
RL’s Razor: Why On-Policy Reinforcement Learning
Forgets Less

Anonymous Author(s)
Affiliation
Address
email

Abstract

We compare fine-tuning models with supervised fine-tuning (SFT) and reinforce-1

ment learning (RL) and find that, even at matched new-task accuracy, RL consis-2

tently forgets less. We investigate the cause and show that the degree of forgetting3

is not determined by the training algorithm itself, but by the distributional shift,4

namely the KL divergence between the fine-tuned and base policy when evaluated5

on the new task distribution. RL’s advantage arises because on-policy updates6

bias optimization toward KL-minimal solutions among the many that solve a task,7

whereas SFT can converge to distributions arbitrarily far from the base model. We8

validate this across experiments with large language models and controlled toy9

settings, as well as provide theory on why on-policy RL updates lead to a smaller10

KL change. We term this principle RL’s Razor: among all ways to solve a new11

task, RL prefers those closest in KL to the original model.12

RLRL

SFT

70

30

10

KL(. || .) < KL(||)

Policies with 90%

success on new task

Base Policy New Task Performance

Pr
io

r T
as

k
Pe

rf
or

m
an

ce

RL

SFT

Low

Low

High

High

Prio
r Task Perfo

rm
ance

Figure 1: RL prefers KL-minimal solutions. Left: RL converges to policies close in KL to the base
model. Right: This reduces forgetting at matched new-task accuracy compared to SFT.

1 Introduction13

Foundation models have rapidly become the backbone of modern AI, powering applications in14

language, vision, robotics, and beyond. Despite their remarkable capabilities, today’s models are15

largely static once deployed: they excel at tasks learned during pre-training or post-training, but are16

not designed to self-improve and continually acquire new capabilities. We imagine a future where17

deployed models are long-lived agents assisting humans in the long-term and continuously adapting18

to new needs. As such, models must improve and adapt to new data, environments, and objectives19

[1, 2, 3, 4, 5, 6].20

A central challenge to this vision is catastrophic forgetting—the tendency for models to lose pre-21

viously acquired capabilities when trained on new tasks [7, 8, 9, 10]. Although scaling model size22

and pre-training data improves robustness [11, 10, 12], catastrophic forgetting remains a persistent23

obstacle, undermining the promise of continual improvement [13, 14, 6]. To enable foundation24

models to serve as long-term agents, we need to develop post-training methods that allow models to25

acquire new skills without erasing old ones.26

To further this goal, we analyze the performance of two widely used post-training schemes of27

supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a surprising28

finding: even when SFT and RL achieve the same performance on the new task, we observe that SFT29

often achieves new-task gains by erasing prior knowledge, while RL better preserves old skills.30

Figure 1 (right) illustrates this tradeoff: although both methods can reach high performance on the31

new task, RL maintains substantially higher performance on prior tasks compared to SFT.32

This striking empirical gap raises the question: what underlying mechanism allows RL to improve on33

new tasks, but unlike SFT, not disturb the model’s prior knowledge?34

Previous approaches to catastrophic forgetting targeted specific factors such as constraining weight35

updates [9, 15], preserving learned features [16, 17], or regularizing shift in output distribution36

[18, 19]. While these methods can reduce forgetting, they focus on its effects rather than its37

underlying cause. Consequently, it remains unclear what truly governs forgetting or why different38

training algorithms behave so differently. In search of this governing principle, we ablated many such39

variables and uncovered an empirical forgetting law: When fine-tuning a model, π, on a new task40

τ , the degree of forgetting is accurately predicted by Ex∼τ

[
KL(π0||π)

]
, the Kullback–Leibler41

(KL) divergence between the finetuned and the base policy computed on the new task distribution τ .42

Although the underlying reason for this phenomenon remains unclear, its consistency across settings43

suggests it captures a fundamental property of forgetting.44

This law also clarifies the surprising difference between SFT and RL. Our analysis reveals a simple45

but powerful principle we call RL’s Razor: among the many high-reward solutions for a new task,46

on-policy methods such as RL are inherently biased toward solutions that remain closer to the47

original policy in KL divergence. Figure 1 (left) highlights this effect: among the many policies that48

reach a high success rate on the new task, RL is biased toward KL-minimal solutions, while SFT can49

converge to distant ones. This bias arises directly from RL’s on-policy training: by sampling from the50

model’s own distribution at every step, RL constrains learning to outputs already given non-negligible51

probability by the base model. To improve reward, these samples are reweighted and used to update52

the model, which gradually shifts the policy rather than pulling it toward an arbitrary distribution.53

Thus, when multiple equally good solutions exist for a new task, RL tends to find solutions close54

to the original policy, while SFT can converge to solutions much farther away, depending on the55

provided labels. Theoretical analysis in a simplified setting confirms this view, showing that policy56

gradient methods converge to KL-minimal solutions even without explicit regularization.57

Finally, to validate the KL hypothesis, we construct an “oracle SFT” distribution that provably58

minimizes KL divergence while achieving perfect accuracy. Training on this oracle distribution59

produces even less forgetting than RL itself. This demonstrates that RL’s advantage does not stem60

from being inherently different, but from its implicit KL minimization. Whenever training is biased61

toward KL-minimal solutions, forgetting is reduced.62

Our main contributions are:63

• We show that RL fine-tuning forgets less than SFT, even when both reach the same performance on64

new tasks.65

• We identify KL divergence to the base policy, measured on the new task distribution, as a strong66

predictor of catastrophic forgetting across objectives and hyperparameters.67

• We provide empirical and theoretical evidence that the on-policy nature of policy gradient methods68

leads to smaller KL shifts and explains RL’s advantage.69

Together, these findings suggest a new perspective on post-training: to achieve continual adaptation70

without forgetting, algorithms should explicitly aim to minimize KL divergence from the base model.71

This principle opens the door to designing future training methods that combine RL’s ability to72

preserve prior knowledge with the efficiency of SFT, enabling foundation models that can truly learn73

for life.74

2

New Task Accuracy
0.620.600.580.560.540.520.500.48

0.54

0.55

0.56

0.57

SFT
RLAv

g
. S

co
re

 o
n

P
re

vi
ou

s
Ta

sk
s

0.58
Math

New Task Accuracy
0.70.60.50.40.3

0.53

0.54

0.55

0.56

0.57

SFT
RL

0.58

Av
g

. S
co

re
 o

n
P

re
vi

ou
s

Ta
sk

s

Science Q&A

New Task Accuracy
0.700.650.600.550.500.450.40

0.51

0.52

0.53

0.54

0.55

0.56

0.57

SFT
RLAv

g
. S

co
re

 o
n

P
re

vi
ou

s
Ta

sk
s

0.58

Tool Use

Figure 2: Pareto frontiers of RL and SFT. Each point represents a fine-tuned model. We sweep
hyperparameters and plot only those on the Pareto-frontier. RL improves new-task performance while
preserving prior knowledge, whereas SFT increases performance at the expense of forgetting.

