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ABSTRACT

Permutation equivariance (PE) is an important inductive prior for addressing tasks
such as point cloud segmentation, where permuting objects in the input set main-
tains the output features of each object. However, the state-of-the-art PE meth-
ods mainly focus on one-dimensional cases, which cannot meet the requirements
of multi-dimensional tasks such as auction design, pseudo inverse computation,
and multiuser resource allocation in wireless networks. It is evidenced that the
direct incorporation of high-dimensional equivariance in network design necessi-
tates tensor operations and complicated parameter sharing patterns (Hartford et al.,
2018), which contributes to its limited exploration. In this paper, we propose a
novel serial multi-dimensional permutation equivariance (SMPE) framework to
address these challenges. By serially composing multiple one-dimensional equiv-
ariant layers and incorporating dense connections for feature reuse, the proposed
SMPE framework enables cross-dimensional interactions among objects while
maintaining multi-dimensional equivariance. Additionally, we extend the SMPE
framework to scenarios of permutation invariance as well as the hybrid equiv-
ariance and invariance through pooling operations. We use an extensive set of
experiments to evaluate the framework on contextual auction design, pseudo in-
verse computation, and multiuser wireless communication tasks. It is observed
that the SMPE framework not only maintains excellent equivariant properties to
support variable set sizes but also outperforms the state-of-the-art models. For
example, SMPE could gain as high as 10.6% and 7.1% improvements over the
state-of-the-art methods in two typical multiuser resource allocation scenarios.

1 INTRODUCTION

Permutation equivariance (or equivariant for short) usually arises in tasks modeling interactions
across a set of objects, meaning that the output features of individual objects remain unchanged
when the order of objects is permuted. Zaheer et al. (2017). For instance, in tasks related to point
clouds (Qi et al., 2017; Li & Lee, 2019), the point cloud can be regarded as an unordered set of
points since input features contain the coordinate information of point clouds, implying that shuf-
fling the order of points will not change the output point features. In tasks related to graphs (Wu
et al., 2020; Zhou et al., 2020), permuting the input order of nodes does not affect the output features
of the corresponding nodes since the topology of the graph remains unchanged. Designing networks
with permutation equivariance to address related tasks is an important issue due to the following
two significant advantages. The first is parameter sharing introduced by the equivariance (Ra-
vanbakhsh et al., 2017; Ravanbakhsh, 2020). This results in the parameters amount of equivariant
networks being independent of the number of objects. Such property leads to a significant reduction
in computational complexity and presents an advantage when dealing with sets containing a large
number of objects Hartford et al. (2018). The second is the ability to handle sets of different sizes
(Zaheer et al., 2017). Since there is no dependency between parameters and the number of objects,
the trained equivariant network can operate with different set sizes (Keriven & Peyré, 2019).

When considering unordered objects across multiple sets, permutation equivariance is extended to
higher dimensions. For instance, tasks related to tabular data often involve interactions between two
sets of objects Duan et al. (2022); Rahme et al. (2021), which can be modeled as a 2D equivariant
mapping Maron et al. (2020). High-dimensional equivariant function f is illustrated in figure 1. In
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Figure 1: Multi-dimensional equivariant mapping f : The order of the output items will be permuted
accordingly when we permute the input items across multiple dimensions. The permutations of
rows and columns in Figure (a) are {1, 2, 3} → {3, 2, 1} and {1, 2, 3} → {2, 3, 1}, respectively.
The permutations of rows, columns, and depth in Figure (b) are {1, 2, 3} → {3, 2, 1}, {1, 2, 3} →
{2, 3, 1}, and {1, 2, 3}→{3, 1, 2}, respectively.

figure 1(a), the 2D equivariant function demonstrates that when the indices rows and columns of the
input matrix are permuted as {1, 2, 3} → {3, 2, 1} and {1, 2, 3} → {2, 3, 1}, the output undergoes
corresponding positional changes while maintaining the specific output features unaffected. Figure
1(b) depicts a 3D equivariant function, similar to the 2D case but additionally satisfying equivari-
ance in the depth dimension. Building neural networks satisfying multi-dimensional equivariance
is challenging as this property often involves tensors and has complex mathematical expressions.
Linear layers with 1D equivariance were proposed in Zaheer et al. (2017) and extended to higher
dimensions in Hartford et al. (2018). However, equivariant linear layers have shown inferior per-
formance compared to nonlinear ones (Lee et al., 2019). Although a few studies have considered
constructing 2D nonlinear equivariant layers (Maron et al., 2020; Duan et al., 2022), there is still a
lack of an efficient framework for nonlinear networks that can be extended to higher-dimensional
equivariance.

In this paper, we propose a novel serial multi-dimensional permutation equivariance (SMPE) frame-
work for multi-dimensional equivariance, and the structure of its layers is shown in figure 2 (taking
3D equivariance as an example). Instead of directly designing networks based on multi-dimensional
equivariance, we adopt a serial composition of 1D equivariant operations to achieve interactions
among all-dimensional features while preserving multi-dimensional equivariance. The novelty lies
in enhancing network depth through the serial composition of operations and strengthening network
expressivity through the introduction of cross-dimensional global information and a feature reuse
mechanism. Our key contributions comprise:

• We provide the first exact algebra-based definition of multi-dimensional permutation equiv-
ariance. Building upon this, we put forward the proposition for the composition of 1D
permutation equivariant mappings, paving the way for the design of multi-dimensional
permutation equivariant networks.

• Based on the proposed propositions, we build the multi-dimensional equivariant SMPE
framework. Serial 1D equivariant operations in such a framework increase the network
depth, while retaining a concise and easily understandable architecture. The introduction
of cross-dimensional global information and feature reuse mechanisms endow the network
with a strong expressivity. Besides, the SMPE framework can be easily extended to cases
of invariance as well as the hybrid equivariance and invariance.

• We use an extensive set of experiments to evaluate the framework on contextual auction
design, pseudo inverse computation, and typical wireless communication tasks. On such
2D and 3D equivariance-related tasks, our framework significantly outperforms the current
state-of-the-art equivariant networks. For example, when computing the pseudo-inverse of
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Figure 2: Single layer of SMPE framework consists of three parts (using 3D equivariance as an
example in this figure): (i) Perform 1D equivariant operations onN different dimensions serially. (ii)
Use weighted connections to aggregate the output features that have been interacted across different
dimensions. (iii) Introduce pooling operations to preserve cross-dimensional global information.

7 × 8 matrices, the proposed framework reduces the mean absolute error (MAE) loss of
other equivariant models by 76.6%. In two typical wireless communication tasks, SMPE
could gain improvements as high as 10.6% and 7.1% over the state-of-the-art methods.
Additionally, when the size of the set varies, the network can still operate and maintain
excellent performance for slight size variation. For instance, a network trained on 8 × 9
matrices can achieve an MAE loss of 6.10 × 10−2 when computing the pseudo inverse of
9× 10 matrices.

2 RELATED WORK

2.1 ONE-DIMENSIONAL PERMUTATION EQUIVARIANT NETWORK

Linear layers: As the pioneering work, Zaheer et al. (2017) established the paradigms that permu-
tation invariant networks must adhere to. Additionally, the paper introduced the forms of equivariant
linear layers and further presented permutation invariant and equivariant networks. Based on this,
Segol & Lipman (2019) and Vignac et al. (2020) proposed a simple universal equivariant network
and a graph neural network with structural message-passing, respectively. Furthermore, Pan & Kon-
dor (2022) extended the equivariant linear layers (Zaheer et al., 2017) into high-order interaction
layers, and Maron et al. (2019) considered the invariant linear layer for high-order interaction. Sim-
ilarly, a high-order equivariant graph variational encoder was proposed in Thiede et al. (2020). It is
worth noting that despite its name similarity to high-dimensional equivariance, the high-order inter-
action (or high-order equivariance) is based on 1D equivariance and relies on the objects within a
single set.

