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ABSTRACT

Contrary to centralized federated learning (CFL), decentralized federated learning
(DFL) allows clients to cooperate in training their local models without relying
on a central parameter server. As different clients have varying annotation skills
and preferences, noisy labels are inevitable in decentralized data ownership. In
centralized learning (CL) and CFL settings, learning from noisy labels has been
extensively explored; however, such methods cannot be directly applied in DFL
settings due to limited computational resources or privacy requirements. This pa-
per introduces DFLMV (majority voting based decentralized federated learning),
a general DFL framework for learning from noisy data without relying on any as-
sumptions about local client noise models while maintaining data privacy for all
clients. Specifically, (1) Clients first use traditional DFL to train their local mod-
els until they become stable. (2) Clients use each of their neighbors’ models to
make a prediction of every data point in their training datasets, then correct the la-
bels based on majority voting. (3) Clients further fine-tune their models based on
their updated training dataset. A theoretical analysis of DFLMV is also provided.
Extensive experiments conducted on MNIST, Fashion-MNIST, CIFA-10, CIFAR-
10N, CIFAR-100N, Clothing1M, and ANIMAL-10N validate the effectiveness of
our proposed approach at various noise levels and different data settings in miti-
gating the adverse effects of noisy labels.

1 INTRODUCTION

Data labeling is an indispensable step in the data preparation for training deep neural networks
(DNNs), as it involves assigning meaningful annotations to newly collected data, thereby making
the data interpretable by model training. While accurate data labeling is essential to ensure high
quality model training (Chen et al., 2020), noisy labels, such as misinterpretations and neglecting
data points, are inevitable in the annotation of large volumes of data. This is because the labeling
process typically relies on human annotators to perform the tasks, such as object identification in
images, emotion tagging in text, or audio transcription (Wang et al., 2022a), but not every data
annotator has all the necessary domain-specific knowledge (e.g., the fine-grained CUB-200 requires
ornithologists’ expertise (Welinder et al., 2010)) and the full carefulness in labeling every data point.
In fact, various studies have shown that noisy labeling is a wide-spread commonly-seen issue (or
problem) in the data annotation process, affecting almost all large-scale datasets. For example, a
study by MIT found that approximately 10% (5 million data points) of the QuickDraw dataset,
5.83% (2,916 data points) of the ImageNet test set, and 5.85% (585 data points) of the CIFAR-100
test set were mislabeled due to annotators’ carelessness and limited knowledge (Holt, 2021).

Recent studies have revealed that low-quality noisy labels can adversely affect many aspects of
model training, including the trained model’s generalizability, robustness, interpretability, and accu-
racy, eventually resulting in low-quality models (Chen et al., 2020). This negative impact is even
exacerbated under a federated learning (FL) setting, where the model is trained in a distributed way
over datasets owned by different clients. As different clients have varying annotation skills, knowl-
edge levels, and attention to detail, some clients’ datasets have high-quality labels, while others’ do
not. Such an unbalanced label quality across different local datasets leads to local models of differ-
ent qualities, and hence undermining the quality of the global model. Therefore, how to minimize
the detrimental effects of noisy labels, which may be unintentionally generated by workers due to
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their lack of knowledge or carelessness, so as to retain high-quality training over distributed datasets
of diverse label qualities remains a critical challenge for practical FL implementation.

Learning with noisy labels has been extensively studied under both centralized learning (CL) and
centralized parameter server-based FL (CFL) (McMahan et al., 2017) settings. At a high level, the
methods under CL settings can be divided into three different types: (1) loss correction methods
(Wang et al., 2019; Englesson & Azizpour, 2024), (2) clean data preselection methods (Chen et al.,
2019; Northcutt et al., 2021), and (3) noisy label correction methods (Tanaka et al., 2018). The
methods under CFL settings can be classified into two categories: (1) noisy label correction methods
(Xu et al., 2022; Zeng et al., 2022), and (2) noisy label filtering methods (Yang et al., 2021; Li
et al., 2024b). However, existing methods are fundamentally limited by their dependence on a
powerful central server (many/one-to-one), making them incompatible with decentralized federated
learning (DFL) (Koloskova et al., 2019), which does not have a central server but instead relies
entirely on peer-to-peer communication (many-to-many) among resource-constrained edge devices
(e.g.,connected and automated vehicles (CAVs) and unmanned aerial vehicle constellations (UAVs)
(Yuan et al., 2024)). More specifically, the un-applicability of existing methods on DFL is due to
the following three main reasons: (1) some methods violate the privacy requirements of DFL. For
instance, Englesson & Azizpour (2024) requires all clients’ data samples must be accessible directly
by the server in order for it to learn the noise transition matrix. However, in DFL, each client must
keep their data local. (2) other methods, such as those in Xu et al. (2022); Li et al. (2020); Nishi
et al. (2021); Northcutt et al. (2021); Zeng et al. (2022), involve intensive computations under a
peer-to-peer setting to select clean labels during training, resulting in high synchronization costs
and computation overhead when clients conduct model aggregation. (3) methods in Duan et al.
(2022); Li et al. (2024b) require a clean supplementary dataset. However, such a clean dataset is
nearly impossible to obtain for DFL, as a client cannot infer clean data for other clients.

In this paper, we focus on learning with noisy labels under the DFL framework, as noisy data
presents a more acute problem for this framework due to the lack of a centralized entity to orches-
trate the noisy label correction and mitigation process. We expect this work to generate an impact
on improving the reliability and accuracy of DFL applications in vital domains such as autonomous-
driving vehicles, healthcare, and LEO (Low Earth Orbit) satellites (Yuan et al., 2024).

To mitigate noisy labels in DFL, we propose a three-stage label correction algorithm called DFLMV
(Majority voting based decentralized federated learning). Specifically, in Stage 1, all clients use
traditional DFL to train their local models based on their original local datasets. Once their local
models’ loss values become stable, clients proceed to Stage 2, where each client exchanges model
parameters with its online neighbors and uses each neighbor’s model to infer a label for each data
point in its local training dataset. Among all inferred labels of the same data point, using majority
voting, the client picks the most common one and uses it as the updated label of the data. In Stage
3, based on their updated dataset, each client runs extra training epochs to fine-tune its local model
obtained from Stage 1. It is also important to note that this paper addresses the commonly seen non-
malicious scenario where label errors arise unintentionally due to annotators’ lack of knowledge or
recklessness. The malicious attack scenarios, whereby workers/clients collude to inject deliberately
fabricated false data and labels, is beyond the scope of this study.

The main contributions of this work are summarized as follows:

• A novel majority-voting-based DFL method, DFLMV, is proposed to enable high-quality
learning over distributed and noisy-labeled data. In contrast to existing methods, DFLMV
has the unique benefits of low computation and communication overhead (as analyzed in
Section 4.4), preserving local data privacy, and not requiring supplementary clean datasets.

• We establish two key theoretical performance bounds for DFLMV. Firstly, we derive a
general upper bound on the generalization error of any DFL algorithm using cross-entropy
loss under arbitrary label noise. Secondly, we derive an upper bound on the error rate of
majority voting for a multi-class classification problem. Based on these bounds, we rigor-
ously analyze several factors influencing the error rate of our label correction mechanism
and prove that DFLMV guarantees a gain over vanilla DFL (i.e., without MV). To make
the theoretical proof of the error rate upper bound mathematically tractable, we assume
non-colluding neighbors with identical vote distributions in our proof. To evaluate how ef-
fective the proposed DFLMV method can perform in real-world environment, we relax the
above assumptions and conduct extensive experiments over seven different datasets under
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various non-IID data/noise settings. As detailed in Section 5, DFLMV achieves significant
accuracy gains, with accuracy increased by up to 23%, particularly in non-IID settings.

