© ®©® N O g A~ W N =

- a
N = o

13

14
15
16
17
18
19
20

RL’s Razor: Why On-Policy Reinforcement Learning
Forgets Less

Anonymous Author(s)
Affiliation
Address

email

Abstract

We compare fine-tuning models with supervised fine-tuning (SFT) and reinforce-
ment learning (RL) and find that, even at matched new-task accuracy, RL consis-
tently forgets less. We investigate the cause and show that the degree of forgetting
is not determined by the training algorithm itself, but by the distributional shift,
namely the KL divergence between the fine-tuned and base policy when evaluated
on the new task distribution. RL’s advantage arises because on-policy updates
bias optimization toward KL-minimal solutions among the many that solve a task,
whereas SFT can converge to distributions arbitrarily far from the base model. We
validate this across experiments with large language models and controlled toy
settings, as well as provide theory on why on-policy RL updates lead to a smaller
KL change. We term this principle RL’s Razor: among all ways to solve a new
task, RL prefers those closest in KL to the original model.

KL(O || @) <KL(@]| @) -
High4 ------—-_~~
-

©

. ith 90%
Po\ldess"‘: new task

succes

Prior Task Performance

o

owd

.
(2 High
Base Policy New Task Performance

Figure 1: RL prefers KL-minimal solutions. Left: RL converges to policies close in KL to the base
model. Right: This reduces forgetting at matched new-task accuracy compared to SFT.

1 Introduction

Foundation models have rapidly become the backbone of modern AI, powering applications in
language, vision, robotics, and beyond. Despite their remarkable capabilities, today’s models are
largely static once deployed: they excel at tasks learned during pre-training or post-training, but are
not designed to self-improve and continually acquire new capabilities. We imagine a future where
deployed models are long-lived agents assisting humans in the long-term and continuously adapting
to new needs. As such, models must improve and adapt to new data, environments, and objectives

(121 3. 4L 15l 6].

21
22
23
24
25
26

27
28
29
30
31
32

33
34

35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62

63

64
65

66
67

68
69

70
71
72
73
74

A central challenge to this vision is catastrophic forgetting—the tendency for models to lose pre-
viously acquired capabilities when trained on new tasks [[7, 18, 9, [10]]. Although scaling model size
and pre-training data improves robustness [11} 10} [12], catastrophic forgetting remains a persistent
obstacle, undermining the promise of continual improvement [[13} [14, [6]. To enable foundation
models to serve as long-term agents, we need to develop post-training methods that allow models to
acquire new skills without erasing old ones.

To further this goal, we analyze the performance of two widely used post-training schemes of
supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a surprising
finding: even when SFT and RL achieve the same performance on the new task, we observe that SFT
often achieves new-task gains by erasing prior knowledge, while RL better preserves old skills.
Figure[I] (right) illustrates this tradeoff: although both methods can reach high performance on the
new task, RL maintains substantially higher performance on prior tasks compared to SFT.

This striking empirical gap raises the question: what underlying mechanism allows RL to improve on
new tasks, but unlike SFT, not disturb the model’s prior knowledge?

Previous approaches to catastrophic forgetting targeted specific factors such as constraining weight
updates [9, [15], preserving learned features [16} [17], or regularizing shift in output distribution
[18 [19]. While these methods can reduce forgetting, they focus on its effects rather than its
underlying cause. Consequently, it remains unclear what truly governs forgetting or why different
training algorithms behave so differently. In search of this governing principle, we ablated many such
variables and uncovered an empirical forgetting law: When fine-tuning a model, 7, on a new task
T, the degree of forgetting is accurately predicted by E, . [KL(7o]||7)], the Kullback-Leibler
(KL) divergence between the finetuned and the base policy computed on the new task distribution 7.
Although the underlying reason for this phenomenon remains unclear, its consistency across settings
suggests it captures a fundamental property of forgetting.

This law also clarifies the surprising difference between SFT and RL. Our analysis reveals a simple
but powerful principle we call RL’s Razor: among the many high-reward solutions for a new task,
on-policy methods such as RL are inherently biased toward solutions that remain closer to the
original policy in KL divergence. Figure|l|(left) highlights this effect: among the many policies that
reach a high success rate on the new task, RL is biased toward KL-minimal solutions, while SFT can
converge to distant ones. This bias arises directly from RL’s on-policy training: by sampling from the
model’s own distribution at every step, RL constrains learning to outputs already given non-negligible
probability by the base model. To improve reward, these samples are reweighted and used to update
the model, which gradually shifts the policy rather than pulling it toward an arbitrary distribution.
Thus, when multiple equally good solutions exist for a new task, RL tends to find solutions close
to the original policy, while SFT can converge to solutions much farther away, depending on the
provided labels. Theoretical analysis in a simplified setting confirms this view, showing that policy
gradient methods converge to KL-minimal solutions even without explicit regularization.

Finally, to validate the KL hypothesis, we construct an “oracle SFT” distribution that provably
minimizes KL divergence while achieving perfect accuracy. Training on this oracle distribution
produces even less forgetting than RL itself. This demonstrates that RL’s advantage does not stem
from being inherently different, but from its implicit KL. minimization. Whenever training is biased
toward KL-minimal solutions, forgetting is reduced.

Our main contributions are:

* We show that RL fine-tuning forgets less than SFT, even when both reach the same performance on
new tasks.

* We identify KL divergence to the base policy, measured on the new task distribution, as a strong
predictor of catastrophic forgetting across objectives and hyperparameters.

* We provide empirical and theoretical evidence that the on-policy nature of policy gradient methods
leads to smaller KL shifts and explains RL’s advantage.

Together, these findings suggest a new perspective on post-training: to achieve continual adaptation
without forgetting, algorithms should explicitly aim to minimize KL divergence from the base model.
This principle opens the door to designing future training methods that combine RL’s ability to
preserve prior knowledge with the efficiency of SFT, enabling foundation models that can truly learn

for life.