Nonlinear layers: Apart from linear equivariant layers, there are also some nonlinear layers pri-
marily based on the transformer. With the transformer block without positional encodings, Lee et al.
(2019) constructed nonlinear equivariant layers and pooling functions, based on which an invariant
network is developed. Such a nonlinear network exhibits superior performance compared to net-
works composed of equivariant linear layers with activation functions. As theoretical support, Yun
et al. (2019) proved that the transformer without positional encodings is a universal approximator
for equivariant functions. Kim et al. (2021) combined the linear equivariant layers (Zaheer et al.,
2017) with the transformer to obtain an equivariant transformer and extended it to the high-order
interaction layers for hypergraph tasks.

Applications: In addition to these theoretical studies, some applications of equivariant networks
have garnered attention. Using structures similar to linear equivariant layers, Qi et al. (2017) and Li
& Lee (2019) addressed the tasks about point cloud and pose estimation, respectively. Leveraging
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the 1D equivariance of the transformer variant, the network proposed by Sun et al. (2020) worked
well on tasks such as robust line fitting and point cloud classification. Based on the variable node
attention pooling mechanism, Meltzer et al. (2019) constructed a one-dimensional invariant network
to effectively tackle graph classification problems. This issue was further thoroughly explored by
Yang et al. (2022) through the hierarchical assembly of substructures and the help of soft sequence
with context attention.

Nevertheless, unlike our proposed SMPE framework, the 1D equivariant (or invariant) neural net-
works mentioned above are not suitable for modeling multi-dimensional equivariant mappings.

2.2 MULTI-DIMENSIONAL PERMUTATION EQUIVARIANT NETWORK

Hartford et al. (2018) demonstrated that linear layers satisfying multi-dimensional equivariance ex-
hibit parameter sharing and proposed the structure of corresponding equivariant linear layers. Fur-
thermore, Maron et al. (2018) put forward the linear layer for high-order interactions with multi-
dimensional equivariance, which can degenerate into the structure presented in Hartford et al.
(2018). Considering the design of 2D equivariant networks, Maron et al. (2020) investigates the
relationship between the universality of the 1D equivariant block and the universality of the overall
network. Unlike linear layers, the intricate nature of nonlinear layer construction poses a challeng-
ing task when extending them to multi-dimensional equivariant architectures. Therefore, there are
only a few application-oriented works. For instance, a 2D equivariant network was designed by
Umagami et al. (2023) to address prediction problems with table data. Duan et al. (2022) proposed
a 2D equivariant network for contextual auction design. However, neither of these works considers
the definition of higher-dimensional equivariance or the design of related nonlinear networks, which
are tackled by our SMPE framework.

3 METHOD

In this section, we describe our SMPE framework. First, we provide the preliminaries. Then, we
define the multi-dimensional permutation equivariance and build the SMPE framework. Finally, we
extend our framework to encompass scenarios involving multi-dimensional permutation invariance.

3.1 PRELIMINARIES

As a foundation for multi-dimensional permutation equivariance, we begin by introducing the defi-
nition of the symmetric group and permutation equivariance (Artin, 2011).
Definition 3.1 The set of all bijections from the indices set K = {1, 2, ...,K} to K is called the
symmetric group, denoted by SK with cardinality K!.

Denote X ∈ RK×DX as the input matrix, where K is the number of objects, and DX is the feature
dimension. A permutation πK ∈ SK operates on X by permuting its item order: (πK ◦X)[k,:] =
X[π−1

K (k),:], ∀k ∈ K, whereX[k,:] represents the k-th row ofX .

Definition 3.2 A mapping f : RK×DX → RK×DY is said to be permutation equivariant if
f (πK ◦X) = πK ◦ f(X), ∀πK ∈ SK .

3.2 SMPE FRAMEWORK WITH MULTI-DIMENSIONAL EQUIVARIANCE

In this subsection, we consider the design of the networks that input the tensor X ∈
RK1×K2×···×KN×DX and outputs Y ∈ RK1×K2×···×KN×DY , where Kn is the number of objects
in the n-th dimension, and DX is the feature dimension. Such a network is expected to facilitate
interactions among features across all dimensions while maintaining N -dimensional equivariance.

We first define the multi-dimensional symmetric group and permutation equivariance.
Definition 3.3 We define the N -dimensional symmetric group as SN = SK1 × SK2 × · · · × SKN

,
whose cardinality is ΠN

n=1(Kn!), where N = {1, 2, ..., N}.

Note that the superscript of S denotes the dimensions to which the symmetric group is applied. For
instance, S{1,3,5} = SK1 × SK3 × SK5 operates on the first, third, and fifth dimension of X. A
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permutation πN = (πK1
, πK2

, ..., πKN
) ∈ SN operates on X by respectively permuting the order of

objects along 1, ..., N -th dimension with

(πN ◦ X)[k1,k2,...,kN ,:] = X[π−1
K1

(k1),π−1
K2

(k2),...,π−1
KN

(kN ),:], ∀k1 ∈ K1, ..., kN ∈ KN , (1)

where Kn = {1, ...,Kn},∀n ∈ N.
Definition 3.4 A mapping f : RK1×K2×···×KN×DX → RK1×K2×···×KN×DY is said to be N -
dimensional permutation equivariant if f

(
πN ◦ X

)
= πN ◦ f(X), ∀πN ∈ SN.

A 1D equivariant network is designed to maintain the same output features for their corresponding
inputs when the order of objects is permuted. When considering multi-dimensional equivariance,
the network needs to satisfy this property across multiple dimensions, making it more challenging to
design and resulting in a complicated pattern of parameter sharing Hartford et al. (2018). To address
this issue, we try to merge 1D equivariant networks to construct the required high-dimensional
equivariant network. Following this idea, we first put forward the following proposition
Proposition 3.1 Let hn : RKn×D → RKn×D denote the 1D equivariant mapping for 1 ≤ n ≤ N .
Additionally, define the function h̄n : RK1×···×KN×D → RK1×···×KN×D as the operation that
applies the function hn to the n-th dimension of X, while keeping an identity mapping for the
remaining N − 1 dimensions1, then

(i) The function g = h̄n1
◦ h̄n2

◦ · · · ◦ h̄nM
, 1 ≤ nm ≤ N, ∀m = 1, ...,M exhibits N -dimensional

permutation equivariance.

(ii) The function g = h̄n1 + h̄n2 + · · ·+ h̄nM
, 1 ≤ nm ≤ N, ∀m = 1, ...,M exhibitsN -dimensional

permutation equivariance.

The above proposition shows that the network composed of 1D equivariant networks through addi-
tion or composition possesses multi-dimensional equivariance.

