
d1: Scaling Reasoning in Diffusion Large Language
Models via Reinforcement Learning

Siyan Zhao * 1 Devaansh Gupta * 1 Qinqing Zheng † 2 Aditya Grover † 1

Abstract
Recent large language models (LLMs) have
demonstrated strong reasoning capabilities that
benefits from online reinforcement learning (RL).
These capabilities have primarily been demon-
strated within the left-to-right autoregressive
(AR) generation paradigm. In contrast, non-
autoregressive paradigms based on diffusion gen-
erate text in a coarse-to-fine manner. Although
recent diffusion-based large language models
(dLLMs) have achieved competitive language
modeling performance compared to their AR
counterparts, it remains unclear if dLLMs can
also leverage recent advances in LLM reasoning.
To this end, we propose d1, a framework to adapt
pre-trained masked dLLMs into reasoning models
via a combination of supervised finetuning (SFT)
and RL. Specifically, we develop and extend tech-
niques to improve reasoning in pretrained dLLMs:
(a) we utilize a masked SFT technique to distill
knowledge and instill self-improvement behavior
directly from existing datasets, and (b) we intro-
duce a novel critic-free, policy-gradient based RL
algorithm called diffu-GRPO, the first integration
of policy gradient methods to masked dLLMs. We
empirically investigate the performance of differ-
ent post-training recipes on various mathematical,
planning and coding benchmarks. We find that d1
yields the best performance and significantly im-
proves SOTA dLLMs. Code released at https:
//dllm-reasoning.github.io.

1 Introduction
Recent advances in large language models (LLMs) have
demonstrated remarkable capabilities across diverse applica-

*Equal contribution †Equal advising 1UCLA 2Meta AI. Cor-
respondence to: Siyan Zhao <siyanz@g.ucla.edu>, Devaansh
Gupta <devaansh@cs.ucla.edu>.

Proceedings of the Efficient Systems for Foundation Models work-
shop at the 42nd International Conference on Machine Learning,
Vancouver, Canada. PMLR 267, 2025.

tions spanning chatbots, coding, summarization, and transla-
tion (Achiam et al., 2023; Dubey et al., 2024). While these
models typically scale through next-token prediction on vast
corpora via computationally intensive pretraining, the finite
availability of high-quality training data poses a fundamen-
tal scaling challenge. Reinforcement learning (RL) methods
have emerged as a promising post-training method, enabling
models to generate and explore with reward signals rather
than relying solely on static datasets. This approach has
yielded significant improvements on reasoning tasks in re-
cent models, such as DeepSeek-R1 (Guo et al., 2025) and
Kimi K1.5 (Team et al., 2025), demonstrating that applying
RL directly to base models can achieve performance com-
parable to OpenAI’s o1 model (OpenAI, 2024). However,
these advances in RL-based post-training have primarily
been limited to autoregressive LLMs that operate through
left-to-right, sequential inference.

In a parallel line of work, discrete diffusion large language
models (dLLMs) (Nie et al., 2025; Gong et al., 2025; Nie
et al., 2024; Ye et al., 2025a) have emerged as promising
non-autoregressive alternatives for language modeling. Un-
like AR models that generate text token-by-token in a causal
manner, dLLMs generate text through an iterative denoising
process, refining sequences over multiple steps while lever-
aging both past and future context via bidirectional attention.
Among them, open masked dLLMs such as LLaDA (Nie
et al., 2025) have demonstrated performance comparable
to similarly sized AR models, and closed-source dLLMs
such as Mercury (Inception Labs et al., 2025) further demon-
strate excellent inference efficiency. However, leading open-
source dLLMs have not undergone RL post-training, leaving
this promising direction largely unexplored. This paradigm
shift raises important questions about how RL post-training
might be effectively realized in a non-autoregressive con-
text.

Adapting RL algorithms to masked dLLMs poses unique
challenges because existing successful approaches for
AR models, such as PPO (Schulman et al., 2017) and
GRPO (Shao et al., 2024), rely on estimating and optimizing
policy distributions through computing log-probabilities of
generated sequences, which cannot be directly applied to
dLLMs. While this computation is straightforward in AR

1

https://dllm-reasoning.github.io
https://dllm-reasoning.github.io

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

50
55
60
65
70
75
80
85

Ac
cu

ra
cy

 (
%

)
78.2

82.1
GSM8K

20

25

30

35

40

45

36.2
40.2

MATH500

0

10

20

30

40

20.7

42.2
Countdown

0

5

10

15

20

25

11.7

22.1
Sudoku

LLaDA d1-LLaDA (ours)

Figure 1. Across four math and planning tasks, d1-LLaDA, which undergoes SFT followed by our proposed diffu-GRPO, consistently
outperforms the base LLaDA-8B-Instruct model. We report results using the best performing generation sequence length for each task
and model, with complete sequence length results shown in Table 1.

models through sequential factorization, dLLMs lack this
natural decomposition due to their iterative, non-sequential
generation process.

To bridge this gap, we propose d1, a two-stage post-
training framework for enhancing reasoning in masked
dLLMs. In the first stage, the model undergoes super-
vised finetuning (SFT) on high-quality reasoning traces. In
the RL stage, we introduce diffu-GRPO, a novel pol-
icy gradient method for masked dLLMs that builds upon
GRPO with our proposed efficient one-step estimation of
log-probabilities. To the best of our knowledge, this repre-
sents the first application of policy gradient RL to masked
dLLMs. Our estimator leverages random prompt masking,
which acts a form of regularization for policy optimization,
allowing us to scale the number of gradient updates per batch
and reduces the number of online generations required by
RL training. This substantially reduces the compute time.

Empirically, we instantiate d1 using LLaDA-8B-Instruct as
our base model. We compare d1-LLaDA’s performance with
the base LLaDA model, as well as with LLaDA variants
trained using SFT-only and diffu-GRPO-only approaches.
Our experiments demonstrate that d1 consistently outper-
forms the base model across four reasoning tasks in math
and planning, as shown in Figure 1, with nearly doubled
performance on planning tasks. Furthermore, d1 surpasses
both the SFT-only and diffu-GRPO-only methods. Addition-
ally, we complement our primary findings with thorough
ablation studies on algorithm design, qualitative analysis,
and extensions of diffu-GRPO to coding tasks, where we
also observe consistent improvements.

2 Preliminaries

2.1 Masked Diffusion Large Language Models

Masked dLLMs (Austin et al., 2021a; Sahoo et al., 2024; Shi
et al., 2024; Ou et al., 2024; Lou et al.) involve a forward
process that gradually corrupts a sequence of tokens x0 by

the mask token. The process is indexed by time t ∈ [0, 1].
At timestep t, the sequence xt is partially masked, where
for each token the probability of remaining unmasked is αt.
Particularly, αt (a.k.a noise schedule) is strictly decreasing
in t. When t = 1, all the tokens in x1 are masked. To train
a masked dLLM, we begin by designing a forward process
with a specific form of αt. We parameterize a bidirectional
unmasking predictor fθ. In each iteration, we randomly
sample a timestep t ∈ [0, 1) and mask the tokens based on
the designed forward process. Given these corrupted inputs,
the learning objective is to predict the original tokens. The
standard loss function for this task is the negative evidence
lower bound (NELBO), which is an upper bound of the
negative log-likelihood (NLL) of the data. For masked
dLLMs, NELBO simplifies to a weighted NLL, where the
weights are determined by a transformation of αt (Sahoo
et al., 2024, Equation (10)). In this work, we apply d1 on
top of LLaDA (Nie et al., 2025), whose forward process sets
αt = 1− t and the resulting NELBO is

−Et∼U [0,1), x0∼pdata, xt∼qt|0(xt|x0)[
1
t

∑|xt|
k=1 1[x

k
t = mask] log fθ(xk

0 | xt)
]
,

(1)

where |xt| is the sequence length of x, and xk is the k-th
token. Note that the loss is only calculated for tokens that
are masked out in timestep t. The key difference between
masked dLLMs and BERT (Devlin et al., 2019) is that the
latter uses a fixed masking ratio and the decoding is a single-
step infilling process, whereas masked dLLMs use time-
varying masking ratios and the decoding process involves
multiple steps starting from pure noise and thus resulting in
a generative model. Further details about the formulation of
masked dLLMs are deferred to Appendix C.

2.2 Group Relative Policy Optimization for Large
Language Models

Policy gradient methods have been widely adopted in the
post-training stage to enhance the performance of LLMs

2

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

(Ouyang et al., 2022; Bai et al., 2022; Li et al., 2023; Ah-
madian et al., 2024). While Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) has been the predom-
inant approach in online RL, it requires jointly training a
state value function V to estimate advantages, leading to
increased computational demands. Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) offers a more
efficient alternative by using group statistics to derive ad-
vantages. For each question q, GRPO samples a group of
G responses {o1, o2, . . . , oG} from the old policy πθold . It
then sets the advantages for all tokens k = 1, . . . , |oi| for

oi as the normalized reward
ri−mean({rj}G

j=1)

std({rj}G
j=1)

. Here, we can

view mean({rj}Gj=1) as a G-sample Monte Carlo estima-
tion of the value V (q), while the sparse reward ri serves
as the (undiscounted) state-action value Q(q, oi). How-
ever, normalizing the advantage Q(q, oi)−V (q) by nonzero
state function introduces bias into policy gradient estima-
tion. Therefore, similar to Liu et al. (2025), we use the
unnormalized advantage

Ak
i (π) = ri(π)−mean({rj(π)}Gj=1), 1 ≤ k ≤ |oi|. (2)

The rest of our RL setup follows GRPO. The objective
function incorporates a clipping mechanism (similar to PPO)
to moderate policy updates, and a reverse KL penalty to
prevent excessive deviation from the reference policy:

LGRPO(θ) = E q∼D
o1,...,oG∼πθ(·|q)

[(
1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

min(ρkiA
k
i ,

clip(ρki , 1−ε, 1+ε)Ak
i)

)
− βDKL

(
πθ(·|q)

∥∥∥∥πref(·|q)
)]
(3)

where πθ is the current policy being updated, πθold is the pol-

icy before the update, ρki =
πθ(o

k
i |q, o

<k
i)

πθold (o
k
i |q, o

<k
i)

, Ak
i is computed

using πθold and Equation (2), and πref is the reference policy
(typically the initial model). The clipping parameter ε limits
the magnitude of policy updates to ensure stability, while β
controls the strength of the KL divergence regularization.