75

76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91

92
93
94
95
96
97
98

99
100
101
102
103
104
105

106
107
108

Math Science Q&A Tool Use

0.58-
o

2057

°©

©0.56 -

2

3 0.55 -

&

0.55 - §0.54
®

0.54- 3053

Avg. Score on Previous Tasks
Avg. Score on Previous Tasks

[am= RL wms RL £052- s RL

SFT
SFT SFT 051 -

048 050 052 054 056 058 060 062 03 0.4 05 06 07 040 045 050 055 060 065 070
New Task Accuracy New Task Accuracy New Task Accuracy

o
o
B

Figure 2: Pareto frontiers of RL and SFT. Each point represents a fine-tuned model. We sweep
hyperparameters and plot only those on the Pareto-frontier. RL improves new-task performance while
preserving prior knowledge, whereas SFT increases performance at the expense of forgetting.

2 Related work

Foundation Models and Post-training In modern deep learning, large-scale models trained on
broad, diverse datasets (usually termed Foundation models) serve as general-purpose backbones
across domains such as language, vision, robotics, and multimodal reasoning [20} 21} 22} 23] 24]. Pre-
training often relies on self-supervised or weakly supervised objectives, producing models with broad
domain knowledge and some zero-shot capabilities [25}26]]. However, raw pre-trained models may
not directly meet the requirements of specific applications or align with domain-specific constraints.
Post-training methods address this gap by adapting foundation models to downstream tasks through
supervised fine-tuning on curated datasets [27, 28], [29} 130]], reinforcement learning from human or
automated feedback [311[32}133]134], and other techniques [335]].

Catastrophic Forgetting. While fine-tuning primarily aims to improve performance on a new
specific task, preserving the model’s pre-existing general capabilities is equally critical. Unfortunately,
fine-tuning often leads to catastrophic forgetting—a phenomenon where learning new information
significantly deteriorates previously acquired knowledge [7, 18, [9]. Many works have sought to reduce
forgetting by constraining updates, for example through weight penalties, feature preservation, or
output matching [36]. These approaches highlight important factors, but what remains missing is a
unifying principle that predicts forgetting across different algorithms and settings.

In contrast, our work does not propose a new method but instead identifies a simple law: the KL
divergence between the fine-tuned and base policy, measured on the new task distribution, reliably
predicts the degree of forgetting. This explains the success of some popular forgetting mitigation
methods like Elastic Weight Update [9], which can be seen as approximation of KL minimization
[37]. Interestingly, practitioners have also observed that KL regularization, originally introduced in
RL fine-tuning of LLMs to stabilize optimization or prevent reward hacking [19} 38]], helps reduce
catastrophic forgetting [32].

SFT versus RL. Most prior comparisons between SFT and RL have focused on performance on the
new task being learned. A seminal result by [39] showed that in sequential decision making, on-policy
learning can achieve stronger performance even when the learning signal is identical. Building on
this, recent studies have found that RL fine-tuned models often exhibit superior generalization beyond
the training distribution [40, 41} 42] and transfer more effectively to related tasks [43] compared
to SFT trained models. However, none of this work has examined their relative susceptibility to
catastrophic forgetting, which is the focus of our study.

Concurrently, [44] report that RL forgets less than SFT, but ascribe RL’s advantage to negative exam-
ples and ignore sampling-distribution effects. Section [5|shows that this assumption is inconsistent
with our results.

109

110
111
112

113

114
115
116
17

118
119

120
121

122
123
124
125
126
127

128

129
130

131

132

134
135

136
137
138
139
140
141
142

143

144

145
146
147
148

3 Reinforcement Learning Forgets Less than SFT

In this section, we compare the degree of catastrophic forgetting induced by SFT and RL. The
comparison is carried out by training large language models on new tasks and then measuring how
much their ability to perform previously acquired tasks is degraded.

3.1 Performance Trade-offs

Experimental Setup. For each new task, we trained two models on the same set of prompts. The
first model was trained with SFT, using annotations either from the original dataset or generated with
GPT-40. The second model was trained with RL, specifically using GRPO [45]. The base model in
all cases was Qwen 2.5 3B-Instruct [46]. Evaluation was performed along two axes:

* New tasks: We measured performance on the held-out test set of the newly introduced task to
assess the performance gain from the training.

* Previous tasks: We measured performance on a diverse set of unrelated benchmarks. A drop in
these benchmarks was taken as a measure of catastrophic forgetting.

To obtain a reliable comparison, we trained dozens of models for each method under a variety of
hyperparameter choices. Importantly, all RL experiments were done without explicit KL regulariza-
tion. We then plotted only the models lying on the Pareto frontier, i.e., points such that no model can
improve its performance on the new task without incurring greater degradation on previous tasks. The
resulting lines show the best trade-off between learning and forgetting achievable by each training
method. For more details, see Appendix [B]

Tasks and Datasets. We repeated this experiment across three distinct domains:

* Math reasoning: math questions from the Open-Reasoner-Zero dataset [47/], annotated with GPT-40
[48] responses filtered for correctness.

* Science Q&A: Chemistry L-3 subset of SciKnowEval [49], also annotated with GPT-4o0.

* Tool use: ToolAlpaca dataset [50], using available annotations.

For the evaluation of catastrophic forgetting, we used established benchmarks: Hellaswag [51]],

Truthful QA [52]], MMLU [53]], IFEval [54], Winogrande [S5]], and HumanEval [56]. These serve as
proxies for diverse prior abilities that the model should ideally retain.

Results. Figure[2]illustrates the learning-forgetting trade-offs for all tasks. Across all of them, RL
training produces nearly horizontal Pareto frontiers as gains on the new task are achieved without
loss on previous tasks. In contrast, SFT exhibits a steep downward slope—as new task accuracy rises,
average performance on prior tasks consistently degrades. The contrast is particularly sharp in Math,
where even slight improvement in performance results in drops in prior ability. In Science Q&A and
Tool Use, SFT is able to achieve some performance without forgetting, but extracting all possible
gains from the dataset results in severe performance degradation.

While SFT boosts new-task performance by sacrificing prior knowledge, RL achieves
comparable improvements with substantially less forgetting.

3.2 Representation Preservation

While benchmark performance provides an external view of forgetting, it can also be sensitive to
superficial factors, such as formatting mismatches with the previous tasks. To probe whether the
training altered the model’s internal capacity more fundamentally, we analyzed changes to the model’s
representations.