• We conduct extensive experiments on three synthetic datasets (MNIST, Fashion-MNIST,
and CIFAR-10) across 12 settings, considering combinations of IID/non-IID data, IID/non-
IID noisy labels, and three noise models (symmetric, pairflip, and asymmetric). Addition-
ally, we test DFLMV on four real-world noisy datasets (CIFAR-10N, CIFAR-100N, Cloth-
ing1M, and ANIMAL-10N) under non-IID conditions. These experiments verify that the
proposed DFLMV approach effectively mitigates the detrimental effects of noisy labels and
significantly improves the learned model’s accuracy.

Note that even though DFLMV is presented in the context of DFL in this paper, it is also easy to see
that the method can be extended to CFL with minor changes, as elaborated in Appendix A.

2 RELATED WORKS

Decentralized Federated Learning. DFL is an emerging FL framework. With DFL, there is no
central server for aggregating model parameters. Clients train their models by exchanging their
model parameters with each other without divulging any of their local data during the training pro-
cess. The concept of DFL was first proposed in Lalitha et al. (2018). In recent years, the DFL
structure comes in a wide variety of variants, including sequential pointing line structures (Chang
et al., 2018; Sheller et al., 2019; 2020), cycle pointing ring structures (Huang et al., 2022; Yuan
et al., 2023), fully connected peer (mesh) structures (Assran et al., 2019; Roy et al., 2019; Chen
et al., 2022), hybrid structures (Shi et al., 2021; Wang et al., 2022b), etc. The primary assumption
behind these studies is that every client’s local dataset is noise-free. However, it has been shown that
this assumption cannot be held in a practical DFL system because clients have varying annotation
skills and personal preferences (Chen et al., 2020). As noisy labels are inevitable in decentralized
data ownership, it is imperative to consider the existence of noisy labels and work on developing an
appropriate method to deal with these noisy labels effectively.

Learning with Label Noise. Incomplete patterns and cognitive errors can cause label noise. Learn-
ing with noisy labels has been extensively explored in CL and CFL settings. Generally speaking,
there are three categories of CL methods: (1) loss correction methods (Wang et al., 2019; Englesson
& Azizpour, 2024; Hendrycks et al., 2018): These methods often assume noisy labels deteriorate
from ground-truth labels due to an unknown noise transition matrix T, and these approaches ac-
quiesce to all clients’ data participating in model training to learn this matrix T. (2) clean data
preselection methods (Chen et al., 2019; Northcutt et al., 2021): These methods need to perform
computation-intensive procedures to select clean data with several cross-validation iterations during
training. (3) noisy label correction methods (Xiao et al., 2015a; Li et al., 2017; Tanaka et al., 2018;
Vahdat, 2017): These approaches typically require an additional clean dataset for detecting and rela-
beling noisy labels. Methods in CFL settings can be roughly classified into two categories: (1) label
correction methods (Xu et al., 2022; Zeng et al., 2022): Most of these methods involve exchanging
both model parameters and additional information with the server to train an auxiliary module for
future label correction stages, increasing computing power. (2) noisy label filtering methods (Yang
et al., 2021; Li et al., 2024b): These approaches typically require a clean supplementary dataset to
train the noisy label filter. However, the above methods cannot be directly applied to the DFL frame-
work due to three main reasons. (1) Methods requiring excessive computational power can lead to
high synchronization costs during the aggregation of clients’ models. This increases communication
overhead for each client’s local model convergence, making it difficult to achieve efficient conver-
gence. (2) Methods of acquiescing to all client data participating in model training will violate
DFL’s privacy policy. (3) Some methods require a clean supplementary dataset. However, such an
auxiliary clean dataset is hard to obtain, as noisy labels will be unavoidable in decentralized data
ownership. Therefore, it is crucial to develop a practical DFL method that can reduce the negative
impact of corrupt labels and ensure high-quality training over diverse datasets with noisy labels.

3 PRELIMINARIES

Given a DFL system with |K| clients, where each client k ∈ K possesses a noisy local training
dataset Dk = {(xk(i), yk(i))}|Dk|

i=1 (with x being the feature and y being the label), our goal is to let
each client k construct an improved dataset D̃k, containing less noisy data than Dk. Following this,
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each client aims to find the optimal solution for minimizing the following empirical risk function:

argmin
wk∈H

F
(
wk, D̃k

)
=

1

|D̃k|

|D̃k|∑
i=1

L (g(xk(i), wk), yk(i)) , (1)

where we define

Model Parameter Space: H ⊆ Rh denotes the parameter space for a learning model, where h ∈ N
stands as the dimension of the parameter space. The local model of each client k ∈ K has the
parameter wk∈ H.

Local Dataset: We assume a horizontally partitioned dataset, where the global dataset D is dis-
tributed across |K| clients. Each client k possesses a local dataset Dk, containing data points sam-
pled from the global dataset according to a distribution ψk.

Noisy Dataset: For each client k, we define the ground truth data distribution as τk and the poten-
tially noisy data distribution as ρk. Then, a noisy dataset satisfies the following:

Pr
τk

(y|x) ̸= Pr
ρk

(y|x) , (2)

where Pr refers to the probability function for a given distribution and an event. Therefore, we can
simply think that the testing dataset is sampled via τk, and the training dataset is sampled via ρk.

Metamodel: We define the metamodel as a function g : Rdx ×wk → Rdy . This function describes
a trained model that predicts labels for given data features and model parameters. For convenience,
we have g(xk (i), wk) = ŷk(i).

Loss Function: The loss function can be described as L : Rdy × Rdy→ R ≥0. For example, in our
case, we use the cross-entropy loss for each client k:

Lk :
(
v̂k(i), vk(i)

)
→ −

|C|∑
j=1

vk(i)(j) · log
(

̂vk(i)(j)
)
, (3)

whereC is the set of classes, vk(i)(j) is the one-hot probability vector, vk(i) represents the observed
value yk(i), and j represents the jth value in vector vk(i) . ̂vk(i)(j) is the predicted probability
vector, given by: v̂k(i)(j) = Softmax (fk (xk(i))), where fk is the raw output produced by the
neural network before being processed by the softmax function.

In contrast to our approach, which explicitly addresses noise by constructing D̃k, clients in standard
DFL directly minimize the empirical risk function on their raw, potentially noisy dataset Dk, which
can be represented in the following:

argmin
wk∈H

F (wk, Dk) =
1

|Dk|

|Dk|∑
i=1

L(g(xk (i), wk) , yk(i)), (4)

4 PROPOSED ALGORITHM : DFLMV

DFLMV is a three-stage DFL training method developed to tackle learning from commonly seen
non-malicious label errors, unintentionally generated by workers due to their diverse annotation ex-
pertise and carefulness, in datasets owned by distributed entities. DFLMV comprises three stages:
initial training stage, label correction stage, and retraining stage, as elaborated below. The pseu-
docodes of DFL and DFLMV are provided in Appendix B.1 and Appendix B.2, respectively.

4.1 INITIAL TRAINING STAGE

DFLMV begins with the traditional DFL, in which each client will use stochastic gradient descent
(SGD) on their local dataset Dk for E local epochs to minimize empirical risk function and thus
minimize their local training loss. Specifically, each client first needs to get an initial model by
doing the gradient descent:

∆wT+1
k ← wT

k − ηT∇F
(
wT

k , Dkm(T )

)
, (5)

4
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where η is the learning rate, and Dkm(T ) stands for the kth client’s mini-batch in the T th epoch.

Once the model has been initialized, each client k broadcasts its parameters wk to its neighboring
clients. Afterward, the client k waits for npeers model parameters to be received, and once it receives
the npeers model parameters, it aggregates the models by using the FedAvg algorithm:

wT
k ← Σ

|K|
j=1

nj
npeers

wT
j . (6)

The new aggregated model wT
k will be trained for E local epochs before it is ready to be broadcast

again. During the initial training phase, each client will repeat the above steps until it reaches a
stable point (i.e., the loss value of the local model does not decrease).