3 d1: Adapting Pre-trained Masked dLLMs
to Reasoning Models

We propose d1, a two-stage framework that enhances the
reasoning performance of pre-trained masked dLLMs by
sequentially combining SFT and online RL.

Online RL, particularly the GRPO algorithm, has demon-
strated its efficacy in improving the performance of of-
fline trained language model (Shao et al., 2024; Guo et al.,
2025; Team et al., 2025). However, the learning formu-
lation of GRPO does not directly generalize to dLLMs.
The objective of GRPO (3) requires computing the (log-
)likelihood ratio of πθ and πθold , at both the token level (for

the advantage weights) and the sequence level (for the re-
verse KL term). Generally speaking, we need to efficiently
compute the per-token and the sequence log-probability of
dLLMs’ completion o. Autoregressive (AR) models, such as
Transformers, directly model the per-token log-probabilities,
and the sequence-level log-probability of o can be easily
computed through the chain rule using one forward pass:
log πAR(o|q) =

∑|o|
k=1 log πAR(o

k|q, o<k). Similarly, the
KL term can be decomposed as DKL [πθ(·|q)∥πref(·|q)] =
Eo∼πθ(·|q)

[∑|oi|
k=1 log

πθ(o
k|q,o<k)

πref(ok|q,o<k)

]
. Unlike AR models,

dLLMs do not adhere to sequential factorization of the
sequence log-probability. Meanwhile, the per-token log-
probability are also costly to compute since the decoding
process invokes the unmasking predictor fθ multiple times1.
As the first step, we propose an efficient log-probability
estimator in Section 3.1. Next, using these estimators, we
introduce diffu-GRPO, a variant of GRPO for dLLMs in
Section 3.2. Last, we discuss our SFT recipe in Section 3.3.

3.1 Efficient Log Probability Estimation for Masked
dLLMs

For sequence log-probability, we use a mean-field approx-
imation that decomposes it into a product of independent
per-token log-probabilities. For per-token log-probability,
we introduce an estimation method that only calls fθ once.

Mean-Field Approximation of Sequence Log Probabil-
ity. As opposed to AR models, dLLMs treat the token
sequence as a whole and therefore its sequence-level log-
probability lacks the AR decomposition. To efficiently es-
timate it, we use a simple mean-field decomposition to
approximate log πθ(o|q) by

∑|o|
k=1 log πθ(o

k|q). The per-
token log-probability estimation is introduced below.

One-Step Per-Token Log Probability Estimation with
Prompt Masking. Let ⊕ denote the concatenation operator.
Given a prompt q, the decoding process starts from an initial
sequence q ⊕ mask⊕ . . .⊕ mask (up to a preset length).
To compute the log-probability of o, we perturb q where
every token is randomly masked out with probability pmask,
resulting in a new prompt q′. We then do one-step unmask-
ing to obtain log fθ(o

k|q′⊕mask . . .⊕mask) and use it as
an estimation of log πθ(o

k|q), 1 ≤ k ≤ |o|. We discuss the
motivation of using a masked prompt q′ in the next section.

We note that LLaDA (Nie et al., 2025, Algorithm 3) uses
a Monte Carlo type of approximation to estimate the log-
probabilities, where they use a MC sample size is 128. This
estimator is inefficient for online RL, since it creates a large
computational graph with hundreds of forward passes, re-
sulting in inefficient policy optimization and excessive mem-
ory usage.

1In other words, πθ is a composition of M fθ functions for a
M -step decoding process

3

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Input: Partially-masked Prompt + Fully-masked Completion
Prompt Completion Mask

Iterative Denoising Steps

Masked dLLM Generation One-Step
Log Prob Estimation

Per-Token Log Prob Different masking patterns for same prompt-completion pair

Random Prompt Masking for Each Gradient Update Iteration

Per-Token Log Prob

...

iter = 1

iter = 2

iter = n

... ...

Figure 2. Log Probability Estimation in diffu-GRPO. After generating completion o from prompt q using full diffusion denoising
(left), we compute token-level log probabilities with a single forward pass per masking pattern (mid) and use the log-probability of
one-step unmasking as our estimation. During each policy gradient update, we apply a random masking pattern to the prompt, creating
q′, while keeping the completion fully masked (right). The gradient of colors in the per-token log probabilities demonstrates that each
distinct masking pattern yields a different estimate of the per-token log probabilities. This serves as a form of regularization for policy
optimization, allowing more gradient updates per batch and thereby reducing the number of online generations needed for RL training.

3.2 diffu-GRPO: Policy Gradient Optimization for
Masked dLLMs

Using the log-probability estimators proposed in Section 3.1,
we extend GRPO to masked dLLMs. Note that our estima-
tion technique is broadly applicable and can readily extend
to other policy gradient methods such as PPO (Schulman
et al., 2017) or REINFORCE (Williams, 1992).

Let ϕπθ (ok | q′) and ϕπθ (o | q′) denote the estimated per-
token and sequence probabilities for πθ. We derive the loss
function of diffu-GRPO,

Ldiffu-GRPO(θ) = E q∼D
o1,...,oG∼πθ(·|q)

[
1
G

∑G
i=1

1
|oi|
∑|oi|

k=1 min(
ϕπθ (oki |q

′)

ϕ
πθold (oki |q′)

Ak
i , clip

(
ϕπθ (oki |q

′)

ϕ
πθold (oki |q′)

, 1− ε, 1 + ε

)
Ak

i

)

−β DKL

[
ϕπθ (· | q′)

∥∥ϕπref(· | q′)
]]

(4)
Our algorithm is summarized in Algorithm 1. To efficiently
optimize the policy loss, in practice, on-policy RL algo-
rithms such as PPO and GRPO perform multiple gradient
updates for each batch of samples. During these updates,
the prompt q, completions {oi}Gi=1, old policy πθold and ad-
vantages Ak

i (πθold) are kept fixed. However, determining the
optimal number of gradient updates per batch is challenging.
If the number is too high, it can lead to overfitting within the
batch, while a number that is too low slows down conver-
gence. Achieving a balance between outer batch iterations
and inner gradient updates is crucial for sample efficiency.
Besides, every outer batch iteration requires sampling com-
pletion through iterative denoising steps, which incurs high
computational cost.

Interestingly, our log-probability estimator offers a unique
mitigation to this dilemma. For each gradient update step,

we randomly mask the prompt q to q′ to estimate the log-
probabilities. Intuitively, this stochastic masking introduces
perturbed views of the same (prompt, completion) pairs,
serving as a form of regularization for policy optimization.
It can also be viewed as a form of data augmentation, ex-
tracting more supervision signals from the same data. Em-
pirically, we found that this approach, unique to masked
diffusion models, allows us to scale µ to higher values while
maintaining stable learning dynamics. As a consequence,
it reduces the number of outer batch iterations required for
convergence, which in turn decreases the number of online
generations needed and ultimately results in significantly
lower computational cost. As shown in Figure 6, training
with higher values of µ achieves the same reward perfor-
mance in substantially less wall clock time.

3.3 Supervised Finetuning with Reasoning Data

We perform SFT of LLaDA on s1K (Muennighoff et al.,
2025), a curated dataset consisting of 1000 high-quality
reasoning questions. The reasoning traces in s1K exhibit
detailed step-by-step problem-solving processes, including
verification of intermediate results and backtracking when
encountering errors or dead ends. The SFT algorithm is sum-
marized in Algorithm 2, where tokens are randomly masked
during training according to a time-varying schedule. The
model is optimized to predict the original tokens given their
context. We find that for SFT to work effectively in practice,
various design choices must be carefully considered, whose
details are discussed in Appendix D.2.

4 Experiments
To understand how reasoning capabilities can be scaled in
masked dLLMs through training adaptations, we conduct
comprehensive experiments to answer the following main
research questions:
(1) How does SFT on reasoning traces and applying diffu-

4

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Algorithm 1 diffu-GRPO: Policy Gradient Optimization for
Masked dLLMs
Require: Reference model πref, prompt distribution D,

number of completions per prompt G, number of inner
updates µ, prompt token masking probability pmask

1: Initialize πθ ← πref
2: while not converged do
3: πθold ← πθ

4: Sample a prompt q ∼ D
5: Sample G completions oi ∼ πθold(· | q), i ∈ [G]
6: For each oi, compute reward ri and advantage

Ak
i (πθold) using Equation (2)

7: for gradient update iterations n = 1, . . . , µ do
8: q′ ← randomly mask tokens of prompt p with

probability pmask
9: For πθ, πθold , πref, estimate log-probabilities of

oi given q′ according to Section 3.1
10: Compute diffu-GRPO objective (4) and update

πθ by gradient descent
11: return πθ

GRPO independently improve LLaDA’s reasoning abili-
ties?