149

151
152
153
154
155

156
157
158

160
161
162
163

164
165
166
167
168
169
170
171

172
173

174

175
176
177
178
179
180

181
182
183
184
185

=70- =70 ’ et
2 @ S R? = 0.961 ~98- & cw A
g g % I 'l‘ L] ‘;-
< 60- = 60- g g s
5 s S
2 1R 3o ¥ S
E 8 £
& 50- & 50 g ¢
% ° ‘.\.' o4 /
g g 3 =
3 3 ° o 8 !
r40- r 40 5
g] . > 392
.g g . 3. @ <
[@ - %5
£30- & 30- & 90-
§ 5 N z
o ®
g 20 5§20 Z g8
88 90 92 94 96 98 0 2 4 6 8 10 0 2 4 6 8 10
New Task Accuracy (Parity MNIST) KL KL
SFT on dist. 1 —=— SFTondist. 2 —=— SFT on optimal dist. ~— RL —— RL +KLreg.

Figure 4: KL divergence predicts catastrophic forgetting. (Left) Learning-Forgetting Trade-offs.
SFT outperform RL only when an oracle distribution is used as a source of annotation. (Middle)
Forgetting aligns to a single curve when plotted against KL. divergence, showing KL as a strong
predictor across methods. (Right) RL improves new-task accuracy with much smaller KL shifts than
SFT, highlighting the conservativeness of on-policy updates.

Experimental Setup. To study how representations change between models, we compare their
embeddings on a shared dataset. Directly comparing raw embedding values is not meaningful, since
these can vary arbitrarily during training. Instead, it is common to compare the relative geometry of
the embeddings—that is, how different inputs relate to each other. This geometry can be summarized
by a kernel (similarity) matrix, which encodes pairwise relationships among inputs. Centered Kernel
Alignment (CKA) [57] is a standard measure for comparing such kernels, providing a way to quantify
representational similarity between models.

. . 10 -
For this analysis, we constructed kernels from random

Wikipedia paragraphs, ensuring that the comparison
probes representations of content unrelated to the new
training tasks. We then measured the similarity of the ker-
nel between the base model and its fine-tuned variant using
a version of CKA called CKNNA ([58], see Appendix [B.3]
for more details). Specifically, we compare models that
achieved similar final accuracy on the new task.

o
©

o
©

o
N

o
o

SFT
ams RL

Centered Kernel Alignment (CKA) Score

Results. Figure [3.2] shows that RL-trained models main- O st A
tain almost perfect representational alignment with the

base model, even after learning the new task. By con- Figure 3: CKA similarity to the base
trast, SFT-trained models diverge substantially, indicating model during training. Although SFT
that the training reshapes their internal space in ways that and RL achieve comparable task per-
distort previously encoded knowledge. Together with the formance, SFT models diverge substan-
benchmark results, this suggests that RL is able to integrate tially in their representations, whereas
new abilities without disturbing the broader conceptual RL models remain more closely aligned
structure, while SFT incurs representational shifts that with the base model.

manifest as catastrophic forgetting.

4 Smaller KL divergences lead to less forgetting

A central question raised by our initial results is why RL fine-tuning tends to forget less than SFT.
To address this, we sought a confounding variable that could robustly explain the behavior of both
methods. We systematically tested several candidates, including weight change under different norms,
sparsity, and gradient rank. None of these explained the observed differences (see Section[6)). What
ultimately emerged is that the KL divergence between the trained model and the base model on the
new task distribution is an excellent predictor of catastrophic forgetting.

To test this hypothesis in a setting where we could run large numbers of experiments and push RL
until it starts to forget, we developed a toy problem we call ParityMNIST. The task is derived from
MNIST [59], but instead of digit classification, the label is defined by parity (even vs. odd). An image
of an even digit is correctly classified if the model predicts any label of an even number. Therefore,
multiple different labelings are equally correct: any distribution that consistently maps images of

186
187

189
190

191
192

193
194

195
196
197
198
199

200
201
202
203
204

206
207
208
209
210
211

212
213
214
215
216
217
218

219

220

221
222
223

224

225
226

227
228

even digits to the labels {0,2,4,6,8} and odd digits to the others achieves optimal accuracy. This
mirrors the realistic setting where many different output distributions are equally valid.

We pretrained a 3-layer MLP jointly on a small subset of ParityMNIST and FashionMNIST [60],
then fine-tuned only on ParityMNIST while measuring forgetting on FashionMNIST. To parallel the
main setup:

* In the SFT setting, the model was trained on labels sampled from a single arbitrary distribution out
of the many possible correct ones.

* In the RL setting, the reward was correctness with respect to parity, leaving the model free to
converge to any valid distribution.

For more details, see Appendix [B.2] This design allowed us to replicate the phenomenon where RL
reached high accuracy on the new task with substantially slower degradation of prior knowledge,
while SFT exhibited a steeper trade-off (Figure] left). Importantly, reproducing the effect in this
simple MLP setting shows that it is not specific to transformers or language modeling, but a more
general property of fine-tuning deep generative models.

KL as Predictor. When we plot forgetting directly against KL divergence from the base model on
the ParityMNIST distribution, results across both RL and SFT collapse onto the same curve (Figure
M} middle). This shows that KL, not the training algorithm itself, predicts forgetting. A second-order
polynomial fit achieves B2 = 0.961 in this toy setting. We repeated the experiment with two different
arbitrary SFT label distributions. Although their Pareto frontiers differed, plotting forgetting against
KL again yielded the same curve, reinforcing the conclusion that KL governs forgetting irrespective
of the training method or label choice. The same correlation is observed in our LLM experiments
with R? = 0.61. Although the statistic is lower, the residuals are mean-zero and not explained by
predictors, consistent with random noise possibly due to approximated measures of KL and task
accuracy. In addition, we find that at the optimization level, update steps that change the model more
in terms of KL also yield gradients that are more directionally similar to the catastrophic forgetting
gradient, see Figure[§]

Optimal SFT Distribution. Finally, the simplicity of ParityMNIST allowed us to analytically
compute the optimal SFT distribution, that is, the distribution with minimal KL divergence to the
base model among all that achieve 100% accuracy, see[B.2]for details. Training SFT directly on this
distribution outperformed RL, showing that the key factor is the KL distance from the base model,
with RL being naturally biased toward such solutions. In addition, we also trained the SFT model on
data generated by a RL trained model to and find that it can reach the same level of performance and
forgetting as the RL model, see Figure[7]

Across both SFT and RL, the amount of catastrophic forgetting is determined by how far the
model moves from its base distribution on the new task, as measured by KL divergence.

