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Abstract
Efficiently processing structured point cloud data while preserving multiscale in-
formation is a key challenge across domains, from graphics to atomistic modeling.
Using a curated dataset of simulated galaxies, represented as a point cloud, we
benchmark the ability of graph neural networks to simultaneously capture local
clustering environments and long-range correlations. Given the homogeneous
and isotropic nature of the Universe, the data exhibits a high degree of symmetry.
We thus focus on evaluating the performance of Euclidean symmetry-preserving
(E(3)-equivariant) graph neural networks, showing that they can outperform non-
equivariant counterparts and domain-specific information extraction techniques
in downstream performance as well as simulation-efficiency.

1 Introduction
Point clouds are discrete elements in a coordinate system, defined by spatial coordinates and optional
attributes like velocities. Their unordered structure often reveals intricate geometric patterns that span
multiple scales, from local neighborhoods to global distributions. Extracting meaningful insights
from such data motivates the development of new machine learning algorithms that are capable of
capturing and exploiting these multiscale features [1]. Scientific datasets provide an ideal setting for
stress-testing these algorithms, as they often exhibit highly structured, yet low-dimensional latent
representations despite their complex, high-dimensional observational data.

Cosmology is a prime example of this, since the laws driving the Universe’s origin, structure, and
evolution are amenable to relatively ‘simple’ descriptions, allowing scientific data to be character-
ized using low-dimensional summaries. A particular, flagship observation in cosmology is galaxy
clustering, where the positions and associated properties of galaxies are measured by large-scale
surveys Kravtsov and Borgani [2]. The spatial distribution of these galaxies offers deep insights
into the underlying structure of the Universe, helping to answer questions about dark matter, the
Universe’s expansion, and its overall evolution. As next-generation cosmological surveys are set to
deliver petabytes of data, there is a growing need for new, simulation-efficient algorithms to handle
this data deluge and enable effective processing and compression, without relying on hand-crafted,
lossy features Dvorkin et al. [3].

Cosmological datasets and associated tasks exhibit several distinguishing features that make them a
valuable benchmark for stress-testing and developing novel machine learning algorithms, like graph
neural networks (GNNs), for processing point cloud data. Examples of these features include:

• Point cloud cardinality: The datasets under consideration, described below, are larger than
those commonly encountered in other scientific domains where graph processing is used, such
as the study of atomistic systems, with O(10− 100) points. This presents unique challenges
when it comes to scalability and processing information across the point cloud.

• Information across scales: Gravitational forces cause matter to cluster, leading to strong small-
scale correlations. On the other hand, growth of structures that were initially in causal contact
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but are spatially separated at present times induces long-range correlations. This multiscale
nature necessitates the use of algorithms that can capture both local and global information.

• Symmetry structure: The Universe is homogeneous and isotropic – its properties are spatially
uniform.This implies that the distribution of galaxies and other cosmic structures should exhibit
Euclidean symmetry (i.e., invariance to translations, rotations, and reflections).

Neural networks that use physically-informed inductive biases, e.g. symmetries [4], have been shown
to be effective in a variety of domains, from particle physics to materials science [5–8]. Conversely,
some recent works question the need to incorporate symmetries for downstream performance [9, 10].

In this paper, we use a cosmological dataset of galaxy positions and properties to systematically
study the performance of GNNs on downstream tasks that are sensitive to both local and global
correlations, with a particular focus on those that incorporate relevant symmetries. We compare
the performance of these models against traditional domain-informed summary statistics to assess
the potential of machine learning methods to automate and improve upon existing data analysis
techniques in cosmology. Our benchmark aims to stress test existing symmetry-sensitive architectures
in a novel, challenging setting.

