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Abstract

We compare human and large language model (LLM) generalization in the number
game, a concept inference task. Using a Bayesian model as an analytical framework,
we examined the inductive biases and inference strategies of humans and LLM:s.
The Bayesian model captured human behavior better than LLMs in that humans
flexibly infer rule-based and similarity-based concepts, whereas LLMs rely more
on mathematical rules. Humans also demonstrated a few-shot generalization, even
from a single example, while LLMs required more samples to generalize. These
contrasts highlight the fundamental differences in how humans and LLMs infer
and generalize mathematical concepts.

1 Introduction

Large language models (LLMs) have been evaluated on various mathematical reasoning
benchmarks|[1} 2, 3} 14, 5]. Among these, logical deduction from limited information has remained a
particularly challenging domain for LLMs [6l [7, |8]. To address this challenge, recent studies have
moved beyond final-answer evaluation to analyze intermediate reasoning steps [[7, 9} [10, [1 1] and
combined measures of overall accuracy, stepwise soundness, and representational-level analysis [12].

Here, we use the number game[/13]] to examine how LLMs reason about mathematical concepts and
generalize from a few examples. Unlike prior studies embedding reasoning in complex visual or
linguistic contexts [0, 9} (12} [1]], the number game allows us to systematically probe inductive biases
and inference strategies in a few-shot setting. This task has revealed that humans possess rich number
concepts based on either mathematical rules (e.g., even numbers) or similarity (e.g., 11 is closer to 10
than 15) and can flexibly infer and generalize these concepts[14]. These computational processes
were modeled by a Bayesian framework[15} |16, 17] that incorporates the number concepts in its prior
and integrates them with observed data to support flexible generalization.

In this work, We first test whether LLMs infer number concepts along the rule—similarity continuum
based on limited information in the number game. We then compare LLMs’ behavior with human
data [14] and with a Bayesian model that provides a normative prediction of generalization behavior.
We further fit the Bayesian model to capture each agent’s inductive bias toward rules or similarity and
perform ablation analyses on model components to identify the source of human-LLM differences.
Together, our work provides insights into LLMs’ mathematical reasoning and how it diverges from
human cognition.
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2 Methods

2.1 Human and LLM Dataset

We used a publicly available dataset of human behavior [14] from a structured concept inference task
known as the number game [[13]]. In each trial, participants were shown a set of example numbers
(e.g., {2, 4, 6}) and judged whether a given target number (1-100) belonged to the same underlying
mathematical concept. Binary (yes/no) responses from at least nine subjects were averaged to obtain
p(yes) per target number (see appendix [A|for dataset details).

We attempted to replicate the human experiment [[14]] as closely as possible. To do so, we prompted
GPT-o01-mini(OpenAl) via a public API with 255 example sets, querying all target numbers from
1 to 100 (Figure |I|; see section @ for other LLMs). To ensure consistency, we included minimal
instructions encouraging direct yes/no responses and averaged the results over 10 trials.
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Figure 1: Task structure used for LLM evaluation. For each example set, the model is queried on all
possible targets, and this process is repeated across trials.

2.2 Bayesian Model

To model the inference process in the number game, we adopted the Bayesian model 13} 18], which
evaluates a hypothesis space of possible numerical concepts given a set of example numbers. The
model has three components. First, each hypothesis is assigned a prior probability P(h), reflecting
its plausibility before observing any data. The hypothesis space includes both rule-based (e.g., even
numbers, multiples, and primes) and similarity-based concepts formed by all possible intervals
within 1-100 (e.g., 20-30, 25-75, 7). Second, given examples X, the model computes a likelihood
P(X | h), reflecting how well a hypothesis explains the examples. The likelihood incorporates the
size principle, which favors more specific concepts with a smaller cardinality (e.g., power of 2 over
even numbers for {2, 8}). Prior and likelihood are combined via Bayes’ rule to produce a posterior:
_ _ P(X|n)-P(h)

P X) = s pextin-pam

The model generalizes to a new target y by averaging predictions P(y | h) across hypotheses
weighted by their posterior probabilities P(h | X) (hypothesis averaging). Thus, the full model
integrates priors for rule-based and interval-based concepts, likelihood with the size principle, and
hypothesis averaging for generalization (appendix [B].

2.3 Model Fitting and Evaluation

Bayesian models served a dual role in our study: first, as a benchmark for comparing humans and
LLMs, and second, as a diagnostic tool for understanding LLM’s behavior. We first assessed LLM
behavior using a baseline Bayesian model [[13] [18] previously shown to capture human behavior,
thereby providing a benchmark for comparison. A key parameter was the rule bias (\), reflecting
the model’s prior preference for rule-based over interval-based concepts. We also treated A as a free
parameter and compared fitted values between humans and LLM to gauge their rule bias.