S On-policy methods leads to smaller KL divergence

Having established that the KL divergence between the trained model and its base distribution on the
new task predicts catastrophic forgetting, we now ask: why are RL fine-tuned models able to achieve
strong task performance while moving less in KL than SFT models?

5.1 Experimental Evidence

To answer this, we examine the differences in training objectives. For discrete output spaces, SFT
minimizes the cross-entropy loss:

Lspr(m) = —Eznp,yr, log m(y|z)]
where annotations are sampled from an external distribution 73, usually provided by humans. For
RL, we consider the standard policy gradient estimator:

ERL(W) = _EwND,yNW [A(Ta 7/) 10g71'(y|1‘)]

229
230
231
232
233

234
235

236
237
238

239
240

241
242

243
244
245

246

247
248
249

250
251

252
253
254
255
256
257

258

Pos + Neg
Pos Examples ~ Examples

& ? 058- FEmEATERARL ===
= . 0.65 - o
e 10 Reinforce GRPO . gos
c g oee 056
o g055- 2
< Zoss
% 0.50 - p
e S0.54
2045+ 8 oss
> z GRPO 053+ «mx GRPO
g 0.40 SFT - SFT
- .
o) SIMPO < SIMPO
~ SET SIMPO 038 1-0 REINFORCE 051 1-0 REINFORCE
-
o 0 i 2 3 ! 5 6 03 0.4 05 06 07

KL New Task Accuracy

Figure 5: Comparison of algorithm classes. (Left) The four quadrants illustrate algorithm types,
defined by whether they are on- or off-policy and whether they incorporate negative gradients.
(Middle) On-policy methods retain prior knowledge more effectively. (Right) Both GRPO and 1-0
Reinforce achieve higher new-task accuracy while incurring smaller KL shifts from the base model,
showing that on-policy methods consistently induce more conservative KL updates.

where A(x,y) is an Advantage function, which is the reward of y normalize in respects to other
rewards to the same x. In practice, the expectation is taken over trajectories (or outputs) sampled
from the current policy, and the policy gradient trick [61]] ensures gradients are taken only through
the log-probability term, not through the sampling distribution inside the expectation. Two features
distinguish this from SFT:

1. Sampling Distribution. While in RL the training was done on outputs drawn from the model’s
own distribution, in SFT, they come from fixed external annotations.

2. Negative Examples. While sampling from 7, some of the responses will not be ideal. These are
usually assigned a negative coefficient A(z,y). This pushes probability mass away from poor
outputs, a mechanism absent in SFT.

Our hypothesis is that one of these two differences is what causes RL’s slower forgetting. To examine
our hypothesis, we perform experiments with four different objectives:

* GRPO. An on-policy objective that utilizes negative examples. Here, A(x,y) is the normalized
reward.

* 1-0 Reinforce. An on-policy algorithm that does not use negative examples. Here, A(z,y) = 1
for correct responses and 0 for incorrect ones. This is equivalent to sampling from the model and
performing SFT on correct answers only.

» SFT. An offline objective that does not use negative examples.

* SimPO. An offline objective that utilizes negative examples. We create negative examples by
sampling incorrect responses from an external model, and use the SFT data for positive examples.
The SimPO [62] loss compares correct and incorrect outputs via a logistic term:

Lsipo(7) = =By, ~mys yinm,— 10g 0 (log m(ywlz) —logm(yi|z) —1)] M

where mg+ and 75— denote distributions for correct and incorrect responses, respectively. We used
SimPO rather than naive likelihood/negative likelihood because the latter was unstable to train.

We compared the four objectives on the Science Q&A task, measuring their learning—forgetting
trade-offs as in Section 4. The results, shown in Figure E], reveal that 1-0 Reinforce behaves similarly
to GRPO, while SimPO resembles SFT. Thus, the critical factor is not the presence of negative
gradients but the use of on-policy data. Plotting KL divergence confirms this conclusion: on-policy
methods (GRPO and 1-0 Reinforce) reach the same task performance with significantly smaller KL
divergence from the base model than offline methods (SFT and SimPO).

5.2 Theoretical Perspective

259
260
261
262
263
264

266
267
268
269

270
271
272
273

274
275

276
277

278

279

280

281
282

284
285
286
287

289

290
291
292
293
294

Policy gradient methods can be understood as a form of g, A 1
conservative projection. At each step, the policy samples % Setes P*

outputs it already finds likely, then re-weights those sam-

ples according to reward, shifting probability mass toward i ./(o\ 2
higher-reward outcomes while suppressing lower-reward ™ /'

ones. Crucially, because updates are defined relative to the oc———— 50 Ty
model’s own distribution, they nudge the policy toward a o o/ n

nearby re-weighted distribution, rather than pulling it to-

ward a potentially distant external distribution (as in SFT).
This explains why policy gradient methods tend to remain

close to the base model in KL divergence. Figure 6: KL-minimal path to opti-

This perspective can be formalized by observing that, in mality. Alternating I-projection into the
the binary-reward case, the re-weighted distribution tar- set of optimal policies and M-projection
geted by policy gradient is exactly the minimum-KL pro- into II carries 7y into P* while prefer-
jection of the current policy onto the set of optimal ones. ring the closest solution in KL.

Lemma 5.1. Let p be a distribution over a finite set Y, and let R : Y — {0, 1} be a reward function.
Rejection sampling from p with acceptance condition R(y) = 1 yields a distribution qrs. This
distribution can be equivalently characterized as the solution to:

ars =¢ Dir(qllp) st Ey g [R(y)] =1

Building on this, we show that policy gradient converges to the KL-minimal optimal policy within
the representable family.

