs except for GPT-3 on all four metrics. For
NUMERSENSE, MARIO beats all reference LLMs except for FLAN-T5-XXL and GPT-3 on all four
metrics. The results are more varied with STRATEGYQA, OPENBOOKQA and QASC; MARIO is
better than the reference LLMs (apart from GPT-3) in the case of DIVERSITY for all three datasets,
and in cases of varying comparisons with the reference LLMs (for example, MARIO is better at
CONSISTENCY than FLAN-T5-L and LLAMA-7B for OPENBOOKQA). However, overall, we note
that our model still needs to go further with respect to PLAUSIBILITY and TASK ACCURACY. We
note that our method MARIO has done a significant job in bridging the gap between LMs such as
the ones discussed in this section, and much smaller LMs such as T5-LARGE. We also note for
TASK ACCURACY, CONSISTENCY and DIVERSITY, MARIO beats FLAN-T5-L, a model of equal
size which has been trained with instruction fine-tuning for all 5 datasets (except for QASC and
CONSISTENCY); and for all datasets except for STRATEGYQA, MARIO also beats PLAUSIBILITY
of FLAN-T5-L.
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Table 9: QUARK experiments on improving single rewards. For each dataset, the best averaged
NRG (across TASK ACCURACY, PLAUSIBILITY, DIVERSITY and CONSISTENCY) is highlighted
in bold, and each best individual metric is underlined.

Method → Baselines Single Reward QUARK MARIO

Dataset ↓ Metric SFT PRODUCT Acc. Plau. Div. Cons. CLASSIC ADDITIVE

STRATEGYQA

Acc. 57.64 62.01 61.57 61.35 59.17 59.17 60.26 65.07
Plau. 0.33 0.35 0.36 0.36 0.36 0.36 0.38 0.39
Div. 0.95 0.92 0.92 0.93 0.96 0.95 0.95 0.97

Cons. -0.02 0.00 -0.01 0.01 -0.04 0.01 0.01 0.04
Avg. NRG 58.66 59.75 59.77 60.21 59.79 60.17 60.94 63.27

QUAREL

Acc. 76.99 79.53 81.88 80.62 78.99 80.62 79.89 78.99
Plau. 0.71 0.72 0.74 0.81 0.71 0.73 0.77 0.75
Div. 0.95 0.95 0.95 0.93 0.97 0.95 0.97 0.97

Cons. 0.18 0.21 0.23 0.20 0.20 0.22 0.19 0.20
Avg. NRG 75.50 76.71 78.1 78.66 77.0 77.41 78.35 77.75

OPENBOOKQA

Acc. 63.65 61.65 64.46 61.65 64.66 66.27 66.06 65.55
Plau. 0.53 0.52 0.54 0.53 0.51 0.54 0.55 0.55
Div. 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98

Cons. 0.05 0.07 0.09 0.07 0.07 0.11 0.09 0.09
Avg. NRG 66.79 66.54 67.99 66.79 67.04 68.69 68.64 68.29

NUMERSENSE

Acc. 46.23 50.75 51.76 50.75 - 54.27 55.28 54.27
Plau. 0.60 0.60 0.63 0.63 - 0.61 0.63 0.63
Div. 1.00 1.00 0.99 1.00 - 1.00 1.00 0.99

Cons. 0.17 0.20 0.21 0.21 - 0.22 0.23 0.23
Avg. NRG 66.18 67.69 68.57 68.56 - 69.07 69.95 69.44

QASC

Acc. 58.64 57.88 58.21 57.88 58.1 58.75 60.15 59.61
Plau. 0.44 0.43 0.42 0.45 0.40 0.41 0.47 0.47
Div. 0.96 0.95 0.96 0.97 0.98 0.96 0.99 0.99

Cons. 0.19 0.17 0.17 0.17 0.17 0.20 0.19 0.19
Avg. NRG 64.54 63.60 63.68 64.6 63.65 63.94 66.41 66.28

I FEW-SHOT DEMONSTRATIONS

We include the full few-shot demonstrations used to prompt different models for three datasets in
Tables 11-13. For clarity, the rationalizations are highlighted.

J CROWDSOURCING FOR HUMAN EVALUATIONS

In this section, we describe the MTurk experiment setup. Each MTurk annotator is paid above
minimum wage. Since the dataset we used is carefully annotated by human, we can assure there is
no toxic content and our experiment setup was submitted to IRB for ethical review. We limited our
Turkers to English speaking nations - United States, Canada, Australia, New Zealand and United
Kingdom.
To ensure the quality of evaluation, we conduct a round of qualification tasks which include a small
set of evaluations. Turkers need to finish the qualification task first and get results of it, then we will
show them the whole task.