Related Work. Previous works have considered point cloud-based approaches to information
extraction from galaxy distributions. Makinen et al. [11] used GNNs to extract cosmological
parameters from galaxy positions, restricting themselves to a specific architecture and relatively small
point clouds with O(100) points. Villanueva-Domingo and Villaescusa-Navarro [12] considered
O(1000) galaxy points and again with limited architectural variation. Anagnostidis et al. [13]
considered a non-graph based approach using the PointNet++ architecture [14, 15]. Our goal
instead is to systematically study the performance and simulation-efficiency of a range of GNNs,
focusing for the first time on symmetry-preserving architectures, on more challenging datasets with
thousands of points. Benchmarking GNNs is an active research area, with recent studies highlighting
the difficulty of capturing long-range correlations due to oversmoothing and oversquashing effects
[16, 17]. Dwivedi et al. [16] introduced the Long Range Graph Benchmark (LRGB) datasets, showing
that graph transformers significantly outperform vanilla message-passing GNNs on tasks requiring
long-range correlations. Unlike the LRGB and other geometric benchmarks [18, 19], which are
limited to ∼500 nodes, ours requires processing long-range information across a larger set of points.

2 Dataset and Benchmark Tasks
2.1 Description of Dataset

Our dataset is derived from the high-resolution Quijote suite of N -body simulations [20]. These
simulations are computationally expensive to run, with over 35 million CPU hours required to
generate 44,100 simulations for the initial suite. This computational cost highlights the need for
simulation-efficient methods. The final dataset consists of point clouds X ∈ R5000×3, with each
point representing the 3D position of a dark matter clump; we refer to these as galaxies for simplicity,
ignoring the details of the dark matter-galaxy connection. In addition to galaxy coordinates, we utilize
the galaxy velocities for a subset of our experiments. A total of 12,384 simulations are available,
from which a subset is split into a training set of size 2048 and validation and test sets of size 512 for
benchmarking. The full dataset is available at https://doi.org/10.5281/zenodo.11479419.

A key statistical measure describing the data is the two-point correlation function (2PCF), which
quantifies the excess probability of finding pairs of galaxies at a given separation compared to random.
The 2PCF is an efficient summary statistic because it encodes information about the clustering of
galaxies at different scales, which is sensitive to the underlying cosmology. In this work, we use the
2PCF as a baseline, highlighting the potential of machine learning models to extract more information
from the point cloud data than traditional summary statistics.

2.2 Benchmark Tasks

We consider two benchmark tasks to evaluate the performance of our models: a graph-level prediction
task and a node-level prediction task. A visualization of both tasks is provided in App. A .

Graph-level prediction. The graph-level prediction task is a regression problem where the goal
is to infer two key cosmological parameters from an input point cloud. Specifically, given a point
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cloud X ∈ R5000×3, representing 5000 galaxy positions, the task is to predict two scalar values
f : R5000×3 → R2: the matter density (Ωm) and the root-mean-square matter fluctuation averaged
over a sphere of radius ∼ 8 Mpc (σ8), which indicates the degree of inhomogeneity in the matter
distribution on these scales. These parameters are fundamental to describing the structure of the
Universe and are primary targets of current and upcoming cosmological surveys. Ωm tends to
depend sensitively on the nature of long-range correlations, while σ8 captures information about local
correlations. We train the models using the mean squared error (MSE) loss between the predicted
output and true target parameters.

Node-level prediction. The node-level prediction task is a regression problem designed to test the
ability of the models to capture local information and dependencies within the point cloud, while
outputting a more manifestly “geometric” quantity – a velocity vector. The input to the model is
again a point cloud X ∈ R5000×3, where each row corresponds to a galaxy. The output is a tensor
Y ∈ R5000×3 representing the predicted velocity components for all points; f : R5000×3 → R5000×3.
We train the models using the MSE loss on the predicted velocities.

3 Architectures and Baselines
The graph neural networks we utilize follow the general message-passing framework based on
Battaglia et al. [21]. A local k-nearest neighbors graph is constructed using the Euclidean distance
between coordinates as the distance metric, accounting for periodic boundary conditions across the
box edges. The graph is represented by node features xi (positions) and edge features eij (relative
distances). We project relative distances onto a basis of radial Bessel functions with a radial cutoff
of 0.6 on the Z-scored positions, which was found to be crucial for downstream performance in the
graph-level prediction task to predict σ8, the parameter most affected by short range correlations.