Theorem 5.2. Let Y be a finite set and let 11 C A(Y') be a convex family of feasible policies (e.g., an
exponential family). Let R : Y — {0, 1} be a binary reward function and P* = {q : E,[R] = 1} the
set of optimal policies. Then, under suitable regularity conditions, solving the reinforcement learning
objective with policy gradient converges to

at = argﬂerr]%i*rrlm Dy, (7 || mo),

where T is the initialization. In other words, policy gradient selects, among all optimal representable
policies, the one closest in KL-divergence to the starting policy.

A detailed version with proofs is provided in Appendix [A]

On-policy training explains why RL maintains smaller KL divergence than SFT. Sampling
from the model’s own distribution keeps it close to the base model, while SFT pushes it
toward arbitrary external distributions.

6 Incorrect Hypothesis

Science advances not only through identifying the right explanations, but also by systematically ruling
out incorrect ones. To this end, we tested a broad set of candidate variables as potential predictors of
catastrophic forgetting. These variables fell into four categories:

* Weight-level changes. A natural hypothesis is that forgetting is tied to how much the parameters
themselves move. We measured parameter changes under L, Fisher-weighted Lo, and spectral
norm metrics. The Fisher matrix was computed on the basis of the model parameters, with
expectation over inputs from the previous task. These metrics correlated only weakly with forgetting:
large parameter shifts could occur without forgetting, and conversely, forgetting sometimes occurred
despite small parameter movement.

* Sparsity and rank of updates. Motivated by [63]], who argue that RL updates are sparse while SFT
weight updates are dense, we explicitly tested this hypothesis. In our setting, however, we found
that the reason for the observed sparse updates where the use of bfloat16 for model training.
Since bfloat16 has a limited mantissa, small parameter updates (such as those produced by RL)
can fail to cross the representational threshold, effectively causing no update at all. Performing the

295
296
297

298
299
300

302
303
304
305

306

308

309

310
311
312

314
315
316
317
318
319

320
321
322
323

324

326
327

same training with £1oat32 resulted in models with identical performance but without any sparsity
in their weight updates. Checking the rank of the weight changes, we found that all algorithms lead
to full rank weight updates.

* Representation-level changes. Following the CKNNAA results from subsection[3.2] we examined
hidden activation shifts (L1 and L2 distances) as proxies for changes in internal representations.
These variables show some correlation, but the curves were distinct between training objectives.

* Distributional distances. We considered multiple measures of output distribution change,
all measured over inputs from the new task 7: Forward KL (E,, [KL(7r0||7r)]), Reverse KL
(Epmr [KL(W| \ﬂo)]), Total Variation, and Lo distance between distributions. While reverse KL
showed a good signal, and TV moderately correlated with forgetting, none approached the predictive
power of forward KL.

Table E] summarizes these results. Across all candidates, forward KL divergence between the fine-
tuned and base model on the new task distribution emerges as the only consistent and high-fidelity
predictor of catastrophic forgetting.

Variable R? (2nd deg. polynomial)
KL, forward 0.96 +0.01
KL, reverse 0.93 +0.01
v 0.80 +0.01
Distribution change, L2 0.56 £ 0.02
Weight change, L1 0.34 £0.02
Weight change, Fisher Weighted L2 0.58 4= 0.02
Weight change, spectral norm 0.58 £0.02
Sparsity of weight change N/A

Rank of weight change N/A
Activation change, L1 0.52 +£0.02
Activation change, L2 0.55 +0.02

Table 1: Predictive power of alternative variables compared to forward KL. None approaches the
explanatory strength of forward KL divergence.

7 Discussion and Conclusion

Our study reveals that catastrophic forgetting is governed not by the choice of training algorithm,
but by the KL divergence from the base policy on the new task distribution. This explains why RL
forgets less than SFT, as on-policy training naturally biases updates toward KL-minimal solutions,
preserving prior knowledge while acquiring new skills.

However, we still lack a mechanistic account of why larger KL shifts on the new task disrupt
prior knowledge—whether through representational interference, implicit capacity limits, or other
dynamics. Moreover, while we demonstrate the KL—forgetting link across moderate-scale LLMs and
toy models, its behavior at frontier scales and in more diverse generative domains remains unknown.
Addressing these gaps will be essential for grounding the principle and extending it to real-world
deployment.

Taken together, our results motivate a new design axis for post-training research: algorithms should
be judged not only by how well they optimize new tasks, but also by how conservatively they move
in KL relative to the base model. Embracing this principle may allow us to build agents that not only
learn new skills, but also truly learn for life.

References

[1] Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial
super intelligence. arXiv preprint arXiv:2507.21046, 2025.

328
329

330
331
332

333
334

335
336

338

339
340
341

342
343

344
345
346
347

348
349
350

351

353
354
355

356

358
359
360

361

363

364
365
366

368
369

370
371

372
373
374

[2] Alan Dao and Thinh Le. Rezero: Enhancing 1lm search ability by trying one-more-time. arXiv
preprint arXiv:2504.11001, 2025.

[3] Mohammad Mahdi Moradi, Hossam Amer, Sudhir Mudur, Weiwei Zhang, Yang Liu, and Walid
Ahmed. Continuous self-improvement of large language models by test-time training with
verifier-driven sample selection. ArXiv, abs/2505.19475, 2025.

[4] Zhongyang Li, Ziyue Li, and Tianyi Zhou. C3po: Critical-layer, core-expert, collaborative
pathway optimization for test-time expert re-mixing. ArXiv, abs/2504.07964, 2025.

[5] Toby Simonds and Akira Yoshiyama. Ladder: Self-improving llms through recursive problem
decomposition. arXiv preprint arXiv:2503.00735, 2025.

[6] Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyiirek, Yoon Kim, and Pulkit Agrawal. Self-
adapting language models. ArXiv, abs/2506.10943, 2025.

[7] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:

The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109-165. Elsevier, 1989.

[8] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128-135, 1999.

[9] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521-3526, 2017.

[10] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

[11] Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International conference on learning representations, 2021.

