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Abstract

Learning object-centric representations from visual inputs in an unsupervised manner have
drawn focus to solve more complex tasks, such as reasoning and reinforcement learning.
However, current state-of-the-art methods, relying on autoregressive transformers or diffusion
models to generate scenes from object-centric representations, suffer from computational
inefficiency due to their sequential or iterative nature. This computational bottleneck limits
their practical application and hinders scaling to more complex downstream tasks. To
overcome this, we propose MOGENT, an efficient object-centric learning framework based
on masked generative modeling. MOGENT conditions a masked bidirectional transformer
on learned object slots and employs a parallel iterative decoding scheme to generate scenes,
enabling efficient compositional generation. Experiments show that MOGENT significantly
improves computational efficiency, accelerating the generation process by up to 67x and 17x
compared to autoregressive models and diffusion-based models, respectively. Importantly, the
efficiency is attained followed by a strong or competitive performance on object segmentation
and compositional generation tasks.

1 Introduction

A key aspect of human intelligence the ability to perceive their surroundings as composition of objects and
their relationships (Spelke, 1990; 2013). Such abstraction allows humans to flexibly generalize and reason
about novel scenarios by composing existing conceptual knowledge, a capability known as compositional
generalization in machine learning (Greff et al., 2020; Goyal & Bengio, 2022; Lake et al., 2017). Inspired by
this ability, the field of object-centric learning aims to develop models that can decompose complex scenes,
such as images or videos, into individual object representations in an unsupervised manner. A prevalent
approach in object-centric learning is to represent each object in an image or video as a set of representations,
often referred to as “slots” (Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020). Early works
achieved object discovery and disentanglement by introducing various inductive biases, such as grouping
nearby pixels (Greff et al., 2017; van Steenkiste et al., 2018), modeling object properties (e.g. position, size,
depth, etc.) explicitly (Eslami et al., 2016; Jiang et al., 2020), and modeling foreground and background
separately (Lin et al., 2020b;a).

Among various architectures, Slot Attention (Locatello et al., 2020) emerged as an influential method,
employing iterative attention (Vaswani et al., 2017) over encoded features to bind information into distinct
object slots and reconstructing the scene using a mixture-based decoder (Watters et al., 2019). Trained on a
simple input reconstruction objective, Slot Attention is a popular architectural choice and has been extended
for both images (Singh et al., 2022a; Seitzer et al., 2023; Didolkar et al., 2025) and videos (Singh et al., 2022b;
Kipf et al., 2022; Zadaianchuk et al., 2023; Wu et al., 2023b). Recent works have focused on enhancing the
generative capabilities of these slot-based approaches. These models often leverage the extracted slots as
conditional inputs for sequential generators such as autoregressive transformers or diffusion models such
as Latent Diffusion Model (LDM) (Rombach et al., 2022), enabling object-centric disentanglement and
compositional generation on more realistic datasets (Singh et al., 2022a;b; Wu et al., 2023b; Jiang et al., 2023;
Kakogeorgiou et al., 2024).
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However, these models often suffer from computational inefficiency. For example, when using an autoregressive
transformer, generation requires (# of patches) steps per image (Figure 1 (a)). This is especially challenging
in object-centric learning, as effective object-centric disentanglement typically requires smaller patches to
capture objects of varying sizes and partial occlusions accurately. On the other hand, diffusion-based models
significantly reduce the number of generation steps required per image, yet remain computationally expensive
memory-wise and time-wise due to their iterative refinement procedure (Wu et al., 2023b; Jiang et al., 2023).
While their high computational cost have been pointed out as a limitation by Wu et al. (2023b), no prior
works have worked on improving efficiency of object-centric generation.

In this work, we present MOGENT (Masked Object-centric GENerative Transformer), an object-centric
learning framework that leverages the efficiency of masked generative modeling. MOGENT employs a
masked bidirectional transformer decoder, conditioned on extracted slots, to predict masked visual tokens
representing image patches. While inspired by the success of parallel decoding schemes on image and video
generation (Chang et al., 2022a; Yu et al., 2023; 2024), successfully integrating this paradigm with object-
centric representation learning is a non-trivial challenge. A naive integration fails because the unstructured,
parallel nature of the decoder is not inherently suited for object-centric learning which requires spatial locality
priors (Chakravarthy et al., 2023). We empirically show that integrating the Query Slot Attention (QSA) (Jia
et al., 2023) to extract slots and adjusting the initialization and loss function of the transformer is crucial
for achieving effective object-centric representation learning within this efficient framework.MOGENT can
generate a large number of tokens in parallel at each step, significantly improving computational efficiency. For
example, generating a 128x128 image requires only 20 decoding steps with MOGENT, a substantial reduction
from the 1024 steps typically required by autoregressive baselines (Singh et al., 2022a). More importantly,
MOGENT can generate efficiently regardless of the image resolution as the number of steps to generate does
not depend on the image resolution. Experiments on 3D Shapes (Burgess et al., 2019) and CLEVR (Johnson
et al., 2017) datasets show that MOGENT achieves highly efficient training and inference speed compared to
relevant baselines. Furthermore, experiments on CLEVRTex (Karazija et al., 2021) and CelebA (Liu et al.,
2015) datasets show that our model is scalable to more realistic datasets in a highly efficient manner, up
to 67x and 17x speedup compared to autoregressive and diffusion-based models, respectively. Notably, this
efficiency gain is realized without compromising, and often improving upon, representation learning and
generation quality.