4.1.1 UPPER BOUND ON THE GENERALIZATION ERROR OF DFL

In order to analyze how various noisy training datasets affect the performance of a machine learn-
ing model, we consider each data point as a multi-dimensional random variable (RV), denoted by
(X,Y ), where X represents the feature and Y is the label. Accordingly, a dataset of client k can be
represented as a vector of random variables:

Dk = {(Xk(1), Yk(1)), . . . , (Xk(|Dk|), Yk(|Dk|))}, (7)

where (Xk(i), Yk(i)) is the ith data point in kth client’s dataset.

We define client k’s empirical risk function (given the potential noisy dataset) as:

Rk (wk) = EDk∼ρk
[Lk (g (Xk, wk) , Yk)] , (8)

where wk is the model parameter of client k; E(.) is the expectation function. Similarly, we define
the client k’s ground-truth risk function (given a clean dataset) as:

R∗
k (wk) = EDk∼τk [Lk (g (Xk, wk) , Yk)] . (9)

Then we follow Yagli et al. (2020) to define client k’s generalization error of the given model as:

Gk (wk) = |R∗
k (wk)−Rk (wk)| . (10)

Theorem 1 (Upper bound on the generalization error of a given model). For any DFL algorithm
under label noise that uses the cross-entropy function as the loss function, its generalization error is
upper bounded by

Gk (wk) ≤ Ω · EXk

 |C|∑
j=1

∣∣∣∣Prρk

(Yk = j|Xk)− Pr
τk

(Yk = j|Xk)

∣∣∣∣
 , (11)

where Ω is the upper limit among the elements of the vector fk, which is the raw output produced
by the neural network before being processed by the softmax function.

The proof for Theorems 1 is given in Appendix C.1.

Corollary 1 (Impact of label noise on traditional DFL). A lower label noise ratio will result in a
lower generalization error Gk (wk) and a better performance of the trained model.

The proof for Corollary 1 is provided in Appendix C.2.

4.2 LABEL CORRECTION STAGE

During stage two, each client first exchanges model parameters with its neighbors and then uses
each neighbor’s model to predict a label for each piece of data in its training dataset. Without loss of
generality, we denote B as the number of neighbors of a client k. We let ̂Yj (Xk(i)) be the predicted
label for feature Xk(i) made by client k using its jth neighbor’s model. Among the B labels made
forXk(i), client k selects the most common one according to majority voting and considers this one
as the updated label for Xk(i). Hence, the majority vote protocol can be expressed in the following:

˜Yk(Xk(i)) = mvf
(

̂Y1 (Xk(i)), . . . , ̂YB (Xk(i))
)
= argmax

z∈C

B∑
j=1

1( ̂Yj (Xk(i)) = z), (12)

5
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where ˜Yk(Xk(i)) is the updated label for Xk(i) and mvf(.) is the majority voting function that
returns the label that receives the most votes among all B neighbors.

Afterward, client k replaces the original label with the updated label for all the data points in its
local training dataset, i.e., client k will do the following:

Yk(i)← ˜Yk(Xk(i)) (∀Xk(i) ∈ Dk). (13)

4.2.1 UPPER BOUND ON THE ERROR RATE OF MAJORITY VOTING

Without loss of generality, let us focus our analysis on the majority voting process of the first data
point of client 1. Such a treatment allows us to drop the index of the client and the index of data
in the analysis and, hence, simplify our presentation. In particular, we denote A as the ground truth
classification (i.e., the true label) of the target data point, and we let Âj denote the predicted label
for the data point made by the target client by using its jth neighbor’s model. Then, the discrepancy
between Âj and A can be modeled by the conditional probability distribution Pr(Âj | A). Based on
the above simplified notations, we can rewrite the mvf (.) equation as:

Ã = mvf
(
Â1, . . . , ÂB

)
= argmax

z∈C

B∑
j=1

1( Âj = z), (14)

where Ã is the updated label.

We denote p(j)u|r as the probability that the jth neighbor’s model predicted label Âj = uwhileA = r,
where u, r ∈ C, i.e.,

p
(j)
u|r = Pr

(
Âj = u|A = r

)
. (15)

The error rate of the majority voting is defined as:

Pe = Pr
(
A ̸= Ã

)
. (16)

Theorem 2 (Upper bound on Pe).Given that neighbors are not colluding in their training and that
the distributions of the votes are identical, the error rate of the majority voting is upper bounded by:

Pe ≤ 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u ̸=r

1−
∞∑

β=0

e−B(pu|r+pr|r) ×
(
pu|r

pr|r

) β
2

× Iβ(2B
√
pu|rpr|r)


 , (17)

where β is an integer, Iβ(.) is the Bessel function of the first kind of order (Mitzenmacher & Upfal,
2017), i.e.,

Iβ(x) =

∞∑
t=0

(−1)k

t!(t+ β)!

(x
2

)2t+β

. (18)

We defer the proof for Theorems 2 to Appendix C.3.

Corollary 2. Given that neighbors are not colluding in their training and that the distributions of
the votes are identical, the bound on Pe is monotonically decreasing with B. In an extreme case,
when B tends to +∞, Pe tends to 0.

The proof for Corollary 2 is included in Appendix C.4.

Corollary 3 Given that neighbors are not colluding in their training and that the distributions of
the votes are identical, higher quality of neighbor’s model (i.e., smaller generalization error of the
model) reduces Pe.

We defer the proof for Corollary 3 to Appendix C.5.

4.3 RETRAINING STAGE

In this stage, each client will retrain over its updated dataset (denoted as D̃k) to fine-tune its model.
Specifically, each client will do the gradient descent for E local epochs according to Eq.(5) by using

6
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D̃k and their latest model parameter obtained from Stage 1. Then, the model parameters of each
client are passed to all its neighbors. After each client receives all its neighbors’ model parameters,
it will perform the model aggregation of them according to Eq.(6). The aggregated model wT

j will
then be trained for another E epochs locally before it is exchanged with neighbors again. Upon
the completion of the entire retraining stage, each client will get its fully optimized and fine-tuned
model wk.

Theorem 3. Define Gk(w
Dk∼ρk

k ) and Gk(w
D̃k∼ρ̃k

k ) as the generalization error of the models
trained by client k over Dk and over D̃k, respectively, where ρ̃k is the noisy label distribution
in D̃k. Given that neighbors are not colluding in their training and that the distributions of the votes
are identical, we have

Gk

(
w

Dk∼ρk

k

)
> Gk

(
wD̃k∼ρ̃k

k

)
. (19)

The proof for Theorems 3 is provided in Appendix C.6.

Theorem 3 states that DFLMV can effectively mitigate the adverse effects of corrupted labels and
improve the learned model’s accuracy. Based on this observation, it is also easy to see that if the DFL
training converges over both the raw dataset Dk and the idealized noise-free dataset (as if there is an
Oracle that can assign a true label for every data in the dataset), then DFLMV must converge over
the updated dataset D̃k. While Theorem 3 assumes non-colluding neighbors with identical vote
distributions, the same result, e.g., DFLMV improves model accuracy, is also true under non-IID
conditions, as will be verified by our extensive experiment in Section 5.

4.4 COMMUNICATION AND COMPUTATION OVERHEAD ANALYSIS

Compared to existing CFL-based label correction methods, which often require additional data pro-
cessing and the training of auxiliary modules for label correction, leading to increased computation
and communication overhead, DFLMV offers significant advantages. DFLMV does not introduce
any extra communication overhead, consistent with traditional DFL methods, and the overall com-
munication overhead remainsO(m), wherem is the number of model parameters exchanged among
neighbors. The extra computation overhead introduced by DFLMV is also very low. Specifically,
the only additional computation overhead arises in Stage 2, where the majority voting process for
updating labels introduces an O(n) computation overhead, where n is the number of data points. A
more detailed communication and computation overhead analysis is available in Appendix C.7.