(2) What additional gains can be achieved by combining
SFT and diffu-GRPO to create d1-LLaDA?

(3) Design Choices: How does the proposed log-probability
estimation with randomized masking in diffu-GRPO and
the masking probability pmask affect training efficiency
and stability?

4.1 Models, Tasks and Setups

Models We employ LLaDA-8B-Instruct (Nie et al.,
2025), a state-of-the-art open-sourced dLLM that has
not undergone post-training, as our primary experimental
testbed and baseline. We apply 3 post-training recipes
to LLaDA-8B-Instruct: (a) SFT, (b) diffu-GRPO, (c) d1:
applying diffu-GRPO on the checkpoint after SFT, where
we refer to them as LLaDA+SFT, LLaDA+diffu-GRPO,
and d1-LLaDA, respectively.

Tasks We conduct experiments on six reasoning tasks in
three categories: (1) Mathematical reasoning: we use
GSM8K (Cobbe et al., 2021), a dataset of multi-step grade
school math problems, and MATH500 (Lightman et al.,
2023), a curated subset of 500 problems drawn from the
MATH dataset (Hendrycks et al., 2021) comprising high-
school competition math problems; (2) Planning: this in-
cludes two tasks: 4x4 Sudoku puzzles, which require con-
straint satisfaction and systematic elimination to fill a grid
with numbers; and Countdown with 3 numbers, a combi-
natorial arithmetic game in which models must reach tar-
get numbers using basic arithmetic operations on a given

set of numbers. (3) Coding: comprises of two bench-
marks; HumanEval (Chen et al., 2021), a suite of 164
hand-crafted Python algorithmic programming problems
and MBPP (Austin et al., 2021b), a crowd-sourced collec-
tion of 257 Python tasks.

Training For SFT, we train on s1k (Muennighoff et al.,
2025) for 20 epochs, with a sequence length of 4096. For
RL, we train a separate model for each task. More specif-
ically, for GSM8K, MATH500, we train on the training
split; for Countdown and Sudoku, we train on synthetic
generated datasets. We use a composed reward function that
combines both formatting and correctness rewards. Due
to the heavy computational cost of online generations, we
limit the generation sequence length of online generations
to be 256 throughout RL training. Other hyperparameters of
training, training and evaluation datasets, reward functions,
and inference setups are detailed in Appendix D.

Evaluation For all the benchmarks, we evaluate LLaDA-
8B-Instruct and LLaDA+SFT on the final checkpoint for
all the tasks. For LLaDA+diffu-GRPO and d1-LLaDA, we
evaluate every 100 steps starting from step 600 and report
the best results. All models are evaluated with zero-shot-
prompting and greedy decoding with generation lengths of
128, 256 and 512 separately.

4.2 Main Results

diffu-GRPO outperforms both LLaDA and SFT and
improves over initialization checkpoint consistently .
Table 1 reports the performance of baseline LLaDA-8B-
Instruct and models obtained by different post-training
recipes across four tasks using zero-shot evaluation, where
each diffu-GRPO model was trained for each task. For each
task, we evaluate with three generation sequence lengths,
and Figure 5 plots the average number of effective tokens.
We present the following predominent findings.

Both diffu-GRPO and SFT yield improvements over the
LLaDA-8B-Instruct baseline, with diffu-GRPO demonstrat-
ing consistently larger gains. Specifically, diffu-GRPO out-
performs both LLaDA-8B-Instruct and SFT, in all 12 se-
tups, while SFT outperforms LLaDA-8B-Instruct in only 7
of them, demonstrating that diffu-GRPO achieves stronger
overall performance than SFT alone. Both LLaDA+diffu-
GRPO and d1-LLaDA demonstrate consistent improve-
ments over their respective starting points. Specifically,
LLaDA+diffu-GRPO outperforms the base LLaDA-8B-
Instruct model across all setups, and d1-LLaDA surpasses
LLaDA+SFT in every case. This indicates that diffu-GRPO
provides reliable performance gains, regardless of the ini-
tialization—whether from a pretrained model or an SFT-
adapted checkpoint.

d1 recipe yields the highest gains. SFT, followed by

5

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Table 1. Model performance on Mathematics and Planning Benchmarks: Green values indicate best performance and blue values
indicate second-best performance. The results demonstrate that d1-LLaDA consistently outperforms other models, applying diffu-GRPO
consistently improves the starting checkpoint, and diffu-GRPO alone shows better performance than SFT.

GSM8K MATH500 Countdown Sudoku

Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512

LLaDA-8B-Instruct 68.7 76.7 78.2 26.0 32.4 36.2 20.7 19.5 16.0 11.7 6.7 5.5

+ SFT 66.5 78.8 81.1 26.2 32.6 34.8 20.3 14.5 23.8 16.5 8.5 4.6

+ diffu-GRPO 72.6 79.8 81.9 33.2 37.2 39.2 33.2 31.3 37.1 18.4 12.9 11.0

+ SFT + diffu-GRPO
(d1-LLaDA) 73.2 81.1 82.1 33.8 38.6 40.2 34.8 32.0 42.2 22.1 16.7 9.5

diffu-GRPO—resulting in d1-LLaDA—yields additional
gains, beyond either method individually. This combined
approach outperforms pure diffu-GRPO in 11 out of 12 se-
tups, indicating a synergistic effect between the two training
stages. Notably, while d1-LLaDA shows consistent im-
provements across all benchmarks, the magnitude varies by
task: we observe modest improvements on GSM8K (3.9%)
and MATH500 (4.0%), but significantly larger gains on
Countdown (26.2%) and Sudoku (10.0%). We hypothesize
this discrepancy stems from the base model’s saturation
on mathematical tasks, with less room for improvement as
compared to planning benchmarks that involve structured
constraint satisfaction patterns.

Training a unified model across tasks retains strong
performance. We train a single diffu-GRPO (and d1)
model on the combined GSM8K, MATH500, Count-
down, and Sudoku datasets. To ensure balanced training,
we subsample the data so that each task has the same
number of training examples. Even with subsampling,
Table 2 shows that diffu-GRPO scales well to multi-task
settings without sacrificing accuracy compared to the
per-task diffu-GRPO results in Table 1.

Scaling diffu-GRPO to coding domains. We also eval-
uate diffu-GRPO on coding tasks, where we train a
model on the KodCode-Light-RL-10K dataset (Xu et al.,
2025), which contains general coding tasks with solu-
tions verified by synthetic unit tests. The diffu-GRPO
results are shown in Table 3. We find that diffu-GRPO
consistently improves performance, regardless of the
initialization point. Interestingly, our findings suggest
that s1k is not suitable for coding, since it lacks data-
points with code. Exploration into finding the optimal
SFT dataset is left for future works.

4.3 Discussion

Qualitative results show “aha moments” in SFT and
d1-LLaDA generations. While the performance for gen-
eration sequence length 128 and 256 increases with SFT,
diffu-GRPO and d1 as compared to LLaDA-8B-Instruct,
qualitatively, we do not observe significant differences in

the generated reasoning traces. However, at sequence length
512, we begin observing “aha moments” in the SFT and
d1-LLaDA models, which demonstrates self-correction and
backtracking behaviors. We show these in Appendix E.
For the same questions from GSM8k, we show generations
of each model, with the variants using SFT showing self-
verifications and self-corrections to the right answer. Our
intuition is that the model has instilled behaviors such as
verification of intermediate results and backtracking from
the reasoning traces of s1k during the SFT stage.

Table 2. Unified Model Performance Across Reasoning Tasks: For
diffu-GRPO and d1-LLaDA variants, a single model was trained
on the combined dataset of GSM8K, MATH500, Countdown, and
Sudoku. Green and blue values indicate the best and second-best
performance.

GSM8K MATH500 Countdown Sudoku

Model / Seq Len 128 256 128 256 128 256 128 256

LLaDA-8B-Instruct 68.7 76.7 26.0 32.4 20.7 19.5 11.7 6.7

+ SFT (s1k) 66.5 78.8 26.2 32.6 20.3 14.5 16.5 8.5

+ combined diffu-GRPO 72.4 78.2 30.2 36.6 27.7 19.5 22.9 15.7

combined d1-LLaDA 75.1 81.1 29.8 35.4 30.1 32.8 21.9 15.4

Table 3. Effectiveness of diffu-GRPO on Coding Benchmarks:
Evaluated with and without diffu-GRPO on HumanEval and MBPP.
diffu-GRPO consistently improves over initialization checkpoint on
coding tasks.

HumanEval MBPP

Model / Seq Len 128 256 512 128 256 512

LLaDA-8B-Instruct 27.4 35.3 37.8 36.2 41.2 40.4
+ diffu-GRPO 29.3 39.0 34.8 42.0 45.5 41.6
∆ (diffu-GRPO gain) +1.9 +3.7 -3.0 +5.8 +4.3 +1.2

LLaDA-8B-Instruct + SFT (s1k) 21.3 32.3 32.9 40.1 39.7 41.2
+ diffu-GRPO 31.1 32.9 37.8 40.5 44.7 42.8
∆ (diffu-GRPO gain) +9.8 +0.6 +4.9 +0.4 +5.0 +1.6

diffu-GRPO improves reasoning beyond training se-
quence length. Although our diffu-GRPO training uses
fixed sequence length of 256 for online generations, we
observe performance gains at other generation sequence
lengths as well. The improvements at 128 and 512 sequence
lengths suggest that the model has learned more general rea-
soning strategies rather than overfitting to a specific length.