2 Related Works

Object-centric Learning. Learning to represent objects in the scene using “slots” (Locatello et al., 2020;
Burgess et al., 2019; Greff et al., 2019) has been long explored in the literature. A key inductive bias to
achieve object-centric disentanglement is iterative inference, which has been achieved by applying iteration
over objects (Eslami et al., 2016; Burgess et al., 2019) or iterative refinement (Greff et al., 2019; Locatello
et al., 2020; Goyal et al., 2021). Additionally, adding further priors about object properties (e.g. position,
size, depth, etc.) (Eslami et al., 2016; Jiang et al., 2020), foreground and background (Lin et al., 2020a;b), or
temporal indifference (Hsieh et al., 2018; Nakano et al., 2023), has also been found to be effective in improving
object-centric disentanglement. Slot Attention (Locatello et al., 2020) is one of the commonly-used model,
which uses iterative attention mechanism (Vaswani et al., 2017) and mixture-based decoder (Watters et al.,
2019) to learn slot representations from various datasets. However, the efficacy of these early object-centric
models is often limited when dealing with complex real-world scenes (Yang & Yang, 2022). To address this,
several works have explored improving Slot Attention, such as employing bi-level optimization (Chang et al.,
2022b; Jia et al., 2023), adding spatial locality prior (Chakravarthy et al., 2023), or learning quantized slot
representations (Singh et al., 2023; Wu et al., 2024).

Other works have explored improving generation performance of slot-based models by replacing the mixture-
based decoder with models with higher capacity, such as transformer or diffusion models (Singh et al.,
2022a;b; Sajjadi et al., 2022; Wu et al., 2023a;b; Jiang et al., 2023; Kakogeorgiou et al., 2024). For example,
SLATE (Singh et al., 2022a) and STEVE (Singh et al., 2022b) use an autoregressive transformer to generate
images or videos from slots, respectively. They train a discretized VAE (Im et al., 2017) to tokenize the
inputs, extract slots using Slot Attention, and generate scenes using a slot-conditioned transformer decoder.
In contrast, SlotDiffusion (Wu et al., 2023b) employs LDM (Rombach et al., 2022) to generate scenes
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Figure 1: Overview of the generation process using (a) SLATE and (b) MOGENT. As SLATE uses an
autoregressive transformer for slot-to-token decoding, generation takes as many steps as the number of
tokens (L) to represent a single image. On the other hand, by employing a masked bidirectional transformer,
MOGENT can generate tokens in parallel, reducing the number of steps to generate by a large margin.

using slot-conditioned denoising within the latent space of a pretrained VQ-VAE (Van Den Oord et al.,
2017). While powerful, both the sequential token prediction in autoregressive models and the iterative nature
of diffusion lead to computational inefficiency and slow generation times (Wu et al., 2023b; Jiang et al.,
2023). Addressing this bottleneck, our work employs masked generative modeling, aiming for more efficient
object-centric learning and parallelizable generation. Given this focus on improving generation efficiency
via a non-sequential strategy, we primarily compare our approach against SLATE, as its autoregressive
slot-to-token decoder serves as a key contrasting baseline for generation methodology.

Masked Generative Modeling. Autoregressive decoding is known to suffer from the slow inference
speed and sequential error accumulation, and have been extensively studied in the field of natural language
processing. Non-autoregressive generation algorithms has emerged to address the challenges of autoregressive
decoding, with masked token prediction recognized as a variant of this approach (Devlin et al., 2019;
Ghazvininejad et al., 2019; Mansimov et al., 2019). Application to images has also been explored (Chang
et al., 2022a; Lee et al., 2022), in which MaskGIT (Chang et al., 2022a) improved both image generation quality
and efficiency. MaskGIT has been extended to video prediction (Yan et al., 2023), text-to-image (Chang
et al., 2023; Patil et al., 2024), text-to-video (Yu et al., 2023; 2024; Villegas et al., 2023), multi-modal
generation (Chang et al., 2023; Kim et al., 2023; Mizrahi et al., 2024), LiDAR point generation (Zhang
et al., 2018), motion generation (Guo et al., 2024; Pinyoanuntapong et al., 2024b;a), and neural simulation
of interactive environments (Bruce et al., 2024). Our work is the first to investigate and adapt masked
generative modeling to object-centric representation learning.

3 Method

We begin by reviewing the background of object-centric learning using SLATE (Singh et al., 2022a) (Sec-
tion 3.1), which we build our model on. We then detail our object-centric masked generative transformer
architecture and explain how to perform compositional image generation using the learned representations of
MOGENT. (Section 3.2). Figure 1 illustrates the architecture of SLATE and MOGENT.
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3.1 Preliminary: Slot-based object-centric learning using SLATE

The goal of object-centric learning is to learn a set of representations, or “slots”, that each correspond to an
object within a scene. A commonly-used architecture is Slot Attention (Locatello et al., 2020), which learns
slot representations by computing iterative attention between randomly initialized slots and encoded input
image. SLATE (Singh et al., 2022a) extends this work by combining Discrete VAE (DVAE) (Im et al., 2017)
and an autoregressive transformer decoder (Vaswani et al., 2017).

Specifically, SLATE encodes an input image x through the DVAE encoder fϕ, to produce log probabilities,
o, for a categorical distribution with V classes. A “soft” one-hot encoding zsoft is sampled from a relaxed
categorical distribution (Jang et al., 2017), and decoded via the DVAE decoder, gθ. Denoting the temperature
of the relaxed categorical distribution as τDVAE, the entire process can be written as

x̃ = gθ(zsoft) where zsoft ∼ RelaxedCategorical(o; τDVAE), o = fϕ(x). (1)

To compute slots, the tokens from the DVAE encoder are first mapped to embeddings, e, using a learned
dictionary. Learned positional embeddings, pϕ, are added to the embeddings to incorporate positional
information of the tokens. Then, the embeddings are fed to Slot Attention (Locatello et al., 2020) encoder to
extract K slots, s1:K . This process can be written as,

s1:K = SlotAttention(e) where e = Dictionaryϕ(z) + pϕ, z ∼ Categorical(o). (2)

Finally, starting from a [BOS] token, an autoregressive transformer (Vaswani et al., 2017), pθ, decodes the
slots back into the discrete tokens one at a time, which can be formulated as generation using next token
prediction:

pθ(z1, · · · , zL|s1:K) =
L∏

l=1
pθ(zl|z1, · · · , zl−1, s1:K), (3)

where L denotes the number of tokens. The resulting tokens can be decoded back into an image by the DVAE
decoder, gθ, enabling compositional scene generation.

