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ABSTRACT

Despite significant progress in Anomaly Detection (AD), the robustness of existing
detection methods against adversarial attacks remains a challenge, compromising
their reliability in critical real-world applications such as autonomous driving. This
issue primarily arises from the AD setup, which assumes that training data is
limited to a group of unlabeled normal samples, making the detectors vulnerable to
adversarial anomaly samples during testing. Additionally, implementing adversar-
ial training as a safeguard encounters difficulties, such as formulating an effective
objective function without access to labels. An ideal objective function for adver-
sarial training in AD should promote strong perturbations both within and between
the normal and anomaly groups to maximize margin between normal and anomaly
distribution. To address these issues, we first propose crafting a pseudo-anomaly
group derived from normal group samples. Then, we demonstrate that adversarial
training with contrastive loss could serve as an ideal objective function, as it cre-
ates both inter- and intra-group perturbations. However, we notice that spurious
negative pairs compromise the conventional contrastive loss to achieve robust AD.
Spurious negative pairs are those that should be closely mapped but are erroneously
separated. These pairs introduce noise and misguide the direction of inter-group
adversarial perturbations. To overcome the effect of spurious negative pairs, we
define opposite pairs and adversarially pull them apart to strengthen inter-group
perturbations. Experimental results demonstrate our superior performance in both
clean and adversarial scenarios, with a 26.1% improvement in robust detection
across various challenging benchmark datasets. The implementation of our work is
available at: https://github.com/rohban-lab/COBRA.

1 INTRODUCTION

Anomaly detection (AD), also referred to as one-class classification, aims to identify whether an
input sample at the time of inference belongs to the normal In AD setup, the training data consists
only of normal samples, and any additional information, such as labels, is unavailable Bendale and
Boult (2015); Perera et al. (2021). Recently, a plethora of literature has emerged to address the
problem of AD on images, demonstrating near-perfect performance on standard AD benchmarks Ruff
et al. (2018); Tack et al. (2020); Bergman et al. (2020); Reiss et al. (2021); Bergmann et al. (2019);
Krizhevsky et al. (2009). Nevertheless, these methods demonstrate a lack of robustness, especially
when faced with adversarial attacks, as they encounter substantial performance deterioration when
faced with such scenarios Azizmalayeri et al. (2022); Lo et al. (2022); Chen et al. (2020a); Shao
et al. (2020; 2022); Béthune et al. (2023); Goodge et al. (2021); Chen et al. (2021a). This is due
to the absence of anomaly samples in the training data, which results in insufficient exposure to
adversarial perturbations on anomalous patterns during training. This shortcoming would make the
model vulnerable to adversarial attacks on anomaly samples during inference Chen et al. (2020a;
2021a).
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Numerous defense strategies have been developed to enhance the robustness of deep neural networks,
with adversarial training emerging as a potential solution Bai et al. (2021); Madry et al. (2017).
However, its application to AD is not straightforward, as it is primarily developed for multi-class and
labeled setups. Motivated by this, we propose generating pseudo-anomaly group samples by applying
hard augmentations to facilitate practical adversarial training in an anomaly detection (AD) setup.
This process involves shifting normal training data to ensure that the shifted samples do not belong to
the normal group, measured by their likelihood using a novel thresholding approach Glodek et al.
(2013). We refer to the relationship between a normal sample and its transformed version as opposite
pairs.

Given the availability of two groups—crafted anomaly and normal samples—during training, defining
a loss function to incorporate them into the adversarial training presents a new challenge. Since
the objective of test-time adversarial attacks is to manipulate normal samples to be confused with
anomalies and vice versa, the optimal objective function should maximize the margin between the
distributions of normal and anomaly samples in the learned embedding space while also achieving
compact representations for each group. This can be adversarially accomplished by crafting strong
intra- and inter-group perturbations Chen et al. (2021b); Cheng et al. (2023); Guo and Zhang (2021).

It has been demonstrated that Contrastive Learning (CL) Chen et al. (2020b); He et al. (2020) is
more effective for AD compared to existing objective functions Guo et al. (2024); Reiss and Hoshen
(2021); Tack et al. (2020). One can propose adversarial training with CL to develop a robust AD
method. However, we noticed that adversarial training with the CL loss function falls short of
achieving robust AD (see Table 6). The CL objective aims to bring positive pairs closer together and
push negative pairs further apart. Positive pairs are constructed by applying light transformations
to each instance, while any two instances in the training data are treated as negative pairs. We refer
to negative pairs within the same group (normal-normal or anomaly-anomaly) as spurious negative
pairs. These spurious negative pairs weaken the effectiveness of adversarial CL by misdirecting
inter-group perturbations, thereby reduces the margin between groups Chen et al. (2021b).

To address this, we propose COBRA (anomaly-aware COntrastive-Based approach for Robust AD),
a new method that mitigates the effect of spurious negative pairs to learn effective perturbations.
COBRA strategically utilizes opposite pairs, exclusively formed between normal and anomaly
groups, ensuring they do not intersect with spurious negatives. This approach strengthens inter-group
perturbations by emphasizing these opposite pairs in the loss function, thereby increasing the margin
between groups. During training, the model adversarially targets positive pairs to push them together
and opposite pairs to pull them apart. This simulates a wide range of adversarial perturbations
covering inter- and intra-set variations, resulting in a robust anomaly detector.

Contribution. COBRA introduces a simple yet effective approach to generate anomaly samples and a
novel loss function to establish a robust detection boundary. We evaluate COBRA in both adversarial
and clean settings, where test samples are benign. In the adversarial scenario, we employ numerous
strong attacks for robustness evaluation, including PGD-1000 Madry et al. (2017), AutoAttack Croce
and Hein (2020), and Adaptive AutoAttack Liu et al. (2022). The results show that COBRA, without
using any additional datasets or pretrained models, significantly outperforms existing methods in
adversarial settings, achieving a 26.1% improvement in AUROC and competitive results in standard
settings. Our experiments span various datasets, including large and real-world datasets such as
Autonomous Driving Cordts et al. (2016), ImageNet Deng et al. (2009), MVTecAD Bergmann et al.
(2019), and ISIC Codella et al. (2019), demonstrating COBRA’s practical applicability. Additionally,
we conducted ablation studies to examine the impact of various COBRA components, specifically
our pseudo-anomaly generation strategy and the introduced adversarial training method.

2 PRELIMINARIES

Anomaly Detection. Outlier detection is categorized into different areas, such as AD and Out-of-
Distribution (OOD) detection, depending on the availability of normal set samples’ labels. An AD
method decides whether x belongs to the normal or anomaly set by assigning an anomaly score
A(x; f) using model f. Samples with an anomaly score higher than a pre-assumed threshold are
predicted as anomalies, and vice versa Yang et al. (2021); Ruff et al. (2021). It is important to
note that extending OOD detection methods to an AD setup is not feasible, as they rely on labeled
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normal data for feature extraction. This highlights the need for robust AD methods.Azizmalayeri
et al. (2022); Chen et al. (2021a); Kong and Ramanan (2021); Han et al. (2022).

Adversarial Robustness of Anomaly Detectors. An adversarial attack is a malicious attempt
to perturb a data sample x with an associated label y into a new sample x∗ that maximizes the
loss function ℓ(x∗; y). Additionally, an upper limit of ϵ confines the lp norm of the adversarial
noise to prevent semantic alterations. Specifically, an adversarial example x∗ must satisfy the
following equations: x∗ = argmaxx′:∥x−x′∥p≤ϵ ℓ(x

′; y) A prevalent and effective attack method
is the Projected Gradient Descent (PGD) technique Madry et al. (2017), which entails iteratively
maximizing the loss function by advancing towards the gradient sign of ℓ(x∗; y), employing a
designated step size α. To adapt adversarial attacks for AD, instead of maximizing the loss value,
we aim to increase A(x, f) if x belongs to normal group and decrease it otherwise. The formulation
of the attack would be: x∗0 = x, x∗t+1 = x∗t + y · α · sign (∇xA(x∗t ; fθ)) , x

∗ = x∗k. Here k is the
number of attack steps, y = +1 for normal samples and y = −1 for anomaly samples. The same
setting is applied to other attacks in our study.

Auxiliary Anomaly Sample Crafting. CSI Tack et al. (2020) and CPAD Li et al. (2021) propose
using fixed hard augmentation to create auxiliary samples. Specifically, CSI relies on Rotation,
while CPAD considers CutPaste as a pseudo-anomaly. The GOE Kirchheim and Ortmeier (2022)
method employs a pretrained GAN on ImageNet-1K to craft anomalies by targeting low-density areas.
FITYM Mirzaei et al. (2022) employed an underdeveloped diffusion as a generator. Dream-OOD Du
et al. (2023) uses both image and text domains to learn visual representations of normal instances in
an embedding space of a pretrained stable diffusion Rombach et al. (2022) model trained on 5 billion
data (e.g. LAION Schuhmann et al. (2022)). On the other hand, VOS Du et al. (2022) generates
anomaly embeddings instead of image data. Details about each mentioned method can be found in C.

3 METHOD

Motivation. Adversarial training is one of the most promising approaches to enhance the robustness
of deep neural networks. However, applying this technique to AD poses a significant challenge,
as only a single concept class—the normal distribution—is available during training. A common
approach to address this limitation is to incorporate an auxiliary anomaly dataset to improve robustness
Azizmalayeri et al. (2022); Chen et al. (2021a; 2020a); Mirzaei et al. (2024a). However, leveraging
such datasets is both costly and challenging, primarily due to the need for preprocessing and filtering
out normal samples, which could otherwise provide misleading information to the detector. Moreover,
the use of additional anomaly data can bias the model towards specific anomaly samples, reducing its
generalizability to unseen anomalies Ming et al. (2022).
To overcome these limitations, we propose a simple yet effective method to craft anomaly samples
directly from the normal data, thus eliminating the need for external anomaly datasets. Our approach
involves applying hard augmentations (e.g., severe distortions) to normal samples, effectively pushing
them towards the anomaly distribution. Importantly, prior work has demonstrated that the most
effective anomalies for training are those that are closely related to the normal distribution, often
referred to as "near anomaly samples" Ming et al. (2022); Mirzaei et al. (2022); Chen et al. (2021a).
Our method satisfies this proximity, as the crafted anomalies maintain stylistic similarities with the
normal samples due to their generation through augmentations. To ensure that the crafted anomalies
are sufficiently distinct from the normal distribution, we introduce a thresholding mechanism to
filter out false anomalies. Implementing this mechanism requires a model that accurately captures
the distribution of normal data. However, in the AD setup, the training data is limited to a single
semantic class (e.g., images of cars) without any supplementary information, posing a challenge
for building such a model. To overcome this, we employ a self-supervised approach to extract
meaningful representations from the normal data. Inspired by representative studies in AD Golan
and El-Yaniv (2018); Hendrycks et al. (2019a); Tack et al. (2020), which demonstrate that using a
k−class classifier to predict data transformations is an effective method for representation learning in
one-class classification, we adopt this approach. We leverage the embeddings learned by the classifier
to compute the likelihood of test samples and define a threshold for filtering out false anomalies.