5 EXPERIMENTS

In this section, we verify the effectiveness of DFLMV by comparing it with several baseline
models across seven datasets under various data/noise settings. Specifically, for each of the syn-
thetic datasets (MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky et al., 2009)), we conduct experiments using a comprehensive set of 12 settings that
account for different combinations of IID/non-IID data, IID/non-IID noisy labels, and three differ-
ent noise models (symmetric, pairflip, and asymmetric). Under each noise model, we consider three
different noise ratios: 10%, 30%, and 50%. Additionally, we test DFLMV on four real-world noisy
datasets (CIFAR-10N (Wei et al., 2022), CIFAR-100N (Wei et al., 2022), Clothing1M (Xiao et al.,
2015b), and ANIMAL-10N (Song et al., 2019)) under non-IID conditions.

5.1 EXPERIMENT SETTINGS

Datasets. We perform extensive experiments on seven benchmark image datasets, including
MNIST, Fashion-MNIST, CIFAR-10, CIFAR-10N, CIFAR-100N, Clothing1M, and ANIMAL-10N.
The partitioning of training and testing data for these datasets is summarized in Appendix D.1.

Generate IID and non-IID Datasets for clients. To generate disjoint IID datasets for clients, we
independently assign each data sample to a client by following a uniform distribution. For the non-
IID case, we focus on label distribution skew (Kairouz et al., 2021). In particular, we partition the
original training dataset into K disjoint non-IID training datasets via Dirichlet distribution pc ∼
DirK(α) (Hsu et al., 2019), where α ∈ (0,+∞), and α is the concentration parameter. The smaller
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the value of α, the greater the level of heterogeneity of the subsets will be. In our case, we chose
α = 1.5.

Generate IID and non-IID noisy labels. Due to the heterogeneous nature of clients, the noisy
labels can be not only IID but also non-IID among clients' training datasets (Xu et al., 2022; Görnitz
et al., 2014). We consider three different noisy label models: symmetric noise (Figure 1 (a)), pairflip
noise (Figure 1 (b)), and asymmetric noise (Figure 1 (c)). Specifically, to generate IID noisy labels
in the symmetric noise model, a fraction of data in each class will flip their labels respectively to a
randomly selected (wrong) label. In the pairflip noise model, a fraction of data in each class will
flip their labels to the label of the next class. In the asymmetric noise model, a fraction of data
in two similar classes will swap their labels. In particular, in the CIFAR-10 dataset, a fraction of
data in the automobile class swaps label with that in the truck class (denoted as automobile↔truck)
and cat↔dog; in MNIST dataset, we have 1↔7 and 0↔6; in Fashion-MNIST dataset, we have
T-shirt↔shirt and pullover↔coat. For each noise model, we consider three noise ratios (i.e., the
fraction of data that has wrong labels): 10%, 30%, and 50%. To generate non-IID noisy labels, we
first generate IID noisy labels for each client based on the aforementioned process. We then collect
the data points of wrong labels from all clients and re-assign these data points to clients based on
DirK(α = 1.5).

Note that we do not introduce extra label noise to CIFAR-10N, CIFAR-100N, Clothing1M, and
ANIMAL-10N, as these datasets already contain real-world label noises. Similar to previous studies
(Li et al., 2024a), we only consider non-IID data partitions for these real-world noisy datasets.

Figure 1: Noise models ([C] = 5 and the noise ratio ϵ = 30% in the illustration). A blue (or purple)
grid indicates the fraction of data in the class that has correct (or wrong) labels, respectively.
Baselines and Model Parameters. We compare DFLMV with FedAVG (Li et al., 2019) and mod-
ified PENS (Onoszko et al., 2021). We modified the settings of PENS so that each client sends and
receives model parameters from all other online neighbors in order to achieve a fair comparison with
DFLMV. Our experiments utilize different hyperparameter settings for various datasets. For MNIST
and Fashion-MNIST, we use SGD with 0 momentum, a weight decay of 0.001, a learning rate of
0.01, and a batch size of 50 as the local optimizer. We set 300 global epochs, with 3 local epochs
in each global epoch. For CIFAR-10, CIFAR-10N, CIFAR-100N, Clothing1M, and ANIMAL-10N,
we use SGD with 0.9 momentum, a weight decay of 0.0005, a learning rate of 0.001, and batch sizes
of 32, 16, 16, 10, and 16, respectively, as the local optimizer. We set 400 global epochs for CIFAR-
10, CIFAR-10N, and CIFAR-100N, and 200 global epochs for Clothing1M and ANIMAL-10N,
with 3 local epochs in each global epoch. The label-correcting parameter is set to 150 for MNIST,
200 for Fashion-MNIST, CIFAR-10, CIFAR-10N, and CIFAR-100N, and 100 for Clothing1M and
ANIMAL-10N.

We only use non-pretrained models at the beginning of our experiments. This is because pre-trained
models, such as the ResNet families, are trained on large datasets. Using them from the initial step
can introduce a potential confound when evaluating the efficacy of our label correction method.
Specifically, the improvements observed after label correction could be partially attributed to the
pre-existing knowledge embedded in the pre-trained models rather than solely to the correction
method itself. Starting with non-pretrained models precludes the impact of the aforementioned bias,
allowing a more accurate assessment of the performance gains contributed only by the proposed
correction methods. All experiments are executed on Tesla P100 ×16. The details on each network
structure are given in Appendix D.2.

5.2 EXPERIMENT RESULTS

Experiment results are given in Tables 1 through 5, where for each learning method, we report the
average classification accuracy of all clients’ models on the 7 benchmark datasets. After observing
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IID datasets and IID noisy label distribution

Dataset
Method Test Accuracy (%)

Noise Type N/A Symmetric Pairflip Asymmetric
Noise Ratio 0 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

MNIST
FedAvg (FL) 99.21 98.32 98.09 97.67 98.7 97.81 52.7 98.13 98.01 81.01
PENS (DFL) 99.35 98.4 98.14 97.23 98.2 97.78 51.35 98.21 98.11 80.93

DFLMV (DFL) 99.26 98.39 98.12 97.71 98.21 97.97 60.94 98.25 98.28 84.17

Fashion
-MNIST

FedAvg (FL) 92.5 90.01 89.11 87.41 90.07 84.1 45.55 90.12 89.21 75.7
PENS (DFL) 91.56 89.91 89.09 87.38 90.03 88.6 46.17 90.1 89.35 75.3

DFLMV (DFL) 91.77 89.94 89.02 87.47 90.04 89.75 51.01 90.11 89.57 75.34

CIFAR
-10

FedAvg (FL) 71.4 58.97 56.01 46.91 61.23 45.21 32.11 63.15 60.11 56.32
PENS (DFL) 71.1 59.11 55.11 47.65 61.32 46.21 32.12 63.21 60.3 56.17

DFLMV (DFL) 71.2 59.01 57.82 49.41 61.38 46.4 33.03 63.85 60.99 56.82

Table 1: Test accuracy results under IID datasets and IID noisy labels setting.
IID datasets and non-IID noisy label distribution

Dataset
Method Test Accuracy (%)

Noise Type N/A Symmetric Pairflip Asymmetric
Noise Ratio 0 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

MNIST
FedAvg (FL) 99.21 98.12 90.12 85.54 77.23 70.4 49.7 95.49 77.58 66.36
PENS (DFL) 99.35 97.97 91.67 87.21 75.57 69.54 51.5 95.55 79.32 65.4