Overall, DVAE is trained to minimize the negative log-likelihood, LDVAE = Ezsoft [− log gθ(x|zsoft)], using
reconstruction loss. Slot Attention and the transformer decoder are trained to minimize the negative log-
likelihood, LST = Es1:K [−

∑L
l=1 log pθ(zl|z1, · · · , zl−1, s1:K)], using cross-entropy loss. The entire model is

trained together. Please refer to Singh et al. (2022a) for more information on training details.

3.2 MOGENT

As explained in the previous section, most object-centric generative models generate new scenes by first
inferring the slot representations and then decoding them back to the pixel space. While the choice of the
slot-to-token decoder is important for both effective object-centric disentanglement and high generation
quality (Wu et al., 2023a), existing options present notable trade-offs. Mixture-based decoders (Watters et al.,
2019) are computationally efficient but often possess limited capacity, tending to produce blurry results on
complex data (Singh et al., 2022a; Wu et al., 2023a). In contrast, decoders with higher capacity such as
autoregressive transformer-based (Singh et al., 2022a;b; Kakogeorgiou et al., 2024) or latent diffusion model-
based decoders (Wu et al., 2023b; Jiang et al., 2023) generate higher-quality images but are computationally
expensive, hindering training and inference speed..

To address these limitations, we propose MOGENT, a framework leveraging masked generative modeling for
object-centric representation learning and efficient compositional generation. Drawing inspiration from the
success of masked generative modeling in generating high-quality images and videos with high efficiency (Chang
et al., 2022a; Yu et al., 2023; 2024), we utilize the MaskGIT (Chang et al., 2022a) framework as the decoder.
Specifically, we view the slot-to-token decoding problem as generation using masked token prediction by
replacing the autoregressive transformer of SLATE with BERT (Devlin et al., 2019), a transformer with
bidirectional attention.
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During training, the bidirectional transformer is trained to predict the masked parts of the input tokens. A
binary mask, m(r) = [ml]Ll=1, is generated using a predefined masking scheduler function, γ(r) ∈ (0, 1] as
follows: first sample a ratio, r, from a uniform distribution, U(0, 1), then uniformly select ⌈γ(r) · L⌉ tokens
to mask out of L total tokens. Following MaskGIT, we choose cosine function as the masking scheduler.
The token, zl, is replaced with a [MASK] token if ml = 1, otherwise unmasked. Denoting the masked input
z̄r = z ⊙ m(r), we train the bidirectional transformer, pθ to minimize the negative log-likelihood of the
masked tokens using cross-entropy loss:

LST = Es1:K

[
Em(r)∼pU

[
−

L∑
l=1

log pθ(zl|z̄r, s1:K)
]]

. (4)

Similar to SLATE, we incorporate cross-attention layers in the bidirectional transformer for slot conditioning.

For inference, we use the iterative parallel decoding scheme of MaskGIT. We start with a blank canvas
with all tokens masked out and operate the following procedures iteratively for T steps; (1) Predict the
probabilities for all the masked tokens at step t, z̄<t = z ⊙ mt. (2) Sample a token based on the predicted
probabilities. (3) Compute the number of tokens to mask using the mask scheduler function. (4) Decide
tokens to unmask for the next iteration, z̄t using the schedule from (3) and the log probabilities from (1)
used as “confidence” score. As γ(r) = γ(t/T ) is a monotonically decreasing function, the iterative decoding
scheme ensures that the number of unmasked tokens monotonically increase until all tokens are generated at
step T . Crucially, at each step, we condition the generation on the slots by leveraging the cross-attention
layers to generate scenes as a combination of objects.

Formally, the iterative decoding scheme can be viewed as a generation using “next set-of-tokens prediction” (Li
et al., 2024). Let S be an ordered list expressing the schedule of unmasking by the scheduler function,
S = [z̄1, z̄2, · · · , z̄T ]. Note that {z̄t}t∈{1,··· ,T } do not contain any overlapping tokens and is complete. Then,
the generation using the bidirectional transformer can be expressed as,

pθ(z1, · · · , zL|s1:K) =
T∏

t=1
p(z̄t|z̄<t, s1:K) = p(z̄1|s1:K)p(z̄2|z̄1, s1:K)p(z̄3|z̄1, z̄2, s1:K) · · · p(z̄T |z̄<T , s1:K). (5)

Therefore, the generation requires T steps in total, which is non-dependent of the number of tokens, L.

Empirically, we find that naively replacing the original slot decoder of SLATE with a masked bidirectional
transformer is insufficient for learning object-centric representations. We hypothesize this stems from
differences in how spatial locality priors—the assumption that nearby pixels often belong to the same
object (Chakravarthy et al., 2023)—are handled. While SLATE’s sequential autoregressive decoding naturally
focuses on local neighborhoods, the bidirectional attention in MOGENT allows attending to further away
tokens during decoding, promoting a more global attention but potentially weakening this implicit spatial
locality bias.

To mitigate this, we make the following three changes to the model architecture and training setup. First, we
adopt Query Slot Attention (QSA) which uses learnable query initializations instead of random initialization.
As shown by Chang et al. (2022b); Jia et al. (2023), using random initialization plays a minimal role and could
be removed. We empirically find that using QSA leads to large improvements in object-centric disentanglement
for our framework. Secondly, we initialize the mask embeddings as 0 (zero mask init). This simple technique
facilitates the model’s ability to differentiate between the slots conditioning and the masked tokens, especially
during early training, contributing to more stable learning and better disentanglement. Thirdly, while most
previous works on masked generative modeling implement the loss function as the cross-entropy loss on both
masked and unmasked tokens, we train MOGENT using cross-entropy loss on only the masked tokens, as
derived in Equation 4. This objective discourages the model to learn an identity map on the unmasked
tokens, and encourages it to use information from surrounding unmasked tokens to predict the masked tokens.
We reason that this loss formulation not only prevents codebook collapse, but also motivates the model to
capture the semantic information in the image for better disentanglement. We summarize our empirical
findings regarding the model architecture in Section 4.5.
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Table 1: Comparison of computation requirements of
SLATE and MOGENT using 3D Shapes dataset. All
metrics were computed on a single NVIDIA Tesla V100
GPU, with batch size of 64 for training and 1 for test.