Specific implementations differ in the choice of edge/node update functions and features used in
message passing. The GNN closely follows the general framework outlined above, using MLPs for
the edge and node update functions ϕl

e and ϕl
x. E(n) Equivariant Graph Neural Network (EGNN)

[22] designs the edge and node updates such that the message-passing operation is equivariant to E(n)
transformations. Steerable E(3) Equivariant Graph Neural Network (SEGNN) [23] utilizes steerable
feature representations, allowing the node and edge features to be covariant geometric tensors of
arbitrary order (e.g. vectors, higher-order tensors) rather than just invariant scalars. Neural Equivariant
Interatomic Potential (NequIP) [6] also uses steerable feature representations, constructing equivariant
message passing layers using Clebsch-Gordan tensor products and spherical harmonics. We compare
these MPNN-based methods with PointNet++ [15], which processes a set of points sampled in a
metric space in a hierarchical fashion. See App. B for a detailed description of each architecture.

4 Experiments
Models were trained for 5000 steps using the AdamW optimizer Kingma and Ba [24], Loshchilov and
Hutter [25] and a cosine decay schedule. The baseline is given by training an MLP on 24-dimensional
2PCF vectors. The checkpoint corresponding to the lowest validation loss is used for evaluation.

Graph- and node-level prediction. Table 1 compares the test-set performance of different models
on the two tasks, along with the number of parameters for the best-performing model. We see that
the equivariant models (SEGNN and NequIP) outperform the non-equivariant models (GNN and
PointNet) for both tasks. Higher spherical harmonic orders ℓmax provide benefit for the velocity
prediction task for SEGNN, but not in the other cases. EGNN does not perform competitively, likely to
do its limited expressivity. Equivariant models also show faster convergence than the non-equivariant
counterpart, as shown in Fig. 3 in App. D. Additionally, the domain-informed 2PCF summary shows
superior performance in extracting Ωm, which requires capturing long-range correlation. We analyze
the impact of incorporating the 2PCF as a global input feature in App. C, showing that the best
performing GNN model is unable to capture crucial information in the middle–long range scales.

The ablation study in App. E shows that using attention-based aggregation in the readout layer
GNN leads to better performance on the graph-level tasks. We leave the exploration of whether this
holds for the other models as future work. When node velocities are included as an input (capturing
additional information about the local density field), both the GNN and SEGNN show significant
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In
pu

ts

Model
Graph task Node task

Ωm σ8 Params. v⃗ Params.

x⃗
2PCF 2.03± 0.02 4.66± 0.06 56k − −
GNN 2.77± 0.41 4.84± 2.90 1441k 2.94±0.03 463k
EGNN 13.33±0.00 13.37±0.00 342k − −
NequIP (ℓmax = 1) 2.88± 0.15 5.05± 1.08 439k 2.28±0.00 154k
NequIP (ℓmax = 2) 3.07± 0.18 4.80± 0.49 450k 2.44±0.00 163k
SEGNN (ℓmax = 1) 2.31± 0.03 2.34± 0.08 1015k 2.06±0.00 280k
SEGNN (ℓmax = 2) 2.37± 0.06 2.36± 0.22 1458k 2.04± 0.00 401k
PointNet++ 2.87± 0.07 9.00± 3.94 1354k 2.92±0.00 463k

x⃗
,v⃗

GNN 1.10± 0.02 1.96± 0.04 702k − −
SEGNN (ℓmax = 1) 1.16± 0.02 1.65± 0.02 654k − −
SEGNN (ℓmax = 2) 1.13± 0.03 1.76± 0.07 876k − −
SEGNN (ℓmax = 1, steerable v⃗) 0.99± 0.03 1.86± 0.04 654k − −
SEGNN (ℓmax = 2, steerable v⃗) 0.84± 0.01 1.42± 0.02 876k − −

Table 1: Comparison of different models on the graph- and node-level tasks. Two sets of results are
shown: those where (1) the input point cloud consists of just position coordinates, and (2) where the
point clouds additionally include a velocity vector for each galaxy. All mean-squared error values of
Ωm and σ8 are in units of 10−3. The best results for each section are shown in bold.

improvements on graph-level tasks. The key gain for the SEGNN comes from using velocities as
steerable attributes, allowing it to outperform the GNN when ℓmax = 2.