DFLMV (DFL) 99.26 98.31 95.47 96.35 98.3 90.78 71.71 97.6 90.04 73.78

Fashion
-MNIST

FedAvg (FL) 92.5 83.7 65.5 56.01 65.5 46.7 37.8 72.97 70.2 55.39
PENS (DFL) 91.56 82.8 66.2 55.76 63.1 46.2 37.19 73.23 68.26 56.27

DFLMV (DFL) 91.77 90.09 81.7 79.04 84.85 70.12 53.49 82.48 74.81 70.65

CIFAR
-10

FedAvg (FL) 71.4 59.61 47.25 30.21 51.27 40.11 25.23 52.42 45.55 42.61
PENS (DFL) 71.1 60.12 48.31 30.11 50.93 39.67 26.24 54.68 46.26 40.56

DFLMV (DFL) 71.2 61.28 52.27 35.44 59.14 50.23 31.92 60.42 55.03 52.69

Table 2: Test accuracy results under IID datasets and non-IID noisy labels setting.
Non-IID datasets and IID noisy label distribution

Dataset
Method Test Accuracy (%)

Noise Type N/A Symmetric Pairflip Asymmetric
Noise Ratio 0 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

MNIST
FedAvg (FL) 99.1 96.83 95.02 94.02 93.32 89.6 55.21 92.56 90.6 75.71
PENS (DFL) 98.87 96.15 95.07 94.32 93.67 88.21 56.01 93.23 90.2 76.35

DFLMV (DFL) 98.9 97.98 96.34 94.64 95.86 95.85 72.66 96.09 94.85 84.85

Fashion
-MNIST

FedAvg (FL) 92.01 70.11 67.6 63.12 73.4 69.5 42.51 72.74 71.12 65.35
PENS (DFL) 91.22 70.17 68.2 64.46 72.27 70.7 43.11 73.11 71.97 65.21

DFLMV (DFL) 91.21 70.15 69.61 68.18 73.93 79.12 53.97 75.52 74.11 66.72

CIFAR
-10

FedAvg (FL) 68.67 42.61 30.49 23.12 42.7 30.21 20.12 51.62 49.89 46.56
PENS (DFL) 68.47 43.48 29.21 22.67 43.62 31.11 20.25 51.43 50.12 45.21

DFLMV (DFL) 68.66 51.11 36.41 27.38 50.83 33.59 21.29 54.69 52.79 49.81

Table 3: Test accuracy results under non-IID datasets and IID noisy labels setting.
Non-IID datasets and Non-IID noisy label distribution

Dataset
Method Test Accuracy (%)

Noise Type N/A Symmetric Pairflip Asymmetric
Noise Ratio 0 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

MNIST
FedAvg (FL) 99.1 91.5 76.4 69.97 81.3 73.2 53.25 85.37 76.3 72.1
PENS (DFL) 98.87 90.6 75.6 70.01 80.46 70.49 51.11 84.32 76.32 72.22

DFLMV (DFL) 98.9 97.16 94.36 96.78 95.86 85.73 76.88 96.09 90.64 83.28

Fashion
-MNIST

FedAvg (FL) 92.01 77.57 68.45 62.67 68.2 50.1 20.6 80.81 70.5 69.21
PENS (DFL) 91.22 78.61 70.27 63.61 71.3 49.6 22.2 78.51 72.5 68.71

DFLMV (DFL) 91.21 83.25 84.99 82.69 81.29 61.27 34.75 93.44 77.27 83.33

CIFAR
-10

FedAvg (FL) 68.67 47.11 41.18 31.71 35.67 31.69 18.13 50.63 48.12 42.31
PENS (DFL) 68.47 45.51 40.59 30.14 36.42 31.2 17.99 49.91 47.71 41.35

DFLMV (DFL) 68.66 52.76 45.64 36.52 44.76 36.07 25.72 53.48 50.2 48.33

Table 4: Test accuracy results under non-IID datasets and non-IID noisy labels setting.

these tables, our major insight is that while DFLMV leads to a significant enhancement in the av-
erage accuracy of the learning models over its counterparts across the majority of the tested cases,
the magnitude of improvement depends on the level of heterogeneity of the datasets (as measured
by the distribution of data and the quality of their labeling) owned by different clients.

More specifically, in cases where clients’ datasets contain heterogeneous data and noise, DFLMV
typically provides significant model accuracy improvement. These are relevant to the situations
where the data is non-IID (Table 3), the noisy label is non-IID (Table 2), both the data and the noisy
label are non-IID (Table 4), and the real-world scenarios (Table 5). These are also relevant to the
situation where even though both data and noisy labels are IID, the noisy label distributions are
statistically different across classes (i.e., the ”Pairflip” and ”Asymmetric” columns in Table 1). In
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Real-World Noisy Datasets (non-IID)

Dataset Test Accuracy (%)
CIFAR-10N (worst) CIFAR-100N (noisy100) Clothing1M ANIMAL-10N

Noise Type Real-world Real-world Real-world Real-world
Noise Ratio 0.402 0.402 0.38 0.08
FedAvg (FL) 49.12 30.28 34.93 54.1
PENS (DFL) 50.51 29.97 35.17 55.92

DFLMV (DFL) 59.56 33.11 38.33 57.79

Table 5: Test accuracy results under real-world noisy datasets.

these cases, it can be observed that accuracy improvement brought by DFLMV is apparent, typically
ranging from about several percent to over 20%: the greater the diversity, the more significant the
improvement. For example, under a high noisy label ratio of 0.5, Table 4 shows that an over 23%
improvement is achieved by DFLMV over PENS and FedAvg under the Pairflip noise model. This
observation on the accuracy gain obtained under non-IID scenarios is not surprising because the
majority voting occurs after the convergence of initial training. This design allows each client first
to benefit from the vanilla FL learning process, which improves each client’s local model accuracy
even under non-IID settings (i.e., significant variations in data distribution among clients). More
specifically, this initial training ensures that each client’s model benefits from shared insights among
neighbors while retaining its unique understanding of local data. Consequently, even in the extreme
scenario where the training datasets of different clients possess data of different classes, the initial
training still helps a client to learn a model that is adapted to the global data distribution (instead of
being restricted to the client’s local training data). As a result, in the subsequent majority voting,
for a given data point, those clients that are making a correct label prediction will point to the same
label, while clients making incorrect predictions will likely point to different labels (this is because
for the given data point there is only one label to be a correct label but there are many different
labels to be wrong label). Therefore, a majority voting mechanism is likely to return the correct
label, leading to an improved dataset with fewer labeling errors, and hence higher model accuracy
after being trained over this improved dataset during the retraining stage.

On the other hand, in the less-diverse case where both data and noisy labels are IID across datasets
and across classes of the same dataset, the improvement achieved by DFLMV is minor, typically
ranging from 0 to just a couple percent. This case is relevant to the “symmetric” columns in Table
1. The slight improvement can be explained by noting the fact that even though the distributions of
data/noisy-label are IID, their realizations may not be identical – the probability that the same data
point is given the same wrong label in two clients’ datasets is low. For example, even when the noise
ratio is as high as 50%, for the MNIST dataset, the probability that a datapoint is given the same
wrong label in two clients’ datasets is ( 12 )

2× ( 19 )
2× 9 = 1

36 . As a result, it is unlikely that the same
mislabeled data is used for training at two clients. Therefore, in the proposed label correction stage,
even if the target client has mislabeled data in its training dataset, there is still a good chance that
most of its neighbors’ models have been trained on the correct label of the data point, and hence are
able to correct the wrong label via majority voting.