SLATE MOGENT (Ours)

Train
# of parameters 3.6M 3.7M

Memory [GB] 3.1 2.4
Time [s] 0.465 0.056

Test Time [s] 1.929 0.182 Figure 2: Runtime comparison of image generation
between SLATE and MOGENT. All results were
computed on a single NVIDIA Tesla V100 GPU.

Compositional Generation. The learned slots each represent the individual objects in the image. There-
fore, following Singh et al. (2022a); Wu et al. (2023b), we can build a library of the representations from
the extracted slots. Then, we can generate images with novel combinations of objects by composing the
representations (“concepts”) from the library.

As described by Singh et al. (2022a); Wu et al. (2023b), we can generate new images compositionally via the
following steps: (1) Collect slots from all training images. (2) Apply K-means clustering to find K concepts
using cosine similarity as the distance metric. (3) To generate a new image, pick concepts from the library and
randomly select a slot per concept, and decode using MOGENT and DVAE decoder. Implementation-wise,
SlotDiffusion (Wu et al., 2023b)1 proposes a simplified version of the evaluation in which they generate new
images by randomly shuffling the extracted slots within a batch. As they report that the FID result is close
to the aforementioned method, we use their implementation to evaluate the performance on this task.

4 Experiments
We evaluate the benefits of MOGENT over using an autoregressive transformer decoder in terms of (1)
computational efficiency, (2) image segmentation ability, and (3) compositional generation ability, and
(4) scalability to more realistic data. We select SLATE (Singh et al., 2022a) as the baseline, as it uses
the same transformer-based decoder but with trained on next token prediction. For (4), we also compare
MOGENT against diffusion-based models, namely SlotDiffusion (Wu et al., 2023b). We evaluate on four
datasets with distinct characteristics: 3D Shapes dataset (Burgess & Kim, 2018), CLEVR dataset (Johnson
et al., 2017), CLEVRTex dataset(Karazija et al., 2021), and CelebA dataset (Liu et al., 2015). 3D Shapes
dataset consists of 400K training images of 3D objects procedurally generated from 6 ground truth independent
latent factors, such as color, size, and shape. CLEVR dataset consists of 200K images of multiple objects
with random colors and shapes under photorealistic lighting conditions. CLEVRTex dataset consists of 40K
images with a similar setup to CLEVR, but augmented with more diverse object shapes, materials, and
textures, and background textures. CelebA dataset consists of 200K images of real-world celebrities with
varying background and lighting conditions. We resize the images to 64 × 64 for 3D Shapes and 128 × 128 for
CLEVR, CLEVRTex, and CelebA. We set the number of iteration steps for decoding to T = 20 except for
its ablational study in Section 4.5. Hyperparameters and training details are summarized in Appendix A.
Experiment setups for image segmentation and compositional editing tasks are summarized in Section A.2.

4.1 Computation Efficiency
We evaluated the computational efficiency of MOGENT against SLATE, focusing on training and inference
speed. We report the number of parameters, memory consumption, time per training step, and the time
required to generate a single image (Table 1). All metrics were measured on a single NVIDIA Tesla V100 GPU.
As the table shows, MOGENT has marginally more parameters compared to SLATE, primarily due to an
additional linear layer used to project the outputs of the masked transformer decoder into token probabilities.

1https://github.com/Wuziyi616/SlotDiffusion.
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Figure 3: Visualization of attention maps of SLATE and MOGENT on (a) 3D Shapes and (b) CLEVR with
masks dataset. For CLEVR, we plot the ground-truth segmentation masks in the second column.

Table 2: Comparison of SLATE and MOGENT on the image segmentation task on CLEVR with masks
dataset. We report FG-ARI, mIoU, FG-mIoU, and mBO.

FG-ARI (↑) mIoU (↑) FG-mIoU (↑) mBO (↑)
SLATE 0.566 0.253 0.233 0.242

MOGENT (Ours) 0.852 0.576 0.581 0.595

However, MOGENT speeds up training and generation speed around 10 times faster by leveraging the
parallel decoding scheme enabled by the masked bidirectional transformer. MOGENT also uses less memory
compared to SLATE.

To further investigate the efficiency advantage, we compared the image generation runtime of MOGENT and
SLATE across varying image resolutions. As illustrated in Figure 2, the relative speedup offered by
MOGENT becomes even more pronounced as image resolution increases.

It is important to note, however, that while MOGENT offers substantial advantages in per-step training and
generation speed, it requires more than 2 times of epochs to train compared to SLATE due to its slower
convergence. We provide comparison of their training and validation curves in Section B.5.

4.2 Image Segmentation

We evaluate how well the models disentangle the images into individual objects. To assess this, we evaluate
the image segmentation performance using the CLEVR dataset with ground-truth segmentation masks
provided by Greff et al. (2019). We report four metrics; (1) foreground Adjusted Rand Index (FG-ARI), (2)
mean Intersection over Union (mIoU), (3) foreground mIoU (FG-mIoU), and (4) mean Best Overlap (mBO).
These metrics quantify how well the predicted object masks match the ground-truth segmentation. Table 2
presents the segmentation ability of the models. As the table shows, MOGENT outperforms SLATE across
all metrics. As shown in Figure 6, MOGENT has learned to disentangle the images into objects better than
the baseline model across the two datasets.

4.3 Compositional Generation

In this section, we evaluate how well the model is able to generate novel scenes by combining the learned
representations. We conduct two experiments; (1) compositional generation task described in Section 3.2 and
(2) compositional editing task.
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Table 3: Comparison of SLATE and MOGENT on the compositional generation task measured by FID score
and IS. We report reproduced results for SLATE.

Dataset FID (↓) IS (↑)
SLATE MOGENT (Ours) SLATE MOGENT (Ours)

3D Shapes 46.03±0.48 45.32±0.59 3.35±0.03 3.87±0.38
CLEVR 116.47 72.23 2.75 2.46

Figure 4: Visualization of compositional generations results on
(a) 3D Shapes and (b) CLEVR dataset. Across both datasets,
MOGENT is able to generate more realistic and diverse images
compared to SLATE.