Subsequently, we consider endowing the network with the ability to facilitate interactions among all
dimensions. Denote fn : RKn×D → RKn×D, 1 ≤ n ≤ N as the 1D equivariant layer operating
on the n-th dimension of X. Different from hn, fn is designed to perform interactions among Kn

object features, such as the layers developed by Zaheer et al. (2017) and Lee et al. (2019). Similar to
h̄n, we define f̄n based on fn. It can be easily verified that if the network is composed of {f̄n}Nn=1,
then it enables interactions among features across all N dimensions. According to Proposition 3.1,
the two simplest combinations are in a serial and parallel manner, expressed as

gserial = f̄N ◦ f̄N−1 ◦ · · · ◦ f̄1, gpara = f̄N + f̄N−1 + · · ·+ f̄1. (2)

Although gserial and gpara have the same computational complexity, gserial has a deeper network
depth compared to gpara due to its sequential processing, which means gserial may have a stronger
expressivity (Lu et al., 2017). Thus, we choose gserial as the prototype of the framework.
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Figure 3: Pooling operations for N = 3.

Since each application of f̄1, ..., f̄N to the input rep-
resents the interactions between the features in a new
dimension, the output features of f̄1, ..., f̄N will ex-
hibit different distributions, respectively. Therefore,
we utilize the weighted connections to aggregate the
outputs of each f̄n for feature reuse (Huang et al.,
2017). Furthermore, we highlight the significance
of global information and the limitations of gserial

in this context. When dealing with elements in a
set, their global information is crucial (e.g., mean or
max), as validated by Zaheer et al. (2017). Extend-
ing 1D equivariance to multi-dimensional equivari-
ance requires the global information not only within
individual dimensions but also across multiple di-
mensions Hartford et al. (2018). However, gserial

may lose the global information for two reasons: (i)
If fn is nonlinear (e.g., the layer with attention mechanism), preserving global information within

1In practical implementation, other N − 1 dimensions can be considered as batch dimensions.
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a single dimension becomes challenging. (ii) Applying permutation equivariant operations sepa-
rately to individual dimensions hinders the preservation of joint global information across multiple
dimensions. To this end, we add the weighted global information to the output (He et al., 2016). In
summary, the SMPE framework can be represented as

gSMPE(X) = σ

 N∑
n=1

wPE
n [f̄n ◦ f̄n−1 ◦ · · · ◦ f̄1(X)] +

∑
P⊆N\{∅}

wGI
P X̄P

 , (3)

where wPE
n is the weight belonging to the output of f̄n, wGI

P is the weight belonging to the
global information X̄P, σ is the element-wise nonlinearity, and N = {1, 2, ..., N}. X̄P ∈
RK1×···×KN×D, P ⊆ N\{∅} is obtained by pooling operations applied at dimension pattern P
(e.g., the mean and max functions). In the case of N = 3, for example, the power set of N\{∅}
is {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, which are shown in Figure 3. After the pooling
operation, the input is then repeated to restore its original shape. Note that the number of subsets of
set N\{∅} is 2N − 1. The following proposition validates the versatility of the SMPE framework.
Proposition 3.2 The SMPE framework in equation 3 will degenerate to the exchangeable tensor
layer (the combination of the multi-dimensional equivariant linear layer and element-wise nonlin-
earity in Hartford et al. (2018)) when f̄n = fid, n = 1, ..., N , where fid is the identity mapping
fid(X) = X.

Then, we describe the implementation details of the SMPE layer. Without loss of general-
ity, we consider the same input and output dimensions D 2. The global information X̄ and
the outputs O from each layer are concatenated and then linearly combined using linear layers
FC2 : R(N+2N−1)D → RD applied at the last dimension. Besides, we employ layer normal-
ization LN before the activation function σ (Ba et al., 2016). The architecture of SMPE layer
SMPEL : RK1×···×KN×D → RK1×···×KN×D can be represented as follows:

SMPEL(X) = FC1(σ(LN(M))), (4)

M = FC2([O1,O2, ...,ON , X̄P1
, ..., X̄P2N−1

]), (5)

O0 = X, On = PE1Dn(On−1), n = 1, 2, ..., N, (6)

where FC1 : RD → RD represents the linear layer applied at the last dimension, and PE1Dn :
RKn×D → RKn×D denotes the 1D equivariant layer operating at the n-th dimension. The architec-
ture of the SMPE layer is illustrated in Figure 2, where PE1D1, PE1D2, and PE1D3 are performed
at the first, second, and third dimensions. By stacking SMPEL, we can build the multi-dimensional
equivariant network SMPEN.

3.3 EXTENTION TO PERMUTATION INVARIANCE

Permutation invariant neural networks are important tools for capturing global features from sets or
multiple sets Chien et al. (2021); Wagstaff et al. (2019), such as table understanding (Dash et al.,
2022) and parameter estimation (Zaheer et al., 2017). While the SMPE framework is proposed for
multi-dimensional equivariance, it can also handle multi-dimensional invariance. We first provide
the definition of permutation invariance and extend it to the cases with higher dimensions.
Definition 3.5 A mapping f : RK×DX → RDY is said to be permutation invariant if
f (πK ◦X) = f(X), ∀π ∈ SK .
Definition 3.6 A mapping f : RK1×···×KN×DX → RDY is said to be N -dimensional permutation
invariant if f

(
πN ◦ X

)
= f(X), ∀πN ∈ SN.

According to Zaheer et al. (2017), with the help of pooling operations, 1D permutation equivariant
functions can be transformed into permutation invariant functions. These pooling operations contain
functions like mean, max, and sum operations. It can also be constructed by a neural network, such
as the pooling layer in Lee et al. (2019). We extend this idea to higher dimensions. Following this
idea, the serial multi-dimensional permutation invariance network (SMPIN) can be expressed as

SMPIN(X) = PoolN (SMPEN(X)) , (7)

2The network can use linear layers to map the feature dimension DX to feature dimension D in the the
hidden layer, and subsequently map D to DY .
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where PoolN represents the pooling operation on dimensions in N. Furthermore, we consider the
case where the mapping needs to satisfy equivariance in some dimensions and invariance in others
when dealing with multi-dimensional tensor inputs.
Definition 3.7 A mapping f : RK1×···×KN×DX → RK1×···×KM×DY , 1 ≤ M ≤ N − 1 is said to
be M -(N −M)-dimensional hybrid permutation equivariant and invariant if

f
(
πM− ◦ X

)
= πM− ◦ f(X), ∀πM− ∈ SM

−
, f
(
πM+

◦ X
)

= f(X), ∀πM+

∈ SM
+

, (8)

where M− = {1, 2, ...,M} and M+ = {M + 1, ..., N}.

We provide a simple example to illustrate the mappings that satisfy the properties mentioned above.
M different systems input the same random signal and output M types of signals with different
distributions. Estimating the parameters of these M distributions from K discrete samples each is
a mapping f : RS×K×DX → RS×DY , which satisfies 1-1-dimensional (1-1D) hybrid permutation
equivariance and invariance. Note that this problem is not reasonable to be divided into S separate
parameter estimation tasks f : RK×DX → RDY , as the S different output signals share similar
characteristics due to the common input. Similar to equation 7, the serial multi-dimensional hybrid
permutation equivariant and invariant network (SMPEIN) can be expressed as

SMPEIN(X) = PoolM+ (SMPEN(X)) . (9)

4 EXPERIMENT

Three types of experiments are considered in this section: (1) pseudo inverse computation, (2) trans-
mission design for multi-input multi-output (MIMO) system, (3) transmission design for cell-free
MIMO system, where the experiments (1) and (2) contain the objects across two dimensions, and
experiment (3) contains the objects across three dimensions. To show the performance of the 1D
equivariant network in handling multi-dimensional equivariant problems, we adopted the approach
in Lee et al. (2019) as one of the baselines. The network composed of multi-dimensional equivariant
linear layers in Hartford et al. (2018) is also compared. Umagami et al. (2023) and Duan et al. (2022)
proposed 2D equivariant network structures, which are both based on the transformer and share sim-
ilar structures. Since Umagami et al. (2023) considers the time prediction in another dimension that
deviates from the focus of this paper, we selected the approach presented by Duan et al. (2022) as
another baseline. We refer to the 1D network in Lee et al. (2019), the 2D network in Duan et al.
(2022), the 2D and 3D networks in Hartford et al. (2018) as SetTrans1D, CITransNet2D, ETN2D,
and ETN3D, respectively. The 2D and 3D networks constructed by SMPE using the deepset layer
(Zaheer et al., 2017) and transformer encoding layer (Vaswani et al., 2017) as fn are denoted as
SMPEN2D−DS, SMPEN2D−TF, SMPEN3D−DS, and SMPEN3D−TF. Due to space limitations, details
of tasks and related experiments are not provided in this section. Please refer to Appendices D and
E for more information.

