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ABSTRACT

The emergence of large language models (LLMs) has revolution-
ized the capabilities of text comprehension and generation. While
previous research has focused on multimodal understanding using
LLMs, there is little work on personalized generation, particularly
in the context of recommender systems. This paper proposes the
first method for personalized multimodal response generation us-
ing LLMs, showcases its applications and validates its performance
via an extensive experimental study on two datasets. The proposed
method, Personalized Multimodal Generator (PMG for short) first
converts user behaviors (e.g., clicks in recommender systems or
conversations with a virtual assistant) into natural language to facil-
itate LLM understanding and extract user preference descriptions.
Such user preferences are then fed into a generator, such as a multi-
modal LLM or diffusion model, to produce personalized responses.
To capture user preferences comprehensively and accurately, we
propose to let the LLM output a combination of explicit keywords
and implicit embeddings to represent user preferences. Then the
combination of keywords and embeddings are used as prompts to
condition the generator. We optimize a weighted sum of the accu-
racy score and preference score so that the generated responses
have a good balance between them. Compared to a baseline method
without personalization, PMG has a significant improvement on
personalization for up to 8% in terms of LPIPS while retaining the
accuracy of generated responses.

This paper proposes a method for generating multimodal re-
sponses, which is prevalent in web applications.

CCS CONCEPTS

• Information systems→ Personalization;Multimedia con-

tent creation.

KEYWORDS

Multimodal, Large Language Model, Response Generation, Person-
alization

1 INTRODUCTION

Large language models (LLMs) have shown impressive text compre-
hension and generation capabilities. Many studies have sought to
expand LLMs into the realm of multimodal understanding, particu-
larly in the domains of image [38] and audio [21]. By integrating
LLMs with modal-specific generators such as diffusion models [14]
or multimodal LLMs [23], they can also be employed for multimodal
generation tasks.

This paper aims to integrate personalization into multimodal re-
sponse generation using LLMs, and to our best knowledge no work
has addressed this task. Personalization is essential for improving
user experience, better meeting users’ needs and greatly increasing
e-commerce revenue. Figure 1 shows an example of a chat tool.

I had a math 

exam yesterday.

I passed it!

What’s the result?

I’m happy!

I like cute cats.

Used Emoticons Historical Conversation

User Behaviors

Generated Emoticons

I had a math 

exam yesterday.

I passed it!

What’s the result?

I’m happy!

Generated Emoticons

Without Personalization With Personalization

Figure 1: The personalized generation based on user behav-

iors produces emoticons of a cute cat that are more appealing

to cat lovers compared to the normal generation.

When the user types in “I’m happy!”, the chat tool understands the
sentiment and provides emoticons of “happy”. Popular apps such as
TikTok, Discord, WeChat and Telegram already have functions sim-
ilar to this, but they are without personalization, which is shown in
the left part of Figure 1. After adding personalization, the chat tool
would be able to generate personalized emoticons that are more
appealing to the user as shown in the right part of Figure 1: based
on the user’s frequently used emoticons (cats in the example) or
historical conversation (“I like cute cats” in the example), the chat
tool would generate emoticons of happy cats.

As other example applications of multimodal generation, online
advertisements need well-designed images of products to attract
users. When recommending a movie, a personalized generator can
produce personalized movie posters by amplifying the elements of
a movie to the user’s preference. Personalized clothing Apps can
generate images of a person wearing a piece of clothing customized
to her preferred height, weight, colors, etc. In video games, the
generator can customize the background music to align with the
content of the video and the user’s preferred music genre. Moreover,
as the generated responses reflect user preferences, they may be
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leveraged as data augmentation to improve the accuracy of recom-
mender systems.

In the above applications, we refer to the items we aim to gener-
ate without personalization as target items, e.g., the happy emoti-
cons in the left part of Figure 1; note that there may be multiple
target items. We refer to the items we aim to generate with per-
sonalization as personalized target items, e.g., the happy emoticons
in the right part of Figure 1. The personalization process should
make the candidate target items tuned to users’ preferences while
retaining their relevance to the candidate target items, which will
be measured by an accuracy score in our experimental study. For ex-
ample, if we generated a crying cat, then the accuracy score would
be low in the example of Figure 1.