Figure 5: Visualization of compositional
editing on the CLEVR dataset. Red
squares represent the target object we
aim to swap or remove and red arrows
represent with which object we swap the
target object with.

Compositional generation. We assess the Fréchet Inception Distance (FID) (Heusel et al., 2017) score
and Inception Score (IS) (Salimans et al., 2016) on the compositional generation task in Table 3. We calculate
FID score and IS between 40K generated images and the ground-truth images. Figure 4 shows examples
of the generated images on both datasets. MOGENT achieves better FID score on both datasets, with
larger improvements on the CLEVR dataset. In terms of IS, our model shows better score on the 3D Shapes
dataset and competitive one for the CLEVR dataset. Combined with the qualitative results, it shows that
MOGENT is able to reuse the learned representations to generate new scenes.

Compositional editing. In Figure 5, we apply MOGENT to image editing using the learned slots. Using
the CLEVR dataset, we randomly swap an inferred slot representation between two images. We swap the
slot with either slot of the foreground objects or the background to conduct object swapping or removal,
respectively. We use the attention map from QSA slot encoder to mask the tokens where the attention values
are high. Then, we generate the image, similar to image inpainting task. While autoregressive models require
the entire image to be generated from scratch, MOGENT can easily edit parts of the image as it does not
have any restrictions regarding token prediction orders. As the figure shows, MOGENT is able to swap
and insert an object from a different scene. We can also remove objects by swapping the slot with a slot
representing the background. Our model generates realistic images that retains the objects relationships such
as appearance and occlusion.
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Table 4: Comparison of computation requirements of SLATE, SlotD-
iffusion, and MOGENT using CLEVRTex dataset. All metrics were
computed on a single NVIDIA A6000 GPU, with batch size of 64 for
training and 1 for test.

SLATE SlotDiffusion MOGENT (Ours)

Train
# of parameters 10M 137M 23M

Memory [GB] 45.4 15 42.7
Time [s] 0.8 0.82 1.63

Test Time [s] 25.5 6.72 0.38

Table 5: Compositional generation
results on CLEVRTex and CelebA
datasets measured by FID score.

FID (↓)
CLEVRTex CelebA

SLATE 88.73 78.95
SlotDiffusion 32.07 27.72

MOGENT (Ours) 76.99 67.55

Figure 6: Visualization of compositional generations results on (a) CLEVRTex and (b) CelebA dataset.

4.4 Scaling to More Realistic Data

We further evaluated the scalability of MOGENT to more realistic data, using CLEVRTex and CelebA
datasets. We extend our comparison to include SlotDiffusion (Wu et al., 2023b), a diffusion-based generative
model, alongside the autoregressive baseline, SLATE. To ensure a fair and relevant comparison, we updated
the architecture of both models following the setup in SlotDiffusion. For SLATE, the CNN encoder of SLATE
was replaced ResNet18 architecture (He et al., 2016) and the model was trained using a two-step training
by pretraining DVAE first and then training the entire model. For MOGENT, we replaced the DVAE with
VQVAE (Van Den Oord et al., 2017), similar to SlotDiffusion, and adopted the two-step training.

Computation Efficiency. The computational requirements for all three models on CLEVRTex are
compared in Table 4. First, we note the significant differences in model capacity: MOGENT is approximately
twice the size of SLATE but contains only 17% of the parameters of the much larger SlotDiffusion model.
While MOGENTrequires longer training time, its parallel decoding scheme provides a substantial advantage
at inference time. MOGENT generates images 17x faster than SLATE and 67x faster than SlotDiffusion.
This result underscores our model’s primary strength in highly efficient generation, a key bottleneck for
autoregressive and diffusion-based approaches. We note that using a transformer-based models require up to
3x more memory. Still, MOGENT requires less memory than the autoregressive baseline, SLATE.

Compositional Generation. Table 4 and Table 5 shows the FID score of the models and examples of
generated images, respectively. The table show that MOGENT improves upon the generative quality of the
autoregressive SLATE baseline. However, it does not match the performance of the much larger SlotDiffusion
model. We attribute this performance gap in FID score directly to the large difference in model capacity (23M
vs. 137M parameters, see Table 4). The primary goal of this paper is to establish the viability and advantages
of this efficient paradigm. Thus, our findings firmly establish its value as a highly efficient alternative, while
exploring its performance at a larger scale remains a promising direction for future research.
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Table 6: Ablation on using QSA, zero mask init, and calculating loss on only masked tokens (mask loss). We
report FID score and IS on the compositional generation task using 3D Shapes dataset.

QSA zero mask init mask loss FID (↓) IS (↑)

% % % 136.36 3.61
" % % 130.69 3.96
" " % 55.87 3.79
" " " 44.96 3.70

Table 7: Ablation of using RoPE. We report FID score and IS on the compositional generation task for 3D
Shapes and CLEVR datasets. We also report segmentation metrics on CLEVR dataset.

Dataset RoPE FG-ARI (↑) mIoU (↑) FG-mIoU (↑) mBO (↑) FID (↓) IS (↑)

3D Shapes % 44.96 3.70
" 52.79 3.60

CLEVR % 0.747 0.462 0.468 0.489 91.35 2.33
" 0.852 0.576 0.581 0.595 72.23 2.46

4.5 Ablations

Model Design. We conduct an ablation study evaluating three architectural and training design choices of
our model explained in Section 3.2 (Table 6). Additionally, we experiment using rotary positional embeddings
(RoPE) (Su et al., 2024) in the transformer decoder (Table 7).

As Table 6 shows, adopting QSA (Jia et al., 2023) over standard Slot Attention slightly improves both
FID and IS metrics. Moreover, further adding zero mask init on the [MASK] token and training the model
using cross-entropy loss on only the masked tokens both contribute positively to the model’s generation
ability, leading to largely improved FID scores. We also visualize extracted slots on the 3D Shapes dataset
using t-SNE (Van der Maaten & Hinton, 2008) and codebook usage of the transformer decoder in Figure 11
and Figure 12, respectively. As the figure shows, adding zero mask init and mask loss contributes largely
in improving model’s compositional generation task by enabling better slot disentanglement and avoiding
codebook collapse, respectively. These findings show that integrating components in both the slot encoder
and decoder is important for achieving effective object-centric representation learning with MOGENT.