To probe structural contributions, we built three model variants (Figure B[C). Binary Likelihood
(BinL) model replaces the size-based likelihood with a binary likelihood that considers only whether
the examples conform to the concept. Maximum A Posteriori (M AP) model replaces hypothesis
averaging with selection of the single hypothesis that maximizes the posterior. Maximum Likelihood
(MaxL) model removes priors and instead predicts by maximizing the likelihood. These variants
allow us to test the roles of size-based likelihood, hypothesis averaging, and prior in explaining
human and LLM behavior.

Model evaluation used Jensen-Shannon Divergence (JSD), a bounded measure (0—1) quantifying
(dis)similarity between predicted and observed response distributions. The smaller the JSD, the more
similar the two distributions are. JSD was computed per example set and averaged across sets to
assess the overall similarity.

3 Results

In general, GPT O1-mini (hereafter GPT) showed diverse and rich response patterns for the number
game with a signature of both similarity- and rule-based generalization (section [3.6] for other LLM).

3.1 Qualitative comparisons: no one-shot generalization in GPT
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Figure 2: Number-game behavior of human, GPT, and baseline Bayesian model (Bayes) for selected
example sets (top titles), showing the probability that a target number y belongs to the same concept
h as the given example set X. Part of the data consistent with a mathematical rule is shown in pale
blue.

Figurd2] compares humans, GPT, and the baseline Bayesian model (A=0.5 rule bias) across represen-
tative example sets. The most salient feature of GPT’s behavior is its response to a single example
(15,10,43): GPT remains anchored to the given number while both humans and the Bayesian model
show a mixture of interval-based (responses concentrated near the example) and rule-based (sparse
peaks like *multiples of 5°) generalization.

Adding a second example shifts the responses differently across agents. When the examples are close
(B: 10, 3), humans and the Bayesian model rely more on interval-based concepts, as indicated by
the gradually decaying ratings from the examples. When two examples are far apart (A: 70, 15), all
agents identify a rule consistent with both examples with weaker interval-based patterns.

With three examples (c), rule-based concepts become eminent across all agents. These suggest that
while GPT relies on both rule and similarity, it does not generalize from a single sample, unlike
humans and the Bayesian model. Overall, the Bayesian model aligns more closely with human
responses than GPT, capturing one-shot generalization and flexible use of rule and interval concepts.

3.2 Quantitative comparisons: baseline Bayes captures human behavior better than GPT

We next quantified human-GPT-Bayes differences across all example sets using mean pairwise JSD
as a metric (TabldT] Figurg3A). Overall, divergence was lower for human-Bayes than GPT-human
and GPT-Bayes, indicating that human responses align better with the Bayesian model than with GPT.



Consistent with the qualitative observations above, this result suggests that GPT employs a different
generalization strategy from humans and the Bayesian model, particularly in the one-example trials.

3.3 Set-length effect: Poor sample efficiency in GPT

To dissect the human-GPT difference in one-example generalization, we examined per-set divergences
from the baseline Bayesian model to explore how the behavioral gap changes with the number of
examples. Figure 3B shows per-set divergence distributions: GPT-Bayes alignment is generally
worse, particularly for single-example sets where GPT rarely generalizes beyond the given example
(Figure[2). GPT-Bayes alignment improves as the number of examples increases, and with L = 4,
the GPT-Bayes divergence becomes comparable to the human-Bayes divergence. In contrast, the
human-Bayes divergence is largely unaffected by set length. This pattern indicates poorer sample
efficiency in GPT: humans exhibit one-shot generalization using rich concepts based on rule and
similarity, whereas GPT requires multiple examples.
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Figure 3: (A) Quantitative comparison of humans, GPT, and baseline Bayes. Mean divergence for
each set length is shown for human-Bayes—GPT comparisons. (B) The central plot shows the per-set
divergence: GPT-Bayes (y-axis) and Human-Bayes (x-axis). Marginal histograms show the value
distributions. Error bars show the standard deviation. (C) Summary of the Bayesian models. The
baseline, best fit and variants; BinL (binary likelihood), MAP (maximum a posteriori), and MaxL
(maximum likelihood).

3.4 Bayesian model fitting: higher rule bias in GPT

Building on the baseline model analysis that benchmarked GPT’s behavior against human and
Bayesian models, we sought to identify the sources of GPT’s poor generalization using Bayesian
modeling as a diagonostic tool. We hypothesized that one possible reason for the GPT-human
difference is that GPT lacks the rich and complex number concepts that humans possess. To test
this, we next fit the Bayesian model to compare the relative reliance on rule-based and interval-based
concepts. Specifically, we examined the rule bias ()\), the relative probability of using rule-based
over interval-based concepts, by fitting the A parameter through a grid search. This fitting improved
alignment for both humans and GPT compared to the baseline model (A = 0.5). The best-fit value of
A was 0.9 in humans and 1 in GPT. This higher rule bias in GPT is consistent with its limited reliance
on intervals and its lack of similarity gradient seen in humans and Bayes (FigurdZA, B).