To address the aforementioned applications, we propose person-
alized multimodal response generation using LLMs (PMG for short).
PMG first extracts a user’s preferences from the user’s behavior
history, such as clicks in recommender systems or past conversa-
tions, and converts them to natural language such that they are
easily understood by LLMs. The user preferences are then fed into
a generator such as a multimodal LLM or diffusion model to pro-
duce personalized responses. There are still some challenges when
implementing our method.

First, we find that merely representing user preferences as natu-
ral language, specifically keywords, may not be accurate because
they have limited expressive ability whereas user preferences are
abstract. To address this challenge, we propose to let the LLM out-
put a combination of explicit keywords and implicit embeddings to
represent user preferences. Then the combination of keywords and
embeddings are used as prompts to condition the generator.

Second, conditioning the generation process also poses a chal-
lenge, as it requires accurately matching both the user preferences
and a target item. Directly mixing these two factors may lead to an
imbalance, potentially overshadowing one in the outcome. There-
fore, our approach employs a weighted sum of the accuracy score
and the preference score for each output response. The accuracy
score measures the level of consistency with the target item, while
the preference score gauges the degree of personalization. We opti-
mize the sum by balancing the weights of the user preferences and
target items, allowing us to address the imbalance and customize
the degree of personalization.

Our contributions are summarized as follows:

• To our knowledge, this is the first work to address the prob-
lem of personalized multimodal generation using LLMs,
and we demonstrate many potential applications.

• To address the problem, we propose a method named PMG,
which first converts user behaviors into natural language
so that LLMs can understand them and extract user prefer-
ences. Then the user preferences are fed into a generator
to produce personalized responses.

• To address the challenge of capturing user preferences com-
prehensively and accurately, we propose to let the LLM
output a combination of explicit keywords and implicit
embeddings to represent user preferences, which are then
used as prompts to condition LLMs for generating multi-
modal responses. We also propose to optimize a weighted

sum of the accuracy score and preference score so that the
generated response has a good balance between them.

• An extensive experimental study validates the effectiveness
of our method. Compared to a baseline method, which does
not have personalization, PMG has significant improvement
in personalization for up to 8% in terms of LPIPS while
retaining the accuracy of generated responses.

2 RELATEDWORK

2.1 Multimodal Generation

In the field of multimodal generation, previous research has investi-
gated the utilization of generative models like Generative Adversar-
ial Networks (GANs [11]) and Variational Autoencoders (VAEs [17])
to produce diverse and realistic outputs across various modalities.
GANs employ a generator network and a discriminator network
that undergo adversarial training. On the other hand, VAEs learn la-
tent representations of data and generate new samples. Researchers
have extensively explored and enhanced these approaches [4, 12].

The introduction of CLIP [25] revolutionized text-guided gener-
ation, making it more accessible. As a result, the diffusion model
gained widespread popularity and became the method of choice
for various generation tasks, including image generation [26] and
audio generation [22]. It is often utilized as a downstream multi-
modal generator in LLM response generation. While most of these
methods [24, 35] rely on natural language to establish the connec-
tion between the pre-trained LLM and generator, they are ham-
pered by limited natural language expression capability. In contrast,
TANGO [10] and GILL [18] employ informative hidden embeddings
but are not stable and require substantial training to align their
embedding space.

The current approaches to personalized generation, such as tex-
tual inversion [6] andDreamBooth [28], mainly focus on integrating
new characters or image styles into a pre-trained diffusion model
using multiple images. These approaches differ significantly from
personalization based on user behaviors, which emphasizes the
general interests of users rather than specific instances. Moreover,
user behaviors encompass a combination of clicked items (includ-
ing textual and visual features), conversations, and more, making
it impractical to process using traditional personalized generation
techniques.

2.2 LLM for Recommendation

Numerous studies have leveraged the exceptional reasoning capabil-
ities of LLMs for recommender systems. The predominant approach
involves converting historical click sequences and candidate pools
into text and utilizing the language model to directly generate
recommended items. Although it can yield favorable results even
without training [7, 15, 30], this method lacks specific optimization
for recommender tasks. In contrast, certain studies [1, 3, 31] adhere
to this paradigm but employ techniques like prompt learning [33]
or LoRA [16] for fine-tuning the language model and enhancing
performance in recommender systems.