2 Related work75

Foundation Models and Post-training In modern deep learning, large-scale models trained on76

broad, diverse datasets (usually termed Foundation models) serve as general-purpose backbones77

across domains such as language, vision, robotics, and multimodal reasoning [20, 21, 22, 23, 24]. Pre-78

training often relies on self-supervised or weakly supervised objectives, producing models with broad79

domain knowledge and some zero-shot capabilities [25, 26]. However, raw pre-trained models may80

not directly meet the requirements of specific applications or align with domain-specific constraints.81

Post-training methods address this gap by adapting foundation models to downstream tasks through82

supervised fine-tuning on curated datasets [27, 28, 29, 30], reinforcement learning from human or83

automated feedback [31, 32, 33, 34], and other techniques [35].84

Catastrophic Forgetting. While fine-tuning primarily aims to improve performance on a new85

specific task, preserving the model’s pre-existing general capabilities is equally critical. Unfortunately,86

fine-tuning often leads to catastrophic forgetting—a phenomenon where learning new information87

significantly deteriorates previously acquired knowledge [7, 8, 9]. Many works have sought to reduce88

forgetting by constraining updates, for example through weight penalties, feature preservation, or89

output matching [36]. These approaches highlight important factors, but what remains missing is a90

unifying principle that predicts forgetting across different algorithms and settings.91

In contrast, our work does not propose a new method but instead identifies a simple law: the KL92

divergence between the fine-tuned and base policy, measured on the new task distribution, reliably93

predicts the degree of forgetting. This explains the success of some popular forgetting mitigation94

methods like Elastic Weight Update [9], which can be seen as approximation of KL minimization95

[37]. Interestingly, practitioners have also observed that KL regularization, originally introduced in96

RL fine-tuning of LLMs to stabilize optimization or prevent reward hacking [19, 38], helps reduce97

catastrophic forgetting [32].98

SFT versus RL. Most prior comparisons between SFT and RL have focused on performance on the99

new task being learned. A seminal result by [39] showed that in sequential decision making, on-policy100

learning can achieve stronger performance even when the learning signal is identical. Building on101

this, recent studies have found that RL fine-tuned models often exhibit superior generalization beyond102

the training distribution [40, 41, 42] and transfer more effectively to related tasks [43] compared103

to SFT trained models. However, none of this work has examined their relative susceptibility to104

catastrophic forgetting, which is the focus of our study.105

Concurrently, [44] report that RL forgets less than SFT, but ascribe RL’s advantage to negative exam-106

ples and ignore sampling-distribution effects. Section 5 shows that this assumption is inconsistent107

with our results.108

3

3 Reinforcement Learning Forgets Less than SFT109

In this section, we compare the degree of catastrophic forgetting induced by SFT and RL. The110

comparison is carried out by training large language models on new tasks and then measuring how111

much their ability to perform previously acquired tasks is degraded.112

3.1 Performance Trade-offs113

Experimental Setup. For each new task, we trained two models on the same set of prompts. The114

first model was trained with SFT, using annotations either from the original dataset or generated with115

GPT-4o. The second model was trained with RL, specifically using GRPO [45]. The base model in116

all cases was Qwen 2.5 3B-Instruct [46]. Evaluation was performed along two axes:117

• New tasks: We measured performance on the held-out test set of the newly introduced task to118

assess the performance gain from the training.119

• Previous tasks: We measured performance on a diverse set of unrelated benchmarks. A drop in120

these benchmarks was taken as a measure of catastrophic forgetting.121

To obtain a reliable comparison, we trained dozens of models for each method under a variety of122

hyperparameter choices. Importantly, all RL experiments were done without explicit KL regulariza-123

tion. We then plotted only the models lying on the Pareto frontier, i.e., points such that no model can124

improve its performance on the new task without incurring greater degradation on previous tasks. The125

resulting lines show the best trade-off between learning and forgetting achievable by each training126

method. For more details, see Appendix B.127

Tasks and Datasets. We repeated this experiment across three distinct domains:128

• Math reasoning: math questions from the Open-Reasoner-Zero dataset [47], annotated with GPT-4o129

[48] responses filtered for correctness.130

• Science Q&A: Chemistry L-3 subset of SciKnowEval [49], also annotated with GPT-4o.131

• Tool use: ToolAlpaca dataset [50], using available annotations.132

For the evaluation of catastrophic forgetting, we used established benchmarks: Hellaswag [51],133

TruthfulQA [52], MMLU [53], IFEval [54], Winogrande [55], and HumanEval [56]. These serve as134

proxies for diverse prior abilities that the model should ideally retain.135

Results. Figure 2 illustrates the learning-forgetting trade-offs for all tasks. Across all of them, RL136

training produces nearly horizontal Pareto frontiers as gains on the new task are achieved without137

loss on previous tasks. In contrast, SFT exhibits a steep downward slope—as new task accuracy rises,138

average performance on prior tasks consistently degrades. The contrast is particularly sharp in Math,139

where even slight improvement in performance results in drops in prior ability. In Science Q&A and140

Tool Use, SFT is able to achieve some performance without forgetting, but extracting all possible141

gains from the dataset results in severe performance degradation.142

Takeaway 1

While SFT boosts new-task performance by sacrificing prior knowledge, RL achieves
comparable improvements with substantially less forgetting.