Table 7 shows the effect of using RoPE as positional embeddings in the transformer decoder. As the table
shows, we see that RoPE is effective particularly when training the model on the CLEVR dataset. We
hypothesize that this improvement stems from the characteristics of CLEVR, which features images with
more variation in object size, including smaller objects. In such scenarios, adding RoPE allows MOGENT to
better utilize the relative distance between tokens to capture local details and distinguish individual objects.
Consequently, RoPE reinforces the spatial locality important for effective object-centric learning and helps
prevent over-reliance on the global context alone.

Iteration Number. We study the effect of the number of iterations (T ) on our model by evaluating
compositional generation task with different T s. As shown in Figure 7, increasing T does not necessarily yield
consistent improvements: while higher T leads to improved FID scores, it simultaneously results in decreased
IS. This observation differs from previous findings in masked image modeling (Chang et al., 2022a), where
both FID and IS initially improved with increasing iterations until a “sweet spot”, beyond which performance
declined. We hypothesize that, since slots encode both object identity and positional information, it acts
as a strong conditioning during generation compared to other conditionings, such as text, label and layout.
Therefore, we think that increasing iterations does not enhance the diversity of generated images.
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Figure 7: Ablation on the number of iteration steps measured on the compositional generation task using the
CLEVR dataset. We report FID score (left) and IS (right).

5 Conclusion
In this work, we addressed the computational challenge posed by prevalent object-centric generative models.
While previous works offer powerful capabilities for compositional scene generation from object-centric
representation, their model architecture makes the model computationally inefficient, especially during
generation. We proposed MOGENT, an object-centric representation learning architecture using a masked
generative modeling approach, inspired by MaskGIT. Using the iterative decoding scheme, MOGENT is able
to decode slots to tokens in parallel, achieving efficient decoding regardless of input size.

Our results demonstrate that MOGENT reduces computational requirements up to 67x and 17x speedup in
generation compared to autoregressive baseline and diffusion-based models, respectively. As the number of
steps to generate is independent from the image resolution, the relative speedup by our model increases as
the input size increases. Importantly, efficiency is achieved while maintaining to learn to generate images
from object-centric representations, achieving strong performance on object segmentation and compositional
generation tasks on 3D Shapes and CLEVR datasets. Further experiments on more realistic datasets, namely
CLEVRTex and CelebA datasets, show that MOGENT is scalable with improved generation quality compared
to the autoregressive baseline. Finally, our ablation studies validate that incorporating appropriate inductive
biases, such as using QSA and initializing mask embeddings as zeros, is crucial for effective masked generative
modeling and object-centric representation learning. We empirically show that these improvements add
the spatial locality bias and avoid codebook collapse of the decoder, both needed for achieving meaningful
disentanglement. Overall, our work establishes masked generative modeling as a viable and highly efficient
alternative for object-centric generation.

Despite its success, MOGENT has limitations. Firstly, our current work primarily uses synthetic or semi-
synthetic datasets where objects are well-defined and separated. In natural scenes, the definition of an
“object” becomes more ambiguous; boundaries are often unclear, objects exhibit complex articulation or
occlude significantly, and distinguishing foreground objects from the background is non-trivial. Secondly,
while significantly faster, the masked generative approach of MOGENT differs from the iterative refinement
process of diffusion models. While diffusion models can refine the entire generation throughout their sampling
process, masked generative models do not have the mechanism to correct its previously sampled tokens. This
lack of a refinement mechanism can potentially lead to uncorrected errors or visual artifacts appearing in the
final output (Lezama et al., 2022).

Future work should focus on addressing these limitations. This includes scaling MOGENT to more complex,
real-world image and video datasets. Following prior works (Seitzer et al., 2023; Wu et al., 2023b; Zadaianchuk
et al., 2023), further investigation of employing pretrained visual transformers (Dosovitskiy et al., 2020) such
as DINO (Caron et al., 2021) or DINOv2 (Oquab et al., 2024) to extract patch-level representations from
scenes could yield additional insights. Investigation on hybrid approaches such as masked autoregressive
models (Li et al., 2024) could also be helpful in solving the inability of masked generative modeling to
refine during generation. In addition, we leave the application of MOGENT to downstream tasks such as
reinforcement learning and reasoning for future exploration.
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Broader Impact Statement

Our framework proposes an efficient, object-centric representation learning on various datasets. Our model
shows promising direction towards in using object-centric representations for efficient generation or editing
tasks. Since we mainly experiment on synthetic or semi-synthetic datasets, we do not see any immediate
risks of human rights violations or security threats in our work. However, future works should investigate on
the scalability of our work and evaluate the potential risks.
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A Additional Implementation Details

A.1 Hyperparameters and Training Details

The hyperparameters used for our experiments are reported in Table 8 and Table 9. We followed the
implementation of SLATE (Singh et al., 2022a) and mainly changed only the transformer decoder architecture.
Although MaskGIT (Chang et al., 2022a) uses a larger transformer decoder, with 24 layers, 8 attention
heads, 768 embedding dimensions and 3072 hidden dimensions, we kept our hyperparameters similar to the
transformer decoder used by SLATE to measure performance fairly. The model was trained using Adam
optimizer (Kingma, 2014) with β1 = 0.9, β2 = 0.999. We used a fixed learning rate of 3e-4 for the DVAE and
a learning rate of 1e-4 with linear warmup for stable learning. For training on 3D Shapes dataset, we halved
the learning rate if the validation loss did not decrease for 4 consecutive epochs.