The aforementioned methods primarily utilize only the textual
features of items, while P5 [8] takes a different approach by incorpo-
rating ID features. It utilizes special tokens representing user ID and
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item ID within the language model. Building upon this, VIP5 [9] fur-
ther enhances the recommendation process by adding item images,
processed through a pre-trained image encoder, as visual tokens.
However, a limitation of VIP5 is its reliance on the availability of
original item images. If the original images are missing, it is unable
to generate new images, restricting its applicability.

3 METHOD

3.1 Overview

Our proposed PMG is depicted in Figure 2. We leverage the reason-
ing abilities of a large language model to extract user preferences
from historical behaviors (including clicks in recommender systems
and conversations with a virtual assistant). The user behaviors are
used to produce preference conditions, including explicit keywords
in natural language (named preference keywords) by a frozen LLM
and implicit embeddings (named soft preference embeddings) by
a tunable bias correction LLM. Additionally, we also convert the
target item into explicit keywords (named target item keywords)
to serve as the target item conditions. Ultimately, the generator,
which could be a diffusion model or multimodal LLM, produces the
responses by incorporating and weighting personalized and target
item conditions after the text encoder of the generator.

3.2 Generate Explicit Keywords

Given our objective of extracting user preferences using an LLM
from behaviors, the simplest and most effective approach is to con-
vert user behaviors into text and analyze them using the LLM. The
generator typically has a limited input length (e.g., 77 tokens in
Stable Diffusion [26]), making keyword summarization more infor-
mative than using full sentences. As a result, we design prompts
for each scenario and leverage the zero-shot capability of the LLM
without the need for training. In the following, we will discuss the
process of prompt design.

3.2.1 Preprocess of user behaviors. We consider two types of
user behaviors: historical clicks𝐻 = {ℎ1, ℎ2, · · · } and conversations
𝐶 = {𝑐1, 𝑐2, · · · }. The input features could be multimodal, includ-
ing texts, images, audios, etc. Normally, the LLM has the ability
to handle complex texts, so we can simply feed the texts into it.
But the texts may be long (e.g., a plot synopsis of a movie), and
concatenating all of them from an item sequence exceeds the token
length limit of the LLM. In this case, we summarize the text fea-
tures of each item and conversation into a short sentence using the
LLM as preprocessing. For the other features, we convert them into
text using a caption model (e.g. BLIP-2 [19], CLAP [5]) or using
multimodal LLM (e.g. MiniGPT-4 [38], mPLUG-owl [36]) capable of
processing multimodal inputs. The purpose of this preprocessing
is to summarize the features, reducing redundancy and preserving
long-term contexts. Formally, this process can be defined as follows:

𝑥𝑖 =
[
𝐿𝐿𝑀𝑔 (𝑡ℎ𝑖 ), 𝐿𝐿𝑀𝑔 (𝑣ℎ𝑖 ), · · ·

]
,

𝑦𝑖 =
[
𝐿𝐿𝑀𝑔 (𝑡𝑐𝑖 ), 𝐿𝐿𝑀𝑔 (𝑣𝑐𝑖 ), · · ·

]
,

where 𝑡, 𝑣, · · · are textual, visual and other multimodal features, 𝑥𝑖
and 𝑦𝑖 denote the summarized data of historical items and conver-
sations. 𝐿𝐿𝑀𝑔 represents the generating operation of LLM, distin-
guishing from its forward operation 𝐿𝐿𝑀𝑓 .

3.2.2 Construction of prompt. Using the behavior information
x, y, we can construct a prompt to extract user preferences with the
help of the LLM. There are three additional components: the instruc-
tion principle 𝑝 , attribute 𝑎𝑖 , and examples 𝑒 . These components
are artificially designed for each scene. The principle 𝑝 describes
the task being performed by the LLM, which is “user preference
extraction”. The attributes a are tailored for each scene, such as
“color, material, shape” for clothes or “genre, director, origin” for
movies. In each question, LLM is assigned the task of answering
user preferences related to a specific attribute, and the answers are
later combined. The examples 𝑒 , which provide the desired output
format and example keywords (e.g., “cute”, “cartoon”, etc.), not only
assist in guiding the LLM’s responses but also follow a standard-
ized output format, thereby facilitating the extraction of keywords
from the generated output. Using this prompt, we can represent
the keywords k𝑝

𝑖
generated by LLM for attribute 𝑎𝑖 as follows:

k𝑝
𝑖
= 𝐿𝐿𝑀𝑔 (𝑝, 𝑎𝑖 , 𝑒, x, y) .