143

3.2 Representation Preservation144

While benchmark performance provides an external view of forgetting, it can also be sensitive to145

superficial factors, such as formatting mismatches with the previous tasks. To probe whether the146

training altered the model’s internal capacity more fundamentally, we analyzed changes to the model’s147

representations.148

4

RL + KL reg.RLSFT on optimal dist.SFT on dist. 2SFT on dist. 1
KLKLNew Task Accuracy (Parity MNIST)

10864201086420989694929088

882020

903030

92
4040

94
5050

96
60

98

N
ew

 T
as

k
A

cc
ur

ac
y

(P
ar

ity
 M

N
IS

T
)

60

 = 0.9612R
70

S
co

re
 o

n
P

re
vi

ou
s

Ta
sk

s
(F

as
hi

on
 M

N
IS

T
)70

S
co

re
 o

n
P

re
vi

ou
s

Ta
sk

s
(F

as
hi

on
 M

N
IS

T
)

Figure 4: KL divergence predicts catastrophic forgetting. (Left) Learning-Forgetting Trade-offs.
SFT outperform RL only when an oracle distribution is used as a source of annotation. (Middle)
Forgetting aligns to a single curve when plotted against KL divergence, showing KL as a strong
predictor across methods. (Right) RL improves new-task accuracy with much smaller KL shifts than
SFT, highlighting the conservativeness of on-policy updates.

Experimental Setup. To study how representations change between models, we compare their149

embeddings on a shared dataset. Directly comparing raw embedding values is not meaningful, since150

these can vary arbitrarily during training. Instead, it is common to compare the relative geometry of151

the embeddings—that is, how different inputs relate to each other. This geometry can be summarized152

by a kernel (similarity) matrix, which encodes pairwise relationships among inputs. Centered Kernel153

Alignment (CKA) [57] is a standard measure for comparing such kernels, providing a way to quantify154

representational similarity between models.155

Gradient Steps
400350300250200150100500

0.6

0.7

0.8

0.9

RL
SFT

1.0
C

en
te

re
d

 K
er

ne
l A

lig
nm

en
t

(C
K

A
)

S
co

re

Figure 3: CKA similarity to the base
model during training. Although SFT
and RL achieve comparable task per-
formance, SFT models diverge substan-
tially in their representations, whereas
RL models remain more closely aligned
with the base model.

For this analysis, we constructed kernels from random156

Wikipedia paragraphs, ensuring that the comparison157

probes representations of content unrelated to the new158

training tasks. We then measured the similarity of the ker-159

nel between the base model and its fine-tuned variant using160

a version of CKA called CKNNA ([58], see Appendix B.3161

for more details). Specifically, we compare models that162

achieved similar final accuracy on the new task.163

Results. Figure 3.2 shows that RL-trained models main-164

tain almost perfect representational alignment with the165

base model, even after learning the new task. By con-166

trast, SFT-trained models diverge substantially, indicating167

that the training reshapes their internal space in ways that168

distort previously encoded knowledge. Together with the169

benchmark results, this suggests that RL is able to integrate170

new abilities without disturbing the broader conceptual171

structure, while SFT incurs representational shifts that172

manifest as catastrophic forgetting.173

4 Smaller KL divergences lead to less forgetting174

A central question raised by our initial results is why RL fine-tuning tends to forget less than SFT.175

To address this, we sought a confounding variable that could robustly explain the behavior of both176

methods. We systematically tested several candidates, including weight change under different norms,177

sparsity, and gradient rank. None of these explained the observed differences (see Section 6). What178

ultimately emerged is that the KL divergence between the trained model and the base model on the179

new task distribution is an excellent predictor of catastrophic forgetting.180

To test this hypothesis in a setting where we could run large numbers of experiments and push RL181

until it starts to forget, we developed a toy problem we call ParityMNIST. The task is derived from182

MNIST [59], but instead of digit classification, the label is defined by parity (even vs. odd). An image183

of an even digit is correctly classified if the model predicts any label of an even number. Therefore,184

multiple different labelings are equally correct: any distribution that consistently maps images of185

5

even digits to the labels {0,2,4,6,8} and odd digits to the others achieves optimal accuracy. This186

mirrors the realistic setting where many different output distributions are equally valid.187

We pretrained a 3-layer MLP jointly on a small subset of ParityMNIST and FashionMNIST [60],188

then fine-tuned only on ParityMNIST while measuring forgetting on FashionMNIST. To parallel the189

main setup:190

• In the SFT setting, the model was trained on labels sampled from a single arbitrary distribution out191

of the many possible correct ones.192

• In the RL setting, the reward was correctness with respect to parity, leaving the model free to193

converge to any valid distribution.194

For more details, see Appendix B.2. This design allowed us to replicate the phenomenon where RL195

reached high accuracy on the new task with substantially slower degradation of prior knowledge,196

while SFT exhibited a steeper trade-off (Figure 4, left). Importantly, reproducing the effect in this197

simple MLP setting shows that it is not specific to transformers or language modeling, but a more198

general property of fine-tuning deep generative models.199

KL as Predictor. When we plot forgetting directly against KL divergence from the base model on200

the ParityMNIST distribution, results across both RL and SFT collapse onto the same curve (Figure201

4, middle). This shows that KL, not the training algorithm itself, predicts forgetting. A second-order202

polynomial fit achieves R2 = 0.961 in this toy setting. We repeated the experiment with two different203

arbitrary SFT label distributions. Although their Pareto frontiers differed, plotting forgetting against204

KL again yielded the same curve, reinforcing the conclusion that KL governs forgetting irrespective205

of the training method or label choice. The same correlation is observed in our LLM experiments206

with R2 = 0.61. Although the statistic is lower, the residuals are mean-zero and not explained by207

predictors, consistent with random noise possibly due to approximated measures of KL and task208

accuracy. In addition, we find that at the optimization level, update steps that change the model more209

in terms of KL also yield gradients that are more directionally similar to the catastrophic forgetting210

gradient, see Figure 8.211

Optimal SFT Distribution. Finally, the simplicity of ParityMNIST allowed us to analytically212

compute the optimal SFT distribution, that is, the distribution with minimal KL divergence to the213

base model among all that achieve 100% accuracy, see B.2 for details. Training SFT directly on this214

distribution outperformed RL, showing that the key factor is the KL distance from the base model,215

with RL being naturally biased toward such solutions. In addition, we also trained the SFT model on216

data generated by a RL trained model to and find that it can reach the same level of performance and217

forgetting as the RL model, see Figure 7.218

Takeaway 2

Across both SFT and RL, the amount of catastrophic forgetting is determined by how far the
model moves from its base distribution on the new task, as measured by KL divergence.