6

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

This is further supported by the effective token usage data,
presented in Figure 5, which shows no truncation at 128
tokens and increased token utilization at 512.

0 1000 2000 3000 4000
RL Step

0.4

0.6

0.8

1.0

1.2

1.4

Co
rre

ct
ne

ss
 R

ew
ar

d

GSM8K

Masking Probability
p=0.7
p=0.5
p=0.3
p=0.1
p=0.0

Figure 3. Ablation of prompt masking probability (pmask) on
GSM8K reward trends. Light masking (0.1, 0.3) improves stability
and performance over no masking (0.0), suggesting the regulariza-
tion benefit of random masking as discussed in Sec 3.2. Higher
masking rates (0.5, 0.7) introduce instability in later training stages.

Sequential scaling with increasing generation sequence
lengths. LLaDA-8B-Instruct, SFT, diffu-GRPO and d1-
LLaDA demonstrate improved performance with increasing
sequence lengths for GSM8k and MATH500, with larger
jumps observed from 128 to 256 (∼ 7.1%), than from 256
to 512 (∼ 2.5%). Qualitative examples in Appendix E show
more sophisticated reasoning traces emerge with 512-token
generation lengths. These findings align with previous re-
search showing that increasing test-time compute through
longer reasoning processes leads to improved performance
in autoregressive models (Muennighoff et al., 2025). How-
ever, we notice a mixed scaling trend on Countdown and
Sudoku. Performance decreases with increasing sequence
lengths for Sudoku across all models. For Countdown,
LLaDA-8B-Instruct decreases monotonically with sequence
length, while SFT, diffu-GRPO and d1-LLaDA peak at 512
sequence length. This likely stems from extensive search-
ing requirements, beyond LLaDA-8B-Instruct’s capabilities.
We hypothesize favorable sequential scaling will strengthen
with more robust base dLLMs. Unlike AR models like
DeepSeek R1 (Guo et al., 2025), we observe no significant
CoT length growth post-RL training, as LLaDA-8B-Instruct
was pre-trained on sequences up to 4096 tokens. Further
scaling requires larger generation lengths during RL training,
currently infeasible due to slow generation speed. Future
research should develop efficient inference algorithms for
online sampling to scale dLLM RL training.

4.4 Design Choices and Ablations for diffu-GRPO

Random Masking for Likelihood Estimation Offers Im-
plicit Regularization Our randomized masking mechanism
provides significant advantages for training masked dLLMs.
As shown in Figure 6, random masking consistently out-

performs fixed masking across different values of policy
optimization updates (µ). While conventional approaches
typically limit µ to 2 due to diminishing returns and overfit-
ting risks, our approach enables scaling µ to much higher
values (12, or even 24) while maintaining or improving
performance, facilitating faster convergence of RL train-
ing. Consequently, fewer number of generations are needed,
which in turn remarkably reduces the computational cost.
The rightmost plot demonstrates the real-world efficiency
gains, where models with higher µ values achieve better cor-
rectness rewards in significantly lesser wall clock time. This
efficiency stems from creating diverse views of the input
data during each optimization step, allowing the model to
prevent in-batch overfitting and extract more learning signal
from each generation.

Effect of Masking Rate on Training Stability and Per-
formance We examine how prompt masking probability
pmask influences diffu-GRPO training. As shown in Figure 3,
lower rates (0.1, 0.3) yield more stable training and bet-
ter final performance by preserving more context tokens
without masking them, while higher rates (0.5, 0.7) intro-
duce instability, with 0.7 causing sharp degradation after
3000 steps. Although pmask = 0.0 avoids variability, it un-
derperforms slightly, confirming the regularization effect
brought by random masking as discussed in Sec. 3.2. This
effect is especially beneficial at large policy iteration counts
(µ = 12), as used in this ablation.

5 Related Works
Due to space constraint, we provide a detailed related works
discussion in Appendix B.

Diffusion Language Models. Diffusion models, success-
ful in visual domains (Song et al., 2020; Ho et al., 2020),
faced challenges in language due to text’s discrete nature,
initially tackled by modeling continuous diffusion on tex-
tual latents (Austin et al., 2021a; Gulrajani and Hashimoto,
2023). Masked diffusion emerged as an effective discrete
variant (Austin et al., 2021a; Sahoo et al., 2024; Shi et al.,
2024; Ou et al., 2024; Nie et al., 2024), scaled notably in
DiffuLLaMA (Gong et al., 2025), which initialized with
pretrained LLaMA weights. Recent works explored chain-
of-thought reasoning (Ye et al., 2024b;a), block-based gen-
eration (Arriola et al., 2025), and large-scale competitive
performance in LLaDA (Nie et al., 2025) and Dream (Ye
et al., 2025a). However, reinforcement learning (RL) en-
hancement remains unexplored; we present the first demon-
stration using policy gradients for large diffusion language
models.

Improving Reasoning Abilities of LLMs through SFT
and RL. Reasoning improvements in LLMs involve super-
vised finetuning (SFT) with high-quality reasoning datasets

7

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Deepseek
7B

Mistral
7B

LLaMA3
8B

Dream
7B

LLaDA
8B

Qwen2.5
7B

d1-LLaDA
8B

0
10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

 (
%

)

17.4(8)

52.1(8) 55.3(8)

77.2(8) 78.2(0) 78.9(8) 82.1(0)

GSM8K

Deepseek
7B

Mistral
7B

LLaMA3
8B

Dream
7B

LLaDA
8B

Qwen2.5
7B

d1-LLaDA
8B

0

10

20

30

40

50

6.0(4)

13.1(4)
18.0(4)

39.6(4)
36.2(0)

41.1(4) 40.2(0)

MATH500

Figure 4. Comparison with state-of-the-art dLLMs and AR LLMs of similar size: d1-LLaDA achieves the highest GSM8K score and
the second-highest MATH500 score. LLaDA results are from our evaluation using 0-shot. Scores for other models are from Dream (Ye
et al., 2025a), using 8-shot prompts for GSM8K and 4-shot for MATH. Note that here we report d1-LLaDA with task-specific RL training.

Seq=128 Seq=256 Seq=5120

100

200

300

N
um

 E
ffe

ct
iv

e
To

ke
ns

GSM8K (0­shot)

Seq=128 Seq=256 Seq=5120

100

200

300

400

MATH500 (0­shot)

Seq=128 Seq=256 Seq=5120

100

200

300

400

Countdown (0­shot)

Seq=128 Seq=256 Seq=5120

100

200

300

400

500
Sudoku (0­shot)

LLaDA­8B­Instruct + SFT + diffu­GRPO + SFT + diffu­GRPO (d1­LLaDA)

Figure 5. Effective Token Usage: As we increase the generation length, the number of effective tokens (average number of non-padding,
non-EOS tokens per generation across tasks) grows and remains comparable for all methods on MATH500, Countdown and Sudoku.

0 2500 5000 7500 10000 12500
of Completions Generated

0.50

0.75

1.00

1.25

1.50

Co
rre

ct
ne

ss
 R

ew
ar

d

 = 2
Fixed Masking
Random Masking

0 2500 5000 7500 10000 12500
of Completions Generated

 = 12

Fixed Masking
Random Masking

0 2500 5000 7500 10000 12500
of Completions Generated

 = 24

Fixed Masking
Random Masking

0 5 10 15 20
Wall Clock Time (hours)

Learning Efficiency Comparison
w/ Random Masking

 = 2
 = 12
 = 24

Figure 6. Comparison of fixed vs. random masking across different policy optimization update values (µ). The first three figures show
GSM8K correctness reward vs. the number of completions generated during RL training with different µ. Random masking consistently
outperforms fixed masking. The rightmost panel compares all three µ values with random masking in terms of wall clock time, indicating
higher efficiency from higher µ values.

(Yu et al., 2023; LI et al., 2024; Paster et al., 2023) or curated
reasoning demonstrations (Ye et al., 2025b; Muennighoff
et al., 2025; Zhou et al., 2023). However, RL approaches
(Chu et al., 2025) generalize better, especially with methods
like GRPO (Guo et al., 2025; Shao et al., 2024), facilitat-
ing advantage estimation without critic models. Advanced
reasoning via RL alone was shown by DeepSeek-R1-Zero
(Guo et al., 2025), whose reasoning traces can be used to
distill smaller-model, such as OpenThoughts (Team, 2025)
and OpenR1-Math2. Prior RL work in discrete diffusion
models (Zekri and Boullé, 2025) employed concrete score
matching and applied to smaller scale models, whereas our
method specifically applies to large masked dLLMs with

2https://huggingface.co/datasets/open-r1/
OpenR1-Math-220k

efficient masking-based policy gradients, integrating both
SFT and RL.

6 Conclusion
In this work, we explore scaling reasoning in diffusion
LLMs through different recipes. SFT on reasoning datasets
improves performance and reveals “Aha moments”. We in-
troduce diffu-GRPO, an efficient policy gradient method for
dLLMs that consistently outperforms SFT across bench-
marks. Combining these approaches, our d1 recipe—a
two-stage SFT and diffu-GRPO pipeline—delivers the most
significant improvements over the baseline. Future work
should focus on developing efficient decoding strategies to
scale generation length for more effective RL training.