Subsequently, we explore potential objective functions for adversarial training, focusing on CL given
its recent success in AD tasks Guo et al. (2024). However, we observe that employing standard CL in
adversarial training may not yield optimal results. This stems from the fact that, when training on a
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dataset containing both normal and crafted anomaly samples, CL forms positive and negative pairs in
a way that may compromise the margin between the normal and anomaly distributions. Specifically,
CL seeks to uniformly repel negative pairs from each other, defined as all pairs except those that
are augmentations of each other Chen et al. (2020c). Consequently, the negative pairs include
normal-normal, anomaly-anomaly, and normal-anomaly pairs. Increasing the distance between
normal-normal and anomaly-anomaly pairs may inadvertently reduce the separation between normal
and anomaly sets, thus undermining robust detection performance. In other words, standard CL does
not effectively enhance the inter-set margin needed to improve robustness. To address this, we design
a novel objective function that explicitly maximizes the margin between the normal and anomaly
groups to improve inter-group perturbation.
Outline. Existing AD methods experience dramatic performance decrease under adversarial
attack. To address this, we propose COBRA, a novel method that integrates a distribution-aware
transformation for generating psudo-anomaly samples, coupled with a novel objective function for
adversarial training. In the subsequent sections, we will delve into each component in detail, outlining
the mechanisms and advantages of our approach.

3.1 DISTRIBUTION AWARE HARD TRANSFORMATION

Anomaly Crafting Strategy. Previous works have demonstrated the effectiveness of leveraging
an auxiliary random dataset as an additional source of anomaly data during the training phase for
AD Hendrycks et al. (2018); Tao et al. (2023); Du et al. (2022; 2023); Zhang et al. (2017); Mirzaei
et al. (2022); Kirchheim and Ortmeier (2022). However, this technique significantly depends on
the diversity and distribution distance of the auxiliary dataset used for training. This limitation
significantly hinders the use of this technique in areas like medical imaging, where real anomalies
are scarce and difficult to obtain. Moreover, they lack any threshold for dropping incorrectly
crafted anomalies (those that still belong to the normal group). Addressing this limitation, our
approach introduces a novel method that employs a series of hard transformations T = {Ti}ki=1
to generate anomaly samples from normal data. We strategically distort normal images and by
using a predetermined threshold ensures that the synthetically created samples significantly diverge
from the normal distribution. We used a set of hard transformations including Jigsaw Noroozi and
Favaro (2016), Random Erasing Zhong et al. (2020), CutPaste Ghiasi et al. (2020), Rotation, Extreme
Blurring, Intense Random Cropping, Noise Injection Akbiyik (2019), and Extreme Cropping, Mixup
Hongyi Zhang (2018), Cutout DeVries and Taylor (2017), CutMix Yun et al. (2019), Elastic transform
and etc. Each one has been shown to be harmful for preserving semantics in previous studies Tack
et al. (2020); Sohn et al. (2020); Park and Darrell (2020); de Haan and Löwe (2021); Kalantidis et al.
(2020a); Li et al. (2021); Sinha et al. (2021); Kalantidis et al. (2020b); Miyai et al. (2023); Zhang
et al. (2024); Chen et al. (2021c). For more details, please see Appendix D.1.

Threshold Computing. First, we train a transformation predictor model that captures the distribution
of normal samples through the classification of various augmentations. To achieve this, we create a
synthetic dataset with k classes, denoted as {DTi

train}ki=1, by applying k different hard transformations
Ti to each of the n samples in the normal training set Dtrain. Then, we train a k-class classifier on
this synthetic dataset to leverage its knowledge for threshold computation. Using the classifier as
a feature extractor, denoted as C, we extract embeddings of the normal training samples to create
an embedding set: etrain =

{
C(Di

train)
}n

i=1
. Next, we fit a Gaussian Mixture Model (GMM) to the

training data embeddings etrain, as this is a well-established approach in the literature Cohen and
Avidan (2021); Du et al. (2022). The likelihood for each sample is computed, and the p-value for
test samples is calculated based on the empirical distribution of likelihoods from the normal training
samples. The threshold λ is set at a default significance level of 0.05, such that samples with p-values
below this threshold are considered anomalies. An ablation study on the significance level, as well as
an analysis of C, are provided in Appendix D and Appendix E, respectively.

Opposite Pairs with Pseudo-Anomaly Samples. For each normal sample, we randomly select
a subset of transformations T , containing at least two transformation. These transformations are
applied in a randomized sequence to the sample, producing x′ = Tim(. . . Ti1(x)) where m < k. We
then get its embedding and calculate the likelihood pr(C(x′)). Finally, this likelihood is compared
against the computed threshold λ. Samples exceeding this threshold iteratively repeat this process
until deemed an anomaly. We represent our proposed strategy for anomaly crafting with the notation
Υ(x). Before each step of training, given a batch of normal samples denoted by Bnormal = {xj}bj=1,
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Figure 1: 1⃝: Given a training batch that includes normal group samples A and B, we create a
anomaly group using our proposed transformation Υλ. These samples are paired as opposite pairs
(e.g., A and AΥ) and subjected to τ1 and τ2 to form batches of positive pairs. Adversarial training
is performed with a loss function combining LCLS and LCOBRA, where LCOBRA treats adversarial
examples as positive pairs for the corresponding sample. 2⃝, 3⃝: The illustrations demonstrate how
LCOBRA enhances adversarial training by explicitly increasing similarities within positive pairs and
decreasing similarity for opposite pairs, thus creating strong inter- and intra-group perturbations.
Targeting opposite pairs instead of all negatives diminishes the effect of spurious negative pairs
(e.g., (A1, B1)), leading to stronger inter-group perturbations and enlarging the margin between
distributions for normal and anomaly groups. A detailed algorithmic of COBRA is provided in A.

we create a batch of anomaly samples Bp-anomaly = {xj}2bj=b+1. Where xb+i = Υ(xi) signifies an
anomaly sample derived from applying a transformation Υ to a normal sample xi, and (xi, xb+i)
are considered as symmetrically opposite pairs. During training, the notation Υ(x) has some minor
differences, where Υ(xb+i) is considered as xi.

3.2 ADVERSARIAL TRAINING WITH ANOMALY-AWARE CL

Conventional Contrastive Loss. In the conventional CL paradigm, each instance x within a batch
transforms into two positive views, (x1, x2), via a random selection of positive augmentations
τ1, τ2 from a predefined set T . The set of positive pairs corresponding to a sample x is denoted
as P(x1) = {x2} and P(x2) = {x1}. CL then defines negative pairs N(x) for sample x as the
other samples’ augmented views. By denoting the current batch as B, we achieve: N(x) =
{τ1(x′) : x′ ∈ B \ {x}} ∪ {τ2(x′) : x′ ∈ B \ {x}}. These views are processed through a target
network to obtain projected features, symbolized as z = G(F(x)), where F signifies the feature
encoder and G the projection head. For simplification, f(.) substitutes G(F(.)). The conventional
NT-Xent Chen et al. (2020b) loss is articulated as:

LCL(x) = −
2∑

i=1

∑
xj∈P(xi)

log
exp(sim(f(xi), f(xj))/t)∑

xk∈P(xi)∪N(x)

exp(sim(f(xi), f(xk))/t)
. (1)

5



Published as a conference paper at ICLR 2025

where sim(·, ·) denotes the cosine similarity function, t is the temperature parameter, P(xi) is the set
of positive pairs for xi, and N(xi) is the set of negative pairs for xi.

Addressing Spurious Negative Pairs with LCOBRA. CL aims to pull positive pairs closer to each
other and push negative pairs away from each other. Consider defining the current batch of samples for
CL as the concatenation of two groups: normal and anomaly samples, B = {Bnormal∪Bp-anomaly}. Due
to the definition of negative pairs in CL, each sample in B includes both inter-group and intra-group
relations as negative pairs. Intra-group negative pairs, i.e., normal-normal and anomaly-anomaly
pairs, are considered spurious negative pairs. Distancing spurious negative pairs is counterproductive
to our objective, which is to maximize the discriminative margin between normal and anomaly groups.
Specifically, in the scenario of adversarial training for robust AD with LCL, spurious negative pairs
misdirect inter-group adversarial perturbation. As a result, we aim to precisely target those negative
pairs that definitively belong to separate groups—what we refer to as opposite pairs. By focusing
on these pairs, we aim to induce stronger perturbations that significantly enhance the discriminative
margin between the normal and anomaly groups by proposing LCOBRA.

LCOBRA(x) = −
2∑

i=1

∑
xj∈P(xi)

log
exp(sim(f(xi), f(xj))/t)− exp(sim(f(xi), f(Υ(x)))/t)∑

xk∈P(xi)∪N(x)

exp(sim(f(xi), f(xk))/t)
, (2)

Note that Υ(x) could also be replaced by Υ(xi), as both x and xi are positive pairs and share similar
semantics. Applying a hard transformation to either would result in a comparable hard transformation.
The intuition behind LCOBRA is that the representations of the corresponding positive views x1 and
x2 should be similar (analogous to the LCL loss function), leading to compact representations for
each group. Meanwhile, the representation of x should be distinctly different from its counterpart
representation Υ(x), resulting in a high margin between the two groups. A conceptual visualization
of LCOBRA is provided in Figure 1. It is important to highlight that the limitations of CL in AD
are apparent in adversarial scenarios. This stems from the fact that adversarial training requires a
higher degree of data complexity Schmidt et al. (2018); Stutz et al. (2019) compared to clean settings,
necessitating a broad range of strong perturbations to achieve robust anomaly detection. One can say
LCOBRA consists of two terms, LCL and LOpposite, where

LOpposite(x) = −
m∑
i=1

∑
xj∈P(xi)

log
− exp(sim(f(xi), f(Υ(x))/t)∑

xk∈P(xi)∪N(xi)

exp(sim(f(xi), f(xk))/t)
, (3)

To enhance our model’s ability to distinguish between normal and anomaly groups, we employ a fully
connected layer followed by softmax activation for binary classification, denoted asH, following the
F . For the classification loss, LCLS(x), we define a label y corresponding to the batch B, where ‘0’ is
assigned as the label for normal samples and ‘1’ for pseudo anomaly samples. Our final loss function,
LCOBRA, is thus formulated as: L =

∑2b
i=1 LCOBRA(F ,G;Bi) + LCLS(F ,H;Bi, yi)

Adversarial Training Step. For LCOBRA, given an input sample x from the batch B, an adversarial
example xadv is generated by introducing a perturbation δ∗, optimized to maximize our final loss:
δ∗ = argmax

∥δ∥∞≤ϵ
L(x + δ, y), xadv = x + δ∗. Then, adversarial examples are used in the training

process alongside the original examples. Specifically, for LCOBRA, we consider them as another
positive view of each sample and aim to align each sample with its perturbed version, i.e., P (xi)←
P (xi) ∪ {xadv}. The adversarial training objective as a min-max problem, optimizing the model
parameters θ to minimize the expected loss over both clean and adversarial examples:

min
θ

E(x,y)∈B

[
max
∥δ∥∞≤ϵ

L(x+ δ, y; θ)

]
.

Morever, the stability of the LCOBRA can be observed in both clean and adversarial training scenarios,
as illustrated in the Appendix F.

Anomaly Score for Evaluation. For evaluating anomalies, we leverage the representation learned
by F to compute the anomaly score, based on the similarity between test samples and normal
training samples in the embedding space. The anomaly score A(X) for a test sample x is defined
as: −maxxi∈Dtrain

{
sim(f(x), f(xi)

}
, This scoring mechanism takes advantage of the contrastive
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Table 1: Performance of AD methods on MVTecAD dataset under clean evaluation and PGD-1000
adversarial attack with ϵ = 2

255 , measured by AUROC (%). The best results are emphasized in bold
format in each row. The table cells denote results in the ‘Clean / PGD-1000’ format.