101 102 103 104

Training set size

0.005

0.010

0.015

T
es

t
lo

ss

Scaling with training set size

2PCF

GNN

SEGNN (`max = 1)

SEGNN (`max = 2)

NequIP(`max = 1)

NequIP(`max = 2)

Figure 1: Scaling of the test loss as a func-
tion of dataset size, for various models con-
sidered, for the graph task.

Scaling with dataset size. Figure 1 shows the test-
set performance of various models as a function of the
number of samples in the training dataset, for the graph-
level task. The equivariant SEGNN models, in particular,
show better performance at all training sample sizes,
while being more simulation-efficient.

5 Conclusion
We investigated the ability of graph neural network ar-
chitectures, with a focus on symmetry-preserving vari-
ants, to extract short- and long-range information from
point cloud data using cosmology data. The bench-
mark dataset consists of positions of simulated galaxies,
whose spatial distribution is informative of the underly-
ing cosmological model. We showed that both graph-level and node-level prediction tasks can benefit
from the use of equivariant models, which were also found to be more simulation-efficient. This is par-
ticularly relevant for the domain under study, where producing new simulations is compute-intensive.
Equivariant models can therefore enable practitioners to do more with available simulations.

However, we also found that the domain-specific two-point correlation function (2PCF) summary
statistic outperformed the graph neural networks in inferring the cosmological parameter Ωm, which
is sensitive to long-range correlations. Message-passing GNNs are known to struggle with long-range
correlations [26, 27], and this dataset provides a benchmark to probe their ability to effectively
leverage these. The present benchmark would be a good target for methods that aim to mitigate
issues associated with long-range information preservation through graphs [28–30]. The equivariant
architectures we studied were either general-purpose in nature (e.g., SEGNN) or designed for a
specific domain applications (e.g., NequIP for atomistic systems). Our results motivate the develop-
ment of specialized architectures tailored to cosmology data, which would be sensitive to the local
gravitational clustering environment as well as the nature of long-range correlations in galaxy fields.
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A Dataset description
A.1 Details of simulation

We use the Big Sobol Sequence (BSQ) of the Quijote simulations [20], a collection of 32,768 N -body
simulations designed for machine learning applications. Each simulation models the evolution of the
large-scale structure of the Universe by following the dynamics of 5123 cold dark matter particles
in a cubic comoving volume of side ∼ 1 Gigaparsec from redshift z = 127 to z = 0 (present time).
Dark matter halos, which are gravitationally bound structures that host galaxies, are identified in the
simulations using the Rockstar halo finder [31].

The simulations are performed using the TreePM Gadget-III code, which efficiently computes
gravitational forces using a combination of a short-range tree method and a long-range particle mesh
method. Each of these simulations has a different initial random seed and a value of the cosmological
parameters arranged in a Sobol sequence with boundaries

Ωm ∈ [0.10; 0.50]

Ωb ∈ [0.02; 0.08]

h ∈ [0.50; 0.90]

ns ∈ [0.80; 1.20]

σ8 ∈ [0.60; 1.00]

The initial conditions were generated at z = 127 using 2LPT, and the simulations have been run
using Gadget-III.
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G
al
ax
y
di
st
ri
bu
ti
on

po
in
t
cl
ou
d

Inputs

<latexit sha1_base64="d+sQ1/EOr0A7BiAOUxx0kwQaV4g=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gObUDbbabt0swm7m0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZemAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqlGwSU2DDcC24lCGoUCW+Hobua3xqg0j+WjmSQYRHQgeZ8zaqz05Gf+GBkZ+9NuueJW3TnIKvFyUoEc9W75y+/FLI1QGiao1h3PTUyQUWU4Ezgt+anGhLIRHWDHUkkj1EE2v3hKzqzSI/1Y2ZKGzNXfExmNtJ5Eoe2MqBnqZW8m/ud1UtO/CTIuk9SgZItF/VQQE5PZ+6THFTIjJpZQpri9lbAhVZQZG1LJhuAtv7xKmhdV76p6+XBZqd3mcRThBE7hHDy4hhrcQx0awEDCM7zCm6OdF+fd+Vi0Fpx85hj+wPn8AXEFkMc=</latexit>