[12] Andrea Cossu, Antonio Carta, Lucia Passaro, Vincenzo Lomonaco, Tinne Tuytelaars, and
Davide Bacciu. Continual pre-training mitigates forgetting in language and vision. Neural
Networks, 179:106492, 2024.

[13] Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

[14] Haiyang Guo, Fanhu Zeng, Fei Zhu, Jiayi Wang, Xukai Wang, Jingang Zhou, Hongbo Zhao,
Wenzhuo Liu, Shijie Ma, Da-Han Wang, et al. A comprehensive survey on continual learning
in generative models. arXiv preprint arXiv:2506.13045, 2025.

[15] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
conference on computer vision (ECCV), pages 139-154, 2018.

[16] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based
lifelong learning. In Proceedings of the IEEE international conference on computer vision,
pages 1320-1328, 2017.

[17] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 831-839, 2019.

[18] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935-2947, 2017.

[19] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in neural information processing systems, 33:3008-3021, 2020.

10

375
376
377
378

379
380
381

382
383
384

385
386
387

388
389
390

391
392

393
394
395

396
397

398
399
400

401
402
403

404
405
406

407
408
409

410
411
412
413

414
415
416

417
418
419
420

421
422
423

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PmLR, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan
Kim, Yaqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via
foundation models: A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023.

Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng
Gao, et al. Multimodal foundation models: From specialists to general-purpose assistants.
Foundations and Trends® in Computer Graphics and Vision, 16(1-2):1-214, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifica-
tion. arXiv preprint arXiv:1801.06146, 2018.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730-27744, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie,
Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents
via reinforcement learning. Advances in neural information processing systems, 37:110935-
110971, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in neural information processing systems, 36:53728-53741, 2023.

11

424
425
426

427
428
429

430
431

432
433
434
435

436
437

438
439
440

441
442

443
444
445

446
447
448

449
450
451

454

464

472

[36] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362-5383, 2024.

[37] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European conference on computer vision (ECCV), pages 532-547, 2018.

[38] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pages 10835-10866. PMLR, 2023.

[39] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627-635. JMLR Workshop and
Conference Proceedings, 2011.

[40] Seungwook Han, Jyothish Pari, Samuel J Gershman, and Pulkit Agrawal. General reasoning
requires learning to reason from the get-go. arXiv preprint arXiv:2502.19402, 2025.

[41] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
Quoc V Le, Sergey Levine, and Yi Ma. Sft memorizes, 1l generalizes: A comparative study of
foundation model post-training. arXiv preprint arXiv:2501.17161, 2025.

[42] Tianle Li, Jihai Zhang, Yongming Rao, and Yu Cheng. Unveiling the compositional ability gap
in vision-language reasoning model. arXiv preprint arXiv:2505.19406, 2025.

[43] Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general 1lm capabilities?
understanding transferability of llm reasoning. arXiv preprint arXiv:2507.00432, 2025.

[44] Song Lai, Haohan Zhao, Rong Feng, Changyi Ma, Wenzhuo Liu, Hongbo Zhao, Xi Lin, Dong
Yi, Min Xie, Qingfu Zhang, et al. Reinforcement fine-tuning naturally mitigates forgetting in
continual post-training. arXiv preprint arXiv:2507.05386, 2025.

[45] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[46] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqgiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report, 2025.

[47] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

[48] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
Al Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[49] Kehua Feng, Keyan Ding, Weijie Wang, Xiang Zhuang, Zeyuan Wang, Ming Qin, Yu Zhao,
Jianhua Yao, Qiang Zhang, and Huajun Chen. Sciknoweval: Evaluating multi-level scientific
knowledge of large language models. arXiv preprint arXiv:2406.09098, 2024.

[50] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun.
Toolalpaca: Generalized tool learning for language models with 3000 simulated cases. arXiv
preprint arXiv:2306.05301, 2023.

[51] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

473
474

475
476
477

478
479
480

481
482
483

484
485
486

487

489

490
491

492

494
495

496
497

498
499
500

501

503
504
505

506

508
509

510
511

512
513
514

515
516
517
518
519

[52] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic
human falsehoods. arXiv preprint arXiv:2109.07958, 2021.

[53] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[54] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

[55] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

[56] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[57] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pages
3519-3529. PMIR, 2019.

[58] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. arXiv preprint arXiv:2405.07987, 2024.

[59] LiDeng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE signal processing magazine, 29(6):141-142, 2012.

[60] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[61] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[62] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Information Processing Systems, 37:124198-124235,
2024.

[63] Sagnik Mukherjee, Lifan Yuan, Dilek Hakkani-Tur, and Hao Peng. Reinforcement learning
finetunes small subnetworks in large language models. arXiv preprint arXiv:2505.11711, 2025.

[64] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society: series B (methodological),
39(1):1-22, 1977.

[65] Imre Csiszar. Information geometry and alternating minimization procedures. Statistics and
Decisions, Dedewicz, 1:205-237, 1984.

[66] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. Ameri-
can Mathematical Soc., 2000.

[67] CF Jeff Wu. On the convergence properties of the em algorithm. The Annals of statistics, pages
95-103, 1983.

[68] Asela Gunawardana, William Byrne, and Michael I Jordan. Convergence theorems for gen-
eralized alternating minimization procedures. Journal of machine learning research, 6(12),
2005.

[69] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The
language model evaluation harness, 07 2024.

13

520
521
522

523

524

525

526

527

528

529
530

531
532

[70] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

A Theory

Lemma A.1 (Rejection sampling as an I-projection). Let p be a distribution over a finite set Y, and
let R : Y — {0,1} be a reward function. Rejection sampling from p with acceptance condition
R(y) = 1 yields a distribution qrs. This distribution can be equivalently characterized as the
solution to:

ars =q Dre(qllp) st Eyg[R(y)] =1
Equivalently, qgs is the I-projection of p onto the set {q : E4[R] = 1}

Proof. Let S = {y € Y : R(y) = 1}. Rejection sampling produces the conditional distribution

qrs(y) = { yé s,

o

where p(S) = >° ¢ p(y) and we assume P(S5) > 0.