∗These works incorporated adversarial training into their proposed AD methods.
Category Method

CSI Transformaly PatchCore ReContrast DRÆM PrincipaLS∗ OCSDF∗ ZARND∗ COBRA
(Ours)

Carpet 50.2 / 11.1 95.5 / 0.0 98.7 / 18.4 99.8 / 9.4 97.0 / 0.0 54.8 / 33.6 56.1 / 12.6 85.9 / 66.6 60.7 / 84.9

Grid 71.2 / 8.3 84.2 / 7.8 98.2 / 11.7 100.0 / 19.8 99.9 / 2.7 72.1 / 30.4 61.7 / 17.3 75.7 / 31.1 100.0 / 99.5

Leather 70.9 / 0.4 99.9 / 4.1 100.0 / 10.5 100.0 / 3.4 100.0 / 0.0 73.2 / 26.5 61.4 / 13.7 65.0 / 14.1 97.4 / 91.7

Tile 67.8 / 7.2 97.1 / 2.0 98.7 / 4.6 99.8 / 2.4 99.6 / 0.0 58.7 / 26.3 54.3 / 10.1 53.6 / 3.9 98.8 / 78.2

Wood 71.3 / 6.0 98.5 / 0.0 99.2 / 3.8 99.0 / 1.6 99.1 / 1.8 67.3 / 31.2 63.9 / 3.7 58.4 / 17.5 96.4 / 73.7

Bottle 69.4 / 1.2 99.4 / 5.1 100.0 / 9.4 100.0 / 6.8 99.2 / 2.1 72.1/ 29.4 59.8 / 9.1 79.9/ 54.9 100.0 / 88.8

Cable 66.5 / 7.9 81.5 / 0.1 99.5 / 4.3 99.8 / 3.3 91.8 / 1.9 63.9 / 26.2 61.6 / 6.3 68.5 / 30.0 92.4 / 74.8

Capsule 51.6 / 6.8 76.0 / 0.0 98.1 / 3.1 97.7 / 2.7 98.5 / 0.0 56.8 / 18.4 51.9 / 1.9 69.3 / 26.2 75.9 / 55.8

HazelNut 66.7 / 0.0 89.8 / 0.4 100.0 / 7.8 100.0 / 4.1 100.0 / 0.8 64.8 / 21.7 54.2 / 4.7 73.2 /24.0 96.3 / 74.7

MetalNut 65.8 / 0.7 90.9 / 6.2 100.0 / 4.8 100.0 / 3.7 98.7 / 0.6 61.6 / 19.4 59.5 / 3.5 43.1 / 1.3 96.8 / 78.1

Pill 48.3 / 3.1 83.7 / 2.0 96.6 / 2.0 98.6 / 1.8 98.9 / 0.0 52.5 / 9.4 57.4 / 0.7 84.0 / 42.9 57.7 / 53.2

Screw 51.7 / 0.0 73.3 / 0.4 98.1 / 0.0 / 98.0 / 3.8 93.9 / 0.0 57.6 / 3.7 55.0 / 0.6 84.7 / 21.4 74.2 / 36.4

Toothbrush 75.3 / 1.3 90.8 / 0.9 100.0 / 6.9 100.0 / 6.7 100.0 / 0.0 70.8 / 28.2 60.1 / 6.4 65.9 / 22.3 100.0 / 75.5

Transistor 61.7 / 9.8 76.4 / 2.5 100.0 / 7.8 99.7 / 8.1 93.1 / 5.3 60.1 / 26.3 58.7 / 4.5 86.5 / 46.3 91.0 / 69.2

Zipper 68.2 / 5.4 90.7 / 0.8 99.4 / 13.6 99.5 / 13.7 100.0 / 4.7 67.9 / 35.7/ 65.6 / 9.8 82.2 /48.6 99.2 / 92.5

Average 63.8 / 4.6 88.5 / 2.2 99.1 / 7.2 99.5 / 6.1 98.0 / 1.3 63.6 / 24.4 58.7 / 7.0 71.6/ 30.1 89.1 / 75.1

training framework, ensuring that normal test samples exhibit higher similarity scores in comparison
to anomaly test samples. Consequently, the anomaly score for anomaly test samples will be notably
higher than for normal test samples, enabling robust AD. Alternative anomaly scores have been
explored in the appendix E.

Table 2: Performance of AD methods on various datasets under clean evaluation and PGD-1000.
For the experiments across all tables, adversarial attacks were considered, using ϵ = 4

255 for low-
resolution images and ϵ = 2

255 for high-resolution images, measured by AUROC (%). The table cells
denote results in the ‘Clean / PGD’ format. Experiments performed in the one-class AD setup.

∗These works incorporated adversarial training into their proposed AD methods.

Dataset Method

DeepSVDD CSI MSAD Transformaly PatchCore PrincipaLS∗ OCSDF∗ APAE∗ ZARND∗ COBRA
(Ours)

L
ow

R
es

CIFAR10 64.8 / 8.7 94.3 / 10.6 97.2 / 4.8 98.3 / 3.7 68.3 / 3.9 58.3 / 33.2 58.7 / 31.3 56.3 / 2.2 89.7 / 56.0 83.7 / 62.3

CIFAR100 67.0 / 3.6 89.6 / 11.9 96.4 / 8.4 97.3 / 9.4 66.8 / 4.3 51.9 / 26.2 50.2 / 23.5 53.1 / 4.1 88.4 / 47.6 76.9 / 51.7

MNIST 94.8 / 8.2 93.8 / 3.4 96.0 / 3.2 94.8 / 7.9 83.2 / 2.6 97.8 / 83.1 96.1 / 68.9 93.4 / 34.7 99.0 / 91.2 92.8 / 96.4

FMnist 94.5 / 7.9 92.7 / 5.8 94.2 / 6.6 94.4 / 7.4 77.4 / 5.5 92.5 / 69.2 91.8 / 64.9 88.3 / 19.5 95.0 / 82.3 93.1 / 89.6

SVHN 60.3 / 1.5 96.8 / 3.1 58.3 / 0.2 56.9 / 0.9 52.1 / 2.1 63.0 / 11.2 58.1 / 9.7 52.6 / 1.4 53.5 / 9.6 89.3 / 58.2

H
ig

h
R

es

ImageNet 56.4 / 4.0 91.6 / 5.6 98.9 / 2.6 99.0 / 2.9 67.6 / 2.5 56.2 / 28.3 55.3 / 25.8 58.3 / 2.1 96.4 / 27.4 85.2 / 57.0

VisA 53.6 / 1.8 62.5 / 0.3 84.1 / 4.6 85.5 / 0.0 95.1 / 2.7 57.3 / 16.1 53.0 / 13.9 67.2 / 9.1 71.8 / 24.9 75.2 / 73.8

CityScapes 59.7 / 2.7 68.9 / 0.1 86.5 / 2.9 87.4 / 4.5 76.2 / 6.1 60.3 / 24.2 59.6 / 20.1 63.0 / 3.6 75.9 / 28.6 81.7 56.2

DAGM 57.3 / 2.7 74.5 / 1.6 73.8 / 0.0 81.4 / 0.5 93.6 / 1.9 59.2 / 24.8 57.6 / 20.3 54.5 / 13.8 64.5 / 17.2 82.4 / 56.8

ISIC2018 64.1 / 0.3 71.2 / 0.0 76.7 / 3.4 86.6 / 3.9 78.9 / 0.0 61.7 / 26.5 64.0 / 18.6 67.2 / 8.5 70.2/ 14.6 81.3 / 56.1

Average 67.3 / 4.1 83.6 / 4.2 86.2 / 3.7 88.1 / 4.1 75.9 / 3.1 65.8 / 34.3 64.5 / 29.7 65.4 / 9.9 80.4 /39.7 84.1 / 65.8

4 EXPERIMENTS

In this section, we verify the effectiveness of COBRA in robust AD with several benchmark datasets,
encompassing those that are large-scale and real-world. Evaluation is conducted to assess existing
AD methods, including both clean and adversarially trained methods, as well as our own method,
under both clean and various adversarial attack scenarios. Table 1 provides a comparative analysis in
a one-class setting on the MVTecAD dataset, a challenging real-world benchmark in AD. Additional
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Table 3: Performance of AD methods under clean evaluation and PGD-1000, measured by AUROC
(%). Experiments performed in the unlabeled multi-class AD setup.

∗These works incorporated adversarial training into their proposed AD methods.

In Out Method

MSAD Transformaly PrincipaLS∗ OCSDF∗ APAE∗ ZARND∗ COBRA (Ours)

CIFAR10

CIFAR100 76.9 / 0.4 88.7 / 0.0 54.8 / 14.6 51.0 / 12.8 53.6 / 1.2 76.6 / 34.1 76.0 / 63.3
SVHN 94.6 / 0.0 98.2 / 1.2 72.1 / 23.6 67.7 / 18.8 60.8 / 2.1 84.3 / 42.7 98.5 / 78.6
MNIST 99.3 / 1.6 99.4 / 3.6 82.5 / 42.7 74.2 / 37.4 71.3 / 15.3 99.4/ 82.2 80.8 / 85.8
FMnist 99.2 / 3.8 99.1 / 3.7 78.3 / 38.5 64.5 / 33.7 59.4 / 9.4 98.2/ 67.3 82.8 / 75.7
ImageNet 83.7 / 0.0 92.8 / 0.8 55.3 / 12.3 52.8 / 10.2 56.1 / 0.3 71.5 / 28.4 85.5 / 53.1

CIFAR100

CIFAR10 61.4 / 0.0 82.5 / 0.3 47.6 / 8.1 51.1 / 6.3 50.5 / 0.7 64.6 / 21.2 48.7 / 27.5
SVHN 86.6 / 2.7 94.7 / 2.6 66.3 / 13.2 58.7 / 9.2 58.1 / 1.1 70.0/ 26.8 93.2 / 49.4
MNIST 97.4 / 3.5 98.8 / 0.8 80.4 / 30.4 76.4 / 28.9 74.7 / 11.8 87.0 / 30.4 77.8 / 54.1
FMnist 96.5 / 0.9 98.4 / 5.2 72.7 / 18.7 62.8 / 14.3 60.9 / 9.7 97.3 / 76.3 58.2 / 32.9
ImageNet 71.6 / 1.6 80.4 / 2.0 51.6 / 6.3 48.9 / 5.4 52.7 / 0.1 71.6 / 21.8 69.1 / 32.3

Table 4: Performance of COBRA on various datasets under clean evaluation and several adversarial
attack, measured by AUROC (%). Experiments performed in the one-class AD setup.

Dataset Attack

Clean BlackBox FGSM CAA A3 AutoAttack PGD-1000

CIFAR10 83.7 81.8 70.2 64.5 60.7 65.9 62.3
CIFAR100 76.9 74.6 64.5 53.0 50.1 54.8 51.7
FMnist 93.1 92.9 90.7 91.6 90.8 87.4 89.6
ImageNet 85.2 82.0 71.4 53.6 61.8 59.4 57.0
MVTecAD 89.1 83.4 79.8 76.3 74.8 77.0 75.1
VisA 75.2 74.6 74.0 73.5 71.6 74.9 73.8

comparisons in one-class settings across other benchmarks are detailed in Table 2, while Table 3
showcases our method’s superiority in unlabeled multi-class setting. Moreover, we demonstrate our
method’s robustness by evaluating it against several attacks presented in Table 4. Additional details
on the adaptation of attacks and supplementary evaluation metrics can be found in K and N.