Following QSA (Jia et al., 2023), we added a perturbation to the initial slots by sampling from a normal
distribution of mean zero and variance σ for better performance. We applied cosine annealing to decrease
the perturbation from 1 to 0 during training. We set the # of annealing steps to match the # of annealing
steps for DVAE’s temperature. Following SlotDiffusion (Wu et al., 2023b), we set the # of warmup and
annealing steps to match 5% and 15% of the total training steps, respectively. During training, we mask the
tokens based on a cosine scheduling: for each training sample, the masking rate is sampled from a truncated
arccos distribution with density function, p(r) = 2

π

(
1 − r2)− 1

2 . This has an expected masking rate of 0.64,
showing a bias towards higher masking rate. To train MOGENT, while some works (Wu et al., 2023b; Jiang
et al., 2023) that pretraining DVAE leads to better performance, we found that training all components from
scratch led to better object-centric disentanglement.

Following SlotDiffusion (Wu et al., 2023b), we make two architectural changes to our model when training
on CLEVRTex and CelebA datasets. First, instead of using DVAE encoder to obtain features to extract
slots from, we use a ResNet18 (He et al., 2016) encoder. Secondly, we replace the DVAE with VQVAE (Van
Den Oord et al., 2017). The VQVAE is pretrained for 100 epochs with batch size 64 and is kept frozen when
training the entire model.

During training, MOGENT requires approximately 45GB of memory, which is equivalent to the requirement
of SLATE. Training MOGENT takes around 7 days on a single NVIDIA RTX A6000 GPU, while SLATE is
trained in 3 days using the same GPU setup. We find that MOGENT requires around twice the number of
training steps for training, as masked token prediction is more difficult than next token prediction. We report
# of hyperparameters and training and generation speed in Section 4.1, and show the training and validation
loss curves in Section B.5.

We reproduced the results for the baseline model, SLATE, as only the code on 3D Shapes dataset was
available. To train SLATE, we used the hyperparameters that was reported in the original paper.

A.2 Experiment Setup

Image Segmentation. As explained in Section 4.2, we use foreground Adjusted Rand Index (FG-ARI),
mean Intersection over Union (mIoU), foreground mIoU (FG-mIoU), and mean Best Overlap (mBO) to
evaluate segmentation ability. We use the attention map from the Slot Attention encoder and take the argmax
along the slot dimension to obtain the predicted mask. To compute mIoU and FG-mIoU, we use Hungarian
matching to obtain the ground-truth and slots assignment. To compute mBO, we assign the ground-truth
mask to the slot with the largest overlapping mask, and then averages the IoU of all pairs of masks.

Compositional Editing. We view the compositional editing task as an inpainting task. Given a pair
of samples, we first extract slot representations. To swap an object, we identify the slots attending to the
foreground objects and randomly swap a slot between the samples. To remove an object, we swap with the
slot attending to the background.

To generate the edited image, we first identify the tokens corresponding to the slot that was edited by
calculating the overlap between the mask per slot and image region per token. We replace the tokens with
[MASK] token. Finally, we apply the iterative decoding scheme to generate the edited image.
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Table 8: Hyperparameters of MOGENT.

Dataset 3D Shapes CLEVR
Batch Size 50 64

Epochs 80 400
Learning Rate Warmup Steps 30000 21860

Max Learning Rate 1e-4 1e-4
Gradient Clipping 1.0 1.0

Encoder Image Size 64 128
# of Tokens 256 1024

DVAE

Vocabulary Size 1024 4096
Max Temperature 1.0 1.0
Min Temperature 0.1 0.1

Temp. Annealing Steps 30000 65580
Learning Rate (w/o warmup) 3e-4 3e-4

Slot Attention

# of Slots 3 12
# of Iterations 3 3
Slot Dimension 192 192
MLP Dimension 192 384

σ Annealing Steps 30000 65580

MOGENT

# of Layers 4 8
# of Heads 8 8

Embedding Dimension 192 192
Hidden Dimension 192 192

Table 9: Hyperparameters of MOGENT on CLEVRTex and CelebA. Since we mainly adopt the hyperparam-
eters on CLEVR dataset, we only list the different hyperparameters.

Dataset CLEVRTex CelebA

Encoder
Image Size 128 128

# of Tokens 1024 1024
Architecture ResNet18 ResNet18

VQVAE Vocabulary Size 4096 4096
Vocabulary Dimension 192 192

Slot Attention # of Slots 12 4

B Additional Experiments

B.1 Image Reconstruction

To assess MOGENT on image reconstruction, we set up by randomly masking the tokens of the input image
with a ratio r, and use MOGENT’s iterative decoding scheme to reconstruct images. We report two metrics,
MSE and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), ( Figure 9). We also
provide examples of this process in Figure 8.

Interestingly, we find that both MSE and LPIPS do not worsen much even in highly masked setups. Moreover,
MOGENT achieves lower LPIPS than SLATE, suggesting that our model reconstructs the images with higher
quality than the baseline model. In Figure 8, we compare the reconstruction results between two mask ratio
setups. The examples show that even when 95% of the tokens are masked, MOGENT is able to reconstruct
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Figure 8: Examples of MOGENT on the image reconstruction task. We show ground-truth image and
attention maps of slots for objects in the first row. The second and third row shows example of mask
and reconstructed image for r = 0.75, 0.95, respectively. On the example on the right, we can see that if
MOGENT fails to reconstruct objects if it fails to extract the corresponding slots.

Figure 9: Reconstruction quality vs. mask ratio on CLEVR dataset. We report MSE and LPIPS. We show
the score of SLATE in blue as reference.

the image quite well. We think this is because slot representations contain information about both object
identity and position, acting as a strong conditioning about the entire image. In the example on the right, we
can see that MOGENT is able to reconstruct all the objects it has found.

B.2 Analysis on Sampling Temperature

The iterative decoding scheme of MOGENT have an option of adding stochasticity by adding noise to the
confidence score. Formally, let st be the confidence score of the tokens at iteration t. Then, MOGENT samples
the tokens using s̃t = st + τTF · (t/T )n as the score, where n is the sampling noise such as i.i.d. Gumbel
noise and τTF is the sampling temperature.