4.1 PSEUDO INVERSE COMPUTATION

Pseudo inverse is a generalization of matrix inverse (Courrieu, 2008), and it is an essential matrix op-
eration in many fields of research. Networks in this subsection are trained to compute the transposed
pseudo inverse (X†)T = (XH(XXH)−1)T ∈ CK×N of the input matrix X ∈ CK×N ,K < N .
It is easy to prove that pseudo inverse computation is a 2D permutation equivariant function. We
use the mean absolute error (MAE) loss and mean squared error (MSE) loss between the result and
(X†)T as two evaluation metrics. Each evaluation metric is separately computed and summed for
the real and imaginary parts.

The comparisons of MAE and MSE for three different configurations of K and N are shown in
Table 1. It can be observed that due to the differences between 1D and 2D equivariance, the perfor-
mance of SetTrans1D is lower than that of other networks. Compared with other 2D equivariant
networks, SMPEN2D−DS and SMPEN2D−TF have the most superior performance. For example, when
computing pseudo inverses of 8 × 9 matrices, SMPEN2D−DS and SMPEN2D−TF have an MAE loss
that is 13.9% and 70.9% lower than ETN2D, respectively. Table 1 also compares the performance
of the networks when trained in multiple scenarios but tested in one scenario. The results indi-
cate that equivariant networks exhibit the generalization to work with varying numbers of objects.
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Table 1: MAE and MSE (10−2, the lower the better) performance comparisons about computing
transposed pseudo inverse.

MAE(↓)

Test Setting A: K = 7, N = 8 B: K = 8, N = 9 C: K = 9, N = 10

Train Setting A B C A B C A B C

SetTrans1D 16.12 16.14 16.19 15.46 15.43 15.45 14.81 14.74 14.73
ETN2D 9.76 10.71 11.98 11.31 10.98 11.56 12.55 11.65 11.62

CITransNet2D 9.51 10.33 11.94 11.64 10.98 12.05 12.57 11.67 12.09
SMPEN2D−DS 7.60 9.55 11.22 10.34 9.45 10.37 12.16 10.69 10.56
SMPEN2D−TF 2.23 5.70 12.81 6.13 3.20 6.41 9.41 6.10 4.59

MSE(↓)

Test Setting A: K = 7, N = 8 B: K = 8, N = 9 C: K = 9, N = 10

Train Setting A B C A B C A B C

SetTrans1D 5.35 5.36 5.38 5.05 5.04 5.05 4.43 4.40 4.40
ETN2D 3.27 3.96 5.21 3.67 3.85 4.21 3.68 3.59 3.55

CITransNet2D 3.42 3.48 3.91 3.76 3.65 3.95 3.61 3.44 3.60
SMPEN2D−DS 2.22 3.39 5.20 3.04 3.14 3.63 3.30 3.06 3.05
SMPEN2D−TF 0.43 1.28 4.18 1.56 0.83 2.10 2.26 1.31 0.98

Equivariant networks can still maintain good performance when there is little discrepancy between
the training and testing scenarios. Besides, although the performance of SetTrans1D is relatively
worse, it exhibits more robust generalization as its performance remains nearly the same under three
different training cases.

4.2 TRANSMISSION DESIGN FOR MIMO SYSTEM

As a crucial foundation for modern human society, the tasks in wireless communication systems
often involve higher-dimensional permutation equivariant mappings Wang et al. (2023). The rea-
son is that communication systems often contain multiple sets like multiple users, each equipped
with multiple antennas, and several base stations, each with multiple antennas. For instance, multi-
user (MU)-multiple-input-single-output (MISO) (Zhao et al., 2022), MU-MIMO (Christensen et al.,
2008), and cell-free MU-MIMO systems (Feng et al., 2021) contain two, three, and four sets of
objects, respectively. To demonstrate the advantage of our proposed framework in modeling high-
dimensional equivariant mappings, we consider two typical communication tasks in this subsection
and the following one, each involving two and three sets of objects, respectively.

Consider a MIMO downlink system where an N -antenna base station (BS) transmits the signal to
K single-antenna user equipment (UE). The networks are trained to design an optimal transmission
scheme W̃ ∈ RK×N×2 based on the available information H̃ ∈ RK×N×3, i.e., f(H̃) = W̃

?
, which

is a 2D equivariant mapping. The evaluation metric R̄M is the average rate of MIMO transmission
with different signal-to-noise ratios (SNRs).

Table 2: Transmission performance R̄M (the higher the better) comparisons for MIMO system.

R̄M(↑)

Test Setting A: N = 7,K = 7 B: N = 8,K = 7 C: N = 8,K = 8

Train Setting A B C A B C A B C

SetTrans1D 7.30 7.30 7.30 8.00 8.00 8.00 8.16 8.16 8.16

ETN2D 16.76 17.83 14.98 17.40 18.76 15.68 14.08 15.35 19.16

CITransNet2D 20.55 20.56 20.34 21.73 21.90 21.64 21.96 22.10 22.07

SMPEN2D−DS 17.89 19.53 15.92 18.61 20.68 16.65 14.79 16.14 20.71

SMPEN2D−TF 22.21 22.70 20.69 23.78 24.71 22.30 21.80 23.17 24.44

Table 2 presents the comparison of R̄M performance. As it can be observed, the performance of
the proposed SMPEN2D−DS outperforms that of ETN2D, and the performance of SMPEN2D−TF sur-
passes that of CITransNet2D. This difference is most prominent when N = 8,K = 7, where

8
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SMPEN2D−DS achieves a 10.2% higher performance than ETN2D, and SMPEN2D−TF achieves a
12.8% higher performance than CITransNet2D.

4.3 TRANSMISSION DESIGN FOR CELL-FREE MIMO SYSTEM

We further consider the transmission design for cell-free MIMO systems (Feng et al., 2022). There
is a central processing unit (CPU) controllingM distributed access points (APs) to supportK single-
antenna UEs, where each AP is equipped withN antennas. The networks are trained to design an op-
timal transmission scheme W̃ ∈ RM×K×N×2 based on the available information H̃ ∈ RM×K×N×3,
i.e., f(H̃) = W̃

?
, which is a 3D equivariant mapping. The evaluation metric R̄CFM is the average

rate of cell-free MIMO transmission with different SNRs.

Table 3: Transmission performance R̄CFM (the higher the better) comparisons for cell-free MIMO
system.