Experimental Setup. Our experiments were conducted in two categories: one-class and unlabeled
multi-class anomaly detection (AD). In the one-class setup, considering a dataset D with M classes,
experiments were conducted by treating each class in turn as the normal set and the other M − 1
classes as the anomaly set. This process was repeated for each class, and performance was averaged
across all classes to report the overall detection performance. In the unlabeled multi-class setup, this
setting incorporates another dataset D′, considering one dataset as the normal set and another as
the anomaly set. We compared COBRA with PANDA Reiss et al. (2021), Transformaly Cohen and
Avidan (2021), Patchcore Roth et al. (2021), CSI Tack et al. (2020), MSAD Reiss and Hoshen (2021),
ReContrast Guo et al. (2024), and Draem Zavrtanik et al. (2021), as well as methods specifically
proposed for robust AD, including ZARND Mirzaei et al. (2024b), PrincipaLS Lo et al. (2022),
OCSDF Béthune et al. (2023), and APAE Goodge et al. (2021). Details about each mentioned method
can be found in Appendix C.

Evaluation Details. To evaluate the methods’ adversarial robustness, both normal and anomalous
test samples will be subjected to end-to-end adversarial attacks targeting the methods’ anomaly
scores. We set the value of ϵ to 4

255 for low-resolution datasets and to 2
255 for high-resolution

datasets. For the PGD attack, we set the number of steps N to 1000, initializing the attack from
10 different random starting points for each trial to enhance the attack’s effectiveness and coverage.
Furthermore, to highlight COBRA’s robust performance, we considered additional strong attacks,
including AutoAttack (AA), Adaptive AutoAttack (A3), and black-box attacks. Furthermore, to
highlight COBRA’s robust performance, we considered an additional range of simple to strong attacks,
including black-box attacks Guo et al. (2019), FGSM attacks Goodfellow et al. (2014), CAA Mao
et al. (2020), AutoAttack (AA), and Adaptive AutoAttack (A3). Other methods’ performance under
AutoAttack can be found in Appendix G. Additionally, details on the model’s evaluation under both
ℓ∞ and ℓ2 PGD attacks across varying epsilon values are presented in Appendix H.

Implementation Details & Datasets For obtaining the threshold λ, we utilized a from-scratch
ResNet-18 as C and trained on the created dataset for 100 epochs. For adversarial training, we use
PGD-10 step and ϵ = 4

255 . We employ ResNet-18 as the foundational encoder network, accompanied
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Figure 2: The figure highlights the challenges CPAD and CSI face in generating inncorrect anomalies
due to the absence of a threshold. Techniques such as FITYMI and Dream-OOD, which generate
anomalies from the embedding space of a pretrained model, typically lead to a loss of pixel-level
detail and show biases towards the dataset used for pre-training (e.g., ImageNet). Such biases decrease
their effectiveness on datasets not seen during pre-training, such as medical imaging datasets like
ISIC. In contrast, COBRA efficiently crafts informative anomalies in the pixel space and utilizes a
thresholding method to filter out incorrect anomalies, all without the need for any additional datasets.

Table 5: Comparison of COBRA with replacing alternative anomaly synthesis methods. None
corresponds to a scenario where we neglect any pseudo-anomaly and adapt COBRA for that setting.

Dataset Anomaly Craft Strategy
None CPAD CSI GOE VOS FITYMI Dream-OOD Ours

MVTecAD 57.6 / 10.8 86.2 / 70.8 61.4 / 12.9 58.1 / 25.3 53.4 / 15.8 65.0 / 38.7 68.6 / 36.4 89.1 / 75.1
ImageNet 72.8 / 32.5 67.5 / 43.4 82.7 / 58.2 81.9 / 60.4 72.4 / 56.5 68.9 / 47.2 87.3 / 64.1 85.2 / 57.0
CIFAR10 78.6 / 50.3 69.4 / 53.8 82.9 / 60.7 84.2 / 58.8 79.3 / 53.1 76.9 / 50.6 75.2 / 57.8 83.7 / 62.3
FMnist 82.4 / 71.7 86.3 / 78.5 89.5 / 82.6 73.9 / 64.1 68.2 / 61.9 71.7 / 62.0 76.4 / 68.5 93.1 / 89.6
Average 72.8 / 41.3 77.3 / 61.6 79.0 / 53.1 74.5 / 52.1 68.3 / 47.3 70.6 / 50.3 76.9 / 56.7 87.8 / 71.0

by an auxiliary head comprising a 2-layer multi-layer perceptron with a 128-dimensional embedding
dimension. More details about the implementation can be found in Appendix I. COBRA is evaluated
using challenging datasets that includes both high- and low-resolution images. The high-resolution
dataset comprises MVTecAD Bergmann et al. (2019), VisA Zou et al. (2022), CityScapes Cordts
et al. (2016), ImageNet Deng et al. (2009), ISIC2018 Codella et al. (2019), and DAGM Wieler et al.
(2007), while the low-resolution dataset includes SVHN Goodfellow et al. (2013), FMNIST Xiao
et al. (2017), CIFAR10, CIFAR100, and MNIST. Further details can be found in Appendix L.

Analyzing Results. The results presented underscore COBRA’s effectiveness as an robust AD method.
Remarkably, COBRA enhances the average robust detection performance across various datasets by
up to 26.1%, without relying on pre-trained models or extra datasets. This demonstrates COBRA’s
real-world applicability by enhancing robust performance on the MVTecAD dataset from 30.1%
to 75.1%. COBRA’s versatility is further highlighted by its general applicability to different AD
scenarios, including one-class and unlabeled multi-class setups. Notably, in open-world applications
where robustness is vital, a slight drop in clean performance is considered a worthwhile trade-off for
enhanced robustness. Our results align with this perspective, achieving an average of 84.1% in clean
and 65.8% in adversarial settings across various datasets. This performance surpasses methods like
Transformaly Cohen and Avidan (2021), which, while achieving 88.2% in clean settings, significantly
falls to 4.1% in adversarial scenarios. Furthermore, we replaced our adversarial training with clean
training in the COBRA Pipeline. As expected, and in line with findings reported in the literature
Tsipras et al. (2018), this resulted in decreased robust detection performance. However, it improved
clean detection performance from an AUROC of 84.1% to 90.7%.
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Table 6: Comparison of the performance of COBRA with alternative loss functions versus LCOBRA,
in terms of effectiveness for the robust AD task.

Dataset Loss Function
LCLS LCL LSupCL LOpposite LCOBRA LCOBRA + LCLS

MVTecAD 62.6 / 40.4 76.4 / 58.7 80.4 / 60.5 64.0 / 53.6 83.7 / 68.2 89.1 / 75.1
ImageNet 59.5 / 45.1 68.3 / 47.6 74.6 / 46.3 57.4 / 45.8 82.9 / 54.3 85.2 / 57.0
CIFAR10 62.6 / 49.6 67.9 / 54.3 74.2 / 53.8 65.9 / 52.4 78.5 / 61.0 83.7 / 62.3
FMnist 82.0 / 78.4 88.3 / 82.5 91.5 / 83.2 80.4 / 73.5 92.8 / 87.6 93.1 / 89.6
Average 66.7 / 53.3 75.2 / 60.8 80.4 / 60.9 66.9 / 56.3 84.5 / 67.7 87.7 / 71.0

Normal Training Samples Pseudo-Anomaly Training Samples Purturbed Normal Test Samples Purturbed Anomaly Test Samples

(a) CL (b) CLS (c) SupCLR (d) COBRA

Figure 3: UMAP visualization of features extracted by the encoder f , trained with various loss
functions on the CIFAR-10 dataset, is presented in a one-class setup with the ’Automobile’ class
designated as the normal set. For this particular experiment, all elements except the loss function
remain constant to ensure a fair comparison.

5 ABLATION STUDY

Pseudo-anomaly Generating Strategy. In order to demonstrate the superiority of our strategy
for pseudo-anomaly sample crafting, with other modules fixed, we replaced ours with alternative
methods. We provided a brief description of alternative methods in Section 3.1. The results, which
are presented in Table 5, along with a visualization comparison of samples in Figure 2, show the
superiority of our effective synthesizer method. Notably, our strategy, without using any extra data,
outperforms Dream-OOD with billions of sample complexity by a margin of 15%. In Appendix D.1,
we further evaluate the quality of our generated data.
Adversarial Training Objective Function. We replaced our proposed loss function with various
alternatives, such as classification (CLS), CL and Supervised CL. The results, detailed in Table 6,
reveal that the COBRA loss function, by generating challenging intra- and inter-group adversarial
examples during training, surpasses other alternatives significantly. LCOBRA outperforms CLS by
increasing normal distribution compactness provided by intra-group perturbations, and outperforms
CL and SupCL by considering opposite pairs for increasing margins, as illustrated in Figure 3. Our
performance outperforms other loss functions by 11%. Additional ablation studies, experimental
results including error bars, limitations, and qualitative visualizations are provided in the Appendix.

6 CONCLUSION

In conclusion, our work introduces COBRA, a novel and effective approach for enhancing AD
methods’ robustness against adversarial attacks. By leveraging a novel loss function inspired by
contrastive learning and strategically crafting informative anomaly samples, COBRA achieves
superior detection performance under both clean and adversarial evaluation conditions. We verify
COBRA through comprehensive ablation experiments on its different components. Moreover, our
extensive experiments across multiple challenging datasets, as well as under various strong attacks,
confirm our method’s effectiveness, setting a new benchmark for future research in reliable AD.

10



Published as a conference paper at ICLR 2025

REFERENCES

Abhijit Bendale and Terrance Boult. Towards open world recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1893–1902, 2015.

Pramuditha Perera, Poojan Oza, and Vishal M Patel. One-class classification: A survey. arXiv preprint
arXiv:2101.03064, 2021.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder,
Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International conference on machine
learning, pages 4393–4402. PMLR, 2018.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive learning
on distributionally shifted instances. Advances in neural information processing systems, 33:11839–11852,
2020.

Liron Bergman, Niv Cohen, and Yedid Hoshen. Deep nearest neighbor anomaly detection. arXiv preprint
arXiv:2002.10445, 2020.

Tal Reiss, Niv Cohen, Liron Bergman, and Yedid Hoshen. Panda: Adapting pretrained features for anomaly
detection and segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2806–2814, 2021.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad–a comprehensive real-world
dataset for unsupervised anomaly detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9592–9600, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Mohammad Azizmalayeri, Arshia Soltani Moakhar, Arman Zarei, Reihaneh Zohrabi, Mohammad Manzuri, and
Mohammad Hossein Rohban. Your out-of-distribution detection method is not robust! Advances in Neural
Information Processing Systems, 35:4887–4901, 2022.

Shao-Yuan Lo, Poojan Oza, and Vishal M Patel. Adversarially robust one-class novelty detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Robust out-of-distribution detection for neural
networks. arXiv preprint arXiv:2003.09711, 2020a.

Rui Shao, Pramuditha Perera, Pong C Yuen, and Vishal M Patel. Open-set adversarial defense. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII
16, pages 682–698. Springer, 2020.

Rui Shao, Pramuditha Perera, Pong C Yuen, and Vishal M Patel. Open-set adversarial defense with clean-
adversarial mutual learning. International Journal of Computer Vision, 130(4):1070–1087, 2022.

Louis Béthune, Paul Novello, Thibaut Boissin, Guillaume Coiffier, Mathieu Serrurier, Quentin Vincenot, and
Andres Troya-Galvis. Robust one-class classification with signed distance function using 1-lipschitz neural
networks. arXiv preprint arXiv:2303.01978, 2023.