We assess the effect of sampling temperature using the compositional generation task on the CLEVR dataset
(Figure 10). While MaskGIT used a sampling temperature of τTF = 4.5, we found that adding stochasticity to
the decoding process leads to degradation in performance. We think this is because our model is conditioned
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Figure 10: Ablation on the sampling temperature measured on the compositional generation task using the
CLEVR dataset. We report FID score (left) and IS (right).

on the slots, which contain information about both object identity and position. As this acts as a strong
conditioning on the scene appearance and layout, adding noise during sampling to promote diversity leads to
worse generation performance.

B.3 Failed Attempts
In this section, we provide records of some model variants we experimented.

Label smoothing. Following MaskGIT, we experimented applying label smoothing when training the
masked transformer decoder. However, we found that this often led to unstable training and worse performance
on the compositional generation task.

Classifier-free guidance (Ho & Salimans, 2022). We also experimented classifier-free guidance to
improve the generation quality of MOGENT. To apply this, we randomly dropped the conditioning (i.e.,
slots) during training. However, we found that this led to unstable training in which the model did not learn
to disentangle the images into individual objects.

B.4 Further Ablation on Model Design
In this section, we further analyze the performance gain (Table 6) by adding QSA, zero mask init, and mask
loss. First, we visualize the extracted slots on the 3D Shapes dataset using t-SNE (Van der Maaten & Hinton,
2008). We cluster the slots using K-means clustering (Figure 11). As the figure shows, the default model
and the model with only QSA have slots that are not disentangled well. By adding zero mask init, we can
see that the slots are better disentangled. Next, we plot the codebook usage of the transformer decoder
(Figure 12). As the figure shows, between the two models with zero mask init, we see an increase in codebook
usage by adding mask loss. These results show that zero mask init and mask loss are especially important as
they improve the model’s performance by stabilizing training for better slot disentanglement and avoiding
codebook collapse, respectively.

Additionally, we experiment using QSA with SLATE and compare the performance gain in Table 10. As
the table shows, adding QSA to SLATE yields only a marginal improvement in FID and IS scores. In
contrast, MOGENT achieves even better performance, indicating that the majority of the performance gain
is attributable to the architectural shift to our masked generative framework.

B.5 Loss curve
We show the training and validation losses on 3D Shapes dataset in Figure 13. The figure plots the training
and validation loss curves for MOGENT and the SLATE baseline on 3D Shapes dataset. The loss values
are not directly comparable due to different loss formulations. The plots show that MOGENT requires
more training epochs to converge. We note that training SLATE for longer epochs did not lead to much
performance gain. This supports that the longer training steps for MOGENT is a trade-off for its higher final
performance and efficient generation.
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Figure 11: t-SNE visualization of extracted slots by different configurations of MOGENT on the 3D Shapes
dataset. Colors represent the clustering results using K-means clustering. Red arrows show where some slots
are not disentangled well.

Figure 12: Comparison of the codebook usage of MOGENT’s transformer decoder with different configurations.
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Table 10: Comparison of SLATE, SLATE + QSA, and MOGENT on the compositional generation task using
3D Shapes dataset. We report FID score and IS.

FID (↓) IS (↑)
SLATE 46.51 3.35

SLATE+QSA 46.23 3.54
MOGENT (Ours) 44.96 3.70

Figure 13: Visualization of training and validation losses when training on 3D Shapes dataset.

B.6 Unconditional Generation

We investigate the model’s unconditional generation capabilities on the 3D Shapes dataset by replacing the
object-slot conditioning with latent codes sampled from a standard Gaussian distribution. As Figure 14 shows,
SLATE generates coherent compositional scenes, whereas MOGENT produces distorted, non-compositional
images. Notably, while our model consistently renders the correct background color—likely because the
training dataset contains only one possible sky color—the foreground objects are fragmented and non-
compositional. We attribute this failure to the fundamental difference in decoding mechanisms. SLATE’s
autoregressive process ensures each token conditions on its predecessors, maintaining local dependencies. In
contrast, the parallel decoding in MOGENT means tokens within a generation step are sampled independently
of one another. Without strong slot conditioning, this lack of intra-step dependency prevents the coordinated
formation of objects. This finding, which relates with a known limitation of parallel decoding (Besnier
et al., 2025; Feng et al., 2025), delineates a key trade-off: our framework excels at efficient, slot-conditioned
generation, but ensuring compositionality remains an important challenge, providing direction for future
research.

Figure 14: Visualization of unconditional generation on 3D Shapes dataset.
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Figure 15: More visualization of attention maps of SLATE and MOGENT on CLEVR with masks dataset.

Figure 16: Visualization of attention maps of MOGENT on (a) CLEVRTex and (b) CelebA datasets.

C Additional Qualitative Results

C.1 Image Segmentation

We provide more visualization results of the image segmentation task (Section 4.2) on the CLEVR dataset in
Figure 15. Although MOGENT fails to correctly segment objects with smaller size or similar appearances in
some cases, our model attends more to individual objects compared to SLATE.

We also show visualization of attention maps on CLEVRTex and CelebA datasets in Figure 16.
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Figure 17: More visualization of generated images by SLATE and MOGENT on the 3D Shapes dataset.

C.2 Compositional Generation
Figure 17 and Figure 18 shows more visualizations from the compositional generation task (Section 3.2) on
3D Shapes and CLEVR dataset, respectively. On 3D Shapes dataset, whereas the visual concepts of SLATE
look similar between samples (e.g., the attention map for the foreground object), the visual concepts of
MOGENT vary more. We think this enabled MOGENT to generate images with higher fidelity. On CLEVR,
we see that each visual concept attend to individual objects more, and MOGENT is able to generate images
with higher fidelity and diversity.
C.3 Image Reconstruction
Figure 19 shows more visualization results of the image reconstruction task (Section B.1) on the CLEVR
dataset. The figure shows that while the reconstruction quality does not change much depending on the mask
ratio, the model cannot reconstruct objects which it failed to extract the corresponding slot representations.
We can see that these objects tend to be smaller in size, partially occluded by other objects, or have similar
colored objects nearby.

24



Under review as submission to TMLR

Figure 18: More visualization of generated images by SLATE and MOGENT on the CLEVR dataset.
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Figure 19: More visualization of attention maps and reconstructed images with different mask ratios on
CLEVR with masks dataset.
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