219

5 On-policy methods leads to smaller KL divergence220

Having established that the KL divergence between the trained model and its base distribution on the221

new task predicts catastrophic forgetting, we now ask: why are RL fine-tuned models able to achieve222

strong task performance while moving less in KL than SFT models?223

5.1 Experimental Evidence224

To answer this, we examine the differences in training objectives. For discrete output spaces, SFT225

minimizes the cross-entropy loss:226

LSFT(π) = −Ex∼D,y∼πβ
[log π(y|x)]

where annotations are sampled from an external distribution πβ , usually provided by humans. For227

RL, we consider the standard policy gradient estimator:228

LRL(π) = −Ex∼D,y∼π [A(x, y) log π(y|x)]

6

O
n

Po
lic

y

Pos Examples
Pos + Neg
Examples

O
ff

 P
ol

ic
y

1-0 Reinforce

SIMPOSFT

GRPO

KL
6543210

0.35

0.40

0.45

0.50

0.55

0.60

N
ew

 T
as

k
A

cc
ur

ac
y

0.65

1-0 REINFORCE
SIMPO
SFT
GRPO

0.70

New Task Accuracy
0.70.60.50.40.3

0.51

0.52

0.53

0.54

0.55

0.56

0.57

1-0 REINFORCE
SIMPO
SFT
GRPO

0.58

Av
g.

 S
co

re
 o

n
Pr

ev
io

us
 T

as
ks

0.59

Figure 5: Comparison of algorithm classes. (Left) The four quadrants illustrate algorithm types,
defined by whether they are on- or off-policy and whether they incorporate negative gradients.
(Middle) On-policy methods retain prior knowledge more effectively. (Right) Both GRPO and 1-0
Reinforce achieve higher new-task accuracy while incurring smaller KL shifts from the base model,
showing that on-policy methods consistently induce more conservative KL updates.

where A(x, y) is an Advantage function, which is the reward of y normalize in respects to other229

rewards to the same x. In practice, the expectation is taken over trajectories (or outputs) sampled230

from the current policy, and the policy gradient trick [61] ensures gradients are taken only through231

the log-probability term, not through the sampling distribution inside the expectation. Two features232

distinguish this from SFT:233

1. Sampling Distribution. While in RL the training was done on outputs drawn from the model’s234

own distribution, in SFT, they come from fixed external annotations.235

2. Negative Examples. While sampling from π, some of the responses will not be ideal. These are236

usually assigned a negative coefficient A(x, y). This pushes probability mass away from poor237

outputs, a mechanism absent in SFT.238

Our hypothesis is that one of these two differences is what causes RL’s slower forgetting. To examine239

our hypothesis, we perform experiments with four different objectives:240

• GRPO. An on-policy objective that utilizes negative examples. Here, A(x, y) is the normalized241

reward.242

• 1–0 Reinforce. An on-policy algorithm that does not use negative examples. Here, A(x, y) = 1243

for correct responses and 0 for incorrect ones. This is equivalent to sampling from the model and244

performing SFT on correct answers only.245

• SFT . An offline objective that does not use negative examples.246

• SimPO. An offline objective that utilizes negative examples. We create negative examples by247

sampling incorrect responses from an external model, and use the SFT data for positive examples.248

The SimPO [62] loss compares correct and incorrect outputs via a logistic term:249

LSIMPO(π) = −Ex∼D,yw∼πβ+ ,yl∼πβ− [log σ (log π(yw|x)− log π(yl|x)− 1)] (1)

where πβ+ and πβ− denote distributions for correct and incorrect responses, respectively. We used250

SimPO rather than naïve likelihood/negative likelihood because the latter was unstable to train.251

We compared the four objectives on the Science Q&A task, measuring their learning–forgetting252

trade-offs as in Section 4. The results, shown in Figure 5, reveal that 1–0 Reinforce behaves similarly253

to GRPO, while SimPO resembles SFT. Thus, the critical factor is not the presence of negative254

gradients but the use of on-policy data. Plotting KL divergence confirms this conclusion: on-policy255

methods (GRPO and 1–0 Reinforce) reach the same task performance with significantly smaller KL256

divergence from the base model than offline methods (SFT and SimPO).257

5.2 Theoretical Perspective258

7

Policy
Space

Feasible

Policies

Optimal
Policies

R = 1

K
L=

1

K
L=

2

K
L=

3

Figure 6: KL-minimal path to opti-
mality. Alternating I-projection into the
set of optimal policies and M-projection
into Π carries π0 into P ∗ while prefer-
ring the closest solution in KL.

Policy gradient methods can be understood as a form of259

conservative projection. At each step, the policy samples260

outputs it already finds likely, then re-weights those sam-261

ples according to reward, shifting probability mass toward262

higher-reward outcomes while suppressing lower-reward263

ones. Crucially, because updates are defined relative to the264

model’s own distribution, they nudge the policy toward a265

nearby re-weighted distribution, rather than pulling it to-266

ward a potentially distant external distribution (as in SFT).267

This explains why policy gradient methods tend to remain268

close to the base model in KL divergence.269

This perspective can be formalized by observing that, in270

the binary-reward case, the re-weighted distribution tar-271

geted by policy gradient is exactly the minimum-KL pro-272

jection of the current policy onto the set of optimal ones.273

Lemma 5.1. Let p be a distribution over a finite set Y , and let R : Y → {0, 1} be a reward function.
Rejection sampling from p with acceptance condition R(y) = 1 yields a distribution qRS. This
distribution can be equivalently characterized as the solution to:

qRS =q DKL(q||p) s.t Ey∼q[R(y)] = 1

Building on this, we show that policy gradient converges to the KL-minimal optimal policy within274

the representable family.275

Theorem 5.2. Let Y be a finite set and let Π ⊆ ∆(Y) be a convex family of feasible policies (e.g., an
exponential family). Let R : Y → {0, 1} be a binary reward function and P ∗ = {q : Eq[R] = 1} the
set of optimal policies. Then, under suitable regularity conditions, solving the reinforcement learning
objective with policy gradient converges to

π† = arg min
π∈P∗∩Π

DKL(π ∥π0),

where π0 is the initialization. In other words, policy gradient selects, among all optimal representable276

policies, the one closest in KL-divergence to the starting policy.277

A detailed version with proofs is provided in Appendix A.278

Takeaway 3

On-policy training explains why RL maintains smaller KL divergence than SFT. Sampling
from the model’s own distribution keeps it close to the base model, while SFT pushes it

toward arbitrary external distributions.
279

6 Incorrect Hypothesis280

Science advances not only through identifying the right explanations, but also by systematically ruling281

out incorrect ones. To this end, we tested a broad set of candidate variables as potential predictors of282

catastrophic forgetting. These variables fell into four categories:283

• Weight-level changes. A natural hypothesis is that forgetting is tied to how much the parameters284

themselves move. We measured parameter changes under L1, Fisher-weighted L2, and spectral285

norm metrics. The Fisher matrix was computed on the basis of the model parameters, with286

expectation over inputs from the previous task. These metrics correlated only weakly with forgetting:287

large parameter shifts could occur without forgetting, and conversely, forgetting sometimes occurred288

despite small parameter movement.289

• Sparsity and rank of updates. Motivated by [63], who argue that RL updates are sparse while SFT290

weight updates are dense, we explicitly tested this hypothesis. In our setting, however, we found291

that the reason for the observed sparse updates where the use of bfloat16 for model training.292