Adam Goodge, Bryan Hooi, See Kiong Ng, and Wee Siong Ng. Robustness of autoencoders for anomaly detec-
tion under adversarial impact. In Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pages 1244–1250, 2021.

Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Atom: Robustifying out-of-distribution
detection using outlier mining. In Machine Learning and Knowledge Discovery in Databases. Research
Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part
III 21, pages 430–445. Springer, 2021a.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training for adversarial
robustness. arXiv preprint arXiv:2102.01356, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Michael Glodek, Martin Schels, and Friedhelm Schwenker. Ensemble gaussian mixture models for probability
density estimation. Computational statistics, 28:127–138, 2013.

11



Published as a conference paper at ICLR 2025

Shuo Chen, Gang Niu, Chen Gong, Jun Li, Jian Yang, and Masashi Sugiyama. Large-margin contrastive learning
with distance polarization regularizer. In International Conference on Machine Learning, pages 1673–1683.
PMLR, 2021b.

Xuxin Cheng, Bowen Cao, Qichen Ye, Zhihong Zhu, Hongxiang Li, and Yuexian Zou. Ml-lmcl: Mutual learning
and large-margin contrastive learning for improving asr robustness in spoken language understanding. arXiv
preprint arXiv:2311.11375, 2023.

Yiwen Guo and Changshui Zhang. Recent advances in large margin learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(10):7167–7174, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning
(ICML), pages 1597–1607. PMLR, 2020b.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

Jia Guo, Lize Jia, Weihang Zhang, Huiqi Li, et al. Recontrast: Domain-specific anomaly detection via contrastive
reconstruction. Advances in Neural Information Processing Systems, 36, 2024.

Tal Reiss and Yedid Hoshen. Mean-shifted contrastive loss for anomaly detection. arXiv preprint
arXiv:2106.03844, 2021.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pages 2206–2216. PMLR, 2020.

Ye Liu, Yaya Cheng, Lianli Gao, Xianglong Liu, Qilong Zhang, and Jingkuan Song. Practical evaluation of
adversarial robustness via adaptive auto attack, 2022.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255.
IEEE, 2009.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David Gutman, Brian
Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion analysis toward melanoma
detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv preprint
arXiv:1902.03368, 2019.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A survey.
arXiv preprint arXiv:2110.11334, 2021.

Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius Kloft,
Thomas G Dietterich, and Klaus-Robert Müller. A unifying review of deep and shallow anomaly detection.
Proceedings of the IEEE, 109(5):756–795, 2021.

Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 813–822, 2021.

Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly detection
benchmark. Advances in Neural Information Processing Systems, 35:32142–32159, 2022.

Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning for anomaly
detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9664–9674, 2021.

Konstantin Kirchheim and Frank Ortmeier. On outlier exposure with generative models. In NeurIPS ML Safety
Workshop, 2022.

Hossein Mirzaei, Mohammadreza Salehi, Sajjad Shahabi, Efstratios Gavves, Cees GM Snoek, Mohammad
Sabokrou, and Mohammad Hossein Rohban. Fake it till you make it: Near-distribution novelty detection by
score-based generative models. arXiv preprint arXiv:2205.14297, 2022.

12



Published as a conference paper at ICLR 2025

Xuefeng Du, Yiyou Sun, Xiaojin Zhu, and Yixuan Li. Dream the impossible: Outlier imagination with diffusion
models. arXiv preprint arXiv:2309.13415, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for
training next generation image-text models. arXiv preprint arXiv:2210.08402, 2022.

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual outlier
synthesis. arXiv preprint arXiv:2202.01197, 2022.

Hossein Mirzaei, Mohammad Jafari, Hamid Reza Dehbashi, Ali Ansari, Sepehr Ghobadi, Masoud Hadi,
Arshia Soltani Moakhar, Mohammad Azizmalayeri, Mahdieh Soleymani Baghshah, and Mohammad Hossein
Rohban. Rodeo: Robust outlier detection via exposing adaptive out-of-distribution samples. In Forty-first
International Conference on Machine Learning, 2024a.

Yifei Ming, Ying Fan, and Yixuan Li. Poem: Out-of-distribution detection with posterior sampling. In
International Conference on Machine Learning, pages 15650–15665. PMLR, 2022.

Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. Advances in neural
information processing systems, 31, 2018.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning can
improve model robustness and uncertainty. Advances in Neural Information Processing Systems, 32, 2019a.

Kejiang Chen, Yuefeng Chen, Hang Zhou, Xiaofeng Mao, Yuhong Li, Yuan He, Hui Xue, Weiming Zhang, and
Nenghai Yu. Self-supervised adversarial training. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2218–2222. IEEE, 2020c.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier exposure. arXiv
preprint arXiv:1812.04606, 2018.

Leitian Tao, Xuefeng Du, Xiaojin Zhu, and Yixuan Li. Non-parametric outlier synthesis, 2023.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 69–84,
Cham, 2016. Springer International Publishing. ISBN 978-3-319-46466-4.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2020.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret
Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation. arXiv preprint
arXiv:2012.07177, 2020.

M. Eren Akbiyik. Data augmentation in training cnns: Injecting noise to images. ArXiv, abs/2307.06855, 2019.
URL https://api.semanticscholar.org/CorpusID:214522707.

Yann N. Dauphin Hongyi Zhang, Moustapha Cisse. mixup: Beyond empirical risk minimization. Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
r1Ddp1-Rb.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features, 2019.

Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. Learning and evaluating representa-
tions for deep one-class classification. arXiv preprint arXiv:2011.02578, 2020.

Dong Huk Park and Trevor Darrell. Novelty detection with rotated contrastive predictive coding. 2020.

13

https://api.semanticscholar.org/CorpusID:214522707
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb


Published as a conference paper at ICLR 2025

Puck de Haan and Sindy Löwe. Contrastive predictive coding for anomaly detection. arXiv preprint
arXiv:2107.07820, 2021.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard negative
mixing for contrastive learning. Advances in Neural Information Processing Systems, 33:21798–21809,
2020a.

Abhishek Sinha, Kumar Ayush, Jiaming Song, Burak Uzkent, Hongxia Jin, and Stefano Ermon. Negative
data augmentation. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=Ovp8dvB8IBH.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard neg-
ative mixing for contrastive learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 21798–21809.
Curran Associates, Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/file/
f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf.

Atsuyuki Miyai, Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Rethinking rotation in self-supervised
contrastive learning: Adaptive positive or negative data augmentation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pages 2809–2818, January 2023.

Zhaoyu Zhang, Yang Hua, Guanxiong Sun, Hui Wang, and Seán McLoone. Improving the leaking of augmenta-
tions in data-efficient gans via adaptive negative data augmentation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pages 5412–5421, January 2024.

Chengwei Chen, Yuan Xie, Shaohui Lin, Ruizhi Qiao, Jian Zhou, Xin Tan, Yi Zhang, and Lizhuang Ma.
Novelty detection via contrastive learning with negative data augmentation. In Zhi-Hua Zhou, editor,
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August 2021, pages 606–614. ijcai.org, 2021c. doi: 10.24963/IJCAI.2021/84.
URL https://doi.org/10.24963/ijcai.2021/84.

Matan Jacob Cohen and Shai Avidan. Transformaly–two (feature spaces) are better than one. arXiv preprint
arXiv:2112.04185, 2021.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adversarially
robust generalization requires more data. Advances in neural information processing systems, 31, 2018.

David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6976–6987,
2019.

Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler. Towards
total recall in industrial anomaly detection, 2021.
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A ALGORITHM BLOCK

Algorithm 1 Adversarially Robust Anomaly Detection through Spurious Negative Pair Mitigation
T ← {Color Jitter, Horizontal Flip, Grayscale, ...} ▷ Set of k light augmentations
T ← {Rotation, Elastic, Distortion, ...} ▷ Set of k hard augmentations

function CLASSIFIER_GMM_TRAINER(training_data, T )
synthetic_data← {(Ti(training_data), i) | Ti ∈ T, i ∈ range(T )} ▷ Create k-class cls dataset
Train a k-class classifier C on synthetic_data
etrain ← C(training_data) ▷ Obtain embeddings from the classifier
Fit GMM on etrain

λ← 0.05
return C, GMM, λ

end function

function Υ(Xnormal, T , C, GMM, λ)
while p_value > λ do

transforms_seq ← Sample a random sequence of transforms from T
xp−anomaly← transforms_seq(xnormal) ▷ Apply hard transformations to create a pseudo-anomaly
ep−anomaly ← C(xp−anomaly) ▷ Obtain embeddings from the classifier
p_value← GMM.P_Value (ep−anomaly) ▷ Compute P-Value of embeddings

end while
return xp−anomaly

end function

function PSEUDO_ANOMALY_GENERATOR(Xnormal, T , C, GMM, λ)
Xp−anomaly = {}
for xnormal in Xnormal do ▷ iterate over batch of normal data

xp−anomaly ← Υ(Xnormal, T , C, GMM, λ)
Xp−anomaly .Add(xp−anomaly)

end for
return Xp−anomaly ▷ Return the generated pseudo-anomaly sample

end function

function PGD(x, y, F,G,H, pgd_steps, α, ϵ)
x_adv ← x
for step in pgd_steps do

grad = Compute_Gradient( [LCOBRA(F,G; x_adv) + LCLS(F,H; x_adv, y)], x_adv)
▷ Compute the gradient of the loss with respect to the input x_adv

x_adv = x_adv + α ∗ sign(grad)
x_adv = clip(x_adv, x− ϵ, x + ϵ) ▷ Gradient ascent and projection to valid ϵ-ball
x_adv = clip(x_adv, 0, 1)

end for
return x_adv

end function

function ADVERSARIAL_TRAINING_COBRA(training_data, F,G,H, C, GMM, λ, pgd_steps, α, ϵ)
for Bnormal in training_data do
Bp−anomaly ← Pseudo_Anomaly_Generator(Bnormal, T , C, GMM, λ)
B ← Concatenate(Bnormal,Bp−anomaly)
Y ← [0]× ∥Bnormal∥+ [1]× ∥Bp−anomaly∥
τ1, τ2 = Sample tow random requence of transforms from T
Badv ← {}
for x, y in (B, Y ) do

x1, x2← τ1(x), τ2(x)
P(x1), P(x2)← {x2}, {x1}
N(x)←

{
τ1(x

′) : x′ ∈ B \ {x}
}
∪
{
τ2(x

′) : x′ ∈ B \ {x}
}

▷ N(x)=N(x1)=N(x2)
x_adv ← PGD(x, y, F,G,H, pgd_steps, α, ϵ)
Badv .Add(xadv)

end for
L = 0
for x, xadv, y in (B,Badv, Y ) do

x1, x2← τ1(x), τ2(x)
P(x1), P(x2), P(xadv)← {x2, xadv}, {x1, xadv}, {x1, x2}
N(x)←

{
τ1(x

′) : x′ ∈ B \ {x}
}
∪
{
τ2(x

′) : x′ ∈ B \ {x}
}

∪
{
x′
adv : x′

adv ∈ Badv \ {xadv}
}

L += LCOBRA(F,G; x) + LCLS(F,H; [x, xadv], [y, y])
end for
Update Networks(F,G,H) using L

end for
end function

function MAIN(epochs, training_data, F,G,H, pgd_steps, α, ϵ)
C, GMM, λ← Classifier_GMM_Trainer(training_data, T )
for epoch in epochs do

Adversarial_Training_COBRA(training_data, F,G,H, C, GMM, λ, pgd_steps, α, ϵ)
end for

end function

MAIN(epochs, training_data, F,G,H, 10, α, ϵ)
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B RELATED WORK

Previous AD Methods. Recent standard AD methods can be categorized into two types: transfer
learning based and CL based methods. Transfer learning-based methods utilize a trained model on a
large dataset as a backbone and leverage its rich features for the AD task. This approach is evident in
methods including PANDA Reiss et al. (2021), Transformaly Cohen and Avidan (2021), Patchcore
Roth et al. (2021), and Fastflow Yu et al. (2021). On the other hand, CL framework has demonstrated
its superiority by extracting discriminative features, as showcased by CSI Tack et al. (2020), MSAD
Reiss and Hoshen (2021), Recontrast Guo et al. (2024), and Draem Zavrtanik et al. (2021). Extending
transfer learning based methods to an adversarial setting is not feasible because pre-trained features,
which act as a key, are not robust, necessitating a new training paradigm. This limitation inspired us
to adopt CL for adversarial training, which also aligns with the unlabeled nature of AD. There have
been a few efforts to propose robust AD methods, including PrincipaLS Lo et al. (2022), OCSDF
Béthune et al. (2023), and APAE Goodge et al. (2021). However, their results on even tiny datasets
are less than random detection. Details about each mentioned method can be found in Appendix C.