{~v}

<latexit sha1_base64="JmL6oXwg7BDb+jAhGc3BjpFojx0=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4xkUdkCZkdGpgwO7uZmSWSDX/hxYPGePVvvPk3DrAHBSvppFLVne6uIBZcG9f9dnJr6xubW/ntws7u3v5B8fCooaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR7cxvjlFpHskHM4mxE9KB5H3OqLHSo5/6Y2TkyZ92iyW37M5BVomXkRJkqHWLX34vYkmI0jBBtW57bmw6KVWGM4HTgp9ojCkb0QG2LZU0RN1J5xdPyZlVeqQfKVvSkLn6eyKlodaTMLCdITVDvezNxP+8dmL6152UyzgxKNliUT8RxERk9j7pcYXMiIkllClubyVsSBVlxoZUsCF4yy+vksZF2bssV+4rpepNFkceTuAUzsGDK6jCHdSgDgwkPMMrvDnaeXHenY9Fa87JZo7hD5zPH3QRkMk=</latexit>

{~x}

Node-level task
(velocity prediction)

Graph-level task
(parameter prediction)

Predicted

True

Predicted

True

{0.22, 0.85}
{0.26, 0.80}

2-
po
in
t
co
rr
el
at
io
n

fu
nc
ti
on
(2
P
C
F
)

Benchmark tasks

Ωm = 0.10, σ8 = 0.81

Ωm = 0.50, σ8 = 0.70

101 102

10−2

10−1

100

101

2P
C

F
ξ(
r)

r < 30 r > 80

101 102

r < 30 r > 80

Pair Separation r (h−1 Mpc)

Large
scales

Small
scales

<latexit sha1_base64="8EtmUgMiUtpWX3a8+Ppx0LcIFgM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7AekoWy2m3bpJht2J0op/RlePCji1V/jzX/jts1BWx8MPN6bYWZemEph0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVpxptMSaU7ITVcioQ3UaDknVRzGoeSt8PR7cxvP3JthEoecJzyIKaDRESCUbSS39ViMESqtXrqlStu1Z2DrBIvJxXI0eiVv7p9xbKYJ8gkNcb33BSDCdUomOTTUjczPKVsRAfctzShMTfBZH7ylJxZpU8ipW0lSObq74kJjY0Zx6HtjCkOzbI3E//z/Ayj62AikjRDnrDFoiiTBBWZ/U/6QnOGcmwJZVrYWwkbUk0Z2pRKNgRv+eVV0rqoepfV2n2tUr/J4yjCCZzCOXhwBXW4gwY0gYGCZ3iFNwedF+fd+Vi0Fpx85hj+wPn8AcWpkZY=</latexit>

!

<latexit sha1_base64="8EtmUgMiUtpWX3a8+Ppx0LcIFgM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7AekoWy2m3bpJht2J0op/RlePCji1V/jzX/jts1BWx8MPN6bYWZemEph0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVpxptMSaU7ITVcioQ3UaDknVRzGoeSt8PR7cxvP3JthEoecJzyIKaDRESCUbSS39ViMESqtXrqlStu1Z2DrBIvJxXI0eiVv7p9xbKYJ8gkNcb33BSDCdUomOTTUjczPKVsRAfctzShMTfBZH7ylJxZpU8ipW0lSObq74kJjY0Zx6HtjCkOzbI3E//z/Ayj62AikjRDnrDFoiiTBBWZ/U/6QnOGcmwJZVrYWwkbUk0Z2pRKNgRv+eVV0rqoepfV2n2tUr/J4yjCCZzCOXhwBXW4gwY0gYGCZ3iFNwedF+fd+Vi0Fpx85hj+wPn8AcWpkZY=</latexit> !

Figure 2: (Left) Exemplary point clouds from the training set and their corresponding 2-point
correlation functions. (Right) An illustration of the benchmark tasks.