Since bfloat16 has a limited mantissa, small parameter updates (such as those produced by RL)293

can fail to cross the representational threshold, effectively causing no update at all. Performing the294

8

same training with float32 resulted in models with identical performance but without any sparsity295

in their weight updates. Checking the rank of the weight changes, we found that all algorithms lead296

to full rank weight updates.297

• Representation-level changes. Following the CKNNAA results from subsection 3.2, we examined298

hidden activation shifts (L1 and L2 distances) as proxies for changes in internal representations.299

These variables show some correlation, but the curves were distinct between training objectives.300

• Distributional distances. We considered multiple measures of output distribution change,301

all measured over inputs from the new task τ : Forward KL (Ex∼τ

[
KL(π0||π)

]
), Reverse KL302

(Ex∼τ

[
KL(π||π0)

]
), Total Variation, and L2 distance between distributions. While reverse KL303

showed a good signal, and TV moderately correlated with forgetting, none approached the predictive304

power of forward KL.305

Table 1 summarizes these results. Across all candidates, forward KL divergence between the fine-306

tuned and base model on the new task distribution emerges as the only consistent and high-fidelity307

predictor of catastrophic forgetting.308

Variable R2 (2nd deg. polynomial)

KL, forward 0.96 ± 0.01
KL, reverse 0.93± 0.01
TV 0.80± 0.01
Distribution change, L2 0.56± 0.02
Weight change, L1 0.34± 0.02
Weight change, Fisher Weighted L2 0.58± 0.02
Weight change, spectral norm 0.58± 0.02
Sparsity of weight change N/A
Rank of weight change N/A
Activation change, L1 0.52± 0.02
Activation change, L2 0.55± 0.02

Table 1: Predictive power of alternative variables compared to forward KL. None approaches the
explanatory strength of forward KL divergence.

7 Discussion and Conclusion309

Our study reveals that catastrophic forgetting is governed not by the choice of training algorithm,310

but by the KL divergence from the base policy on the new task distribution. This explains why RL311

forgets less than SFT, as on-policy training naturally biases updates toward KL-minimal solutions,312

preserving prior knowledge while acquiring new skills.313

However, we still lack a mechanistic account of why larger KL shifts on the new task disrupt314

prior knowledge—whether through representational interference, implicit capacity limits, or other315

dynamics. Moreover, while we demonstrate the KL–forgetting link across moderate-scale LLMs and316

toy models, its behavior at frontier scales and in more diverse generative domains remains unknown.317

Addressing these gaps will be essential for grounding the principle and extending it to real-world318

deployment.319

Taken together, our results motivate a new design axis for post-training research: algorithms should320

be judged not only by how well they optimize new tasks, but also by how conservatively they move321

in KL relative to the base model. Embracing this principle may allow us to build agents that not only322

learn new skills, but also truly learn for life.323

References324

[1] Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong325

Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial326

super intelligence. arXiv preprint arXiv:2507.21046, 2025.327

9

[2] Alan Dao and Thinh Le. Rezero: Enhancing llm search ability by trying one-more-time. arXiv328

preprint arXiv:2504.11001, 2025.329

[3] Mohammad Mahdi Moradi, Hossam Amer, Sudhir Mudur, Weiwei Zhang, Yang Liu, and Walid330

Ahmed. Continuous self-improvement of large language models by test-time training with331

verifier-driven sample selection. ArXiv, abs/2505.19475, 2025.332

[4] Zhongyang Li, Ziyue Li, and Tianyi Zhou. C3po: Critical-layer, core-expert, collaborative333

pathway optimization for test-time expert re-mixing. ArXiv, abs/2504.07964, 2025.334

[5] Toby Simonds and Akira Yoshiyama. Ladder: Self-improving llms through recursive problem335

decomposition. arXiv preprint arXiv:2503.00735, 2025.336

[6] Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-337

adapting language models. ArXiv, abs/2506.10943, 2025.338

[7] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:339

The sequential learning problem. In Psychology of learning and motivation, volume 24, pages340

109–165. Elsevier, 1989.341

[8] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive342

sciences, 3(4):128–135, 1999.343

[9] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,344

Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.345

Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of346

sciences, 114(13):3521–3526, 2017.347

[10] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of348

catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint349

arXiv:2308.08747, 2023.350

[11] Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic351

forgetting in neural networks. In International conference on learning representations, 2021.352

[12] Andrea Cossu, Antonio Carta, Lucia Passaro, Vincenzo Lomonaco, Tinne Tuytelaars, and353

Davide Bacciu. Continual pre-training mitigates forgetting in language and vision. Neural354

Networks, 179:106492, 2024.355

[13] Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint356

arXiv:2108.07258, 2021.357

[14] Haiyang Guo, Fanhu Zeng, Fei Zhu, Jiayi Wang, Xukai Wang, Jingang Zhou, Hongbo Zhao,358

Wenzhuo Liu, Shijie Ma, Da-Han Wang, et al. A comprehensive survey on continual learning359

in generative models. arXiv preprint arXiv:2506.13045, 2025.360

[15] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-361

laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European362

conference on computer vision (ECCV), pages 139–154, 2018.363

[16] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based364

lifelong learning. In Proceedings of the IEEE international conference on computer vision,365

pages 1320–1328, 2017.366

[17] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified367

classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on368

computer vision and pattern recognition, pages 831–839, 2019.369

[18] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern370

analysis and machine intelligence, 40(12):2935–2947, 2017.371

[19] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec372

Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.373

Advances in neural information processing systems, 33:3008–3021, 2020.374

10

[20] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,375

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual376

models from natural language supervision. In International conference on machine learning,377

pages 8748–8763. PmLR, 2021.378

[21] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni379

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4380

technical report. arXiv preprint arXiv:2303.08774, 2023.381

[22] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-382

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open383

and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.384

[23] Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan385

Kim, Yaqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via386

foundation models: A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023.387

[24] Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng388

Gao, et al. Multimodal foundation models: From specialists to general-purpose assistants.389