J.0.1 WORKER SELECTION AND QUALITY CONTROL

Here, we describe details about how workers are selected and how annotations are ensured to be
clean. First, we employ multiple rounds of trials before deploying the actual task so as to get
feedback from annotators whether they understand the task correctly. This includes in-house tests,
tested via Amazon Turk Sandbox 11 and small batches tested on Turk. Second, we create a set of
medium to hard qualification tasks for verifying preference, plausibility and consistency annotations

11https://requester.mturk.com/developer/sandbox
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Table 10: We compare MARIO with strong few-shot reference LMs: FLAN-T5, LLAMA and
GPT-3. Apart from FLAN-T5-L (which we have included to show a model of equivalent size that
has been instruction finetuned), all these models are much bigger than our T5-LARGE trained with
MARIO.

Method → FLAN-T5 LLAMA GPT-3 MARIO (0.7B)

Dataset ↓ Metric L XL XXL 7B 65B T-D-003 CLASSIC ADDITIVE

STRATEGYQA

Acc. 54.59 71.83 70.52 59.17 72.27 69.0 60.26 65.07
Plau. 0.49 0.59 0.64 0.72 0.70 0.70 0.38 0.39
Div. 0.88 0.82 0.86 0.88 0.93 0.95 0.95 0.97

Cons. -0.01 0.02 0.05 0.00 0.06 0.09 0.01 0.04
Avg. NRG 60.27 65.96 68.26 67.29 72.07 72.13 60.94 63.27

QUAREL

Acc. 77.36 76.99 77.54 56.70 76.27 83.33 79.89 78.99
Plau. 0.60 0.68 0.70 0.64 0.70 0.78 0.77 0.75
Div. 0.93 0.90 0.92 0.94 0.96 0.95 0.97 0.97

Cons. 0.14 0.13 0.10 0.00 0.17 0.23 0.19 0.20
Avg. NRG 71.84 72.87 73.64 66.18 75.19 79.46 78.35 77.75

OPENBOOKQA

Acc. 60.64 72.49 80.32 40.76 73.30 85.94 66.06 65.66
Plau. 0.49 0.59 0.67 0.66 0.73 0.74 0.55 0.55
Div. 0.87 0.84 0.93 0.95 0.97 0.99 0.99 0.98

Cons. 0.05 0.13 0.22 0.01 0.16 0.25 0.09 0.09
Avg. NRG 62.29 68.00 75.33 63.07 75.33 80.36 68.64 68.29

NUMERSENSE

Acc. 26.13 48.24 61.81 17.59 36.18 74.37 55.28 54.27
Plau. 0.51 0.65 0.72 0.62 0.68 0.76 0.63 0.63
Div. 0.97 0.92 0.98 0.98 0.99 1.00 1.00 0.99

Cons. 0.03 0.19 0.35 0.2 0.36 0.46 0.23 0.23
Avg. NRG 56.41 66.19 74.83 59.40 67.80 80.84 69.95 69.44

QASC

Acc. 61.02 70.63 74.84 24.19 75.59 80.24 60.15 59.61
Plau. 0.44 0.55 0.63 0.59 0.71 0.75 0.47 0.47
Div. 0.78 0.63 0.89 0.74 0.98 0.97 0.99 0.99

Cons. 0.23 0.32 0.37 0.10 0.31 0.38 0.19 0.19
Avg. NRG 61.13 63.66 73.84 53.05 77.52 80.31 66.41 66.28

that the annotators have to work on. These tasks are hand curated that cater certain parts of the
instruction – whether the annotators are reading the rationale correctly, or whether they are able
to make appropriate connections between the rationale and the question. This weeds out a lot of
annotators who do not understand the task or are cheating. We also weed out workers who are too
‘fast’ (completing the task in less than 5 seconds, which is indicative of potential slacking in the
task). Third, we constantly monitor task responses and feedback provided to annotators about their
task. We also collect feedback from them which we adapt in new versions of the task.