A.2 Data Access

To facilitate easy access to the dataset used in this work, we provide a high-level Python interface
for loading and preprocessing the point cloud data derived from the processed simulation data. The
raw data is stored in the TFRecord format, allowing for efficient storage and retrieval. The full
dataset is available at https://doi.org/10.5281/zenodo.11479419. The code repository is included in
the supplementary materials and will be made publicly available via GitHub.
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1 from benchmarks.galaxies.dataset import get_halo_dataset
2

3 features = ['x', 'y', 'z', 'v_x', 'v_y', 'v_z', 'M200c']
4 params = ['Omega_m', 'sigma_8']
5

6 dataset, num_total = get_halo_dataset(batch_size=32 num_samples=2048, split='
train', standardize=True, return_mean_std=False, seed=42, features=
features, params=params, include_tpcf=True)

7

8 iterator = iter(dataset)
9 for _ in range(num_total // batch_size):

10 x, params, tpcf = next(iterator) # Load a batch of data
11

12 print(x.shape, params.shape, tpcf.shape)
13 >> (TensorShape([32, 5000, 7]), TensorShape([32, 2]), TensorShape([32, 24]))

The get_halo_dataset function loads the dataset with the specified batch size, number of samples,
data split, and a list of desired features and cosmological parameters. The loaded data can be easily
iterated over in batches, with each batch containing the point cloud features (spatial coordinates,
velocities, and halo masses in this case) and the corresponding cosmological parameters (Ωm and σ8,
in this case). There is also an option to include the pre-computed 2PCF vectors as a third output.

B Details of neural network architectures
Below, we describe the differences between the message-passing functions of all graph neural network
models used in our study. The training hyperparameters are provided in Tab. 2. In all equations
below, we use the following notation to denote the relative distance vectors and their projections onto
a basis of radial Bessel functions of order n = 64 and radial cutoff c = 0.6:

r⃗ij
l = x⃗i

l − x⃗j
l (1)

Rl
ij = Bn(∥r⃗lij∥2, c). (2)

MLP on 2PCF. When using the 2-point correlation function summary instead of the full point
cloud, an MLP with 3 hidden layers of dimension 128 and GELU activations was used on the
24-dimensional 2PCF vectors.

GNN. (Message-Passing Graph Neural Network) consists of the following edge and node update
functions in one message-passing layer,

el+1
ij = ϕl

e

(
hl
i, h

l
j , e

l
ij

)
(3)

hl+1
i = ϕl

h

(
hl
i,□j∈N (i)e

l+1
ij

)
(4)

where all input vectors are concatenated before being fed into 3-layer MLPs ϕl
e and ϕl

h. Additionally,
□ denotes a permutation-invariant message-passing aggregation function over the neighboring edges
N (i) of node i. We select □ to be defined as the mean for all of our models.

EGNN. (E(n) Equivariant Graph Neural Network) [22] edge, position, and node representation
update functions are defined as

el+1
ij = ϕl

e

(
hl
i, h

l
j , R

l
ij

)
(5)

x⃗i
l+1 = x⃗i

l + C
∑
j ̸=i

r⃗ij
l · ϕl

x

(
el+1
ij

)
(6)

hl+1
i = ϕl

h

(
hl
i,□j∈N (i)e

l+1
ij

)
(7)

The edge update operation is invariant, depending only on the absolute distances. The node position
updates are equivariant, depending linearly on the relative position vectors, gated with a nonlinear
function of the invariant edge features.
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SEGNN. (Steerable E(3) Equivariant Graph Neural Network) [23] extends the EGNN by imple-
menting the node and edge update functions as O(3) steerable MLPs ϕ, consisting of steerable linear
layers conditioned on a steerable feature ã ∈ V0 ⊕ . . .⊕ Vℓmax (e.g., positions and/or velocities),

σ
(
Wãh̃

l
)
:= σ

(
h̃l ⊗W

cg ã
)

(8)

where σ is a gated non-linearity, Wã is a linear transformation matrix conditioned on ã, and ⊗W
cg is

the Clebsch-Gordan tensor product that is parametrized by a collection of weights. Thus, the steerable
edge and node feature updates are given by

ẽij
l+1 = ϕl

e

(
h̃i

l
, h̃j

l
, Rl

ij

)
(9)

h̃i
l+1

= ϕl
h

(
h̃i

l
,□j∈N (i)ẽij

l+1, ãi

)
(10)

while the node position updates remain unchanged from eq. (11) above. In our experiments, ãi is
optionally defined via the node velocities.