Next, we combine the outputs of each attribute and eliminate any
duplicates to obtain preference keywords k𝑝 . The process of gen-
erating the target item keywords k𝑡 is similar but with only one
target item ℎ𝑡 and its corresponding summarized information 𝑥𝑡 .
In this case, there are no conversations involved, and there is only
a single attribute to consider:

k𝑡 = 𝐿𝐿𝑀𝑔

(
𝑝, 𝑒, 𝑥𝑡

)
.

3.3 Generate Soft Preference Embeddings

We have developed a method that relies solely on explicit keywords
for representation. However, natural language, as a discretized
form, has limited expressive capabilities with limited length. On the
other hand, utilizing continuous hidden embeddings, which offer
more informative and precise representations, requires substantial
training resources. We utilize natural language as the baseline while
training soft preference embeddings as an extra signal to correct
this language bias with the help of an LLM, named bias correction
LLM. These embeddings assist in addressing the mismatch between
the natural language baseline and the actual user interests. The
model is illustrated in Figure 3.

3.3.1 Bias Correction LLM.. The primary objective of the LLM
is to predict the next textual token so it can only understand and
generate texts. However, when applied to multimodal generation,
it becomes necessary to introduce multimodal tokens to acquire
the ability of multimodal generation. We incorporate multimodal
tokens as learnable parameters into the embedding table and then
utilize a linear layer to align the embedding space of the LLM
with that of the generator. This alignment ensures consistency and
compatibility between the LLM and the text encoder of the gener-
ator, facilitating the generation process. Additionally, we employ
P-Tuning V2 [20] to fine-tune the LLM specifically for the gener-
ation task, which can enhance its generation ability. During each
inference, the multimodal tokens are appended after the user be-
havior prompt. The soft preference embeddings are obtained by
passing these augmented inputs through the LLM (with P-Tuning
V2) and the linear layer.

Formally, in conjunction with the user behavior prompt 𝑝, x, y
constructed in section 3.2, we include additional multimodal tokens

3
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Figure 2: Overview of our method. By utilizing user behaviors and a target item as input, we generate personalized multimodal

responses for the item, taking a movie poster as an example in the figure.

···
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𝐚 𝒆

Figure 3:Model designed to train soft preference embeddings.

m = {𝑚1, · · · ,𝑚𝐿} of length 𝐿. Attributes and examples are not
utilized in this context, as the prefix embeddings have the ability
to learn them on their own. These tokens are passed to the LLM,
and their corresponding embeddings in the embedding layer are
trainable. Following the P-Tuning V2 approach, 𝑆 trainable pre-
fix embeddings t = {𝑡1, · · · , 𝑡𝑆 } are prepended to the embedding
sequence in the self-attention of each transformer layer. The re-
sulting output embeddings in the LLM’s forward operation can be

represented as:
prompt = (𝑝, x, y) ,[

E𝑝𝑟𝑜𝑚𝑝𝑡 , E𝑚
]
= 𝐿𝐿𝑀𝑓 (t, prompt,m) ,

where E𝑝𝑟𝑜𝑚𝑝𝑡 , E𝑚 represent the output embedding of LLM, and
the soft preference embeddings E𝑚 is used for the subsequent mul-
timodal generation process.

3.3.2 Training with multimodal supervision. In contrast to
GILL [18], which solely relies on captions for supervision, we be-
lieve that incorporating multimodal supervision (such as real im-
ages or audios) is more meaningful and helps to correct deviations.
However, this approach introduces the challenge of propagating
gradients backward through the generator, resulting in increased
training difficulty. To simplify training, we utilize the preference
keywords generated in section 3.2 as a foundational framework and
focus on training a limited number of soft preference embeddings
as additional conditions for the generation process.

The preference keywords are tokenized and transformed into
hard preference embedding E𝑘 by the text encoder of the generator.
Then, we concatenate the E𝑚 and E𝑘 as conditioning input for the
generator. Regarding data splitting, since it is impossible to obtain
a real personalized image as ground truth, we use the last item in
the interaction sequence as supervision and the previous ones as
input.