The final MTurk instructions and template that we land upon after the qualifications is shown in
Figure 6 and 7

K LIMITATIONS

MARIO demonstrates promising improvements on the self-rationalization capability of small lan-
guage models; we note that using MARIO on a small LM like T5-LARGE leads to considerable
bridging of the gap between the quality of its rationales versus the quality of rationales generated
by much larger language models. However, we note that the results are still very much dependent
on the initially available data (since we heavily depend upon silver standard rationales generated
by GPT-3 to give our model a warm start). Our method is also dependent upon the mathematical
rewards that we use: as we discuss in Section 5, this is a very new and active area of research, and
we as a research community are still figuring out what properties we need, and how to efficiently
implement a good mathematical metric for them.
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Table 11: The complete prompt of rationalization for STRATEGYQA. Demonstration examples are
collected from Wei et al., 2022

Q: Do hamsters provide food for any animals?
Hamsters are prey animals. Prey animals provide food for predators.
A: So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?
Brooke Shields graduated from Princeton University. Princeton is ranked as the number 1 na-
tional college by US news. University of Pennsylvania is ranked as number 6 national college
by US news. Princeton only admits around 6 percent of applicants as of 2018. University of
Pennsylvania accepts around 9% of applicants as of 2018.
A: So the answer is yes.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?
Hydrogen is the first element and has an atomic number of one. To square a number, you mul-
tiply it by itself. The Spice Girls has five members.
A: So the answer is no.

Q: Yes or no: Is it common to see frost during some college commencements?
College commencement ceremonies often happen during the months of December, May, and
sometimes June. Frost isn’t uncommon to see during the month of December, as it is the win-
ter.
A: So the answer is yes.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?
The War in Vietnam (1945-46) lasted around 6 months. The gestation period for a llama is 11
months.
A: So the answer is no.

Q: Yes or no: Would a pear sink in water?
The density of a raw pear is about 0.59 g/cm3̂. The density of water is about 1 g/cm3̂. Objects
only sink if they are denser than the surrounding fluid.
A: So the answer is no.
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Table 12: The complete prompt of rationalization for QUAREL. Demonstration examples are col-
lected from Li et al., 2023a

Q: Mike was snowboarding on the snow and hit a piece of ice. He went much faster on the ice
because is smoother.
(A) snow (B) ice
A: When something is smoother, it is easier to slide on. Thus, he could go faster on the ice
because ice is smoother. So the answer is: (B)

Q: I could hear then boy that say close to me clear as day, however I could not hear the young
lady sitting in the back of the room. Who am I able to hear louder
(A) Boy (B) Lady
A: When someone is close, it is easier to hear them. I also could not hear the young lady well.
Thus, I am able to hear the boy louder. So the answer is: (A)

Q: I watched the snowflakes go from tiny specks in the sky to a nice size once they fell on my
face. When did the snowflakes seem bigger?
(A) in the sky (B) on my face
A: When something is closer, it seems bigger. The snowflakes are closer when they are on my
face. Thus, they seem bigger when they are on my face. So the answer is: (B)

Q: When Tammy tried to slide the glass mixing bowl down the marble counter top to her mom,
it came to a dead stop when it reached the wooden cutting board. The bowl came to a stop
because the wooden cutting board has
(A) more resistance or (B) less resistance
A: When something has more resistance, it is harder to slide. Thus, the bowl came to a stop
because the wooden cutting board has more resistance. So the answer is: (A)

Q: Sarah walked through the city and saw a tourist attraction she wanted to visit. She had
several blocks to go to get to it, and the attraction looked very small. As she got close to it
though, it towered over her. This is because when she was close to it the attraction looked
(A) much bigger (B) much smaller
A: When something is closer, it looks bigger. Thus, the attraction looked much bigger when
she was close to it. So the answer is: (A)
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Table 13: The complete prompt of rationalization for OPENBOOKQA. Demonstration examples are
collected from Wang et al., 2022

Q: The sun is responsible for
(a) puppies learning new tricks (b) children growing up and getting old (c) flowers wilting in a
vase (d) plants sprouting, blooming and wilting
A: A plant requires sunlight for photosynthesis, which accumulates resources required for
sprouting, blooming, and wilting. So the answer is: (d)

Q: When standing miles away from Mount Rushmore
(a) the mountains seem very close (b) the mountains are boring (c) the mountains look the
same as from up close (d) the mountains seem smaller than in photographs
A: When an object is far away, it takes up less of your field of view, and so seems smaller than
in the photographs. So the answer is: (d)

Q: When food is reduced in the stomach
(a) the mind needs time to digest (b) take a second to digest what I said (c) nutrients are being
deconstructed (d) reader’s digest is a body of works
A: The stomach is part of the digestive system. The breaking down of food into nutrients oc-
curs in the digestive system. So the answer is: (c)

Q: Poison causes harm to which of the following?
(a) a Tree (b) a robot (c) a house (d) a car
A: A tree is a living thing. Poison causes harm to living things. So the answer is: (a)