6 CONCLUSION AND FUTURE WORK

In this paper, we attempt to address the problem of learning from datasets with common non-
malicious label errors, which are often present in decentralized ownership due to annotators’ lack
of expertise or carelessness. We focus on mitigating the adverse effects of corrupted labels when
implementing DFL systems. To tackle the issue at hand, we propose a novel method, DFLMV, a
general DFL framework that enables all clients to collaborate to address inevitable noisy labels on
decentralized data ownership. Particularly, with DFLMV, clients can correct their labels efficiently
and cost-effectively while maintaining their local data privacy. In Section 4, our theoretical analysis
rigorously demonstrates that DFLMV is capable of correcting noisy labels with high confidence. In
Section 5, extensive experiments conducted on 7 benchmark datasets show that our proposed ap-
proach is robust against noisy labels and performs well in diverse noise settings and data settings.
We note that this paper only considers an unweighted plurality majority vote as the label correction
mechanism. There are many other possible voting methods that could be more effective or suitable
for different scenarios, such as weighted majority vote and probabilistic vote. In our future work, we
plan to explore more sophisticated voting methods to further improve the accuracy of learning from
noisy labels. We believe this paper could lead to new directions in handling noisy labels in DFL,
especially in improving model robustness against noisy labels in decentralized data ownership.
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A APPLY OUR PROPOSED METHOD TO CFL

To apply DFLMV to CFL, we can adapt its core concepts to the standard FedAVG (Li et al., 2019).
Specifically, in CFL, once each client’s model stabilizes (i.e., the loss function value reaches sta-
bility), the parameter server aggregates the parameters of all local models and broadcasts the latest
global and local models to all clients. Each client then uses the latest received models to predict a
label for each data point in its local training dataset. Subsequently, each client will update the labels
according to the DFLMV majority vote protocol. Except for these two minor changes, the other
steps will remain the same as in the standard FedAVG.

14
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B PSEUDOCODES

Algorithm 1 Decentralized Federated Learning (DFL)

1: Input: Learning rate η, number of global commutation round EG, number of local epochs EL,
The set of clients K

2: Each Client Executes:
3: Initialize: w0

k,∀k ∈ K
4: while T < EG do
5: WAIT(∆)
6: random select peers
7: Broadcasts its parameters wk to its neighboring clients
8: Run OnReceiveModel()
9: end while

10: function OnReceiveModel(wT
i )

11: Save(wT
i )

12: if number of received models ≥ nPeers then
13: Merge saved models by doing wT

k ← Σ
|K|
j=1(

nj

npeers
wT

j )

14: Client update the local model wj by doing ∆wT+1
k ← wT

k − ηT∇F
(
wT

k , Dkm(T )

)
,

where Dkm(T ) stands for the kth client’s mini-batch in the T th epoch.
15: end if
16: end function

Algorithm 2 Majority Voting based Decentralized Federated Learning (DFLMV)

Input: Learning rate η, number of global commutation round EG, number of local epochs EL,
the set of clients K

2: In Stage 1, each client Executes:
Initialize: w0

k,∀k ∈ K
4: while loss values keep dropping do

WAIT(∆)
6: random select peers

Broadcasts its parameters wk to its neighboring clients
8: Run OnReceiveModel()

end while
10: In Stage 2, client j (∀j ∈ K) Executes:

for i = 1, 2, ..., |Dj | do
12: Correct labels based on Majority Vote protocol by doing Yk(i) ←

argmax
z∈C

∑B
j=1 1( ̂Yj(Xk(i)) = z), where B is the number of neighbors of a client k;

̂Yj(Xk(i))represent the subjective prediction of jth client’s model for ith data point in Dk.
end for

14: In Stage 3, each client Executes:
Use the updated dataset D̃k and their latest model parameter from Stage 1, then follow Algo-
rithm 1 for the remaining epochs to complete the training tasks.

16: function OnReceiveModel(wT
i )

Save(wT
i )

18: if number of received models ≥ nPeers then
Merge saved models by doing wT

k ← Σ
|K|
j=1(

nj

npeers
wT

j )

20: Client update the local model wj by doing ∆wT+1
k ← wT

k − ηT∇F
(
wT

k , D̃km(T )

)
end if

22: end function
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C PROOF

C.1 PROOF OF THEOREM 1

Proof. To prove Theorem 1, we first need to derive the expectation of cross-entropy loss. Given
(Xk(i), Yk(i)) ∼ ζk and fk. The cross-entropy loss in Eq. (3) can be rewritten as:

Lk

(
v̂k(i), vk(i)

)
= −

|C|∑
j=1

vk(i)(j) · log (Softmax (fk (xk(i)))) (20)

= −
|C|∑
j=1

vk(i)(j) · log

(
ef

j
k(xk(i))∑|C|

q=1 e
fq
k (xk(i))

)
. (21)

, where fk is the vector of raw outputs from the neural network, the value e ≈ 2.78; j and q are the
jth and qth entry of the vector fk. Since vk(i)(j) is the one-hot probability vector, it satisfies the
following:

vk(i)(j) = 1 and vk(i)(a) = 0 for a ̸= j. (22)
Hence, we can further simplify the Lk by using the Eq.(22):

Lk : ( g (Xk, wk) , Yk) = − log

(
ef

j
k(Xk)∑|C|

q ef
q
k (Xk)

)
(23)

= −

f jk (Xk)− log

 |C|∑
q

ef
q
k (Xk)

 . (24)

Thus, by using the conditional expectation formula, the expectation of cross-entropy loss can be
written as follows:

E [Lk (g (Xk, wk) , Yk)] =

|C|∑
j=1

Pr
ζk

(Yk = j)EXk|Yk=j [Lk (g (Xk, wk) , Yk)] (25)

= −
|C|∑
j=1

Pr
ζk

(Yk = j)EXk|Yk=j

f jk (Xk)− log

 |C|∑
q

ef
q
k (Xk)

 , (26)

By using Eq.(26) and the expansion ideal from Ke et al. (2023), we can get:

Gk (wk) = |R∗
k (wk)−Rk (wk)| (27)

=

∣∣∣∣∣∣
|C|∑
j=1

[∫
Xk

f jk (xk) dPrρk

(xk, yk)−
∫
Xk

f jk (xk) dPrτk
(xk, yk)

]∣∣∣∣∣∣ (28)

=

∣∣∣∣∣∣
|C|∑
j=1

[∫
Xk

f jk (xk) (dPrρk

(xk, yk)− dPr
τk

(xk, yk))

]∣∣∣∣∣∣ (29)

=

∣∣∣∣∣∣EXk

 |C|∑
j=1

f jk (Xk)

(
Pr
ρk

(Yk = j|Xk)− Pr
τk

(Yk = j|Xk)

) ∣∣∣∣∣∣ (30)

RHS of Eq.(30) ≤ EXk

 |C|∑
j=1

f jk (Xk)

∣∣∣∣Prρk

(Yk = j|Xk)− Pr
τk

(Yk = j|Xk)

∣∣∣∣
 (31)

RHS of Eq.(31) ≤ Ω · EXk

 |C|∑
j=1

∣∣∣∣Prρk

(Yk = j|Xk)− Pr
τk

(Yk = j|Xk)

∣∣∣∣
 . (32)
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Hence, we have:

Gk (wk) ≤ Ω · EXk

 |C|∑
j=1

∣∣∣∣Prρk

(Yk = j|Xk)− Pr
τk

(Yk = j|Xk)

∣∣∣∣
 . (10)

C.2 PROOF OF COROLLARY 1

Proof. To prove Corollary 1, we first need to formulate the similarity between ρk and τk. Let us
denote BC(ρk, τk) as the Bhattacharyya coefficient (Aherne et al., 1998). Given

∑|C|
i=1 ρk(i) = 1

and
∑|C|

i=1 τk(i) = 1, the similarity between ρk and τk is measured by the following:

cos(θ) = BC (ρk, τk) =

|C|∑
i=1

√
ρk(i)τk(i), (33)

where θ is the difference between ρk and τk.