Foundations and Trends® in Computer Graphics and Vision, 16(1-2):1–214, 2024.390

[25] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language391

understanding by generative pre-training. 2018.392

[26] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,393

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are394

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.395

[27] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifica-396

tion. arXiv preprint arXiv:1801.06146, 2018.397

[28] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.398

Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.399

arXiv preprint arXiv:2002.06305, 2020.400

[29] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan401

Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv402

preprint arXiv:2109.01652, 2021.403

[30] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan404

Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned405

language models. Journal of Machine Learning Research, 25(70):1–53, 2024.406

[31] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,407

Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.408

arXiv preprint arXiv:1909.08593, 2019.409

[32] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,410

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to411

follow instructions with human feedback. Advances in neural information processing systems,412

35:27730–27744, 2022.413

[33] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,414

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in415

llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.416

[34] Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie,417

Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents418

via reinforcement learning. Advances in neural information processing systems, 37:110935–419

110971, 2024.420

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and421

Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.422

Advances in neural information processing systems, 36:53728–53741, 2023.423

11

[36] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual424

learning: Theory, method and application. IEEE transactions on pattern analysis and machine425

intelligence, 46(8):5362–5383, 2024.426

[37] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian427

walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of428

the European conference on computer vision (ECCV), pages 532–547, 2018.429

[38] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.430

In International Conference on Machine Learning, pages 10835–10866. PMLR, 2023.431

[39] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and432

structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-433

tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and434

Conference Proceedings, 2011.435

[40] Seungwook Han, Jyothish Pari, Samuel J Gershman, and Pulkit Agrawal. General reasoning436

requires learning to reason from the get-go. arXiv preprint arXiv:2502.19402, 2025.437

[41] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,438

Quoc V Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of439

foundation model post-training. arXiv preprint arXiv:2501.17161, 2025.440

[42] Tianle Li, Jihai Zhang, Yongming Rao, and Yu Cheng. Unveiling the compositional ability gap441

in vision-language reasoning model. arXiv preprint arXiv:2505.19406, 2025.442

[43] Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-443

dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?444

understanding transferability of llm reasoning. arXiv preprint arXiv:2507.00432, 2025.445

[44] Song Lai, Haohan Zhao, Rong Feng, Changyi Ma, Wenzhuo Liu, Hongbo Zhao, Xi Lin, Dong446

Yi, Min Xie, Qingfu Zhang, et al. Reinforcement fine-tuning naturally mitigates forgetting in447

continual post-training. arXiv preprint arXiv:2507.05386, 2025.448

[45] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,449

Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical450

reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.451

[46] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,452

Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,453

Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,454

Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji455

Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang456

Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5457

technical report, 2025.458

[47] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.459

Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base460

model. arXiv preprint arXiv:2503.24290, 2025.461

[48] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,462

AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv463

preprint arXiv:2410.21276, 2024.464

[49] Kehua Feng, Keyan Ding, Weijie Wang, Xiang Zhuang, Zeyuan Wang, Ming Qin, Yu Zhao,465

Jianhua Yao, Qiang Zhang, and Huajun Chen. Sciknoweval: Evaluating multi-level scientific466

knowledge of large language models. arXiv preprint arXiv:2406.09098, 2024.467

[50] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun.468

Toolalpaca: Generalized tool learning for language models with 3000 simulated cases. arXiv469

preprint arXiv:2306.05301, 2023.470

[51] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a471

machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.472

12

[52] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic473

human falsehoods. arXiv preprint arXiv:2109.07958, 2021.474

[53] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and475

Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint476

arXiv:2009.03300, 2020.477

[54] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny478

Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint479

arXiv:2311.07911, 2023.480

[55] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An481

adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,482

2021.483

[56] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared484

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large485

language models trained on code. arXiv preprint arXiv:2107.03374, 2021.486

[57] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural487

network representations revisited. In International conference on machine learning, pages488

3519–3529. PMlR, 2019.489

[58] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation490

hypothesis. arXiv preprint arXiv:2405.07987, 2024.491

[59] Li Deng. The mnist database of handwritten digit images for machine learning research [best of492

the web]. IEEE signal processing magazine, 29(6):141–142, 2012.493

[60] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for494

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.495

[61] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.496

MIT press Cambridge, 1998.497

[62] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a498

reference-free reward. Advances in Neural Information Processing Systems, 37:124198–124235,499

2024.500

[63] Sagnik Mukherjee, Lifan Yuan, Dilek Hakkani-Tur, and Hao Peng. Reinforcement learning501

finetunes small subnetworks in large language models. arXiv preprint arXiv:2505.11711, 2025.502

[64] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete503

data via the em algorithm. Journal of the royal statistical society: series B (methodological),504

39(1):1–22, 1977.505

[65] Imre Csiszár. Information geometry and alternating minimization procedures. Statistics and506

Decisions, Dedewicz, 1:205–237, 1984.507

[66] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. Ameri-508

can Mathematical Soc., 2000.509

[67] CF Jeff Wu. On the convergence properties of the em algorithm. The Annals of statistics, pages510

95–103, 1983.511

[68] Asela Gunawardana, William Byrne, and Michael I Jordan. Convergence theorems for gen-512

eralized alternating minimization procedures. Journal of machine learning research, 6(12),513

2005.514

[69] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles515

Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas516

Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,517

Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The518

language model evaluation harness, 07 2024.519

13

[70] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,520

and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint521

arXiv:2503.20783, 2025.522

A Theory523

Lemma A.1 (Rejection sampling as an I-projection). Let p be a distribution over a finite set Y , and
let R : Y → {0, 1} be a reward function. Rejection sampling from p with acceptance condition
R(y) = 1 yields a distribution qRS. This distribution can be equivalently characterized as the
solution to:

qRS =q DKL(q||p) s.t Ey∼q[R(y)] = 1

Equivalently, qRS is the I-projection of p onto the set {q : Eq[R] = 1}524

Proof. Let S = {y ∈ Y : R(y) = 1}. Rejection sampling produces the conditional distribution

qRS(y) =

{
p(y)
p(S) y ∈ S,

0 y /∈ S,

where p(S) =
∑

y∈S p(y) and we assume P (S) > 0.525

Now consider the optimization problem. The constraint Eq[R] = 1 means∑
y∈Y

q(y)R(y) =
∑
y∈S

q(y) = 1

so q must put all of its mass on S. Thus the feasible set is exactly all distributions supported on S.526