Different generator models have different training algorithms.
In our implementation, we utilize a diffusion model, which con-
tains a text encoder and a U-Net [27]. The U-Net is employed as a
conditional denoising module to generate images through multiple
denoising steps. Following its training process, we introduce ran-
dom noise 𝜖 ∼ N(0, 1) to the multimodal supervision𝑀𝑠 and then
attempt to denoise it:

E𝑝 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (E𝑚, E𝑘 )
𝑀𝑛 = 𝑀𝑠 + 𝜖,

𝑀𝑑 = 𝑈𝑛𝑒𝑡 (E𝑝 , 𝑀𝑛).
4
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The loss is calculated as MSE loss of𝑀𝑠 and𝑀𝑑 :
𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸 (𝑀𝑠 , 𝑀𝑑 ).

Using this loss, we train the embeddings of multimodal tokens,
and prefix embeddings in P-Tuning v2 to enable the multimodal
generation ability of LLM, together with the mapper layer to align
embedding space.

3.4 Balancing the accuracy score and the

preference score

Different from the training process of soft preference embeddings
including only preference conditions, the generation inference pro-
cess incorporates both preference and target item conditions. Sim-
ply combining these conditions can result in favoritism towards
one and overshadowing the other. Following previous studies such
as DreamBooth [28] and GILL [18], we use the similarity between
the generated responses and the preference keywords to measure
the degree of personalization, which we call the preference score,
and the accuracy score refers to the similarity with the target item
keywords. The accuracy score measures the level of consistency
with the target item, while the preference score about preference
conditions gauges the degree of personalization. To balance them,
we employ a weighted sum of accuracy score and preference score
using pre-trained multimodal networks (e.g., CLIP [25], CLAP [5]).

Assuming the multimodal response𝑀 is generated by the gen-
erator:

𝑀 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑤𝑝 · E𝑝 ,𝑤𝑡 · E𝑡 ),
where 𝑤𝑝 and 𝑤𝑡 are weights of preference and target item con-
ditions to be adjusted. Through the encoders of the pre-trained
multimodal network, we can transform the response 𝑀 and key-
words k𝑝 , k𝑡 into embeddings 𝑒𝑀 , 𝑒𝑝 , 𝑒𝑡 . Then we can calculate the
cosine similarity between them as the preference score 𝑑𝑝 and
accuracy score 𝑑𝑡 .

𝑑𝑝 =
𝑒𝑀 · 𝑒𝑝

∥𝑒𝑀 ∥2


𝑒𝑝

2 ,

𝑑𝑡 =
𝑒𝑀 · 𝑒𝑡

∥𝑒𝑀 ∥2 ∥𝑒𝑡 ∥2
.

Finally, our objective is to optimize the weighted sum of 𝑑𝑝 and 𝑑𝑡 .

𝑧 = 𝛼 · log𝑑𝑝 + (1 − 𝛼) · log𝑑𝑡 .

The hyper-parameter 𝛼 is normally 0.5 and can be adjusted to
achieve different effects according to usage scenarios and needs.

Considering the powerful parallel generation ability of current
multimodal generators, we generate the response with multiple
predefined sets of weights𝑤𝑝 ,𝑤𝑡 and pick the response with the
highest score 𝑧.

4 EXPERIMENT

Our method can be used to generate various multimodal responses,
encompassing not only images and audios but also other modalities.
In this section, we focus on the generation of images as it is con-
sidered the most common and intuitive modality. Our experiments
aim to answer the following research questions:

• RQ1: Can PMG accurately generate images that combine
user preferences?

• RQ2: Why is conditions weighting necessary?

• RQ3: How do explicit keywords and implicit embeddings
impact performance?

• RQ4: Are P-Tuning v2 and multimodal tokens beneficial
while training soft preference embeddings?

• RQ5: Are there any additional purposes or applications for
the generated images beyond user display?

4.1 Experimental Setup

4.1.1 Scenarios and dataset. We design the following three sce-
narios to verify our method:

(1) Generating personalized images of products whose origi-
nal images are missing according to the historically clicked prod-
ucts of the user. We adopt POG [2], a multimodal dataset of fashion
clothes, for training and evaluation. We selected 2,000 users and
16,100 items for experiments.

(2) Generating personalized posters of movies according to
historical watched movies of user. We adopt the small version of
MovieLens Latest Datasets [13], which contains 9,000 movies, 600
users, and 100,000 rating interactions.

(3) Generating emoticons in instant messaging according to
current conversation and historically used emoticons of the user.
Since we cannot find a suitable dataset, in scenarios we do not train
soft preference embeddings and only use keywords to generate
images.