From Eq.(10) and Eq.(33), we can easily infer that a lower noisy ratio leads to closer proximity be-
tween ρk and τk and a smaller value of |Prρk

(Yk = z|Xk)−Prτk (Yk = z|Xk) |, thereby resulting
in a smaller Gk (wk). For example, in a special case, if ρk and τk are identical, then we have:

cos(θ) = BC (ρk, τk) =

|C|∑
i=1

√
ρk(i)τk(i) =

|C|∑
i=1

√
ρk(i)2 = 1. (34)

Since cos(θ) = 1, we can get θ = 0. Hence, we have:∣∣∣∣Prρk

(Yk = j|Xk)− Pr
τk

(Yk = j|Xk)

∣∣∣∣ = ∣∣∣∣Prρk

(Yk = j|Xk)− Pr
ρk

(Yk = j|Xk)

∣∣∣∣ = 0. (35)

By substituting Eq.(35) into Eq.(10), we can get:

Gk (wk) ≤ Ω · EXk

 |C|∑
j=1

(0)

 = 0. (36)

Therefore, when the noisy ratio→ 0, we can get Gk (wk)→ 0.

C.3 PROOF FOR THEOREM 2

Proof. To prove Theorem 2, we first need to derive the conditional probability distribution of the
vote count for a given class. We let S = (S1, S2, S3, S4, . . . , SB) be a random vector, where
Si ∈ [1, B] represents the count of votes for a particular class. For instance, the number of votes for
class (u) is given by:

Su =

B∑
k=1

1(Âk = u). (37)

Since the vote distributions are identical, the conditional probability (p
(j)
u|r) is independent of the

voter j. Thus, for the remainder of the paper, we streamline our notation by discarding the su-
perscript (j) and representing it simply as (pu|r). Given Âj = u and A = r, by utilizing the
multinomial distribution formula, we can express the conditional probability distribution of S as
follows:

Pr (S = s|A = r) =
B!∏|C|

i=1 Si!

|C|∏
u=1

(pu|r)
Su , (38)

where
∑|C|

j=1 Sj = B.
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From the above Eq.(38), it is easy to see that the RVs S1, S2, . . . , SB are mutually dependent. This
lack of independence makes deriving the error rate extremely difficult. To address this, we adopt
the Poisson approximation, inspired by Aeeneh (2023); Mitzenmacher & Upfal (2017). We define
Ŝ = (Ŝ1, Ŝ2, . . . , ŜB) as a vector of RVs; each of the RVs Ŝi ∈ Ŝ is independent of each other;
Ŝi follows Poisson distribution, Ŝi ∼ P (λ), and λ = B × (pu|r). Given that Âj = u and A = r,

the conditional probability distribution of Ŝ can be rewritten as follows:

Pr
(
Ŝ = ŝ

∣∣∣A = r
)
=

|C|∏
u=1

Pr
(
Ŝu = ŝu

∣∣∣A = r
)

(39)

=

|C|∏
u=1

e−B×(pu|r)(B × (pu|r))
ŝu

ŝu!
. (40)

To connect the probability events of S and Ŝ, we define ε(S) as an event whose probability changes
monotonically (either increasing or decreasing) based on the number of participants. Similarly, let
ε
(
Ŝ
)

denote the same event applied to the Poisson case. Leveraging Lemma 1 of Aeeneh (2023)
and Corollary 5.11 of Mitzenmacher & Upfal (2017), we can establish the following inequality:

Pr (ε (S)) ≤ 2Pr
(
ε
(
Ŝ
))

. (41)

To make our upper bound more convincing, we consider the worst-case (The distribution of A is
uniform over its domain).

Pr(A = r) =
1

|C|
, ∀r ∈ C. (42)

Then we can rewrite the error rate Pe as:

Pe = Pr
(
Ã ̸= A

)
(43)

= 1− 1

|C|

|C|∑
r=1

Pr
(
Ã = A

∣∣∣A = r
)
. (44)

Let us continue the proof under the worst scenario that mvf(.) tends to select an incorrect class
when it breaks ties.

RHS of Eq.(44) ≤ 1− 1

|C|

|C|∑
r=1

Pr

 |C|⋂
u=1
u̸=r

Su < Sr

∣∣∣∣∣∣∣A = r

 (45)

By Eq.(41), we have

RHS of Eq.(45) ≤ 2

1− 1

|C|

|C|∑
r=1

Pr

 |C|⋂
u=1
u̸=r

Ŝu < Ŝr

∣∣∣∣∣∣∣A = r


 (46)

RHS of Eq.(46) = 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u ̸=r

Pr
(
Ŝu < Ŝr

∣∣∣A = r
) (47)

Since Pr
(
Ŝu < Ŝr

∣∣∣A = r
)
= 1−

∑∞
β=0 Pr

(
Ŝu − Ŝr = β

∣∣∣A = r
)

, Hence, we have:

RHS of Eq.(47) = 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u̸=r

1−
∞∑

β=0

Pr
(
Ŝu − Ŝr = β

∣∣∣A = r
)
 (48)
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By substituting the Pr
(
Ŝu − Ŝr = β

∣∣∣A = r
)

with Skellam PMF, the above equation equals:

= 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u ̸=r

1−
∞∑

β=0

e−B(pu|r+pr|r) ×
(
pu|r

pr|r

) β
2

× Iβ(2B
√
pu|rpr|r)


 , (30)

where, Iβ(.), is the Bessel function of the first kind of order (Dobrushkin, 2017).

Based on the above theorem, we propose two corollaries regarding the impact of the number of
neighbors (i.e., B) and the quality of the neighbor’s model (represented by the model’s generaliza-
tion error) on Pe.

C.4 PROOF FOR COROLLARY 2

Proof. To prove Corollary 2, we first need to notice the monotonicity of the envelope function
of the Bessel function. Specifically, according to Weber et al. (2004), the Bessel function Iβ(x)
exhibits oscillations without periodicity. As x increases, the amplitude of these oscillations decays
asymptotically with x−1/2, ultimately approaching 0 when x→∞. If we denote the upper envelope
of Iβ(x) as envupperIβ(x), then the trend of envupperIβ(x) also remains positive and decreases
monotonically as x increases.

To simplify the proof, we use envupperIβ(x) to replace Iβ(x) and analyze the trend of the upper
bound of error rate Pe in relation to B. We defined the following:

Ξ(B) =

∞∑
β=0

e−B×(pu|r+pr|r) ×
(
pu|r

pr|r

) β
2

× envupperIβ
(
2B
√
pu|rpr|r

)
, (49)

Then Eq.(17) can be rewritten as the following:

Pe ≤ 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u ̸=r

(1− Ξ(B))

 . (50)

From Eq.(49), we observe that e−B×(pu|r+pr|r) is positive and decreases monotonically with B.
Since the product of two positive, monotonically decreasing functions is also a monotonically de-
creasing function, we can conclude that e−B×(pu|r+pr|r) × envupperIβ

(
2B
√
pu|rpr|r

)
decreases

monotonically with B. Consequently, Ξ(B) decreases monotonically with B, 1 − Ξ(B) increases
monotonically with B, and the RHS of Eq. (50) decreases monotonically with B. Therefore, the
bound on Pe monotonically decreases with B.

In an extreme case, when B → ∞, then 2B
√
pu|rpr|r → ∞, envupperIβ

(
2B
√
pu|rpr|r

)
→ 0,

and e−B×(pu|r+pr|r)→ 0. So Eq.(49) can be rewritten as:

Pe ≤ 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u ̸=r

1−
∞∑

β=0

0×
(
pu|r

pr|r

) β
2

× 0


 (51)

RHS of Eq.(51) = 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u ̸=r

(1− 0)

 = 2

(
1− |C|
|C|

)
= 0. (52)

Hence, when B →∞, we can get Pe → 0 .