For any q supported on S, we can write p(y) = p(S) p(y|S) for y ∈ S, and then527

DKL(q∥p) =
∑
y∈S

q(y) log
q(y)

p(y)
=

∑
y∈S

q(y) log
q(y)

p(y | S)
− log p(S)

∑
y∈S

q(y)

= DKL

(
q∥p(· | S)

)
− log p(S)

where we used
∑

y∈S q(y) = 1 in the last step. The second term is constant in q, so minimizing528

DKL(q||p) is the same as minimizing DKL(q||p(·|S)). By strict convexity of DKL(·∥·) in its first529

argument, the unique minimizer is q = p(· | S) = qRS.530

Lemma A.2 (Policy gradient as an M-projection). Let Y be a finite set and let Π ⊆ ∆(Y) be a set of
admissible policies (distributions over Y). Consider the single-step reinforcement learning objective

max
π

Ey∼π[R(y)]

where R : Y → R≥0 is a reward function. By the policy gradient theorem, this objective is
equivalently optimized by

max
π

Ey∼π̄

[
R(y) log π(y)

]
where π̄ indicates that gradients are not propagated through the sampling distribution. Define the
distribution

q(y) =
π(y)R(y)

Z
, Z =

∑
y∈Y

π(y)R(y)

Then taking a policy gradient step is equivalent to taking a gradient step on the following objective:

min
π
−Ey∼q[log π(y)]

In other words, optimizing the RL objective using policy gradient is equivalent to finding the M -531

projection of q onto the set of feasible policies π using gradient descent.532

14

Proof. Expanding the policy gradient objective gives

Ey∼π̄[R(y) log π(y)] =
∑
y∈Y

π(y)R(y) log π(y)

Let Z =
∑

y∈Y π(y)R(y). Define q(y) = π(y)R(y)/Z. Then the above becomes∑
y∈Y

π(y)R(y) log π(y) = Z
∑
y∈Y

q(y) log π(y) = Z Ey∼q[log π(y)]

Since Z does not depend on π in the gradient computation (it is treated as a constant in the π̄ sense),533

maximizing the original objective is equivalent to maximizing Ey∼q[log π(y)].534

Finally, recall that the M -projection of a distribution q onto a set of distributions Π is given by

min
π∈Π

KL(q∥π) = Eq[log
q

π
] = Eq[log q] − Eq[log π]

since Eq[log q] does not depend on π, the maximizer of Eπ̄[R log π] over Π coincides with535

argminπ∈Π KL(q∥π). Thus, the policy gradient update corresponds to the M -projection of q536

onto the policy class.537

Theorem A.3 (RL with binary reward as an EM algorithm). Let Y be a finite set and let Π ⊆ ∆(Y)
be a set of feasible policies. Let R : Y → {0, 1} be a binary reward function and P ∗ the set of
all optimal policies P ∗ = {q : Eq[R] = 1}. Then, solving the Single-step reinforcement learning
objective using policy gradients is equivalent to performing the following optimization procedure:

qt = arg min
q∈P∗

KL(q∥πt), πt+1 = argmin
π∈Π

KL(qt∥π)

This procedure is also known as EM with information projection.538

Proof. Sampling y ∼ π and accepting iff R(y) = 1 is exactly rejection sampling onto the event539

S = {y ∈ Y : R(y) = 1}. The resulting distribution is π(·|S). By Lemma A.1 with p ← π, this540

π(·|S) solves541

min
q

DKL(q∥π) s.t. Eq[R] = 1

establishing the I-projection. Applying Lemma A.2 on the RL objective gives us the M-projection.542

Proposition A.4 (Convergence to minimum KL solution). Under the setting appear in theorem543

A.3 and assume Π is an e-flat (exponential-family) model with full support, the optimal set P ∗ is544

nonempty and realizable (i.e., Π ∩ P ∗ ̸= ∅). Then:545

(1) If the M-projection is exact at every step, then (πt) converges to

π† = arg min
π∈P∗∩Π

DKL(π ∥π0)

(2) If the M-projection is inexact but, for some errors εt ≥ 0, it holds that

DKL(qt∥πt+1) ≤ min
π∈Π

DKL(qt∥π) + εt with
∞∑
t=0

εt <∞

then πt also converges to the same limit π†.546

Proof. The I-step is always an exact I-projection (Lemma A.1). In the case of an exact M-step, the iter-547

ative process is EM with information projections. The e-/m-flat geometry yields the Pythagorean iden-548

tities implying convergence to π† [64, 65, 66]. When the M-step only ensures a (near-)minimization549

up to summable errors, the iteration is GEM: monotone improvement and convergence follow from550

the GEM theory of [67] together with generalized alternating minimization for Bregman divergences551

[68], which, under the same e-/m-flat assumptions, selects the same minimum-KL limit π†.552

15

Practical considerations. Our theoretical equivalence should be interpreted with the following553

caveats:554

• Beyond REINFORCE. In practice, many policy gradient algorithms such as GRPO and PPO555

replace the raw reward R(y) with an advantage estimate A(y). Since this substitution is a control556

variate technique, it leaves the expected gradient direction unchanged while reducing its variance.557

Thus, our projection-based interpretation continues to hold.558

• The optimal policy set P ∗ defined by the linear constraint Eq[R] = 1 is an m-flat family, but the559

representable policy set Π induced by a neural network parametrization is not in general e-flat.560

This may prevent exact convergence to the minimum-KL solution described above. Nevertheless,561

our theorem provides a principled explanation for the bias observed in practical RL algorithms.562

B Training and Evaluation Details563

B.1 LLM experiments564

Unless otherwise stated, all reinforcement learning experiments were conducted using GRPO [45].565

For the Math reasoning task, the training set provided final answers but lacked reasoning chains566

required for SFT training. To obtain these, we queried DeepSeek R1 [33], sampling up to 16 responses567

per prompt and retaining a single response that matched the correct final answer. This yielded valid568

annotations for 96% of the dataset. For the Science Q&A task, we applied the same procedure with569

GPT-4o, obtaining correct annotations for the entire dataset.570

To construct the learning–forgetting trade-off curves (e.g., Figure 2), we followed the protocol below:571

1. Hyperparameter sweep. We trained multiple models under a broad sweep of hyperparameters572

(see Table 2).573

2. New-task evaluation. For Math and Science Q&A, accuracy was measured by comparing574

the model’s final answer to the ground truth, ignoring intermediate reasoning chains. For575