R̄CFM(↑)

Test Setting A: M=3, K=6, N=2 B: M=2,K=6, N=3 C: M=4,K=8, N=2

Train Setting A B C A B C A B C

CITransNet2D 19.40 18.70 19.00 18.20 17.90 18.20 22.60 20.20 24.30

ETN2D 15.90 16.30 10.40 14.80 15.50 9.87 11.40 11.50 20.90

ETN3D 17.29 14.20 10.40 13.58 15.80 9.11 13.72 11.50 19.90

SMPEN2D−DS 15.90 16.60 9.01 14.90 16.00 8.42 11.00 12.60 19.20

SMPEN3D−DS 20.10 12.20 10.50 12.20 18.80 8.27 16.20 12.30 22.50

SMPEN2D−TF 20.80 19.40 19.60 19.50 18.60 18.50 17.20 21.30 26.80

SMPEN3D−TF 23.80 9.66 18.90 10.60 23.30 9.50 20.10 9.96 30.40

Table 3 provides R̄CFM performance comparison of testing under one setting and training across
multiple settings. Interestingly, although the 3D networks (light blue background) perform well
when testing on their training cases, their performance drops more significantly when tested in
other cases compared to the 2D networks. The reason is that the 3D networks exhibit more evident
changes in the number of objects relative to the 2D network. For example, from case A to B, the
tensor dimension changes for 2D networks is X ∈ R6×6×3 → X ∈ R6×6×3. The change for the
3D network is X ∈ R3×6×2 → X ∈ R2×6×3, where M changes from 3 to 2, and N changes
from 2 to 3. It can be concluded from Table 1 that while equivariant networks can still work as the
number of objects changes, the performance degradation becomes more evident as object quantity
changes more significantly. Therefore, 3D networks do not generalize as well to changes in tensor
dimensions compared to the 2D network. This conclusion is also supported by the generalization
performance of SetTrans1D in Table 1 and Table 2.

5 CONCLUSION AND OUTLOOK

In this paper, we proposed a multi-dimensional permutation equivariant framework called SMPE.
Concretely, we first provide the algebraic definition of multi-dimensional permutation equivariance.
Building upon this, we proposed the proposition that combining 1D equivariant functions applied
to individual dimensions can still preserve higher-dimensional equivariance. By composing 1D
equivariant operations that act on different dimensions, we proposed the SMPE framework, which
possesses multi-dimensional equivariance and can facilitate interactions among objects in all di-
mensions. This framework utilizes the feature reuse mechanism and introduces cross-dimensional
global information to enhance the expressivity. Besides, with the help of pooling operations, SMPE
framework can be extended to the case of multi-dimensional invariance. Experiments demonstrated
that the networks constructed by the SMPE framework exhibited superior performance and could
operate on different sizes of sets. In future work, we will consider investigating training strategies
to enhance the performance of equivariant networks on cases with different set sizes.
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A PROOF OF PROPOSITION 3.1

In this section, we provide the proof of Proposition 3.1. The permutation πN from SN can be decom-
posed into πN = πKN

◦ πKN−1
◦ · · · ◦ πK1

, where πKn
∈ SKn

is applied at the n-th dimension of
the input tensor, and the order of permutations at different dimensions can be changed. Therefore,
we have

h̄n(πN ◦ X) = h̄n(πKN
◦ πKN−1

◦ · · · ◦ πK1
◦ X)

= h̄n
(
πKn

◦ (πKN
◦ · · · ◦ πKn−1

◦ πKn+1
◦ · · · ◦ πK1

◦ X)
)

= πKn ◦ h̄n(πKN
◦ · · · ◦ πKn−1 ◦ πKn+1 ◦ · · · ◦ πK1 ◦ X), ∀πN ∈ SN.

(10)

Since h̄n perform the identity mapping hid(X) = X in other dimensions of X, it exhibits permutation
equivariance in other N − 1 dimensions. Then, the above equation can be written as

h̄n(πN ◦ X) = πKn ◦ h̄n(πKN
◦ · · · ◦ πKn−1 ◦ πKn+1 ◦ · · · ◦ πK1 ◦ X)

= πKN
◦ πKN−1

◦ · · · ◦ πK1
◦ h̄n(X)

= πN ◦ h̄n(X), ∀πN ∈ SN.
(11)

Based on this equation, we can obtain the following conclusion

g(πN ◦ X) = h̄n1
◦ h̄n2

◦ · · · ◦ h̄nM
(πN ◦ X)

= h̄n1 ◦ h̄n2 ◦ · · · ◦ (πN ◦ h̄nM
(X))

= πN ◦ g(X), ∀πN ∈ SN.
(12)
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This completes the proof for Proposition 3.1 (i). For Proposition 3.1 (ii), we also have the following
equation:

g(πN ◦ X) = h̄n1
(πN ◦ X) + h̄n2

(πN ◦ X) + · · ·+ h̄nM
(πN ◦ X)

= πN ◦ h̄n1
(X) + πN ◦ h̄n2

(X) + · · ·+ πN ◦ h̄nM
(X)

= πN ◦ g(X), ∀πN ∈ SN,
(13)

which completes the proof for Proposition 3.1.

B PROOF OF PROPOSITION 3.2

In this section, we provide the proof of Proposition 3.2. Without loss of generality, we consider the
case where D = 1 aligns with the expression in Hartford et al. (2018). The exchangeable tensor
layer is expressed as gETL(X) = vec−1σ(W vec(X)), where W ∈ R(ΠN

n=1Kn)×(ΠN
n=1Kn) is the

trainable weight matrix with specific parameter sharing patterns. A distinct parameter wS is defined
for each S ⊆ N = {1, 2, ..., N}, and the elements ofW are tied as follows

W[p,q] := wS s.t. pi = qi, i ∈ S, pi′ 6= qi′ , i
′ ∈ N\S, (14)

where p ∈ RN×1 and q ∈ RN×1 are the row and column index represented by the N -dimensional
coordinates for shape K1 × K2 × · · · × KN . Besides, we have 1 ≤ pi ≤ Ki, 1 ≤ qi ≤ Ki, i =
1, ..., N . Equation 14 implies that, for a specific set of dimensions S, the elements of W , which
satisfy that the N -dimensional row coordinate m are the same as the column coordinate n on di-
mensions in S, share the same weightwS. Due to |N| = N , there are 2N different elementswS inW .
Then, we consider simplifying the above expression and derive a simple representation of gETL(X).
Define M = vec−1(W vec(X)), and we have gETL(X) = σ(M). The p1, ..., pN -th element of M is
given by

mp1,...,pN

= W[p,:] × vec(X)

=

KN∑
qN=1

KN−1∑
qN−1=1

· · ·
K1∑
q1=1

W[p,(q1,q2,...,qN )T ] · xq1,...,qN

=
∑
S⊆N

wS
∑

qi=pi,i∈S
q
i′ 6=p

i′ ,i
′∈N\S

xq1,..,qN

= w∅
∑

q
i′ 6=p

i′ ,
i′∈N

xq1,q2,..,qN + w{1}
∑

q
i′ 6=p

i′ ,
i′∈N−{1}

xp1,q2,..,qN + w{2}
∑

q
i′ 6=p

i′ ,
i′∈N−{2}

xq1,p2,q3,..,qN + · · ·

+ w{1,2}
∑

q
i′ 6=p

i′ ,
i′∈N−{1,2}

xp1,p2,q3,...,qN + w{1,3}
∑

q
i′ 6=p

i′ ,
i′∈N−{1,3}

xp1,q2,p3,...,qN + · · ·+ w{1,...,N}xp1,...,pN

= w∅
∑

q1,...,qN

xq1,q2,..,qN + (w{1}−w∅)
∑

q2,...,qN

xp1,q2,..,qN + · · ·+ (w{N}−w∅)
∑

q1,...,qN−1

xq1,..,qN−1,pN

+ (w{1,2} − w∅ − w{1} − w{2})
∑

q3,...,qN

xp1,p2,q3,...,qN + · · ·

+ (w{1,...,N} − w∅ − w{1} − · · · − w{N} − w{1,2} − · · · − w{1,...,N−1})xp1,...,pN