Now consider the optimization problem. The constraint E,[R] = 1 means

yey yeSs
so ¢ must put all of its mass on S. Thus the feasible set is exactly all distributions supported on S.

For any ¢ supported on .S, we can write p(y) = p(S) p(y|S) for y € S, and then

Dxw(qllp) = a(y)log) _ > a(y)log W) 1o () > aly)

= p(y) ves p(y | S) yes
= Dxu.(qllp(- | S)) —logp(S)

where we used }°, -5 q(y) = 1 in the last step. The second term is constant in g, so minimizing

Dx1.(¢||p) is the same as minimizing Dxr,(¢||p(:|S)). By strict convexity of Dxr,(-||-) in its first
argument, the unique minimizer is ¢ = p(- | S) = ¢gs. O

Lemma A.2 (Policy gradient as an M-projection). Let Y be a finite set and let II C A(Y") be a set of
admissible policies (distributions over Y). Consider the single-step reinforcement learning objective

max B, [R(y)]

where R : 'Y — Rxq is a reward function. By the policy gradient theorem, this objective is
equivalently optimized by
max B,z [R(y) log 7(y)]

where T indicates that gradients are not propagated through the sampling distribution. Define the

distribution
aty) = "R 2 S y)Re)

yey

Then taking a policy gradient step is equivalent to taking a gradient step on the following objective:
mgn —E,~q[log m(y)]

In other words, optimizing the RL objective using policy gradient is equivalent to finding the M -
projection of q onto the set of feasible policies T using gradient descent.

14

533
534

535
536
537

538

539

541

542

543
544
545

546

547
548
549
550
551
552

Proof. Expanding the policy gradient objective gives

Ey~z[R(y)logm(y)] = Y 7(y)R(y)logm(y)

yey

Let Z =3 oy m(y)R(y). Define q(y) = 7(y) R(y)/Z. Then the above becomes

> m(y)RW)logn(y) = Z Y q(y)logm(y) = Z Eyqlog 7(y)]
yey yeYy

Since Z does not depend on 7 in the gradient computation (it is treated as a constant in the 7 sense),
maximizing the original objective is equivalent to maximizing E, 4 [log 7(y)].

Finally, recall that the M -projection of a distribution g onto a set of distributions II is given by
. q
min KL(q||7) = E,[log ;} =E,[logq] — E4llogn]

since E,[logg] does not depend on 7, the maximizer of Ez[Rlogn] over II coincides with
arg min, ¢y KL(g||7). Thus, the policy gradient update corresponds to the M -projection of ¢
onto the policy class. O

Theorem A.3 (RL with binary reward as an EM algorithm). Let Y be a finite set and let T1 C A(Y')
be a set of feasible policies. Let R : Y — {0, 1} be a binary reward function and P* the set of
all optimal policies P* = {q : E4[R] = 1}. Then, solving the Single-step reinforcement learning
objective using policy gradients is equivalent to performing the following optimization procedure:

= in KL — in KL
g = arg min (qllme), M1 = arg min (gellm)

This procedure is also known as EM with information projection.

Proof. Sampling y ~ 7 and accepting iff R(y) = 1 is exactly rejection sampling onto the event
S ={y €Y : R(y) = 1}. The resulting distribution is 7(:|S). By Lemma A.1 with p < m, this
m(:|S) solves
minDKL(qHW) S.t. Eq[R] =1
q

establishing the I-projection. Applying Lemma A.2 on the RL objective gives us the M-projection. [

Proposition A.4 (Convergence to minimum KL solution). Under the setting appear in theorem
[A.3|and assume 11 is an e-flat (exponential-family) model with full support, the optimal set P* is
nonempty and realizable (i.e., 11 N P* # &). Then:

(1) If the M-projection is exact at every step, then (7)) converges to
f=a in D
™ = arg_ g, Do)

(2) If the M-projection is inexact but, for some errors €, > 0, it holds that

o0
D < in D]
KL(qel|me1) < min KL(q||™) + & with ;Et < o0

then ; also converges to the same limit 7'

Proof. The I-step is always an exact [-projection (Lemma A.1). In the case of an exact M-step, the iter-
ative process is EM with information projections. The e-/m-flat geometry yields the Pythagorean iden-
tities implying convergence to 7' [64, 165, [66]]. When the M-step only ensures a (near-)minimization
up to summable errors, the iteration is GEM: monotone improvement and convergence follow from
the GEM theory of [67] together with generalized alternating minimization for Bregman divergences
[68]], which, under the same e-/m-flat assumptions, selects the same minimum-KL limit . O

15

553
554

555
556

558

559
560
561
562

563

564

565

566
567
568
569
570

571

572
573

574
575
576
577

578
579

580
581

582
583

584

585
586
587

588
589
590

591

592

593

594

595

596
597

Practical considerations. Our theoretical equivalence should be interpreted with the following
caveats:

* Beyond REINFORCE. In practice, many policy gradient algorithms such as GRPO and PPO
replace the raw reward R(y) with an advantage estimate A(y). Since this substitution is a control
variate technique, it leaves the expected gradient direction unchanged while reducing its variance.
Thus, our projection-based interpretation continues to hold.

* The optimal policy set P* defined by the linear constraint E,[R] = 1 is an m-flat family, but the
representable policy set II induced by a neural network parametrization is not in general e-flat.
This may prevent exact convergence to the minimum-KL solution described above. Nevertheless,
our theorem provides a principled explanation for the bias observed in practical RL algorithms.

B Training and Evaluation Details

B.1 LLM experiments

Unless otherwise stated, all reinforcement learning experiments were conducted using GRPO [45].

For the Math reasoning task, the training set provided final answers but lacked reasoning chains
required for SFT training. To obtain these, we queried DeepSeek R1 [33]], sampling up to 16 responses
per prompt and retaining a single response that matched the correct final answer. This yielded valid
annotations for 96% of the dataset. For the Science Q&A task, we applied the same procedure with
GPT-40, obtaining correct annotations for the entire dataset.