C.5 PROOF OF COROLLARY 3

Proof. To prove Corollary 3, we first need to express the upper bound of the error rate Pe in terms
of the generalization error Gk(wk). We observe that models with smaller Gk (wk), for a given
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feature, often exhibit a higher probability of correctly predicting (Âk = r) and a lower probability
of incorrectly predicting (Âk = u, (u ̸= r)), which suggests Gk (wk) ∝ pu|r. Hence, we denote
pu|r = φ×Gk (wk), where φ ∈ R+. Then the upper bound of the error rate Pe of mvf (.) can be
rewritten as follows:

Pe ≤ 2

(
1− 1

|C|
∑|C|

r=1

∏|C|
u=1
u ̸=r

(
1−

∑∞
β=0 e

−B(φ×Gk(wk)+pr|r)
(

φ×Gk(wk)
pr|r

) β
2

Iβ
(
2B
√
φ×Gk(wk)pr|r

)))
, (53)

From Eq.(53), we can observe that a smaller Gk (wk) can contribute to a reduction in the Pe.

For the extreme case, if Gk (wk) = 0, then 2B
√
φ×Gk (wk) pr|r = 0;

(
φ×Gk(wk)

pr|r

) β
2

= 0;

e−B×(φ×Gk(wk)+pr|r) is bounded by 1; for the Bessel function part, we have:

Iβ(x) = Iβ

(
2B
√
φ×Gk (wk) pr|r

)
(54)

=

∞∑
t=0

1

t!(t+ β)

(
2B
√
φ×Gk (wk) pr|r

2

)2t+β

(55)

=

∞∑
t=0

(−1)k

t!(t+ β)!
(0) = 0. (56)

Hence, Eq.(53) can be rewritten as:

Pe ≤ 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u̸=r

1−
∞∑

β=0

e−B×(φ×Gk(wk)+pr|r) × 0× 0


 (57)

RHS of Eq.(57) = 2

1− 1

|C|

|C|∑
r=1

|C|∏
u=1
u̸=r

(1− 0)

 = 2

(
1− |C|
|C|

)
= 0. (58)

Therefore, when Gk (wk)→ 0, we can get Pe → 0.

C.6 PROOF OF THEOREM 3

Proof. By Eq.(33), we denote θ1 as the difference between ρk and τk, and θ2 as the difference
between ρ̃k and τk. Corollary 2 demonstrates that as the number of voters increases, the error rate
Pe of the mvf (.) decreases, which implies that the decision made by mvf (.) is more accurate than
individual choice. Therefore, after using mvf (.) to correct noisy labels, we have θ1 > θ2.

After plugging this analysis into RHS of Eq.(10), we can get the following:

EXk

∑|C|
z=1|Prρk (Yk=z|Xk)−Prτk (Yk=z|Xk)|>EXk

∑|C|
z=1|Prρ̃kk

(Yk=z|Xk)−Prτk (Yk=z|Xk)| (59)

Hence,

Ω·EXk

∑|C|
z=1|Prρk (Yk=z|Xk)−Prτk (Yk=z|Xk)|>Ω·EXk

∑|C|
z=1|Prρ̃kk

(Yk=z|Xk)−Prτk (Yk=z|Xk)| (60)

Therefore, we can get:

Gk

(
w

Dk∼ρk

k

)
> Gk

(
wD̃k∼ρ̃k

k

)
. (61)
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C.7 ANALYSIS OF COMMUNICATION AND COMPUTATION OVERHEAD

Communication Overhead Analysis. Our method doesn’t introduce any communication overhead,
consistent with traditional DFL methods. In Stage 1, clients train their local models independently,
with no additional communication required beyond standard model parameter exchanges. In Stage 2,
clients exchange model parameters with their online neighbors, a typical operation in DFL that does
not introduce extra communication overhead. In Stage 3, clients fine-tune their local models based
on the updated dataset without requiring additional communication. Overall, the communication
overhead remains O(m), where m is the number of model parameters exchanged among neighbors.

Computation Overhead Analysis. The computation overhead of our method is also minimal. In
Stage 1, the computational cost is equivalent to traditional DFL, as clients train their local models on
their original datasets. In Stage 2, the majority voting process to update labels introduces an O(n)
computation overhead, where n is the number of data points. This is a straightforward operation
and does not significantly increase the computational burden. In Stage 3, the extra training epochs
for fine-tuning the local models are based on the updated dataset, which is necessary for improving
model accuracy. This stage has the same computational cost as the initial training stage and does not
introduce additional overhead compared to other existing label correction methods. In summary, the
introduced computational overhead is (O(n)).

Comparison with Other Methods. Compared to other label correction methods, our approach has
the following advantages: (1) Other methods often require additional data processing and training
of auxiliary modules, increasing computational overhead. Our method streamlines this by directly
utilizing the results from Stage 1 in subsequent stages. (2) Other methods may require exchanging
additional information with a central server during the label correction pre-processing stage, increas-
ing communication overhead. Our method avoids this by not introducing any additional communi-
cation overhead, consistent with traditional DFL methods. For instance, in ’FedCorr’ by Xu et al.,
2022, each iteration of the label correction pre-processing Stage involves all clients calculating the
local intrinsic dimensionality (LID) score and per-sample loss for their current local model, which
adds computational load. Additionally, the LID score will also be transmitted to the server during
each iteration, further contributing to communication overhead. Similarly, ’CLC’ by Zeng et al.,
2022, mandates clients to calculate a threshold ct in each training iteration of their label correc-
tion pre-processing stage to determine the global threshold cGt , again intensifying the computational
overhead.

D EXPERIMENT SUPPLEMENTARY MATERIALS

D.1 SUMMARY OF OUR USED DATASETS

#Training #Testing #Classes Size of each sample
MNIST 60,000 10,000 10 28x28x1
Fashion-MNIST 60,000 10,000 10 28x28x1
CIFAR-10 50,000 10,000 10 32x32x3
CIFAR-10N 50,000 10,000 10 32x32x3
CIFAR-100N 50,000 10,000 100 32x32x3
Clothing1M 1,000,000 10,000 14 224x224x3
ANIMAL-10N 50,000 5,000 10 64x64x3

Table 6: Summary of datasets and their partitioning in the experiments.

D.2 NETWORK STRUCTURES

Layer (type) Output Shape Param #
Conv2d-1 [-1, 10, 24, 24] 260
Conv2d-2 [-1, 20, 8, 8] 5020
Dropout2d-3 [-1, 20, 8, 8] 0
Linear-4 [-1, 50] 16050
Linear-5 [-1, 10] 510

Table 7: MNIST Network Structure.
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Layer (type) Output Shape Param #
Conv2d-1 [-1, 32, 28, 28] 320
Conv2d-2 [-1, 64, 12, 12] 18496
Dropout2d-3 [-1, 64, 12, 12] 0
Linear-4 [-1, 600] 1383000
Linear-5 [-1, 120] 72120
Linear-6 [-1, 10] 1210

Table 8: Fashion-MNIST Network Structure.

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 16, 16] 1,792
MaxPool2d-2 [-1, 64, 8, 8] 0
Conv2d-3 [-1, 192, 8, 8] 110,784
MaxPool2d-4 [-1, 192, 4, 4] 0
Conv2d-5 [-1, 384, 4, 4] 663,936
Conv2d-6 [-1, 256, 4, 4] 884,992
Conv2d-7 [-1, 256, 4, 4] 590,080
MaxPool2d-8 [-1, 256, 2, 2] 0
Linear-9 [-1, 4096] 4,198,400
Linear-10 [-1, 4096] 16,781,312
Linear-11 [-1, 10] 40,970

Table 9: CIFAR-10 Network Structure.

Dataset Structure
CIFAR-10N ResNet18 (Non-pretrained )
CIFAR-100N ResNet18 (Non-pretrained )
Clothing1M ResNet50 (Non-pretrained )
ANIMAL-10N ResNet18 (Non-pretrained )

Table 10: Network Structure for Real-World Noisy Datasets .
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