=
∑
S⊆N

(
wS −

∑
U⊂S

wU

) ∑
qi=pi,i∈S
q′
i
,i′∈N\S

xq1,..,qN

(15)

We use X̂A ∈ RK1×···×KN ,A ⊆ N to represent the tensor obtained by applying the summation
operation over the dimensions A of tensor X, which is repeated over the dimensions A to match the
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original shape. Note that X̂∅ = X. A single term in the above formula can be represented as follows(
wS −

∑
U⊂S

wU

) ∑
qi=pi,i∈S
q′
i
,i′∈N\S

xq1,..,qN = w̄S[X̂N\S]p1,p2,...,pN , (16)

where [X̂N\S]p1,p2,...,pN ∈ R denotes the p1, p2, ..., pN -th element of X̂N\S, and w̄S = (wS −∑
U⊂S wU). Based on the above formula, we have mp1,...,pN =

∑
S⊆N w̄S[X̂N\S]p1,p2,...,pN . Thus,

gETL(X) can be expressed as

gETL(X) = σ

∑
S⊆N

w̄SX̂N\S

 . (17)

Then, we consider the output of SMPE framework. When fn = fid, n = 1, ..., N , equation equa-
tion 3 can be rewritten as

gSMPE(X)

= σ

 N∑
n=1

wPE
n [fn ◦ fn−1 ◦ · · · ◦ f1(X)] +

∑
S⊆N\{∅}

wGI
S X̄S


= σ

 N∑
n=1

wPE
n X +

∑
P⊆N\{∅}

wGI
P X̄P

 = σ

( N∑
n=1

wPE
n

)
X +

∑
P⊆N\{∅}

wGI
P X̄P

 .
(18)

Define wGI
∅ =

(∑N
n=1 w

PE
n

)
, and we have

gSMPE(X) = σ

∑
P⊆N

wGI
P X̄P

 . (19)

By replacing P = N\S, the output of the SMPE framework can be expressed as gSMPE(X) =

σ
(∑

S⊆N w
GI
N\SX̄N\S

)
. In comparison to equation 17, we can conclude that gSMPE(X) = gETL(X)

under one of the following conditions:

• X̄ is obtained by the summation operation, and wGI
N\S = w̄S.

• X̄ is obtained by the mean operation, and wGI
N\S = (Πn∈N\SKn) · w̄S.

This completes the proof for Proposition 3.2.

C MORE DETAILS ABOUT SMPE LAYER

In this section, we provide detailed implementations of the functions in the SMPE layer and the
calculation of related computational complexities.

The architecture of SMPE layer SMPEL : RK1×···×KN×D → RK1×···×KN×D can be represented
as follows:

SMPEL(X) = FC1(σ(LN(M))), (20)

M = FC2([O1,O2, ...,ON , X̄P1 , ..., X̄P2N−1
]), (21)

O0 = X, On = PE1Dn(On−1), n = 1, 2, ..., N, (22)

where we choosed ReLU as the activation function σ (Glorot et al., 2011). In addition to
PE1Dn, n = 1, ..., N , the computational complexity of the SMPE layer mainly focuses on the
fully connected layer FC2 in equation 21, where its input and output dimensions are K1 × · · · ×
KN × (N + 2N − 1)D and K1× · · ·×KN ×D. Since FC2 operates at the last dimension, the first
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N dimensions of the input shape can be seen as the batch size. Thus, the computational complexity
of this layer is O

(
(ΠN

n=1Kn) · (2N +N + 1) ·D2
)
. σ and LN are used for non-linearity and nor-

malization, respectively. If the activation function and normalization layer are already included in
PE1Dn, this step can be selectively omitted.

Since the input is a tensor instead of a matrix, before applying PE1Dn : RKn×D → RKn×D, we
performed the following operation:

X ∈ RB×K1×···×KN×D transpose−→ X ∈ RB×K1×···×Kn−1×Kn+1×···×KN×Kn×D (23)
reshape−→ X ∈ R(BK1···Kn−1Kn+1···KN )×Kn×D, (24)

where B denotes the batch size. After performing the above operation, the first dimension of X
can be considered as the new batch dimension, and PE1Dn can be applied to X. Subsequently,
X is restored to its original tensor dimensions through the reverse operation of equation 23 and
equation 24.

Then, we consider the two specific implementations of PE1Dn. It is worth noting that we em-
ploy both of these structures in our experiments for illustration purposes. In practice, any one-
dimensional equivariant network layer can be applied within the SMPE framework.

C.1 SMPE-DS LAYER

SMPE-DS layer applys the 1D equivariant layers in Zaheer et al. (2017) as the functions
PE1Dn, n = 1, ..., N . We further employ LN as the normalization function, and the layer PE1Dn

can be represented as follows:

PE1Dn(X) = σ
(
LN(1βT + [X− 1pool(X)] Γ)

)
, (25)

where X ∈ RKn×D is the input, 1 ∈ RKn×1 represents a column vector of all ones, Γ ∈ RD×D
and β ∈ RD×1 are trainable parameters. pool : RKn×D → R1×D is the pool function, which can
be maxpool, meanpool, and sumpool. Without loss of generality, in our experimental section, we
used the meanpool41 and choosed ReLU as the activation functionσ. According to equation 24 and
equation 25, computational complexity of PE1Dn is O

(
(ΠN

n=1Kn)D2
)
. For all of PE1Dn, n =

1, ..., N , the complexity order is O
(
(ΠN

n=1Kn)N ·D2
)
. The overall computational complexity

orders for equation 21 and equation 22 remain at O
(
(ΠN

n=1Kn) · (2N +N + 1) ·D2
)
.

C.2 SMPE-TF LAYER

SMPE-TF layer applys the transformer encoder layer (without positional encoding) (Vaswani
et al., 2017) as the functions PE1Dn, n = 1, ..., N , which is similar to the 1D permuta-
tion equivariant layer in Lee et al. (2019). According to equation 24, the dimensions of Qn,
Kn, and Vn in the layer are both ΠN

j=1,j 6=nKj × Kn × D, where the first dimension can be
seen as the batch size. Thus the computational complexity of PE1Dn is O(ΠN

j=1,j 6=nKj ·
K2
n · D) (Vaswani et al., 2017). For all of PE1Dn, n = 1, ..., N , the complexity order is
O
(

(ΠN
n=1Kn) · (

∑N
n=1Kn) ·D

)
. Thus, the overall computational complexity orders for equa-

tion 21 and equation 22 is O
(

(ΠN
n=1Kn) · [(2N +N − 1)D +

∑N
n=1Kn] ·D

)
.

C.3 COMPLEXITY COMPARISON

We analyze the computational complexity and the parameters of the proposed framework. We
also compare the exchangeable tensor layer (denoted by ETL) in Hartford et al. (2018), and the
results are shown in Table 4. As shown in the table, the number of parameters displayed is in-
dependent of the number of objects K1, ...,KN in each dimension. This implies that, similar to
ETL, the proposed SMPE framework is suitable for inputs with varying numbers of objects. On
the other hand, for a given number of dimensions N , both SMPEL−DS and ETL exhibit compu-
tational complexity that is linearly related to the total number of objects Kall = ΠN

n=1Kn. Al-
though SMPEL−TF employs the high-complexity self-attention mechanism, the dimension-wise pro-
cessing ensures that the computational complexity is lower than second-order terms of Kall, i.e.,
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(ΠN
n=1Kn)

∑N
n=1Kn ≤ (ΠN

n=1Kn)2. As N grows larger or as K1, ...,KN become closer, the
difference between the expressions on both sides of the inequality increases.