To construct the learning—forgetting trade-off curves (e.g., Figure [2), we followed the protocol below:

1. Hyperparameter sweep. We trained multiple models under a broad sweep of hyperparameters
(see Table[2).

2. New-task evaluation. For Math and Science Q&A, accuracy was measured by comparing
the model’s final answer to the ground truth, ignoring intermediate reasoning chains. For
Tool Use, we extracted API calls from the output and matched them against ground-truth
calls via regular expressions.

3. Previous-task evaluation. We assessed performance on unrelated benchmarks as described
in Section [3.1] using the Language Model Evaluation Harness [69].

4. Pareto filtering. From the trained models, we retained only those lying within 2 accuracy
points of the Pareto frontier.

5. Curve fitting. An exponential function was fit to the filtered points to produce the trade-off
curves.

B.2 MNIST Experiments

All MNIST experiments were conducted using a 3-layer MLP with input dimension 785, hidden
layers of sizes 512 and 256, and output dimension 10. The input consisted of a flattened 28 x 28
image concatenated with a binary indicator: +1 for ParityMNIST and —1 for FashionMNIST.

Pretraining. We pretrained the network jointly on ParityMNIST and FashionMNIST using small
subsets of the original datasets (500 images from each). For ParityMNIST, the label was chosen
uniformly at random among all digit labels with the correct parity.

Fine-tuning methods. We evaluated five fine-tuning strategies:

GRPO.

GRPO + KL regularization with coefficient 0.1.

SFT 1: all even digits mapped to label 0, all odd digits to label 1.
SFT 2: even digits randomly mapped to {0, 4}, odd digits to {1,5}.

SFT with oracle distribution: annotations drawn from the minimum-KL distribution consistent
with task correctness.

SAE N S

16

598
599
600
601
602

603

604

605

606

607

608

609

610
611

612

613

614
615

616

Hyperparameter SFT / SIMPO RL

Base Model Qwen2.5 3B-Instruct Qwen2.5 3B-Instruct
Learning Rate {1e-5, 3e-5, 5e-5, 7e-5, 9e-5} {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
Optimizer adamw adamw
LR Scheduler {constant w. warmup, cosine w. warmup} constant w. warmup
Warmup steps 50 50
Epochs {1,2} 1
Batch Size {16,32,64,128} See Below
Max Grad Norm 1 1
bfloatl6 True True
Weight Decay 0 0
GRPO-only hyperparameters
KL reg. 0
Group Size 64
Prompts per generation 8
num iterations (u) {1,2}
Loss type Dr. GRPO [70]

Table 2: Hyperparameters used for the LLM experiments. Curly braces {} indicate a sweep over the
specified values. Additional parameters such as weight decay and max gradient norm were manually
ablated; since they showed no significant effect on results, they were not included in the final sweep.]

Oracle distribution. Motivated by the KL—forgetting connection, we define the oracle distribution
as the one that achieves perfect task accuracy while remaining closest (in KL divergence) to the
pretraining distribution 7y. Concretely, for an input image = we compute 7o (-|z) € R!? and the
binary indicator vector R € {0, 1}'? encoding which labels are correct given the digit’s parity. The
oracle distribution ¢* is the solution to:

q* = argmin Dgy,(mollq) st ¢ R=1.
q

Since KL is convex and the constraint is linear, we can calculate a closed-form solution for every
image. We then sample from ¢* to produce SFT annotations.

Hyperparameter sweep. For each method we trained models across a sweep of 15 learning rates
logarithmically spaced between 3e — 6 and le — 3, using either a constant-with-warmup or cosine-
with-warmup scheduler, and training for 1 or 2 epochs. Including mid-training checkpoints, this
produced approximately 500 runs per method.

B.3 Centered Kernel Alignmen

Centered Kernel Alignment (CKA) [S7] Given representations X,Y € R™*4, define kernels
K=XXT,L=YY". Let H=1— 111" be the centering matrix. The centered kernels are

n
K=HKH, L=HLH.
CKA is then computed as

CKA(K,L) = @
1K F ILIlF

where (A, B)p = tr(AT B).

CKA with £-NN Alignment (CKNNA) [58] Let (7,) € {0, 1} indicate whether ¢, j are mutual
k-nearest neighbors in both X and Y. Define the masked inner product

(A, B)a =YY ali,j) Ai;Bij.

i=1j=1
CKNNA is then given by

CKNNA(K,L) =

617 When a(i,j) = 1 for all i # j, CKNNA reduces to standard CKA.

s1s C Additional Results

SFT Student
S RL Teacher

Fashion MNIST Accuracy
3 & 3 a

&

@
&

S‘S 9‘0 9‘2 9‘4 9‘6 9‘5
MNIST Accuracy

Figure 7: SFT distillation from an RL teacher. Accuracy trade-off between the new task (MNIST)
and the prior task (FashionMNIST). Sweeping student hyperparameters shows that SFT can match
the teacher within noise on both tasks. This suggests that what matters is not the optimization path,
but the distribution of the final model.

0.75- ~0.6-

—0.4-

Gradient Similarity (Parity MNIST)
Gradient Similarity (Fashion MNIST)

-0.75- Ir=le-4 Ir=1e-4.
Ir=2e-4 Ir=2e-4
Ir=4e-4 Ir=4e-4
-1.0 .] 00- !
0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.005 0.010 0.015 0.020 0.025
KL Change (mnist) KL Change (mnist)

Figure 8: Gradient similarity versus KL change. (Left) On the new training task (ParityMNIST),
gradient cosine similarity and KL change per step remain anti-correlated. (Right) On the prior task
(FashionMNIST), the gradient similarity is more correlated with the KL change per step on the
training task (ParityMNIST). Together, these plots show that taking a larger step on the current task
induces gradients that are more similar in direction to the

18

	Introduction
	Related work
	Reinforcement Learning Forgets Less than SFT
	Performance Trade-offs
	Representation Preservation

	Smaller KL divergences lead to less forgetting
	On-policy methods leads to smaller KL divergence
	Experimental Evidence
	Theoretical Perspective

	Incorrect Hypothesis
	Discussion and Conclusion
	Theory
	Training and Evaluation Details
	LLM experiments
	MNIST Experiments
	Centered Kernel Alignmen

	Additional Results