C DETAILS OF RELATED WORK

C.1 PREVIOUS AD METHODS

There has been some efforts to develope a robust AD method. PrincipaLS employs a novel latent
space manipulation technique to adjust the representations of data point with optimizing a robustness
criterion designed to minimize the model’s sensitivity to adversarial perturbations. OCSDF leverages
the Signed Distance Function to delineate the boundary of a data distribution. Through the em-
ployment of 1-Lipschitz neural networks, it adeptly approximates normality scores, thus enhancing
robustness to adversarial perturbations. APAE introduces the approximate projection autoencoder
as a defense mechanism, integrating gradient descent on latent embeddings and feature-weighting
normalization to enhance detection robustness. it worth noting we exclude robust OOD detection from
our experiments, where their method have been develpoed by relying on labels and could not extend
to AD setup. ZARND a introduces a robust method enhancing anomaly detection by integrating
robust features from pretrained models with nearest-neighbor algorithms. The approach significantly
improves robustness against adversarial attacks, which traditionally degrade ND performance. By
leveraging features from adversarially robust models and employing k-Nearest Neighbors (k-NN)
for anomaly scoring Mirzaei et al. (2022; 2024c); Salehi et al. (2021); Mirzaei and Mathis (2024);
Mirzaei et al.; Moakhar et al. (2023); Mirzaei et al. (2024d); Jafari et al. (2024); Taghavi et al. (2023a);
Rahimi et al. (2024a); Taghavi et al. (2023b;c); Taghavi and Mirzaei (2024); Ebrahimi et al. (2024a;b);
Rahimi et al. (2024b).

C.2 AUXILIARY ANOMALY SAMPLE CRAFTING

Previous studies on anomaly generation often struggle with producing samples that are either too
similar to normal instances (distant anomalies) or inadvertently create samples that still belong to the
normal category. Conversely, many studies have underscored the benefit of using related auxiliary
anomaly samples to enhance detector performance. In light of this, we have proposed COBRA,
which, unlike its counterparts such as Dream-OOD, does not require an extra dataset and performs
well in an unsupervised setting where labels for normal samples are not available.

COBRA aligns with the distribution of the normal dataset, effectively generating informative pseudo-
anomalies within the pixel space. It employs a thresholding technique to sift out inaccuracies, all
while obviating the need for supplementary datasets.

D DISTRIBUTION AWARE HARD TRANSFORMATION

In this section, we elaborate on the practical implementation details of our proposed pseudo-anomaly
crafting strategy. As discussed in the main text of the paper, we set the hyperparameter β to 0.05. To
assess the robustness of our model with respect to this parameter, we conducted extensive experiments
over a broader range, specifically [0.02, 0.20]. The stability of our model’s performance across this
range is demonstrated in the experimental results (refer to Table 7). These findings underscore
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the robustness of our approach in handling varying hyperparameter settings without significant
performance degradation.

Table 7: Performance of the model for different values of the hyperparameter β used in pseudo-
anomaly crafting. Results are shown in each table cell as ’Clean/PGD-1000’. (Evaluations are
done on CIFAR-10 and CIFAR-100 datasets under a PGD-1000 attack with ϵ = 4

255 , and on other
high-resolution datasets with ϵ = 2

255 ).

β Datasets
cifar10 cifar100 MVTecAD CityScapes VisA ISIC2018 DAGM

0.02 82.7 / 61.8 75.4 / 52.3 88.0 / 74.1 79.9 / 57.5 73.7 / 70.1 82.3 / 55.6 80.4 / 55.1
0.05 83.7 / 62.3 76.9 / 51.7 89.1 / 75.1 81.7 / 56.2 75.2 / 73.8 81.3 / 56.1 82.4 / 56.8
0.08 82.3 / 62.1 74.2 / 50.8 87.3 / 73.9 81.3 / 55.9 76.1 / 73.0 81.0 / 57.0 82.1 / 55.7
0.11 81.9 / 61.3 74.8 / 51.0 88.1 / 74.4 80.8 / 55.1 74.2 / 72.7 80.6 / 55.2 81.3 / 57.0
0.14 80.8 / 60.9 77.2 / 51.8 89.0 / 74.5 80.6 / 56.2 75.8 / 72.6 79.8 / 56.4 79.5 / 54.6
0.17 79.5 / 59.3 75.8 / 50.4 86.9 / 75.0 79.6 / 56.7 74.2 / 72.9 79.3 / 54.1 79.0 / 53.7
0.20 80.1 / 58.9 76.3 / 49.9 89.2 / 74.2 80.0 / 54.2 73.9 / 72.1 80.3 / 55.3 81.9 / 54.7

D.1 HARD TRANSFORMATION

We employed a series of hard transformations to create the T set. The transformations and their
respective hyperparameters are as follows:

• Jigsaw: Images were divided into a 2x2 grid, and the tiles were randomly permuted. This
transformation disrupts the spatial continuity of image features.

• Random Erasing: A random rectangular region in the image was erased, with a size
proportional to the image area and an aspect ratio randomly chosen between 10% and 50%.

• CutPaste: A square region, with side length varying from 10% to 50% of the image width,
was cut and pasted into a different location within the same image.

• Rotation: Images were rotated by a random angle within ±90 degrees to introduce a
moderate level of distortion.

• Extreme Blurring: Applied a Gaussian blur with a kernel size of up to 5% of the image
width and a high variance (σ = 2.5), resulting in significant blurring.

• Intense Random Cropping: Random sections, sized between 50% and 80% of the original
image size, were cropped to challenge the model with incomplete patterns.

• Noise Injection: Gaussian noise with a mean of 0 and a standard deviation of 0.1 was added
to the images.

• Extreme Cropping: Cropped the image to retain only 40% to 60% of its original size,
focusing on the center to ensure a significant deviation from the original distribution.

• Mixup: To create composite images that merge features from both source images in a more
challenging manner, we combined pairs of images using a blending coefficient α, drawn
from a Beta distribution Beta(α, α) with α set to 0.1. This lower value of α results in a higher
variance of the mixing coefficients, producing images that are significantly more blended
than with a higher α value. This aggressive mixing ensures the crafting of pseudo-anomaly
samples.

• Cutout: Square regions with a side length of 25% of the image width were filled with a
constant value to simulate occlusion.

• CutMix: Portions from one image were cut and pasted onto another, with the cut region’s
size approximately 20% of the image area.

Quality of Generated Abnormal Data. In Table 5 of our paper, we evaluated our crafting strategy
by comparing it with alternative methods. Additionally, Figure 2 presents samples that visually
compare our results with others. To address any concerns further, we employed the FID metric,
which measures the distance from a normal distribution, as well as the DC metric Naeem et al. (2020)
to assess diversity. A lower FID indicates that the crafted anomalies are more similar to normal
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instances, while a higher DC suggests greater diversity among the samples. Table 8 compares the
quality of anomalies generated by our method with those from other alternatives, using the FID and
DC metrics.

Table 8: Assessment of Generated Anomaly Data Quality Compared to Alternative Methods

Dataset Metric GOE FITYMI Dream-OOD Dream-OOD Ours

MVTecAD FID ↓ 245 163 227 227 129
DC ↑ 0.53 0.29 0.75 0.75 0.84

ImageNet FID ↓ 118 145 98 98 107
DC ↑ 0.64 0.38 0.87 0.87 0.58

CIFAR10 FID ↓ 76 86 72 72 54
DC ↑ 0.45 0.36 0.56 0.56 0.72

FMNIST FID ↓ 42 37 64 64 32
DC ↑ 0.31 0.17 0.45 0.45 0.63

Average FID ↓ 120.3 107.8 115.3 115.3 80.3
DC ↑ 0.48 0.3 0.65 0.65 0.69

D.2 POSITIVE TRANSFORMATION

Consistent with the self-supervised learning literature Chen et al. (2020b); He et al. (2020), we employ
mild transformations that generate samples with minimal visual differences while fully preserving
semantics. These include color jitter, random grayscale conversion, and random cropping (cropping
the image to retain 80% to 100% of its original size). These transformations are designed to subtly
alter the appearance of images without changing their underlying content, thereby enabling the model
to learn robust features that are invariant to minor perturbations.

E ADDITIONAL ABLATION STUDY

Here, we conduct further experiments to thoroughly evaluate COBRA across diverse settings,
highlighting its key components and their substantial impact.

Clean Training In this scenario, we skipped adversarial training and instead trained COBRA with
standard training, keeping all other components fixed. The results indicate that clean performance
increased from 84.1 to 90.7, demonstrating COBRA’s superiority in various scenarios of training and
evaluating. The results are presented in Table 9.

Anomaly Score Instead of utilizing our proposed Anomaly Score, we explored alternative approaches
while keeping other components unchanged. Specifically, our default anomaly score is based on the
similarity between a test sample and normal training samples. We substituted this anomaly score with
logits provided by our binary classifier head. Specifically, the COBRA results reported in the main
paper are based on the A(x) anomaly score, which is defined as:

A(x) = − max
xi∈Dtrain

{
⟨G(F(x)),G(F(xi))⟩

}
,

Instead, we replaced that with A′(x) = p(H(F(x))|y = 1), which denotes the probability of
belonging to the pseudo-anomaly class as assigned by the binary classifier head. Additionally, we
considered A(x) +A′(x) as another alternative. As the results presented in Table 10 demonstrate, all
strategies achieve significant performance with minor differences.

Ablation Study on Distribution-Aware Hard Transformation
In this section, we utilize the feature extractor C as an anomaly detector to demonstrate that its
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Table 9: Performance of COBRA trained with standard training (without adversarial training) across
various datasets.

Evaluation setting Datasets

CIFAR10 CIFAR100 MNIST FMnist SVHN ImagenNet30 MVTechAD VisA DAGM ISIC2018

Clean 94.3 93.7 95.1 93.4 96.0 92.7 95.2 78.1 90.8 83.4

Adversarial 1.7 4.6 1.0 3.8 2.5 4.9 5.8 2.3 4.8 4.2

Table 10: Ablation study on different score functions. Results are AUROC (%)

Dataset Anomaly Score

A(x) +A′(x) A′(x) A(x) (default)

MVTecAD 88.4 / 74.6 83.1 / 72.8 89.1 / 75.1
CIFAR10 81.9 / 60.2 76.1 / 55.7 83.7 / 62.3
FMNIST 89.6 / 87.4 88.5 / 84.8 93.1 / 89.6
CIFAR100 72.6 / 51.2 70.4 / 48.3 76.9 / 51.7

Table 11: C’s performance in the AD task across various datasets.