Table 4: Comparison of computational complexity and parameters.

Layer Type Complexity Parameters

SMPEL−DS O
(
(ΠN

n=1Kn) · (2N +N + 1) ·D2
)

O
(
(2N − 1 +N)D2

)
SMPEL−TF O

(
(ΠN

n=1Kn) · [(2N +N − 1)D +
∑N
n=1Kn] ·D

)
O
(
(2N − 1 +N)D2

)
ETL (Hartford et al., 2018) O

(
(ΠN

n=1Kn) · 2N ·D2
)

O(2ND2)

D TASKS DESCRIPTION

D.1 PSEUDO INVERSE COMPUTATION

We consider the computation of the transposed pseudo inverse (X†)T = (XH(XXH)−1)T ∈
CK×N of the input matrixX ∈ CK×N ,K < N . The mapping fromX to (X†)T is 2D equivariant.
The networks are trained to compute (X†)T based onX .

D.2 TRANSMISSION DESIGN FOR MIMO SYSTEM

We consider the transmission design problem in MIMO systems, specifically focusing on the pre-
coding design for downlink transmission. Precoding is a crucial and widely investigated technique
in wireless communication systems (Albreem et al., 2021). Consider a MIMO downlink system
where an N -antenna BS transmits the signal to K single-antenna UE. The channel between BS and
the k-th UE is denoted as hk ∈ CN×1. The channel matrix H = [h1,h2...,hK ]

T ∈ CK×N is
assumed to be available at the BS. Building uponH and the noise variance σ2, the precoding matrix
W = [w1,w2...,wK ]

T ∈ CK×N is designed to enhance the performance of downlink transmis-
sion. The most widely adopted design criterion for W is maximizing the sum rate under the power
constraint PT, i.e.,

W ? = arg maxRM, s.t. Tr(WWH) = PT, (26)
where RM is the sum rate for MIMO transmission given by

RM =

K∑
k=1

log2

(
1 +

|hHk wk|2

σ2 +
∑
i 6=k |hHk wi|

)
. (27)

Due to the non-convex nature of problem equation 26, solving it is challenging. We model the
solution of the above problem as W ? = f(H) for a given σ2, and we have f(π{1,2} ◦ H) =
π{1,2} ◦ f(H) = π{1,2} ◦W ?, which means such a function can be seen as a 2D equivariant
function. The networks are trained to obtainW ? based onH and SNR PT

σ2 .

D.3 TRANSMISSION DESIGN FOR CELL-FREE MIMO SYSTEM

Similar to subsection D.2, we further consider the precoding design for cell-free MIMO systems
(Feng et al., 2022). There is a CPU controlling M distributed APs to support K single-antenna
UEs, where each AP is equipped with N antennas. The channel between K UEs and the m-th AP
is denoted as Hm = [hm,1,hm,2...,hm,K ]

T ∈ CK×N , and the corresponding precoding matrix
is Wm = [wm,1,wm,2...,wm,K ]

T ∈ CK×N . By stacking the channel and precoding matrices
belonging to all APs, we have H ∈ CM×K×N and W ∈ CM×K×N . Then, the optimization problem
of W is given by

W? = arg maxRCFM, s.t. Tr(WmW
H
m ) = PT, m = 1, ...,M, (28)

where hk = [hT1,k,h
T
2,k, ...,h

T
M,k]T ∈ CMN×1 and wk = [wT

1,k,w
T
2,k, ...,w

T
M,k]T ∈ CMN×1.

RCFM is the sum rate for cell-free MIMO transmission expressed as

RCFM =

K∑
k=1

log2

(
1 +

|hHk wk|2

σ2 +
∑
i6=k |hHk wi|

)
. (29)
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We model the solution to problem equation 28 as W? = f(H) for a given σ2, and we have f(π3 ◦
H) = π3◦f(H) = π3◦W?, which means such a function can be seen as a 3D permutation equivariant
function. The networks are trained to obtain W? based on H and SNR.

E EXPERIMENTAL SETUP

E.1 PSEUDO INVERSE COMPUTATION

We concatenate the real and imaginary parts of X at the newly appended last dimension to obtain
X ∈ RK×N×2, and the reverse procedure is employed at output Y ∈ RK×N×2 to obtain the result
Y ∈ CK×N . Without loss of generality, X is sampled from random matrices whose elements are
independently identical distributed (i.i.d.) with complex Gaussian distribution CN (0, 1). We use
MAE and mean squared error (MSE) as the loss functions. It is easy to prove that the transposed
pseudo inverse is a 2D permutation equivariant function for X, where the feature dimension isDX =
DY = 2. The input is flattened to X ∈ RKN×2 for SetTrans1D. The evaluation metrics of this
experiment are chosen to be the MAE and MSE losses between Y and (X†)T , which are separately
computed and summed for the real and imaginary parts, i.e.,

MAE = (‖<(Y )−<(X†)T ‖1 + ‖=(Y )−=(X†)T ‖1)/KN, (30)

MSE = (‖<(Y )−<(X†)T ‖2F + ‖=(Y )−=(X†)T ‖2F )/KN. (31)

We train networks separately for each evaluation metric, and the loss function during training is the
average of the evaluation metric from the data in each batch.

E.2 TRANSMISSION DESIGN FOR MIMO SYSTEM

With the fixed PT = 1, we train these networks on seven different SNRs, i.e., PT

σ2 =
{0, 5, 10, 15, 20, 25, 30}. Following the same procedure as described in subsection E.1, we concate-
nate the real parts, imaginary parts, and σ2 at the newly expanded last dimension. Consequently,
the shapes of the input and output are H̃ ∈ RK×N×3 and W̃ ∈ RK×N×2, respectively. The in-
put of SetTrans1D is flattened to H̃ ∈ RKN×3. The dataset of H is sampled from the channels
generated by the Rayleigh channel model (Telatar, 1999), which means its elements follow i.i.d.
Gaussian distribution CN (0, 1). To ensure the result W reshaped from W̃ satisfies the power con-
straint in equation 26, we use σout(W ) =

√
PT/Tr(WWH) ·W as the output layer of networks.

The evaluation metric R̄M for this experiment is defined as the average ofRM across seven SNR val-
ues {0, 5, 10, 15, 20, 25, 30}, where the expression ofRM is given by equation 27. The loss function
during training is the average of the negative R̄M computed from the data in each batch.

E.3 TRANSMISSION DESIGN FOR CELL-FREE MIMO SYSTEM

Following the similar procedure in subsection E.1, the dimensions of the input and output are H̃ ∈
RM×K×N×3 and W̃ ∈ RM×K×N×2, respectively. The input for 2D networks is flattened to H̃ ∈
RK×MN×3. To ensure that {Wm}Mm=1 reshaped from W̃ satisfy the power constraint in equation 28,
we use σout(Wm) =

√
PT/Tr(WmWH

m ) ·Wm as the output layer of networks. The evaluation
metric R̄CFM is defined as the average of RCFM across seven SNR values {0, 5, 10, 15, 20, 25, 30},
where the expression of RCFM is given by equation 29. The the loss function during training is
the average of the negative R̄CFM from the data in each batch. The dataset of H is sampled from
the channels generated by the QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) (Jaeckel
et al., 2014), which is used for generating realistic radio channel impulse responses for system-level
simulations of mobile radio networks.