The steerable MLPs allow the network to leverage richer geometric information and express
anisotropic interactions. The updates are conditioned on steerable node and edge attributes, which can
inject additional physical information about the local environment into the updates while maintaining
end-to-end equivariance.

NequIP. (Neural Equivariant Interatomic Potential) [6] also utilizes steerable features in the
message-passing updates. In the edge updates, NequIP applies a linear transformation to the incoming
node features and computes the spherical harmonic projections of the normalized relative position
vectors, which are combined using a tensor product. This is modulated by a nonlinear radial function
implemented as an MLP acting on the relative distances. The node updates combine the aggregated
messages with the previous node features using a gated nonlinearity.

The edge and node updates are thus defined as

alij = Norm
(
Y (ℓ)
m

(
r⃗ij

l
))

(11)

el+1
ij = ϕl

e(R
l
ij) · [W l

ih
l
i, a

l
ij ]⊗ alij (12)

hl+1
i = ϕl

h

(
□j∈N (i)e

l+1
ij√

|E|

)
. (13)

(14)

where the spherical harmonics are normalized via the integral norm such that
∫
S2 Y

ℓ
m(x)2dx = 1.

While both are E(3) equivariant, SEGNN uses a more expressive steerable MLP conditioned on
the spherical harmonic embedding of the relative position vectors, while NequIP uses a simpler
nonlinear radial function to gate linear and spherical harmonic projections of the input features.
These choices reflect a trade-off between expressiveness and computational efficiency, with NequIP
prioritizing the latter, tailored for its original purpose of efficiently learning interatomic potentials
where angular and radial dependencies are crucial and separable. SEGNN and NequIP use a
hyperparameter ℓmax to control the maximum degree of the spherical harmonics used in the steerable
feature representations, with higher values allowing the models to capture more complex angular
dependencies at computational cost.

PointNet++. PointNet++ [15] is an extension of the original PointNet architecture [14] designed to
capture both local and global structures in point clouds. Unlike the original PointNet, which treats
each point independently, PointNet++ introduces a hierarchical learning framework. It recursively
applies PointNet at multiple scales, progressively downsampling the point cloud and learning features
at different levels of granularity. This enables the network to capture fine-grained local features as
well as broader contextual information.

The PointNet++ architecture employs farthest point sampling (FPS) to select a subset of representative
points and groups neighboring points within a defined radius for local feature extraction. These
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hierarchical groupings are followed by feature pooling and graph-based operations to coarsen the
point cloud representation. The combination of these steps allows PointNet++ to learn spatially aware
representations that are crucial for processing 3D point clouds.

In each downsampling layer i ∈ {1, . . . , n_downsamples}, the number of nodes is reduced from
nnodes to nnodes_downsampled by dividing the original node set by a predefined downsampling factor:

nnodes downsampled =
nnodes

downsampling factor
. (15)

At each layer, a Graph Neural Network (GNN) is applied to the graph to obtain updated node
embeddings z, such that

zl+1
i = GNN(hl

i, x
l
i, {elij}j∈N (i)), (16)

where zl+1
i ∈ Rnnodes×d represents the new node embeddings at this layer. After applying the GNN,

we perform a sample and group operation to downsample the set of nodes and create a hierarchical
representation. This operation consists of two steps: sampling representative points (centroids) and
grouping the remaining points around these centroids.

First, the centroids are selected from the set of node positions X ∈ Rnnodes×d. The sampling is
performed using Farthest Point Sampling (FPS), which selects ncentroids representative points:

Xcentroids = FPS(X, ncentroids), (17)

where xcentroids ∈ Rncentroids×d represents the set of centroids chosen from the original node positions
x.

After selecting the centroids, each point xi from the original set is grouped with the nearest cen-
troid. The distance matrix D ∈ Rnnodes×ncentroids is then transformed into an assignment matrix
S ∈ Rnnodes×ncentroids using a row-wise softmax:

Sij =
exp(−dij)∑ncentroids

k=1 exp(−dik)
. (18)

The assignment matrix S represents the association between nodes and centroids, where each entry
Sij indicates the probability that node i is assigned to centroid j. The matrix S is subsequently used
to pool features, coarsen the graph, or aggregate information for hierarchical graph processing.