Q: A magnet will stick to
(a) a belt buckle (b) a wooden table (c) a plastic cup (d) a paper plate
A: A belt buckle is made of metal. If a magnet is attracted to a metal, then that magnet will
stick to that metal. So the answer is: (a)

Q: Deer are less safe in the woods because wolves
(a) have fur (b) howl (c) have claws (d) have tails
A: Claws are used by wolves to catch prey like deer. So the answer is: (c)

Q: An electric car causes
(a) more CO2 emissions (b) equal CO2 emissions (c) electric emissions (d) less CO2 emissions
A: An electric car uses less gasoline than a regular car and thus causes less CO2 emissions. So
the answer is: (d)
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Table 14: The complete prompt of rationalization for NumerSense. Demonstration examples are
collected from Liu et al., 2022

Q: penguins have <mask> wings.
(A) no (B) zero (C) one (D) two (E) three (F) four (G) five (H) six (I) seven (J) eight (K) nine
(L) ten
A: Birds have two wings. Penguin is a kind of bird. So the answer is (D).

Q: a parallelogram has <mask> sides.
(A) no (B) zero (C) one (D) two (E) three (F) four (G) five (H) six (I) seven (J) eight (K) nine
(L) ten
A: A rectangular is a parallelogram. A square is a parallelogram. So the answer is (F).

Q: there are <mask> feet in a yard.
(A) no (B) zero (C) one (D) two (E) three (F) four (G) five (H) six (I) seven (J) eight (K) nine
(L) ten
A: A yard is three feet. So the answer is (E).

Q: water can exist in <mask> states.
(A) no (B) zero (C) one (D) two (E) three (F) four (G) five (H) six (I) seven (J) eight (K) nine
(L) ten
A: There states for matter are solid, liquid, and gas. So the answer is (E).

Q: a typical human being has <mask> limbs.
(A) no (B) zero (C) one (D) two (E) three (F) four (G) five (H) six (I) seven (J) eight (K) nine
(L) ten
A: Human has two arms and two legs. So the answer is (F)
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Table 15: The complete prompt of rationalization for QASC. Demonstration examples are collected
from Wang et al., 2023a

Q: How do you reduce pollution? (A) igniting fuel and oxidiser (B) transportation technology
(C) wasting (D) not recycling (E) burning fossil fuels (F) converting electricity to heat (G)
water conservation (H) using less resources
A: Conserving resources has a positive impact on the environment. Use of resources affects
the environment such as pollution. So the answer is: (H)

Q: what will move to another area if their habitat will no longer support them? (A) density (B)
Birds (C) squids (D) humans (E) clouds (F) gravity (G) cows (H) Whales
A: If a habitat can no longer support animals then those animals will move to another area.
Cows are social animals. So the answer is: (G)

Q: With the exception of allergies, what may cause a person to seek medical attention? (A)
Contact with latex (B) a tree falling (C) Organs within the body. (D) Contact with baby chicks
(E) prolactin release (F) Contact with peanut butter (G) hypothyroidism (H) Contact with mi-
croorganisms
A: Microorganisms can cause infections. Infections usually require medical treatment. So the
answer is: (H)

Q: Lavender can induce (A) healing (B) energy (C) hormones (D) mutations (E) Heart rate (F)
growth (G) symptoms (H) warmth
A: Healing requires rest. Lavender induces restful sleep. So the answer is: (A)

Q: what state is a liquid in when frozen? (A) vapor (B) dense (C) gas (D) cooled (E) steam (F)
solid (G) boiling (H) cold
A: Freezing means changing from a liquid into a solid by reducing heat energy. Liquids freeze
when they change to the solid state. So the answer is: (F)

Q: what unites to form a diploid zygote? (A) plant reproduction (B) Most plants (C) orchids
(D) sperm and ova (E) salt and pepper (F) predator and prey (G) honeybees (H) diploids and
zygotes
A: Gametes then unite in fertilization and form a diploid zygote. Collectively, the sperm and
the ova are also referred to as gametes. So the answer is: (D)

Q: What absorbs all visible light? (A) apples (B) coal (C) Green (D) coral (E) skin (F) bamboo
(G) glass (H) eyes
A: If an object is black then that object absorbs all visible light. Light grains are quartz, Black
grains are coal. So the answer is: (B)
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Figure 6: MTurk Instructions. We show these instructions to turkers, along with a sample HIT,
and more examples that contain special cases of each of the annotation questions.
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Figure 7: MTurk Template. Given a question and two explanations, we ask annotators to choose
which explanation they prefer, followed by questions about their plausibility and consistency.
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