8

https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh
Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün,
and Sara Hooker. Back to basics: Revisiting reinforce
style optimization for learning from human feedback in
llms. arXiv preprint arXiv:2402.14740, 2024.

Arel. Arel’s sudoku generator. https://www.ocf.
berkeley.edu/˜arel/sudoku/main.html,
2025. Accessed: 2025-04-08.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan
Yang, Zhixuan Qi, Jiaqi Han, Subham Sekhar Sahoo,
and Volodymyr Kuleshov. Block diffusion: Interpolating
between autoregressive and diffusion language models.
In The Thirteenth International Conference on Learning
Representations, 2025. URL https://arxiv.org/
abs/2503.09573.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tar-
low, and Rianne Van Den Berg. Structured denoising
diffusion models in discrete state-spaces. Advances in
neural information processing systems, 34:17981–17993,
2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie Cai, Michael Terry, Quoc Le, et al. Program
synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021b.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell,
Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort,
Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from
human feedback. arXiv preprint arXiv:2204.05862, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde De Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong,
Saining Xie, Dale Schuurmans, Quoc V Le, Sergey
Levine, and Yi Ma. Sft memorizes, rl generalizes: A com-
parative study of foundation model post-training. arXiv
preprint arXiv:2501.17161, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,

Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

Tri Dao. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), June 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra,
Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
Gregerson, et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella,
Quentin Carbonneaux, Taco Cohen, and Gabriel Syn-
naeve. Rlef: Grounding code llms in execution feed-
back with reinforcement learning. arXiv preprint
arXiv:2410.02089, 2024.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng
Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin Zhao, Wei
Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling
diffusion language models via adaptation from autore-
gressive models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=j1tSLYKwg8.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-
based diffusion language models. Advances in Neural
Information Processing Systems, 36:16693–16715, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. Measuring mathematical problem solving
with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

9

https://www.ocf.berkeley.edu/~arel/sudoku/main.html
https://www.ocf.berkeley.edu/~arel/sudoku/main.html
https://arxiv.org/abs/2503.09573
https://arxiv.org/abs/2503.09573
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=j1tSLYKwg8
https://openreview.net/forum?id=j1tSLYKwg8

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Inception Labs, Samar Khanna, Siddhant Kharbanda, Sh-
ufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum,
Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Er-
mon, Aditya Grover, and Volodymyr Kuleshov. Mercury:
Ultra-fast language models based on diffusion. 2025.
URL https://inceptionlabs.ai.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif
Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan
Qin, Bin Dong, Li Zhou, Yann Fleureau, Guil-
laume Lample, and Stanislas Polu. Numinamath.
https://github.com/project-numina/
aimo-progress-prize/blob/main/report/
numina_dataset.pdf, 2024.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu,
Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple,
effective, and efficient reinforcement learning method
for aligning large language models. arXiv preprint
arXiv:2310.10505, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Ed-
wards, Bowen Baker, Teddy Lee, Jan Leike, John Schul-
man, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. arXiv preprint arXiv:2305.20050, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu
Pang, Chao Du, Wee Sun Lee, and Min Lin. Understand-
ing r1-zero-like training: A critical perspective. arXiv
preprint arXiv:2503.20783, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete
diffusion modeling by estimating the ratios of the data
distribution. In Forty-first International Conference on
Machine Learning.

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia
Luo, and Jie Tang. Dynamic scaling of unit tests for
code reward modeling. arXiv preprint arXiv:2501.01054,
2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa
Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candès, and Tatsunori
Hashimoto. s1: Simple test-time scaling. arXiv preprint
arXiv:2501.19393, 2025.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu,
Guangtao Zeng, Min Lin, and Chongxuan Li. Scaling
up masked diffusion models on text. arXiv preprint
arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang
Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and
Chongxuan Li. Large language diffusion models, 2025.
URL https://arxiv.org/abs/2502.09992.

OpenAI. Learning to reason with llms, Septem-
ber 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng
Sun, Zhenguo Li, and Chongxuan Li. Your absorbing
discrete diffusion secretly models the conditional distri-
butions of clean data. arXiv preprint arXiv:2406.03736,
2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feed-
back. Advances in neural information processing systems,
35:27730–27744, 2022.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao
Peng, and Alane Suhr. Tinyzero. https://github.com/Jiayi-
Pan/TinyZero, 2025. Accessed: 2025-01-24.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and
Jimmy Ba. Openwebmath: An open dataset of high-
quality mathematical web text, 2023.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan,
Edgar Mariano Marroquin, Alexander M Rush, Yair
Schiff, Justin T Chiu, and Volodymyr Kuleshov. Sim-
ple and effective masked diffusion language models.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https:
//openreview.net/forum?id=L4uaAR4ArM.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junx-
iao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and
Michalis Titsias. Simplified and generalized masked dif-
fusion for discrete data. Advances in neural information
processing systems, 37:103131–103167, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. In International Conference on Learning Rep-
resentations, 2020.

10

https://inceptionlabs.ai
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://arxiv.org/abs/2502.09992
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openreview.net/forum?id=L4uaAR4ArM
https://openreview.net/forum?id=L4uaAR4ArM

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu
Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chen-
zhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scal-
ing reinforcement learning with llms. arXiv preprint
arXiv:2501.12599, 2025.

OpenThoughts Team. Open Thoughts. https://open-
thoughts.ai, January 2025.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gallouédec.
Trl: Transformer reinforcement learning. https://
github.com/huggingface/trl, 2020.

Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8:229–256, 1992.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and
Radha Poovendran. Kodcode: A diverse, challenging,
and verifiable synthetic dataset for coding. 2025. URL
https://arxiv.org/abs/2503.02951.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin
Jiang, Zhenguo Li, and Lingpeng Kong. Beyond autore-
gression: Discrete diffusion for complex reasoning and
planning. arXiv preprint arXiv:2410.14157, 2024a.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Ji-
ahui Gao, Han Shi, Chuan Wu, Zhenguo Li, Wei Bi, and
Lingpeng Kong. Diffusion of thoughts: Chain-of-thought
reasoning in diffusion language models. arXiv preprint
arXiv:2402.07754, 2024b.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu,
Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream
7b, 2025a. URL https://hkunlp.github.io/
blog/2025/dream.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia,
and Pengfei Liu. Limo: Less is more for reasoning, 2025b.
URL https://arxiv.org/abs/2502.03387.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengy-
ing Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian
Weller, and Weiyang Liu. Metamath: Bootstrap your own
mathematical questions for large language models. arXiv
preprint arXiv:2309.12284, 2023.

Oussama Zekri and Nicolas Boullé. Fine-tuning discrete
diffusion models with policy gradient methods. arXiv
preprint arXiv:2502.01384, 2025.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun,
Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu,
et al. Lima: less is more for alignment. In Proceedings of
the 37th International Conference on Neural Information
Processing Systems, pages 55006–55021, 2023.

11

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://arxiv.org/abs/2503.02951
https://hkunlp.github.io/blog/2025/dream
https://hkunlp.github.io/blog/2025/dream
https://arxiv.org/abs/2502.03387

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

A Limitations
Due to the fixed-length generation requirement of LLaDA, our diffu-GRPO training is conducted with a predefined sequence
length, which may constrain the model from discovering optimal reasoning paths—either concise solutions or extended
chain-of-thought traces—as observed in prior autoregressive works like DeepSeek-R1. Future work could explore applying
diffu-GRPO to models like Block Diffusion that support variable-length generation and enable scalable long-context RL
training.

B Related Work
Diffusion Language Models While diffusion models have achieved remarkable success in the visual domain (Song et al.,
2020; Ho et al., 2020), their application to language has been limited, partly due to text’s discrete nature. Initial approaches
attempted to learn continuous diffusion models over textual latents (Austin et al., 2021a; Gulrajani and Hashimoto, 2023),
but faced challenges with scalability and discretization. Masked diffusion has been established as a specific instance of
discrete diffusion (Austin et al., 2021a; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024; Nie et al., 2024), with recent
efforts scaling these models significantly. DiffuLLaMA (Gong et al., 2025) extended this approach by initializing masked
diffusion language models with pretrained LLaMA weights. Ye et al. (2024b) explored how diffusion language models can
generate chain-of-thought reasoning, and complex reasoning tasks on smaller-scale models (Ye et al., 2024a), highlighting
their advantages over autoregressive models in reversal tasks, though their traces lacked self-correction capabilities. Arriola
et al. (2025) proposed Block Diffusion, a hybrid approach that models sequences block-by-block while applying diffusion
within each block, allowing flexible length generation and improving inference efficiency with kv-caching. Recently, LLaDA
(Nie et al., 2025) and Dream (Ye et al., 2025a) demonstrated that large diffusion language models can achieve performance
comparable to similarly-sized autoregressive alternatives, but have not yet been enhanced through reinforcement learning.
To the best of our knowledge, we are the first to demonstrate the efficacy of policy gradient-based reinforcement learning
algorithms on large diffusion language models.