E.4 COMMON SETUP

In this subsection, we provide some common experimental configurations and hyperparameters.

• Pooling functions: Without loss of generality, all the pooling operations are set to be the
mean function.
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• The number of layers: Except for ETN2D and ETN3D, which consist of eight layers, all the
involved networks comprise four layers.

• Feature dimension D: For all networks, the feature dimension D in the hidden layers is
set to 256.

• Training strategy: We perform batch iterations for 8× 104 times with a batch size of 512
and reduce the learning rate by half after 4×104 iterations. This strategy for the three tasks
is the same. For the design task of MIMO and cell-free MIMO system transmission, we
randomly assign SNR values to each training and testing sample.

• Dataset size: For each task, we use 2× 105 training samples and 5× 103 testing samples.
• Activation & normalization: To accelerate convergence and enhance the stability of the

training process, we applied the ReLU activation and LN to ETN2D and ETN3D.
• Parameter initialization: With the exception of networks SMPEN2D−TF and
SMPEN3D−TF in the task of subsections 4.3, which were initialized using the default
method, we employed Kaiming initialization (He et al., 2015) for the weight parameters
of the linear layers in networks used for other tasks.

• Monte-Carlo simulation: Each experimental result is the average of three valid experi-
ments.

F ADDITIONAL EXPERIMENTAL RESULT

F.1 ABLATION STUDY

To validate the superiority of gserial (represented by ParaN2D−TF) over gpara (represented by
SerialN2D−TF) in subsection 3.2, as well as the superiority of gSMPE over gserial, we compared
the performance of these three methods on task in subsection 4.2. It can be observed that in most
scenarios, gserial outperforms gpara, and gSMPE outperforms gserial.

Table 5: Experiment results of ablation study

R̄M(↑)

Test Setting A: N = 7,K = 7 B: N = 8,K = 7 C: N = 8,K = 8

Train Setting A B C A B C A B C

ParaN2D−TF 20.49 20.39 20.33 21.72 21.87 21.62 21.99 21.61 21.97

SerialN2D−TF 20.75 21.48 19.08 21.91 22.94 20.31 19.26 20.18 24.33

SMPEN2D−TF 22.21 22.70 20.69 23.78 24.71 22.30 21.80 23.17 24.44

F.2 RUNNING TIME COMPARISON

Table 6 provides a comparison of the runtime for each network across different tasks. The runtime
refers to the average time taken for a batch during inference on GPU, with a batch size of 1000. In

Table 6: Running time (ms) comparison.
1A 1B 1C 2A 2B 2C 3A 3B 3C

SetTrans1D 61.7 67.5 72.1 16.4 18.6 24.3
CITransNet2D 87.9 106.0 119.1 48.2 53.8 64.4 34.8 34.9 63.2

ETN2D 61.9 69.2 75.8 18.7 21.9 28.4 13.8 13.8 27.1
SMPEN2D−DS 65.2 75.6 80.4 21.3 24.6 31.4 12.8 12.9 24.7
SMPEN2D−TF 87.8 109.1 129.0 51.2 59.9 69.1 35.0 35.1 63.4

ETN3D 25.6 25.7 46.9
SMPEN3D−DS 23.1 23.2 42.5
SMPEN3D−TF 55.4 55.5 99.3
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the first row, ‘1’, ‘2’ and ‘3’ denote experiments in subsections 4.1, 4.2, and 4.3, respectively. A, B,
and C represent the scenario configurations for each task during inference. It can be observed that
the runtime of SMPEN−DS is comparable to that of ETN, and the runtime of SMPEN2D−TF is similar
to that of CITransNet2D.

F.3 CONTEXTUAL AUCTION DESIGN

Since CITransNet2D (Duan et al., 2022) and SMPEN2D−TF are 2D equivariant networks both
based on the transformer, we compare them on the task of contextual auction design in Duan et al.
(2022). Based on the avaliable contexts, contextual auction design targets to find the optimal al-
location and payment rules to maximize the expected revenue (rev) while maintaining a near-zero
level of dominant strategy incentive compatibility (rgt). The contextual auction contains N bid-
ders and M items, and their contexts are represented by X = [x1,x2, ...,xN ]T ∈ RN×dx and
Y = [y1,y2, ...,yM ]T ∈ RM×dy . The optimal allocation rule matrix G ∈ RN×M and the pay-
ment rule vector p = [p1, ..., pN ]T ∈ RN×1 are designed based on X , Y , and the bidding profile
B ∈ RN×M . The input tensor X ∈ RN×M×(dx+dy+1) can be obtained by repeating X and Y and
concatenating them withB. The dimension of output is set to Y ∈ RN×M×3, where G and p can be
obtained from Y[:,:,1:2] and Y[:,:,3]. The definition of this problem, the output layer of the network,
and the dataset are intricate, whose details can be found in (Duan et al., 2022). It can be verified that
the mapping from X to Y is 2D equivariant.

Table 7: Experiment results about contextual auction design.

N = 2,M = 5 N = 3,M = 10 N = 2,M = 5 N = 3,M = 10

Method |X| = |Y| = 10 |X| = |Y| = 10 X,Y ∈ R10 X,Y ∈ R10

rev rgt rev rgt rev rgt rev rgt

CITransNet2D 2.901 < 0.001 6.858 < 0.001 1.126 < 0.001 2.931 < 0.001

SMPEN2D−TF 2.955 < 0.001 6.880 < 0.001 1.182 < 0.001 2.986 < 0.001

Table 7 presents a comparison of rev and rgt under different configurations of N , M , X, and Y.
The results show that SMPEN2D outperforms CITransNet2D in terms of rev while keeping rgt
sufficiently low.

F.4 TRANSMISSION DESIGN FOR MIMO SYSTEM

For readability purposes, we only provided the performance of R̄M in Table 2. We present the
performance of RM under seven SNR values in figure 4 to provide a more detailed performance
comparison.

F.5 TRANSMISSION DESIGN FOR CELL-FREE MIMO SYSTEM

Table 8: Transmission performance R̄CFM (the higher the better) comparisons for cell-free MIMO
system.

R̄CFM(↑)

Test Setting A: M=3, K=6, N=2 B: M=2,K=6, N=3 C: M=4,K=8, N=2

Train Setting A B C A B C A B C

CITransNet2D 21.81 21.03 24.52 21.33 21.02 22.89 20.49 19.85 27.64

ETN2D 22.33 21.28 18.99 21.59 21.23 18.68 18.06 17.19 27.87

ETN3D 24.11 14.02 18.88 13.75 23.57 14.43 15.36 12.03 27.61

SMPEN2D−DS 22.91 21.80 19.45 22.50 22.02 19.20 18.31 17.46 29.26

SMPEN3D−DS 25.02 13.13 18.66 13.61 24.49 14.05 13.98 10.51 30.40

SMPEN2D−TF 24.27 23.08 23.33 23.84 23.30 23.04 21.15 20.13 32.74

SMPEN3D−TF 26.61 12.54 21.66 15.37 25.53 15.56 19.48 11.00 34.37
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The experimental results based on the Rayleigh channel model are shown in Table 8. Similar to the
MIMO system, we also list the performance of RCFM under seven SNR values in figure 5.
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Figure 4: RM vs SNR, MIMO transmission.
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Figure 5: RCFM vs SNR, Cell-free MIMO transmission.
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