3.5 Nested model comparison: maximum likelihood inference in GPT

Having identified rule-similarity differences through the fitted rule-bias parameter, we next examined
which other structural components of the Bayesian model are critical for explaining GPT’s behaviors
beyond its number concepts. In the Bayesian framework, number-concept composition is only one
component that may account for GPT’s distinct generalization patterns. The human-GPT difference
could also arise from other elements such as likelihood computation via the size principle, inference
steps based on posterior estimation, or generalization strategy with hypothesis averaging. We tested
whether GPT’s weaker sample efficiency reflects differences in any of these computational structures.
To this end, we built three model variants of the full model, each isolating a core computational
component: BinL, M AP and MaxL (Table[I]). For humans, the best and worst variants are
BinL and M az L, respectively, highlighting the contribution of the Bayesian prior and hypothesis



averaging. The opposite pattern is observed for GPT (best: MaxL, worst: BinL), suggesting that
GPT’s behavior depends more strongly on the likelihood-based inference than on the prior structure.
When we examine the fit by example sets (FigurdC.I)), the M ax L model shows a substantial improved
fit for the L = 1 sets. This result implies that GPT’s lack of one-shot generalization arises from its
heavy dependence on the maximum likelihood inference strategy.

Table 1: Mean divergence of model variants (mean + SEM). Left: full Bayesian models. Right:
fixed-parameter variants.

Baseline Best Fit MAP BinlL MaxL
Human-Bayes 0.36 £0.01 0.30+ 0.01 0.60 +=0.01 0.33+0.01 0.66 +0.01
GPT-Bayes 0.56 £0.02 0.49 +0.02 0.50 £ 0.02 0.65 +0.01 0.42 +0.02

3.6 Other LLMs in the number game: less structured behavior

We also tested several other LLMs, including GPT-40 (OpenAl), DeepSeek-V3, and LLaMA-3-8B
(Meta), to examine whether other models exhibit more human-like generalization patterns or reveal
novel reasoning strategies absent in GPT-ol-mini. Unlike GPT O1-mini, these models showed
weaker generalization and failed to produce rich, systematic patterns of rule-based and interval-
based concepts (D.T|for representative examples). These results suggest that differences in model
architecture and training can shape the formation of number concepts, as well as the reasoning and
generalization behaviors that emerge from them.

4 Discussion

Recent progress in LLMs’ mathematical reasoning benchmarks poses important questions: Can they
generalize mathematical concepts across contexts? How closely do their internal representations
resemble those of humans?[19,120] Using the number game and Bayesian modeling as an interpretable
scaffold, we probed rule bias, sample efficiency, and generalization strategies in humans and LLMs.

Overall, human behavior was better predicted by the Bayesian model than GPT, in that human
generalization strategy depends on the rich structure of the Bayesian prior and the averaging of
multiple hypotheses for prediction. This human-Bayes alignment is not surprising given the model’s
flexibility to capture near-optimal behaviors across different domains[15 16, |17, 21]]. While humans
showed signature of rich number concepts, GPT relies heavily on rule-based inference, showing
little evidence of similarity-based generalization. This suggests that GPT has an inductive bias
toward rule-based inference in mathematical reasoning and that its numerical sense lacks the full
development of similarity-based concepts observed in humans. Because hypothesis space in the
Bayesian model’s prior includes only primitive mathematical rules, it remains to be tested whether
other rule-based concepts may better account for GPT’s behavior such as compositionally structured
rules used in language [18](in appendix [A). Future work should also assess more recent LLMs to
track how model architecture and training affect number concepts and generalization behavior.

Another key finding was that GPT mostly fails to generalize beyond the example when only one
sample is given. This was in stark contrast to the humans’ one-shot generalization, which elicited both
rule-based and similarity-based inferences. The systematic ablation of model components further
reveals that GPT’s poorer sample efficiency arises from its maximum-likelihood inference strategy.
One possibility is that GPT may not consider multiple hypotheses during an inference step due to
limited memory capacity—a possibility that warrants further investigation in future studies.