Improving Reasoning Abilities of LLMs through SFT and RL Approaches to enhance reasoning capabilities in large
language models generally fall into two categories: supervised finetuning and reinforcement learning. SFT on high-quality
reasoning traces (Yu et al., 2023; LI et al., 2024; Paster et al., 2023) has shown promising results, while fewer but carefully
curated reasoning datasets (Ye et al., 2025b; Muennighoff et al., 2025; Zhou et al., 2023) can outperform larger datasets.
Chu et al. (2025) demonstrate that SFT-based reasoning often relies on memorization rather than generalization, while
RL methods achieve better transfer to novel scenarios, particularly when intermediate reasoning steps are difficult to
supervise. Recently, algorithms like GRPO (Guo et al., 2025; Shao et al., 2024) enable efficient training by estimating
advantages from group scores without requiring additional critic models as in PPO. Guo et al. (2025) demonstrate that strong
reasoning capabilities can emerge through RL even without SFT (DeepSeek-R1-Zero), producing long reasoning traces with
self-reflection and verification steps that significantly improve performance on mathematical tasks. The development of
strong reasoning models like R1 has in turn sparked renewed interest in SFT for smaller models using distilled reasoning
traces from these expert reasoners. Datasets like OpenThoughts (Team, 2025) and OpenR1-Math3, which contain reasoning
traces from DeepSeek R1, enable smaller models to learn step-by-step problem-solving from expert demonstrations. For RL
in discrete diffusion models, prior work by Zekri and Boullé (2025) proposed a policy gradient framework using concrete
score matching, but it relies on gradient-flow computations and does not target masked objectives. In contrast, our method
is tailored to masked dLLMs with efficient policy gradient calculation and improved learning efficiency through random
masking. Our work is among the first to explore improving reasoning in diffusion-based LLMs via both SFT and RL.

3https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

12

https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

C Masked dLLM Formulation
Masked diffusion language model sequence of tokens xt, t ∈ [0, 1), which follow a forward diffusion process q. This
process takes as input the complete sequence x0 at t = 0 and gradually corrupts it by randomly replacing tokens with a
mask token mask. Therefore, xt represents the sequence with increasing masking ratios in expectation. Each token in the
sequence xi

t thus follows the conditional distribution,

qt|0(xt|x0) =

L∏
i=0

qt|0(x
i
t|xi

0), qt|0(x
i
t|xi

0) =

{
1− αt, xi

t = mask

αt, xi
t = xi

0

(5)

where αt (a.k.a noise schedule) is strictly decreasing in t. Simply put, at any timestep, the probability that a token transitions
to the masked state is αt. At the end of the forward process, i.e. at t = 1, all tokens are guaranteed to be masked.

This masked sequence serves as the input for the reverse process. A key property of the forward process is that once a
token transitions to the masked state, it cannot transition to any other state. Therefore, the conditional distribution from an
arbitrary time step t to s (i.e., the reverse process), such that 0 ≤ s < t ≤ 1 is given by,

qs|t(x
i
s|xt) =


1, xi

t ̸= mask, xi
s = xi

t
1−αs

1−αt
, xi

t = mask, xi
s = mask

αs−αt

1−αt
q0|t(x

i
s|xt), xi

t = mask, xi
s ̸= mask

0, otherwise

(6)

The function q0|t(x
i
s|xt) is estimated by the language model, that predicts the original token in sequence x0, if it is masked

in xt. Notably, previous works find that the model does not require the timestep as an input () since the number of mask
tokens implicitly provide this information to the model.

The model, parameterized as fθ(·|xt) learns to predict all the masked tokens in the sequence xt simultaneously, similar to
the masked language modeling task. More specifically, it is trained by minimizing a NELBO of the negative log-likelihood,
given by,

NELBO(θ) ≜ Ex0,xt

[∫ t=1

t=0

α′
t

1− αt

L∑
i=1

1[xi
t = mask] log fθ(x

i
0 | xt)

]
, (7)

where x0 is sampled from the training data distribution pdata, and xt ∼ qt|0(·|x0). In summary, the model is trained to
reverse the forward process by gradually denoising (unmasking) the input sequence (all masked tokens) and recover the data
distribution.

While various forms of noise schedules can be used (Sahoo et al., 2024; Shi et al., 2024), Nie et al. (2025, LLaDA) uses the
linear schedule: αt = 1− t. The resulting loss function is a specific form of Equation (7):

−Et∼U [0,1], x0, xt

[
1

t

L∑
i=1

1[xi
t = mask] log fθ(x

i
0 | xt)

]
. (8)

13

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

D Experiment Details

Inference To decode a sequence of N tokens, we use N
2 denoising steps and unmask 2 tokens in each step. While the

decoding process can generate tokens in any order, we find that decoding from left to right in blocks yields slightly better
performance in practice. This is referred to as the semi-autoregressive decoding strategy (Nie et al., 2025). More specifically,
we divide the sequence into blocks of 32 tokens. In each step, we unmask 2 tokens with the highest confidence within the
current block, regardless of their position. Once all the tokens in the current block are unmasked, we move to the next one.

D.1 diffu-GRPO

We use the TRL library (von Werra et al., 2020) to implement diffu-GRPO. For our diffu-GRPO training, we employed
Low-Rank Adaptation (LoRA) with a rank of r = 128 and scaling factor α = 64.

For diffu-GRPO on gsm8k, math, countdown and sudoku tasks, training was conducted on 8 NVIDIA A100-80G GPUs, with
the following hyperparameters: sequence length of 256 tokens, batch size of 6 per GPU, and gradient accumulation steps of 2.
We optimized the model using the AdamW optimizer (Loshchilov and Hutter, 2017), with parameters β1 = 0.9, β2 = 0.99,
weight decay of 0.1, learning rate of 3 × 10−6, and gradient clipping at 0.2. For computational efficiency, we utilized
Flash Attention 2 (Dao, 2024) and 4-bit quantization. In gradient update iterations, each token in the prompt is randomly
masked with a probability pmask = 0.15 for log-probability estimation. Our codebase contains further configuration details:
https://github.com/dllm-reasoning/d1. We train 7700, 6600 steps (number of gradient updates) for GSM8K
and MATH500 respectively; for Countdown and Sudoku, we train on synthetic generated datasets for 5000, 3800 steps
respectively.

For diffu-GRPO on coding task, training was conducted on 4 NVIDIA RTX A5000 for 7500 steps (base model + diffu-GRPO)
and 9000 steps(SFT model + diffu-GRPO), with a per-device batch size of 2 and 4 gradient accumulation steps. The other
hyperparameters remain the same as other tasks. Exact configuration details have been provided in our codebase.

D.1.1 REWARD FUNCTIONS, RL TRAINING, AND EVALUATION DATASETS

0 2000 4000 6000 8000
Gradient Update Steps

0.0

0.5

1.0

1.5

2.0

2.5

Re
wa

rd

GSM8K

LLaDA + SFT + diffu-GRPO
LLaDA + diffu-GRPO

0 2000 4000 6000
Gradient Update Steps

1.0

1.2

1.4

1.6

1.8
MATH

LLaDA + SFT + diffu-GRPO
LLaDA + diffu-GRPO

0 1000 2000 3000 4000 5000
Gradient Update Steps

0.20

0.25

0.30

0.35

0.40

0.45

0.50
COUNTDOWN

LLaDA + SFT + diffu-GRPO
LLaDA + diffu-GRPO

0 5000 10000 15000
Gradient Update Steps

0.05

0.10

0.15

0.20

SUDOKU

LLaDA + SFT + diffu-GRPO
LLaDA + diffu-GRPO

Figure 7. Reward curves during RL training for the models in Table 1, across four reasoning tasks. We compare LLaDA+diffu-GRPO and
d1-LLaDA (+SFT + diffu-GRPO). d1-LLaDA consistently achieves higher or comparable reward trajectories.

We designed specific reward functions to guide the model’s learning for each task. The rewards are structured to encour-
age proper formatting, accurate reasoning, and correct solutions, with varying levels of granularity depending on task
requirements. We show the training curves of the results in Table 1 in Figure 7.

GSM8K For the GSM8K dataset, we conduct RL on the training split of the GSM8K dataset 4and evaluate on the test split.
We employ a composite reward function consisting of five components following the unsloth implementation of reward
functions5, we used these:

• XML Structure Reward: Rewards proper formatting with reasoning and answer tags:

– +0.125 for each correctly placed opening and closing tag
– Small penalties for extraneous content after closing tags

4https://huggingface.co/datasets/openai/gsm8k
5https://unsloth.ai/blog/r1-reasoning

14

https://github.com/dllm-reasoning/d1
https://huggingface.co/datasets/openai/gsm8k
https://unsloth.ai/blog/r1-reasoning

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

• Soft Format Reward: Awards 0.5 points for responses matching the pattern:

<reasoning>...(content)...</reasoning><answer>...(content)...</answer>

• Strict Format Reward: Awards 0.5 points for adhering to the exact prescribed format with appropriate line breaks.

• Integer Answer Reward: Awards 0.5 points if the extracted answer is a valid integer.

• Correctness Reward: Awards 2.0 points if the extracted answer exactly matches the ground truth.