4.1.2 Implement details. In all of our experiments, we select
Llama2-7B [29] as the basic LLMmodel and Stable DiffusionV1.5 [26]
as the image generator. Due to limitations of the dataset, at most
𝑛 = 10 historical items and only the current𝑚 = 1 conversation
are considered in the prompt of user preferences extraction. Then
10 personalized keywords and 5 target keywords are extracted for
image generation. In the training of soft preference embeddings,
𝐿 = 4 multimodal tokens and 𝑆 = 4 prefix embeddings are used to
get personal embedding. In our experiments, this training process
costs 12 hours on a single NVIDIA V100 GPU. As for inference, each
image costs about 5 seconds, 2s for LLM and 3s for stable diffusion.

4.1.3 Evaluation metrics. We employ multiple image similarity
metrics to assess the resemblance between the generated image
and historical/target items, quantifying the level of visual person-
alization achieved. To prevent potential information leakage, we
exclude the CLIP metric used in the weighting module from this
evaluation. Instead, we utilize the following two metrics:

(1) LPIPS (Learned Perceptual Image Patch Similarity) [37]: This
metric measures the perceptual similarity between two images
by considering human visual perception. It focuses on capturing
semantic information.

(2) SSIM (Structural Similarity Index Measure) [32]: Widely used
in image similarity assessment, this metric considers luminance,
contrast, and structural information. It places more emphasis on
image quality.

By employing these metrics, we can comprehensively evaluate
the visual similarity between the generated image and the histor-
ical/target items, providing insights into the effectiveness of our
personalized generation approach.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’WWW, May 13–17, 2024, Singapore Anon. Submission Id: 1913

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Cartoon Style

shoes

shirt

Boy’s StyleGirl’s StyleBusiness Style

Without

Personalization
With Personalization

N/A

Figure 4: Generated image comparison of our method PMG

in the costume scene. Four typical users with different styles

of historical items are picked as input to generate images of

shoes and a shirt.
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Figure 5: Generated image comparison of our method PMG

in the movie poster scene. Three users with different movie

interests are picked as input to generate posters of movie

True Crime and Titanic.

4.2 Image Comparison (RQ1)

In this section, we show the generated images in three scenes: the
costume scene, the movie poster scene and the emoticon scene.
The existing personalization generation methods such as Textual
Inversion [6] and DreamBooth [28] train extra embeddings for
each user using their historical item images. They are only suitable
for scenarios with a small number of users as they can consume
significant training resources. As a result, they are not used in our
experiments as baselines.

In the costume scene (Figure 4), PMG demonstrates notable
personalization capabilities, particularly in cartoon and girl’s styles.
In the cartoon style, PMG identifies the association of these items
with a specific cartoon character and accordingly selects a cartoon
bear as the generated output. In the girl’s style, PMG incorporates
numerous floral patterns that align with girls’ preferences.

Animal Computer Sport

Don’t worry!

I have no 

words.

Great!

We won!

I'm running 

on empty.

My laptop is 

broken.

Support

Dismayed

Happy

Tired

Sad

Without

Personalization

N/A

With Personalization

Figure 6: Generated image of our method PMG in the emoti-

con scene. We generated emoticons for three users who have

used different types of emoticons in five different emotional

conversations. The current conversation serves as the target

item.

In the movie poster scene (Figure 5), PMG adeptly combines user
preferences with the target item. For instance, in the case of the
thriller movie True Crime, PMG consistently incorporates crime
and horror elements into the generated posters, regardless of the
user generating them. In the case of the romance movie Titanic,
the generated posters consistently feature a couple in love, while
the styles vary based on user preferences. Notably, for the cartoon
enthusiast, both posters are transformed into cartoon drawings to
align with their preference.

In the emoticon scene (Figure 6), we generate emoticons based on
the ongoing conversation and previously used emoticons. Utilizing
historical emoticons, the LLM (Large Language Model) helps sum-
marize the user’s preferences and designs a cartoon character, such
as a cat or a boy with a football. By analyzing the conversation, the
LLM assists in identifying the user’s current emotion and devises a
suitable pose for the emoticon, such as crying sadly or squinting
from fatigue. The character and the pose can be considered as the
personalization condition and target condition respectively, in order
to generate the final emoticon. In the case without personalization,
the LLM randomly designs a generic character.
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As a result, we generate emoticons featuring a cat for animal
lovers and emoticons relating to balls for sports enthusiasts, among
others, and the emotions conveyed are generally accurate. However,
the tears in the last conversation’s emoticon are not rendered well.
The main reason is the lack of an emoticon dataset to fine-tune the
soft preference embedding condition, resulting in subpar perfor-
mance when it comes to certain details. Furthermore, when gener-
ating animal-themed emoticons, our method consistently produces
a cat since two of four historical emoticons depict a cat. Enhancing
diversity when designing characters using large language models
poses a challenge for our future work.