Together, these findings highlight fundamental differences between human and LLM mathematical
reasoning. While GPT can infer a variety of concepts, its in-context generalization remains limited,
requiring multiple examples and lacking the flexible numerical sense observed in humans. This
limitation may stem from the fact that LLMs are trained predominantly on next-token prediction[22]]
using natural language. Future work could explore different training data that incorporate mathemati-
cal and symbolic representations|[23} 4], prompt-engineering methods for better in-context inference,
or targeted fine-tuning curricula shown to enhance numerical understanding[24] to enrich LLMs’
inductive biases. Such approaches may help bridge the gap in sample efficiency and enable richer,
human-like generalization of numerical concepts.
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A Dataset Structure

The dataset contains 255 unique example sets, sampled from 79 full concepts. These full concepts
were generated by applying mathematical functions to a set of base number categories (e.g., all
numbers, evens, odds, squares, cubes, and primes). A wide variety of concepts were constructed, with
the applied functions ranging from simple identities (e.g., f(n) = n) to compositions of mathematical
operations (e.g., f(n) = 2™ + 1). The final example sets include both single-item sets and subsets
(up to length 4) drawn from these full concepts.

B Bayesian Model Details

Bayesian Model Components Two core components of the Bayesian inference model were de-
signed to capture human generalization behavior: the likelihood function and the generalization
mechanism. The likelihood assumes that examples are sampled uniformly at random from a concept,
leading to a preference for more specific (i.e., smaller) hypotheses that still explain the data. Further-
more, the distinction between competing hypotheses becomes sharper as the number of examples
increases. This size principle penalize broader hypotheses and amplifies likelihood differences with
more examples. The likelihood is defined as follows:

ﬁ, ifV;x; € h
0, otherwise

P(X|h):{

where |h| is the size of the hypothesis and n is the number of observed examples in the set.

To generalize the underlying concept of an example set X to a new target number y, the model
considers all candidate hypotheses for X, assigns each a binary prediction for y (1 if y € h,0
otherwise), and averages these predictions weighted by the posterior probability of each hypothesis.
This approach, known as hypothesis averaging, is defined as:

Ply| X)= Y P(h|X)

h:yeh

Noise Parameter (o). To account for the variability in human responses, we adopt a noisy version
of the model introduced by [[18]]. The noise parameter « represents the probability of structured
(concept-driven) generation, while 1 — « is the lapse rate, reflecting the probability of unstructured,
uniform responses drawn from the entire number range (1-100). With this addition, the likelihood
function no longer assumes that all examples must perfectly align with the hypothesis to be considered.
Instead, even when all examples fall outside the hypothesis set, the hypothesis is not completely ruled
out, it is simply less probable. If x; € h, the model assumes that it could have been generated from
either the concept or noise. In the other case, it assumes that the example was generated from noise
alone. Formally:

1
a—+1—-a)—, z €h, n
pla; [ hy=4 Il 7100 P(X | h) =[]l | h).
(1—&) 100° xz¢h, i=1

In the generalization step, if y ¢ h, the model allows for a soft prediction via the same noise
mechanism:

1, Yy Eh,

p(ylh)Z{l_a, e h P(y| X)=>_ P(h|X)ply|h).

h



Prior Over Concepts. Our hypothesis space, following [18]], includes both rule-based and interval-
based numerical concepts. The prior is defined as a mixture of two uniform distributions: one
over rule-based concepts and one over interval-based concepts. The mixing parameter A € [0, 1]
determines the weight of each type, where A = 1 indicates full rule bias and A = 0 indicates full
interval bias.

Parameter Optimization. We performed a grid search over both o and A to identify the best-fit
values. The grid included:
{0,0.01,0.3,0.5,0.7,0.9,0.99, 1}

Additional fine-tuning was conducted near the optimal points. For each parameter setting, the model
was run over all example sets, and mean Jensen-Shannon divergence (JSD) was computed to evaluate
the fit to human or LLM data. Optimization results revealed a stronger rule bias in GPT (A = 1)
compared to humans (A = 0.9), as well as a higher lapse rate in human responses (1 — o = 0.15)
than in GPT (1 — a = 0).
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Figure B.1: Grid search optimization for « and A parameters. The red star marks the best parameter
configuration. Below each panel, histograms show the distribution of per-set JSD values for the best
fit.



C Best model variants

Divergence (Baseline, Human)

Figure C.1: Per-set JSD comparisons between each variant (x-axis) and the baseline model (y-axis).
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D Other LLMs in the number game
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Figure D.1: Number-game behavior of other tested LLMs for selected example sets (top titles),
showing the probability that a target number y (1-100) belongs to the same concept as the given
example set X. ¢ indicates the temperature value used in each model.

In addition to GPT O1-mini, described in the main text as showing a mixture of rule-based and
interval-based generalization, the other models displayed distinct patterns. DeepSeek-V3 largely
failed to generalize beyond the given examples. GPT-40-mini showed some generalization with
multiple concepts, with slight variation across temperatures. LLaMA-3-8B often produced saturated
responses at temperature 0, rating nearly all numbers very high or failing to select any targets in some
cases, but its saturation decreased as the temperature increased.
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