Countdown For the Countdown task, we train on the training split of the dataset6 from the TinyZero project (Pan et al.,
2025), restricting to instances that use only three numbers. And we evaluate on 256 synthetically generated countdown
questions with 3 numbers. We implement a reward function that checks if an arithmetic expression constructed from given
numbers reaches a target value:

The function awards:

• 1.0 point when the equation equals the target and uses exactly the available numbers

• 0.1 points when the equation uses the right numbers but doesn’t reach the target

• 0 points otherwise

Sudoku For the 4×4 Sudoku task, we utilize the training dataset available at https://github.com/
Black-Phoenix/4x4-Sudoku-Dataset, specifically the subset containing one million unique puzzles. This dataset
was synthetically generated using code from Arel (2025). For evaluation purposes, we randomly generate 256 Sudoku
puzzles using this generator. The reward is calculated as the proportion of correctly filled cells among those that were empty
in the original puzzle. This approach focuses evaluation on the model’s problem-solving ability rather than its capacity to
copy pre-filled values.

MATH500 For the MATH500 task, we train on the train split of the MATH dataset7. Like GSM8k, we employ a composite
reward function consisting of:

• Format Reward: We award format reward points depending on the presence of <answer>< /answer> tags and
\boxed, as follows:

– 1.00 point if answer tags are present with \boxed inside them
– 0.75 points if answer tags are present without \boxed in them
– 0.50 points if answer tags are not present, but \boxed is present
– 0.25 points if neither answer tags, nor \boxed is present

• Correctness Reward: 2.0 points if the correct answer is in \boxed{}

Coding For the coding model, we train on the KodCode-Light-RL-10k8 dataset. Again, we use a composite reward function
comprising of:

• XML Structure Reward: The same function used for GSM8k is also used for this task, with the addition that an
extra 0.5 points are provided if the program is within answer tags. Additionally, 0 points are awarded if the code is not
wrapped in ‘‘‘python‘‘‘.

• Correctness Score: Similar to (Gehring et al., 2024; Ma et al., 2025), we use unit tests to verify the correctness of the
code. Notably, while these works use a binary reward, we use the fraction of unit tests passed as the reward.

• Safe Code: To prevent the generation of unsafe code, we assign a reward of 0 if any blocked modules are used. These
include os, sys, shutil, subprocess, socket, psutil, ctypes, pathlib, builtins, and import .

6https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
7https://huggingface.co/datasets/ankner/math-500
8https://huggingface.co/datasets/KodCode/KodCode-Light-RL-10K

15

https://github.com/Black-Phoenix/4x4-Sudoku-Dataset
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://huggingface.co/datasets/ankner/math-500
https://huggingface.co/datasets/KodCode/KodCode-Light-RL-10K

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Algorithm 2 Supervised Finetuning of LLaDA (Nie et al., 2025)
Require: underlying unmasking predictor fθ, data distribution pdata, learning rate η

1: repeat
2: Sample (p0, r0) ∼ pdata, t ∼ U(0, 1) ▷ p0 is the prompt and r0 is the response
3: Construct a partially masked response rt ∼ qt|0(rt|r0) ▷ qt|0 is defined in Eq. (5)
4: Calculate L(θ) = − 1

t|r0|
∑|r0|

i=1 1[r
i
t = mask] log fθ(ri0|p0 ⊕ rt) ▷ ⊕ is concatenation

5: θ ← θ − η∇θL
6: until Converged
7: Return θ

D.2 SFT Details

Similarly, the SFT model also employs LoRA, with a rank of r = 128 and scaling factor α = 256. We train with a sequence
length of 4096 on 2 A6000 GPUs, using gradient accumulation over 4 steps and a per-device batch size of 1, yielding an
effective batch size of 8. The optimizer and learning rate schedule match those used in diffu-GRPO, with a learning rate of
1e-5 and gradient clipping at 1.0. The SFT model was trained on the s1k dataset for 2460 steps, leaving 1% of the data for
evaluation. A linear learning rate decay schedule was used, with no warmup. Our codebase contains further configuration
details: https://github.com/dllm-reasoning/d1.

Truncated Sequences LLaDA-instruct is trained to generate full sentences, i.e., given any sequence length, it will always
try to generate a complete sentence. However, due to the long sequence length of s1k, we had to truncate the dataset to have
a maximum sequence length of 4096.

Loss on PAD tokens As discussed in Nie et al. (2025), LLaDA needs to take a loss on the PAD tokens to be able to
effectively terminate its generation. Additionally, to speed up training, we can pad the sequences in a batch to the longest
sequence length in the batch. However, in GPU-constrained environments which use a small batch size, we find that padding
to the longest datapoint in the batch is suboptimal since not enough PAD tokens are considered in the loss. Therefore, we
choose to pad to the max length of the model.

Dataset Difficulty We find that there are some dynamics between the difficulty of the dataset and the model strength. In
general, a weaker model needs a combination of easier and harder datapoints to scale reasoning. If we use an overly hard
dataset, the performance degrades since the model easily overfits.

E Qualitative Examples on GSM8k
We show qualitative results from all the models. Correct answers are in green, incorrect answers in red and aha-moments in
blue. Notably, sometimes the model can reach the right answer via the wrong reasoning - such artifacts should reduce with a
stronger base model.

E.1 LLaDA-Instruct

When controlling the generation sequence length of dLLMs, it influences the reasoning style. For example, we see that
with seq len = 512, compared to 128, the model produces more detailed step-by-step solutions with explicit mathematical
formulas and enumerated calculations.

Model: LLaDA-8B-Instruct
Generation Sequence Length: 128
Question: A 76-star flag has three rows of 8 stars two rows of 6 stars and the rest are 5-star rows. How many rows
of 5 stars are there altogether on the flag?

<reasoning> The flag has three stars in 8 rows, two stars in 6 rows, and the rest are 5-star rows. The total number
of stars is the sum of the stars in the three8-star rows and the 6-star rows, which is 24 + 12 = 36 stars. Therefore, the
remaining 76 - 36 = 40 stars are be placed in 5-star rows. Hence, the number of 5-star rows is 40/5. < /reasoning>
<answer> 8 < /answer>

16

https://github.com/dllm-reasoning/d1

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Model: LLaDA-8B-Instruct
Generation Sequence Length: 512
Question: A 76-star flag has three rows of 8 stars two rows of 6 stars and the rest are 5-star rows. How many rows
of 5 stars are there altogether on the flag?

<reasoning> To determine the number of rows of 5 stars on the 76-star flag, we need to follow these steps:
1. Calculate the total number of stars in the three rows of 8 stars. 2. Calculate the total number of stars in the two
rows of 6 stars. 3. Subtract the total number of stars in the first two rows from the total number of stars on the flag to
find the number of stars in the 5-star rows. 4. Divide the number of stars in the 5-star rows by 5 to find the number
of 5-star rows rows.
Let’s go through each step in detail:
1. The total number of stars in the three rows of 8 stars is:

3× 8 = 24

2. The total number of stars in the two rows of 6 stars is:

2× 6 = 12

3. The total number of stars in the first two rows is:

24 + 12 = 36

4. The total number of stars on the flag is 76. Therefore, the number of stars in the 5-star rows is:

76− 36 = 40

5. The number of 5-star rows is the number of stars in the 5-star rows divided by 5:

40

5
= 8

So, the number of rows of 5 stars on the flag is 8 < /reasoning>

Model: LLaDA-8B-Instruct
Generation Sequence Length: 512
Question: A bakery produces 60 loaves of bread each day. Two-thirds of the loaves are sold in the morning and half
of what is left is sold equally in the afternoon and evening. How many loaves of bread are sold in the afternoon?

<reasoning> To determine the number of loaves of bread sold in the afternoon, we need to follow these steps:
1. Calculate the number of loaves sold in the morning. 2. Determine the number of loaves remaining after the
morning sale. 3. Calculate the number of loaves sold in the afternoon and evening. 4. Identify the number of loaves
sold in the afternoon.
First, we calculate the number of loaaves sold in the morning. Since two-thirds of the loaves are sold in the morning,
we have:

2

3
× 60 = 40

So, 40 loaves are sold in the morning.
Next, we determine the number of loaves remaining after the morning sale. The total number of loaves produced is
60, and 40 loaves are sold morning the morning, so the number of loaves remaining is:

60− 40 = 20

So, 20 loaves are after the morning sale.

17

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Then, we calculate the number of loaves sold in the afternoon and evening. Half of the remaining loaves are sold
equally in the afternoon and evening, so the number of aves sold in the afternoon and evening is:

1

2
× 20 = 10

So, 10 loaves are sold in the afternoon and evening.
Finally, we identify the number of loaves sold in the afternoon. Since 10 loaves are sold in the afternoon and evening,
and they are sold equally, the number of loaves sold in the afternoon is:

10

2
= 5

So, 5 loaves are sold in the afternoon. < /reasoning><answer> 5 < /answer>

18

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

E.2 SFT on Reasoning Traces from S1K

Model: LLaDA+SFT
Generation Sequence Length: 512
Question: A 76-star flag has three rows of 8 stars two rows of 6 stars and the rest are 5-star rows. How many rows
of 5 stars are there altogether on the flag?