Methods Datasets

CIFAR10 CIFAR100 MNIST FMnist SVHN ImagenNet30 MVTechAD VisA DAGM ISIC2018

COBRA 77.1 72.4 86.0 83.6 74.7 80.3 75.2 64.9 78.5 73.2

learned features from the normal training set are meaningful and significantly surpass random detec-
tion, highlighting its role in crafting effective pseudo-anomaly samples. Results presented in Table 11.

Ablation Study on Thresholding
Here, while keeping all components of COBRA constant, we skip the thresholding strategy and
instead use a random subset of hard transformations for crafting pseudo-anomaly samples. The
results, indicated in Table 12, suggest that this approach leads to decreased performance due to the
failure to filter incorrect pseudo-anomaly samples (those that still belong to the normal set).

Table 12: Impact of Skipping Thresholding on Pseudo-Anomaly Generation in COBRA

Methods Datasets

CIFAR10 CIFAR100 MNIST FMnist SVHN ImagenNet30 MVTechAD VisA DAGM ISIC2018

COBRA 78.6 / 58.1 65.4 / 46.5 94.3 / 91.5 90.1 / 86.5 84.8 / 53.2 72.5 / 55.7 76.0 / 68.2 78.4 / 47.9 74.6 / 52.0 73.8 / 51.4

F ANALYZING COBRA’S STABILITY AND EFFECTIVENESS

Figure 4 represents COBRA’s loss values and its detection performance at each epoch of training
for both clean data and data subjected to PGD attack, demonstrating the stability of COBRA’s loss
function. The experiment was conducted in a one-class setup using the MVETEC-AD and FMNIST
datasets. Note that the loss values have been normalized between 0 and 1, and the loss values for the
PGD data are higher than those for the clean data. Despite this, the figure underscores the stability of
our loss function, which remains consistent across different training conditions.

G A3 TO ALL METHODS

Here, we present more detailed results of previous anomaly detection (AD) works and their perfor-
mance under A3 (See Table 13). Their respective performance against PGD-1000 attacks has been
provided in the main paper.
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Figure 4: This figure depicts COBRA’s loss values and detection performance for each epoch of
training on both clean data and data under PGD attack, demonstrating the stability of COBRA’s loss
function. The experiment was carried out in a one-class setup using the MVETEC-AD and FMNIST
datasets.

Table 13: AUROC (%) of various methods for One Class AD methods under AutoAttack.

∗These models are trained to be adversarially robust.
Dataset Method

DeepSVDD CSI DN2 PANDA MSAD Transformaly PatchCore PrincipaLS∗ OCSDF∗ APAE∗

CIFAR10 16.6 3.3 2.5 1.2 0.7 2.4 2.5 29.6 26.9 2.0

CIFAR100 14.3 1.2 0.7 1.1 10.7 7.3 3.5 24.6 19.8 0.9

MNIST 15.4 1.7 1.0 0.7 14.1 11.6 2.4 77.3 66.2 28.6

Fashion-MNIST 48.1 8.5 2.2 9.7 3.7 2.8 2.8 67.5 59.6 12.3

SVHN 4.3 0.8 0.2 0.4 0.1 0.2 1.1 8.9 6.1 0.3

ImageNet30 12.4 2.7 1.2 0.5 1.4 1.8 2.3 23.8 20.6 1.1

H EVALUATING OUR MODEL UNDER VARIOUS ATTACKS WITH DIVERSE
EPSILON VALUES

In this section, we evaluate our model’s performance under adversarial attacks, specifically focusing
on ℓ∞ and ℓ2 PGD attacks across various epsilon values. Table 14 presents the results for the ℓ∞
PGD-1000 attacks, indicating that the model maintains strong accuracy for lower epsilon values,
with some decline in performance observed as epsilon increases. Similarly, Table 15 illustrates the
model’s robustness under ℓ2 PGD attacks, demonstrating consistent accuracy across lower epsilon
values, with a gradual trend observed at higher epsilon values. These results highlight the model’s
resilience to adversarial attacks while also indicating areas for potential improvement.

Table 14: Evaluation of our model under various ℓ∞ PGD-1000 attacks across different ϵ values.
Although the model was trained using ℓ∞ PGD-10 with ϵ = 2/255 for high-resolution images and
ϵ = 4/255 for low-resolution images, the evaluation settings were modified to test its robustness
against stronger attacks.

Epsilon MVTec VisA ImageNet CityScapes ISIC2018 CIFAR10 FMNIST Avg.
0 89.1 75.2 85.2 81.7 81.3 83.7 93.1 84.2
1/255 81.6 74.6 68.1 65.7 62.8 77.0 91.1 74.4
2/255 75.1 73.8 57.0 56.2 56.1 72.9 90.2 68.7
3/255 64.7 67.2 54.1 50.9 51.8 69.3 89.9 64.0
4/255 56.1 52.9 45.2 47.1 49.3 62.3 89.6 57.5
5/255 49.5 46.3 43.7 40.9 45.5 60.8 89.2 53.7
6/255 42.8 40.7 39.4 38.6 42.1 56.3 89.2 49.9
7/255 38.1 33.9 34.5 35.2 39.6 51.8 89.1 46.0
8/255 34.2 30.7 28.6 32.8 35.5 47.4 89.1 42.6
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Table 15: Evaluation of our model under various ℓ2 PGD attacks across different ϵ values. Although
the model was trained using ℓ∞ PGD-10 with ϵ = 2/255 for high-resolution images and ϵ = 4/255
for low-resolution images, the evaluation settings were modified to test its robustness under stronger
ℓ2-norm adversarial attacks.

Epsilon MVTec VisA ImageNet CityScapes ISIC2018 CIFAR10 FMNIST Avg.
0 89.1 75.2 85.2 81.7 81.3 83.7 93.1 84.2
16/255 87.1 74.9 77.8 77.9 76.8 73.8 91.0 79.9
32/255 85.4 74.8 75.1 77.8 74.2 64.1 89.9 77.3
64/255 83.8 74.2 71.0 72.6 71.3 55.4 88.9 73.9
128/256 79.6 73.1 65.0 66.7 60.5 48.9 87.6 68.8

I IMPLEMENTATION DETAILS

We employ ResNet-18 as the foundational encoder network (fθ), accompanied by an auxiliary
head (gϕ) consisting of a 2-layer multi-layer perceptron with a 128-dimensional embedding. For
optimization, COBRA is trained for 100 epochs using the LARS optimizer, with a weight decay of
1× 10−6 and a momentum of 0.9. To schedule the learning rate, we adopt a linear warmup for the
initial 10 epochs, gradually increasing the learning rate to 1.0. Subsequently, we use a cosine decay
schedule without restarts. The batch size for COBRA is set to 128. Our experiments were conducted
using NVIDIA GeForce RTX 3090 GPUs (24GB).

Training Computational Cost. COBRA comprises two main steps: (i) generating pseudo-anomaly
samples from the normal training set, and (ii) adversarially training a model using both normal
and crafted pseudo-anomalies. In this section, we analyze the complexity of these steps. Figure
5 illustrates that COBRA achieves significant performance with low complexity in terms of time.
Please note that the training time shown in the figure is calculated for a single class of the dataset.
In Table 16, we compare the time efficiency of our method, both with and without adversarial training,
against other state-of-the-art methods across multiple datasets.
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Figure 5: Computation cost

Table 16: Training Time Comparison (in hours) Across Different Methods and Datasets

Method MVTecAD VisA CityScape ImageNet
Transformaly 30h 70h 6h 200h
ReContrast 25h 60h 5h 180h
Ours (with adv. training) 95h 250h 20h 500h
Ours (without adv. training) 9h 23h 2h 70h
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Evaluation of Computational Cost. After training, we freeze our model and extract features from
the training samples to create an embedding bank, which maps images from high-dimensional spaces
(e.g., (1000, 3, 224, 224)) to a lower-dimensional space (e.g., (1000, 256)). During inference, for
each test sample, we compute its features using the frozen model and compare its similarity to the
precomputed embedding bank. This process is computationally efficient since it operates with a
frozen model and in a low-dimensional space. To the best of our knowledge, using similarity-based
methods, such as k-NN in embedding spaces for detection tasks, is common and well-established
in the literature (e.g., MSAD). Furthermore, we provide detailed computational time information,
excluding the time required for feature bank creation as it can be precomputed. The anomaly score
computation times on a 3090 GPU, in comparison to other methods, are presented in Table 17, with
results averaged over 100,000 inferences. For our model, embedding extraction takes 1-3 ms, matrix
multiplication 1-2 ms, and finding the maximum value takes less than 1 ms.

Table 17: Per-Image Evaluation Time Comparison (in milliseconds) Across Different Methods

Metric CSI MSAD Transformaly ReContrast OCSDF COBRA (Ours)
Per-Image Eval Time 4 ms 4 ms 5 ms 5 ms 3 ms 4 ms

J PER-CLASS RESULTS

Anomaly detection evaluation scenarios can be categorized into one-class anomaly detection and
unlabeled multi-class setups, as mentioned in the experiments section. In this section, we provide
details of the one-class classification setup for COBRA on the reported dataset, as presented in Tables
18, 19.

.
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Table 18: The detailed AUROC scores of the class-wise experiments for One-Class Anomaly
Detection setting with PGD-1000 ϵ = 4

255 in CIFAR10, CIFAR100, MNIST, Fashion-MNIST, SVHN
datasets.

(a) MNIST

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 97.6 39.9 99.6 99.2 98.9 98.3 99.6 95.6 99.7 99.6 92.8
BlackBox 92.4 99.6 98.9 95.1 97.5 94.6 99.1 96.9 96 97.2 96.8
PGD-100 92.4 99.3 98.3 95.1 96.9 94.4 98.7 96.7 96 96.6 96.4
A3 91.7 98.3 97.8 94.3 94.5 94 97.3 94.3 95.1 94.4 95.2

(b) Fashion-MNIST

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

COBRA

Clean 89.5 99.6 92.7 91.4 86.7 97.1 82.5 97 96.2 98.4 93.1
BlackBox 88.7 99.5 85.8 85.7 83.3 95.3 82.6 97.9 92.6 97.8 90.9
PGD-100 85.4 99 85.1 84.6 83 95.3 80.9 95.1 90.7 97.4 89.6
A3 83.7 96.5 85 83.9 81.7 93.5 77.2 91.5 87 93.6 87.4

(c) CIFAR10

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 79.4 96.3 75.4 71.3 76 84.3 76.1 94.5 92.8 91.1 83.7
BlackBox 75.9 96.1 75.2 68.4 73.4 84 74.2 92 89.9 89.8 81.8
PGD-100 64.7 80.4 47.9 39.9 49.5 60.7 52.9 74.8 80.3 71.7 62.3
A3 64.5 77.7 46.6 39.8 48.8 58.3 50.1 72.9 80.3 68.7 60.7

(d) SVHN

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 793.7 89.6 88.8 79.3 88.3 88.9 89.8 93.1 90.4 90.9 89.3
BlackBox 88.8 88.9 85.7 75.2 83.7 84.1 86.9 90.5 89.8 89.9 86.4
PGD-100 61.2 61.8 54.5 45.4 59.4 55.2 61 67.7 54.4 61.4 58.2
A3 60.1 61.6 52.4 43.6 56.6 55.6 59.7 65.3 52.4 58.7 56.7

(e) CIFAR100

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ours

Clean 68.9 73.1 79.4 71.9 84.24 70.1 79.5 72.3 71.7 85.4 83.34 78.8 80 57.5 80.4 69.6 62.5 92.4 88.9 88.5 76.9
BlackBox 65.6 72.7 79 70.2 80.7 68.2 75.4 72.1 71.3 84.1 79.7 76.5 78.6 54.4 76.7 65.4 60.7 91.3 85 87.4 74.6
PGD-100 43.6 51.2 47.8 51.2 57.2 44.5 55.3 38.5 40.2 70.4 72.4 50.2 48.7 29.6 50.7 39.9 36 75.5 63.5 69.3 51.7
A3 42.6 48.1 47.4 51.2 56.6 42.9 52.9 35.8 40.1 69.5 72.4 48.3 47.3 27.3 49.3 37.4 32.4 72.5 62.3 66.7 60.7

25



Published as a conference paper at ICLR 2025

Table 19: The detailed AUROC scores of the class-specific experiments for One-Class Anomaly
Detection setting with PGD-1000 ϵ = 4

255 in Imagenet30 dataset.