Tool Use, we extracted API calls from the output and matched them against ground-truth576

calls via regular expressions.577

3. Previous-task evaluation. We assessed performance on unrelated benchmarks as described578

in Section 3.1, using the Language Model Evaluation Harness [69].579

4. Pareto filtering. From the trained models, we retained only those lying within 2 accuracy580

points of the Pareto frontier.581

5. Curve fitting. An exponential function was fit to the filtered points to produce the trade-off582

curves.583

B.2 MNIST Experiments584

All MNIST experiments were conducted using a 3-layer MLP with input dimension 785, hidden585

layers of sizes 512 and 256, and output dimension 10. The input consisted of a flattened 28 × 28586

image concatenated with a binary indicator: +1 for ParityMNIST and −1 for FashionMNIST.587

Pretraining. We pretrained the network jointly on ParityMNIST and FashionMNIST using small588

subsets of the original datasets (500 images from each). For ParityMNIST, the label was chosen589

uniformly at random among all digit labels with the correct parity.590

Fine-tuning methods. We evaluated five fine-tuning strategies:591

1. GRPO.592

2. GRPO + KL regularization with coefficient 0.1.593

3. SFT 1: all even digits mapped to label 0, all odd digits to label 1.594

4. SFT 2: even digits randomly mapped to {0, 4}, odd digits to {1, 5}.595

5. SFT with oracle distribution: annotations drawn from the minimum-KL distribution consistent596

with task correctness.597

16

Hyperparameter SFT / SIMPO RL
Base Model Qwen2.5 3B-Instruct Qwen2.5 3B-Instruct
Learning Rate {1e-5, 3e-5, 5e-5, 7e-5, 9e-5} {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
Optimizer adamw adamw
LR Scheduler {constant w. warmup, cosine w. warmup} constant w. warmup
Warmup steps 50 50
Epochs {1,2} 1
Batch Size {16,32,64,128} See Below
Max Grad Norm 1 1
bfloat16 True True
Weight Decay 0 0

GRPO-only hyperparameters
KL reg. 0
Group Size 64
Prompts per generation 8
num iterations (µ) {1,2}
Loss type Dr. GRPO [70]
Table 2: Hyperparameters used for the LLM experiments. Curly braces {} indicate a sweep over the
specified values. Additional parameters such as weight decay and max gradient norm were manually
ablated; since they showed no significant effect on results, they were not included in the final sweep.]

Oracle distribution. Motivated by the KL–forgetting connection, we define the oracle distribution598

as the one that achieves perfect task accuracy while remaining closest (in KL divergence) to the599

pretraining distribution π0. Concretely, for an input image x we compute π0(·|x) ∈ R10 and the600

binary indicator vector R ∈ {0, 1}10 encoding which labels are correct given the digit’s parity. The601

oracle distribution q∗ is the solution to:602

q∗ = argmin
q

DKL(π0∥q) s.t. q⊤R = 1.

Since KL is convex and the constraint is linear, we can calculate a closed-form solution for every603

image. We then sample from q∗ to produce SFT annotations.604

Hyperparameter sweep. For each method we trained models across a sweep of 15 learning rates605

logarithmically spaced between 3e− 6 and 1e− 3, using either a constant-with-warmup or cosine-606

with-warmup scheduler, and training for 1 or 2 epochs. Including mid-training checkpoints, this607

produced approximately 500 runs per method.608

B.3 Centered Kernel Alignmen609

Centered Kernel Alignment (CKA) [57] Given representations X,Y ∈ Rn×d, define kernels610

K = XX⊤, L = Y Y ⊤. Let H = I − 1
n11

⊤ be the centering matrix. The centered kernels are611

K̄ = HKH, L̄ = HLH.

CKA is then computed as612

CKA(K,L) =
⟨K̄, L̄⟩F
∥K̄∥F ∥L̄∥F

,

where ⟨A,B⟩F = tr(A⊤B).613

CKA with k-NN Alignment (CKNNA) [58] Let α(i, j) ∈ {0, 1} indicate whether i, j are mutual614

k-nearest neighbors in both X and Y . Define the masked inner product615

⟨A,B⟩α =

n∑
i=1

n∑
j=1

α(i, j)AijBij .

CKNNA is then given by616

CKNNA(K,L) =
⟨K̄, L̄⟩α√

⟨K̄, K̄⟩α ⟨L̄, L̄⟩α
.

17

When α(i, j) = 1 for all i ̸= j, CKNNA reduces to standard CKA.617

C Additional Results618

MNIST Accuracy
989694929088

30

35

40

45

50

55

Fa
sh

io
n

M
N

IS
T

 A
cc

ur
ac

y

60

65

RL Teacher
SFT Student

70

Figure 7: SFT distillation from an RL teacher. Accuracy trade-off between the new task (MNIST)
and the prior task (FashionMNIST). Sweeping student hyperparameters shows that SFT can match
the teacher within noise on both tasks. This suggests that what matters is not the optimization path,
but the distribution of the final model.

0.000 0.005 0.010 0.015 0.020 0.025
KL Change (mnist)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Gr
ad

ie
nt

 S
im

ila
rit

y
(P

ar
ity

 M
NI

ST
)

lr=1e-4
lr=2e-4
lr=4e-4

0.000 0.005 0.010 0.015 0.020 0.025
KL Change (mnist)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Gr
ad

ie
nt

 S
im

ila
rit

y
(F

as
hi

on
 M

NI
ST

)

lr=1e-4
lr=2e-4
lr=4e-4

Figure 8: Gradient similarity versus KL change. (Left) On the new training task (ParityMNIST),
gradient cosine similarity and KL change per step remain anti-correlated. (Right) On the prior task
(FashionMNIST), the gradient similarity is more correlated with the KL change per step on the
training task (ParityMNIST). Together, these plots show that taking a larger step on the current task
induces gradients that are more similar in direction to the

18

	Introduction
	Related work
	Reinforcement Learning Forgets Less than SFT
	Performance Trade-offs
	Representation Preservation

	Smaller KL divergences lead to less forgetting
	On-policy methods leads to smaller KL divergence
	Experimental Evidence
	Theoretical Perspective

	Incorrect Hypothesis
	Discussion and Conclusion
	Theory
	Training and Evaluation Details
	LLM experiments
	MNIST Experiments
	Centered Kernel Alignmen

	Additional Results