<reasoning> To determine the number of rows of 5 stars on the 76-star flag, we need to follow these steps:
1. Calculate the total number of stars in the three rows of 8 stars. 2. Calculate the total number of stars in the two
rows of 6 stars. 3. Subtract the total number of stars in the first two rows from the total number of stars on the flag to
find the number of stars in the remaining rows. 4. Divide the number of stars in the remaining rows by 5 to find the
number of 5-star rows.
Let’s go through each step in detail:
1. Calculate the number of stars in the three rows of 8 stars:

3× 8 = 24

So, there are 24 stars in the three rows of 8 stars.
2. Calculate the number of stars in the two rows of 6 stars:

2× 6 = 12

So, there are 12 stars in the two rows of 6 stars.
3. Subtract the total number of stars in the first two rows from the total number of stars on the flag:

76− 24− 12 = 40

So, there are 40 stars in the remaining rows.
4. Divide the number of stars in the remaining rows by 5 to find the number of 5-star rows:

40

5
= 8

So, there are 8 rows of 5 stars.
However, we need to check if the number of rows is 8, as if there are 8 rows of 5 stars, the total number of stars
would be:

8× 5 = 40

This matches the number of stars in the remaining rows, which is 40. Therefore, the number of rows of 5 stars is
indeed 8.
Thus, the number of rows of 5 stars is:

8

< /reasoning><answer> 8 < /answer>

19

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Model: LLaDA+SFT
Generation Sequence Length: 512
Question: A bakery produces 60 loaves of bread each day. Two-thirds of the loaves are sold in the morning and half
of what is left is sold equally in the afternoon and evening. How many loaves of bread are sold in the afternoon?

<reasoning>To determine the number of loaves of bread sold in the afternoon, we need to follow these steps:
1. Calculate the number of loaves sold in the morning. 2. Determine the number of loaves remaining after the
morning sales. 3. Calculate the number of loaves sold in the afternoon and evening. 4. Identify the number of loaves
sold in the afternoon.
First. Calculate the number of loaves sold in the morning:

Loaves sold in the morning =
2

3
× 60 = 40

Next. Determine the number of loaves remaining after the morning sales:

Loaves remaining after morning sales = 60− 40 = 20

Then. Calculate the number of loaves sold in the afternoon and evening:

Loaves sold in the afternoon and evening =
1

2
× 20 = 10

Since, half of the remaining loaves are sold equally in the afternoon and evening, we need to find the number of
loaves sold in the afternoon..
Finally the number of loaves sold in the afternoon is:

Loaves sold in the afternoon =
10

2
= 5

However, this seems incorrect because the problem states that half of the remaining left is sold equally in the
afternoon and evening, which means the should be:

Loaves sold in the afternoon =
1

2
× 20 = 10

But since the problem states that half of the remaining left is sold equally in the afternoon and evening, the correct
calculation should be:

Loaves sold in the afternoon =
1

2
× 20 = 10

However, since the problem states that half of the remaining left is sold equally in the afternoon and evening, the
correct calculation should be:

Loaves sold in the afternoon =
1

2
× 20 = 10

< /reasoning> <answer> 10 < /answer>

20

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

E.3 diffu-GRPO

Model: LLaDA+diffu-GRPO
Generation Sequence Length: 512
Question: A 76-star flag has three rows of 8 stars two rows of 6 stars and the rest are 5-star rows. How many rows
of 5 stars are there altogether on the flag?

<reasoning> To determine the number of rows of 5 stars on the flag, we first need to calculate the total number of
stars in the rows with 8 stars and 6 stars.
1. There are number of rows with 8 stars: 3× 8 = 24 stars.
2. There are number of rows with 6 stars: 2× 6 = 12 stars.
3. The these rows rows together have 24 + 12 = 36 stars.
Next, we need the total number of stars on the flag, which is 76. We subtract the number of stars in the rows with 8
stars and 6 stars from the total number of stars:

76− 36 = 40

So, there are 40 stars in the rows with 5 stars. To find the number of rows of 5 stars, we divide the number of stars in
these rows by the number of stars per row:

40

5
= 8

Therefore, there are 8 rows of 5 stars on the flag.
< /reasoning><answer> 8 < /answer>

Model: LLaDA+diffu-GRPO
Generation Sequence Length: 512
Question: A bakery produces 60 loaves of bread each day. Two-thirds of the loaves are sold in the morning and half
of what is left is sold equally in the afternoon and evening. How many loaves of bread are sold in the afternoon?

The bakery produces 60 loaves of bread each day. Two-thirds of the loaves are sold in the morning, so we calculate
2
3 × 60 = 40 loaves sold in the morning. After the morning sales, there are 60− 40 = 20 loaves left. Half of these
remaining loaves are sold equally in the afternoon and evening, so we calculate 1

2 × 20 = 10 loaves sold in the
afternoon. Therefore< /reasoning><answer> 10 < /answer>

21

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

E.4 d1-LLaDA

Model: d1-LLaDA
Generation Sequence Length: 512
Question: A 76-star flag has three rows of 8 stars two rows of 6 stars and the rest are 5-star rows. How many rows
of 5 stars are there altogether on the flag?

<reasoning> To determine the number of rows of 5 stars on a 76-star flag, we need to follow these steps:
1. Calculate the total number of stars in the three rows of 8 stars. 2. Calculate the total number of stars in the two
rows of 6 stars. 3. Subtract the total number of stars in the first two rows from the total number of stars on the flag to
find the number of stars in the remaining rows. 4. Divide the number of stars in the remaining rows by the number
of stars per row to find the number of rows of 5 stars.
Let’s go through each step in detail:
1. The total number of stars in the three rows of 8 stars is:

3× 8 = 24

2. The total number of stars in the two rows of 6 stars is:

2× 6 = 12

3. The total number of stars in the first two rows is:

24 + 12 = 36

4. Subtract the total number of stars in the first two rows from the total number of stars on the flag:

76− 36 = 40

5. Divide the number of stars in the remaining rows by the number of stars per row to find the number of rows of 5
stars:

40

5
= 8

Therefore, there are 8 rows of five stars on the flag. < /reasoning><answer> 8 < /answer>

22

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Question: Jennifer’s dog has 8 puppies 3 of which have spots. Brandon’s dog has 12 puppies 4 of which have
spots. What percentage of all the puppies have spots?

<reasoning> To determine the percentage of all the puppies that have spots, we need to follow these steps:
1. Calculate the total number of puppies from both dogs.
2. Calculate the total number of puppies with spots from both dogs.
3. Determine the percentage of puppies with spots.
First, let’s find the total number of puppies from both dogs:
- Jennifer’s dog has 8 puppies.
- Brandon’s dog has 12 puppies.
- Total number of puppies = 8 + 12 = 20.
Next, let’s find the total number of puppies with spots from both dogs:
- Jennifer’s dog has 3 puppies with spots.
- Brandon’s dog has 4 puppies with spots.
- Total number of puppies with spots = 3 + 4 = 7.
Now, we need to determine the percentage of puppies with spots. The formula for percentage is:

Percentage =

(
Number of puppies with spots

Total number of puppies

)
× 100

Substituting the values we have:

Percentage =

(
7

20

)
× 100

To simplify the fraction, we find the greatest common divisor (GCD) of 7 and 20, which is 1.

7

20
= 7÷ 20

However, it seems there was a mistake in the calculation. Let’s recheck the steps.
1. Total number of puppies = 8 + 12 = 20.
2. Total number of puppies with spots = 3 + 4 = 7.
3. Percentage of puppies with spots =

(
7
20

)
× 100.

Let’s calculate the percentage correctly:

Percentage =

(
7

20

)
× 100 =

7× 100

20
=

700

20
= 35

The calculation answer. < /reasoning><answer> 35 < /answer>

23

d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning

Model: d1-LLaDA
Generation Sequence Length: 512
Question: A bakery produces 60 loaves of bread each day. Two-thirds of the loaves are sold in the morning and half
of what is left is sold equally in the afternoon and evening. How many loaves of bread are sold in the afternoon?

<reasoning> To determine the number of loaves of bread sold in the afternoon, we need to follow these steps:
1. Calculate the number of loaves sold in the morning. 2. Determine the number of loaves remaining after the
morning sale. 3. Calculate the number of loaves sold in the afternoon and evening. 4. Identify the number of loaves
sold in the afternoon.
Let’s start by calculating the number of loaves sold in the morning. The bakery sells two-thirds of the loaves in the
morning.

Loaves sold in the morning =
2

3
× 60 = 40

Since we can’t sell a fraction of whole loaves, we assume the problem implies for the integer part of the calculation.
So, the loaves sold in the morning are 40.
Next, we determine the number of loaves remaining after the morning sale.

Loaves remaining after morning sale = 60− 40 = 20

Now, we calculate the number of loaves sold in the afternoon and evening. Half of the remaining loaves are sold
equally in the afternoon and evening.

Loaves sold in the afternoon and evening =
1

2
× 20 = 10

Since the problem asks for the number of loaves sold in the afternoon, we need the integer part of the division.

Loaves sold in the afternoon =
10

2
= 5

Therefore, the number of loaves of bread sold in the afternoon is 5 . < /reasoning> <answer> 5 < /answer>

24

	Introduction
	Preliminaries
	Masked Diffusion Large Language Models
	Group Relative Policy Optimization for Large Language Models

	d1: Adapting Pre-trained Masked dLLMs to Reasoning Models
	Efficient Log Probability Estimation for Masked dLLMs
	diffu-GRPO: Policy Gradient Optimization for Masked dLLMs
	Supervised Finetuning with Reasoning Data

	Experiments
	Models, Tasks and Setups
	Main Results
	Discussion
	Design Choices and Ablations for diffu-GRPO

	Related Works
	Conclusion
	Limitations
	Related Work
	Masked dLLM Formulation
	Experiment Details
	diffu-GRPO
	Reward Functions, RL Training, and Evaluation Datasets

	SFT Details

	Qualitative Examples on GSM8k
	LLaDA-Instruct
	SFT on Reasoning Traces from S1K
	diffu-GRPO
	d1-LLaDA