4.3 Case study of weighting (RQ2)

As explained in Section 3.4, directly combining personalization
and target conditions can result in an imbalance. In Figure 7, we
observe variations in the generated poster while adjusting condition
weights for a romantic targetmovie Titanic and a disaster enthusiast.
When the condition weights are set to𝑤𝑝 : 𝑤𝑡 = 0 : 4, the poster
predominantly considers the target condition (romance) and depicts
a couple in love. Conversely, when the weights are adjusted to
𝑤𝑝 : 𝑤𝑡 = 4 : 0, the poster focuses solely on the personalization
condition (disaster) and portrays a ship in a storm.

In order to incorporate both romance and disaster while fol-
lowing our selection principle outlined in Equation 1, we evaluate
the generated posters based on their 𝑧 scores. Among the options,
Figure 7b achieves the highest 𝑧 score and is selected as the final
output.

4.4 Ablation Study

4.4.1 Personalization conditions. (RQ3). In this section, we
examine the contribution of the two forms of user preference rep-
resentation, preference keywords, and soft preference embeddings
(Table 1). By calculating the similarity between generated images
and historical items, we can measure the degree of personalization,
and by calculating the similarity with the target item, we can ensure
that our generation does not deviate from the target.

Although our method focuses on introducing user preferences
(reflected in historical items), the similarity with the target item did
not decrease and even increased in movie scenes. This means per-
sonalization can also smooth out the errors between the generator
and the real scene. As the backbone of our method, the keywords
can greatly enhance the similarity of generated images in both
LPIPS and SSIM metrics. However, the soft preference embeddings
help to reduce the LPIPS metric but have no significant impact on
the SSIM metric. This suggests that embeddings introduce more
personalized semantic information but do not contribute to image
quality due to their instability. When we combine both preference
keywords and soft preference embeddings, we achieve the richest
personalized content without deviating from the target items, while
also ensuring the quality of the generated images.

Figure 8 is a case study on the soft preference embeddings. When
provided with only the keywords "shoes, cartoon", there is a certain
probability of generating cartoon-style drawings of shoes. However,
after incorporating the hard preference embedding, the model con-
sistently generates realistic shoes adorned with cartoon patterns.

4.4.2 Prompt tuning. (RQ4). In this section, we analyze the
impact of P-tuning V2 and multimodal tokens on the degree of
personalization, measured by LPIPS similarity between generated
images and historical items. Table 2 showcases their effectiveness.
P-tuning V2 greatly enhances the ability of LLM to extract user
preferences. Similarly, multimodal tokens exhibit a positive effect,
although they also occupy a limited condition embedding and re-
duce the number of effective keywords. Therefore, the number of
multimodal tokens should not be large, and setting 𝐿 = 4 or 𝐿 = 8
is determined to be the optimal parameter.

4.5 Auxiliary Generation (RQ5)

Our approach extensively explores interest modeling with LLM,
enabling the generation of images that can be utilized not only for
displaying to users but also for downstream recommendation tasks.
This section presents an experiment conducted on the MovieLens
dataset, aiming to evaluate the impact of incorporating generated
images as additional visual features. To perform the evaluation, we
employ MMGCN [34] as the base recommendation model, which
focuses on leveraging multi-modal features to enhance recommen-
dation performance.

The MovieLens dataset inherently includes image features of
items, specifically the original movie posters, but it lacks image
features for users. As a result, we have designed the following
experiments: (1) No-image: This experiment does not utilize any
image features and relies solely on the IDs of items and users. (2)
Item-only: This experiment solely utilizes the image features of
items. (3) Averaged-user: In addition to item image features, user
image features are initialized as the average of historically watched
items. (4) Generated-user: In addition to item image features, user
image features are initialized as the image generated by PMG. It is
important to note that the generated images are created under the
personalization conditions, without a target item.