Hyperparameter MLP GNN SEGNN EGNN NequIP

d_hidden 128 128 128 128 128
n_layers 3 3 3 3 3
message_passing_steps – 3 3 3 3
message_passing_agg – mean mean mean mean
readout_agg – mean mean mean mean
mlp_readout_widths (4, 2, 2) (4, 2, 2) (4, 2, 2) (4, 2, 2) (4, 2, 2)
residual – True True True True
scalar_activation gelu gelu gelu gelu gelu
gate_activation – – sigmoid – –
spherical_harmonic_norm – – – – integral

Table 2: Hyperparameters for each model on all tasks.

C Two-point correlation function as global information
To gain insight into the information captured by the 2PCF that is not captured by any of the graph
neural network models (as evidenced by their worse performance when predicting Ωm), we evaluate
the effects of adding the 2PCF as a global input feature. In particular, we select the best-performing
model on both tasks: SEGNN with ℓmax = 2. After the final message-passing layer, once all of the
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node representations are pooled into a graph-wise representation, the pooled vector is concatenated
with the 2PCF before being fed into the readout MLP. We also compare the effects of using only
subsections of the 2PCF that correspond to small-scale (r < 30 h−1 Mpc) and large-scale information
(r > 80 h−1 Mpc). These are shown in the last set of runs in Tab. 1.

The SEGNN outperforms the 2PCF baseline on Ωm prediction when it is equipped with the large-
scale 2PCF components, and even moreso with the full 2PCF vector. This indicates that there is
crucial information present in the middle to long range scales. For the task of σ8 prediction, which
relies on capturing local correlations, the difference between the models with full and small-scale
2PCF information are not statistically significant. This suggests that the SEGNN might already be
capturing the short-range correlations in the data.

Model Ωm σ8 Params.

SEGNN (ℓmax = 2) + 2PCF 1.66± 0.01 2.38± 0.07 1543k
SEGNN (ℓmax = 2) + 2PCFsmall 2.27± 0.01 2.40± 0.04 1504k
SEGNN (ℓmax = 2) + 2PCFlarge 1.73± 0.04 2.26± 0.09 1512k

Table 3: Comparison of different models on the graph-level tasks where different components of
the two-point correlation function are used as an additional global context input. The best results for
each task are shown in bold.
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D Training loss curves for position and velocity prediction
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Figure 3: Training losses over the course of training for various models considered, for the graph-
level prediction task (left) and the node-level prediction task (right). The final test loss is shown as a
horizontal dashed line.

E Ablation study of attention-based aggregation
Given the demonstrated effectiveness of transformer models in capturing long-range dependencies
through attention mechanisms, we include an ablation study where we replace the standard aggre-
gation mechanism within the GNN layers with attention-based local and global aggregation. In
particular, we modify the GNN layers to incorporate multi-head self-attention mechanisms in place of
traditional neighborhood aggregation. Rather than relying solely on proximity-based neighbors, the
edge weights are modulated by an attention score computed from other message passing components.
These weights dynamically adjust the importance of both local and distant nodes, allowing the model
to better capture complex relationships across the graph.

The results demonstrate that incorporating attention-based mechanisms into the readout layer of the
GNN significantly improves performance. However, the model that combines both local and global
attention does not show the same improvement and even results in increased error. Similarly, the
invariant attention model performs worse than both the standard and global attention-based models.

Model Ωm σ8 Params.

GNN (mean agg.) 2.77± 0.41 4.84± 2.90 1441k
GNN (global attn. agg.) 2.60± 0.06 2.84± 0.19 915k
GNN (local + global attn. agg.) 3.00± 0.14 8.82± 3.15 913k
GNN (invariant attn.) 3.62± 0.01 13.33±0.01 967k

Table 4: Comparison of different types of local and global aggregation on the graph-level tasks. The
best results for each task are shown in bold.
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