(a) ImageNet30

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 74.9 98.1 99.7 73.5 83.4 96.7 93.2 83.3 82.7 74 85.2
BlackBox 72.3 93.3 95.6 71.1 80.1 96 89.1 82.2 78.8 70.3 82.4
PGD-100 35.8 90.9 96.7 46.4 36.3 86.3 60.9 55.7 38.3 24.4 57
A3 34.9 89.8 94.6 44.2 32.7 82.6 56.4 52.6 35.8 22.6 54.7

(b) ImageNet30

Method Attack Class Average

10 11 12 13 14 15 16 17 18 19

Ours

Clean 96.9 90.1 93.3 82.1 94.6 62.8 98.2 58.5 89.4 54.7 85.2
BlackBox 96 87.1 91.8 78.3 90.3 62.5 95.4 55.5 88.7 51.9 82.4
PGD-100 71.3 62.8 75.5 36.6 76.6 16.4 88.1 17 58.5 24 57
A3 67.1 61.6 70.9 35.7 72.6 13.8 87.1 15.9 55.7 22.2 54.7

(c) ImageNet30

Method Attack Class Average

20 21 22 23 24 25 26 27 28 29

Ours

Clean 95 88.1 97.2 96.5 80.2 69.2 83.5 92.9 78.3 93.7 85.2
BlackBox 92.3 83.9 91.5 96.3 75.1 65.3 82.4 89.9 76.7 90.8 82.4
PGD-100 77.9 44.8 90.8 79.1 39.2 40.6 32.2 78.1 41.3 86.5 57
A3 74.7 44.9 89.8 75.2 35.7 38.4 31.8 77.3 38.8 84.4 54.7
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K ADVERSARIAL ATTACKS ADAPTATION

We evaluated COBRA’s robustness against a variety of powerful attacks, including BlackBox,
FGSM, CAA, AutoAttack, A3, and PGD-1000. These attacks, originally designed to compromise
classification tasks by exploiting the cross-entropy loss, were adapted for anomaly detection (AD)
tasks, focusing on the anomaly scores of detector models. The aim was to generate perturbations
that increase the anomaly score for normal test samples and decrease it for anomalous ones. As
discussed in the preliminaries section, adapting AutoAttack (AA) Croce and Hein (2020) for AD
tasks was particularly challenging. AutoAttack is an ensemble of different attack methods, such as
FAB, multi-targeted FAB, Square Attack, APGDT, APGD with cross-entropy loss, and APGD with
DLR loss. The main challenge in adaptation arises because attacks based on DLR loss assume the
model’s output includes at least three elements, an assumption valid for classification tasks on datasets
with three or more classes but not applicable to AD tasks. Consequently, we replaced the DLR loss
component in AutoAttack with a PGD attack. However, for the other attacks under consideration, no
adjustments were necessary.

L DATASETS DETAILS

The MVTecAD is an industrial defect detection dataset used to evaluate AD methods. It consists of
4,096 normal and 1,258 anomaly samples, encompassing various types of texture defects. MVTecAD
is under the CC-BY-NC-SA 4.0 license. VisA is another challenging dataset for industrial defect
detection, comprising 9,621 normal and 1,200 anomaly samples. VisA is under the CC-BY 4.0 license.
DAGM is a synthetic dataset created for defect detection on textured surfaces. To broaden the scope
beyond traditional industrial scenarios, the Cityscapes dataset offers stereo videos from 50 cities,
each meticulously annotated for 30 classes such as roads and buildings. We leverage this dataset by
extracting 256x256 patches from its images to construct an anomaly detection dataset, focusing on the
presence of anomaly objects within these patches. Anomaly classes encompass motorcycles, persons,
riders, traffic signs, traffic lights, and bicycles, while other classes from Cityscapes are considered
normal. Their code is released under the MIT license. Additionally, ISIC2018 is a skin disease
dataset, available as task 3 of the ISIC2018 challenge. It contains seven classes. NV (nevus) is taken
as the normal class, and the rest of the classes are taken as anomalies, following. The training set
contains 6,705 normal images. The ISIC dataset is available under CC-BY-NC license. Furthermore,
we utilize ImageNet30 Hendrycks et al. (2019a), an anomaly detection benchmark that selects 30
classes from ImageNet and employs a one-versus-rest setup for anomaly detection. This dataset is
freely available to researchers for non-commercial use.

M DETAILED RESULTS

The figure presents the standard deviation and mean of COBRA (a specific algorithm or method)
calculated over 5 separate runs for each experiment. This comprehensive data collection and analysis
underscore the reliability and consistency of our experimental results. By reporting both the mean
and standard deviation, we provide a clear depiction of the average performance and the variability,
ensuring that the performance of COBRA is not only robust but also consistently reproducible across
multiple trials.

Table 20: The standard deviation and mean of COBRA across 5 runs of each experiment are reported,
demonstrating the consistency of our results.

Statistics Eval Type Datasets

CIFAR10 CIFAR100 MNIST FMNIST SVHN ImageNet VisA CityScapes DAGM ISIC2018

Mean ± STD Clean 83.7 ± 0.52 76.9 ± 0.81 92.8 ± 0.47 93.1 ± 0.56 89.3 ± 0.39 85.2 ± 1.21 75.2 ± 1.03 81.7 ± 0.97 82.4 ± 0.87 81.3 ± 0.74
Adv 62.3 ± 0.73 51.7 ± 0.91 96.4± 0.86 89.6 ± 0.91 58.2 ± 0.62 57.0 ± 1.41 73.8 ± 1.17 56.2 ± 1.31 56.8 ± 56.1 ± 1.42

N SUPPLEMENTARY METRICS FOR COBRA ASSESSMENT

We found the Area Under the Receiver Operating Characteristic curve (AUROC) to be the most
widely accepted and utilized metric. To further our exploration, we have provided additional results
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using two supplementary metrics—AUPR and FPR95%—which have been utilized in some previous
works Hendrycks et al. (2019b). In the table 21, we compare COBRA against TRANSFORMALY
and ZARND, a recent detection method, using these metrics. FPR95% represents the false positive
rate when 95% of the outliers are correctly detected; a lower FPR95% signifies better performance.
Both AUROC and AUPR summarize a detection method’s performance over various thresholds.
Specifically, AUROC indicates the likelihood that an outlier is ranked higher in anomaly score
compared to an in-distribution sample. Hence, higher AUROC and AUPR values denote superior
performance, with an uninformative detector scoring an AUROC of 50%. To address the reviewer’s
concerns, we will consider including AUPR and FPR95% along with AUROC in our final manuscript.

Table 21: Methods and Metrics Comparison Across Different Datasets

Methods Metric MVTec VisA ImageNet CityScapes ISIC2018 CIFAR10 FMNIST

Transformaly
AUROC ↑ 88.5/2.2 85.5/0.0 99.0/2.9 87.4/4.5 86.6/3.9 98.3/3.7 94.4/7.4
AUPR ↑ 85.6/3.9 83.7/4.1 94.1/2.3 86.0/2.6 83.5/2.8 99.6/1.4 98.2/0.0

FPR95% ↓ 41.6/99.7 26.7/98.9 2.6/99.1 35.7/97.9 28.4/98.0 8.4/99.6 9.5/95.4

ZARND
AUROC ↑ 71.6/30.1 71.8/24.9 96.4/27.4 75.9/28.6 70.2/14.6 89.7/56.0 95.0/82.3
AUPR ↑ 73.5/28.7 69.8/20.1 90.1/29.8 72.1/26.5 73.6/16.4 85.5/52.3 92.5/80.0

FPR95% ↓ 41.2/69.2 44.1/73.9 7.3/64.8 40.1/66.4 26.8/75.3 26.4/55.9 9.6/23.3

COBRA (Ours)
AUROC ↑ 89.1/75.1 75.2/73.8 85.2/57.0 81.7/56.2 81.3/56.1 83.7/62.3 93.1/89.6
AUPR ↑ 91.7/71.9 78.6/70.3 88.9/61.2 85.6/62.1 87.6/59.8 84.7/65.7 95.1/89.8

FPR95% ↓ 18.5/36.8 35.8/38.7 24.9/54.7 29.3/55.0 30.1/52.7 26.4/43.9 6.7/17.3

O SOCIAL IMPACTS

Robust anomaly detection is crucial across many safety-critical domains like security, healthcare,
finance, and manufacturing to identify potential threats, diseases, fraud or system faults before
they cause harm. However, existing machine learning-based anomaly detectors are vulnerable to
adversarial attacks that can make them miss anomalies or falsely flag normal data. Our work on
COBRA presents a significant step towards developing reliable and robust anomaly detection systems
resilient to adversarial conditions. By learning representations inherently robust to input perturbations
and distribution shifts, COBRA enables safer anomaly detection deployment in security-sensitive
areas where an adversary may attempt evasion. Notably, COBRA achieves high robustness without
requiring anomaly data during training, valuable when such data is limited due to privacy/safety
concerns. Overall, we believe COBRA importantly enhances the safety and reliability of anomaly
detection systems. However, this powerful technology must be responsibly developed and deployed
with technical safeguards, policy measures and institutional controls to maximize societal benefit
while mitigating potential misuse risks. We advocate future work exploring robust machine learning
trustworthy real-world deployment.

P LIMITATIONS

Scope of Application In this study, we primarily focus on anomaly detection for texture-based defects,
which are common in real-world applications such as industrial defect detection and medical image
diagnosis. Specifically, while our experiments include one-class classification (semantic anomaly
detection), our performance is more pronounced in texture-based anomaly detection. In semantic
anomaly detection, normal samples and anomalous samples are semantically different.

Clean Performance This study aims to improve the adversarial detection performance of anomaly
detection tasks. Despite significant improvements in adversarial detection, our clean performance
lags behind existing state-of-the-art detection methods. The trade-off between clean and adversarial
test performance is well-documented in the literature Tsipras et al. (2018); Zhang et al. (2019); Madry
et al. (2017); Schmidt et al. (2018); Raghunathan et al. (2020). Our work is also subject to such
trade-offs. However, we have also provided results for scenarios where adversarial training is not
performed.
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