Table 3 provides compelling evidence that the inclusion of image
features for items or users significantly enhances recommendation
accuracy. Notably, incorporating the images generated by PMG
yields superior results compared to the simple average baseline.
These findings underscore the effectiveness of our approach in cap-
turing user interests by leveraging the reasoning capability of LLM.
By incorporating the generated images, our method successfully
captures and incorporates nuanced user preferences, leading to
improved recommendation performance.

One limitation of this experiment is the utilization of the small
version of the MovieLens Latest Datasets, similar to the previous
experiment. This dataset scale is comparatively smaller compared
to the experiments conducted in the MMGCN paper. The primary
constraint we faced was the time-consuming process of generating
images using LLM and stable diffusion. We aim to address this
limitation in future work.

5 CONCLUSION AND FURTHERWORK

In this paper, we have proposed a method named PMG for person-
alized multimodal response generation using LLMs. By leveraging
large language models, we extracted user preferences and used
them to condition the generation process of a generator. The ex-
periments on image generation validate the effectiveness of PMG
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(a) 𝑤𝑝 : 𝑤𝑡 = 0 : 4 (b) 𝑤𝑝 : 𝑤𝑡 = 1 : 3 (c) 𝑤𝑝 : 𝑤𝑡 = 2 : 2 (d) 𝑤𝑝 : 𝑤𝑡 = 3 : 1 (e) 𝑤𝑝 : 𝑤𝑡 = 4 : 0

Figure 7: Generated poster of movie Titanic with different weights of conditions.𝑤𝑝 is the weight of personalization conditions,

which prefer disastermovie.𝑤𝑡 is theweight of target item conditions, which consider it as a romanticmovie.When𝑤𝑝 : 𝑤𝑡 = 1 : 3
it achieves the highest 𝑧 score and the generated poster is a combination of romance and disaster.

Table 1: Quantitative ablation study of keywords and soft embeddings of personalization conditions. The best results are in

bold and the second-best results are underlined.

Dataset POG MovieLens

Metric LPIPS(↓) SSIM(↑) LPIPS(↓) SSIM(↑)
History Target History Target History Target History Target

PMG 0.5375 0.5482 0.1640 0.1600 0.4190 0.4140 0.2486 0.2515

w/o embeddings 0.5455 0.5592 0.1652 0.1608 0.4215 0.4176 0.2488 0.2505
w/o keywords 0.5616 0.5535 0.1533 0.1590 0.4406 0.4390 0.1867 0.1858
w/o both 0.5626 0.5526 0.1531 0.1567 0.4561 0.4542 0.1589 0.1575

(a) W/o soft embeddings. (b) W/ soft embeddings.

Figure 8: A case study of personalization soft preference

embeddings reveals the presence of language bias. With key-

words “shoes” and “cartoon”, the generation without these

embeddings may produce a cartoon-style drawing of shoes.

The generation with them consistently generates realistic

shoes adorned with cartoon patterns.

and its potential for downstream recommendation tasks. This work
paves the way for further advancements in personalized generation,
enabling the creation of tailored and engaging user experiences.

In future work, we plan to improve the diversity of the generated
response. For example, the generated emoticons in Section 4.2 may
sometimes be too similar to each other. Additionally, both LLMs
and diffusion models require lots of time for reasoning, so we may
investigate ways to improve the efficiency of the whole process.

Table 2: Quantitative ablation study of P-tuning V2 andmulti-

modal tokens using the LPIPS metric on the POG and Movie-

Lens datasets. 𝐿 denotes the number of multimodal tokens.

The best results are in bold and the second-best results are

underlined.

ID P-Tuning V2 𝐿 POG MovieLens
1 ✗ 2 0.4398 0.5471
2 ✗ 4 0.4353 0.5522
3 ✗ 8 0.4421 0.5586
4 ✗ 16 0.4482 0.5690
5 ✓ 2 0.4230 0.5453
6 ✓ 4 0.4190 0.5375

7 ✓ 8 0.4155 0.5386
8 ✓ 16 0.4212 0.5406

Table 3: Comparison of the recommendation performances

between MMGCN leveraging different image features of

items and users. The best results are in bold and the second-

best results are underlined.

Item User Recall@10 NDCG@10
No-image ✗ ✗ 17.57% 0.0859
Item-only ✓ ✗ 18.88% 0.0947

Averaged-user ✓ Average 19.54% 0.0989
Generated-user ✓ Generated 20.03% 0.1004
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