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Abstract

Bayesian nonparametric models based on completely random measures (CRMs)
offer flexibility when the number of clusters or latent components in a data set is
unknown. However, managing the infinite dimensionality of CRMs often leads to
slow computation during inference. Practical inference typically relies on either
integrating out the infinite-dimensional parameter or using a finite approximation:
a truncated finite approximation (TFA) or an independent finite approximation
(IFA). The atom weights of TFAs are constructed sequentially, while the atoms of
IFAs are independent, which facilitates more convenient inference schemes. While
the approximation error of TFA has been systematically addressed, there has not
yet been a similar study of IFA. We quantify the approximation error between
IFAs and two common target nonparametric priors (beta-Bernoulli process and
Dirichlet process mixture model) and prove that, in the worst-case, TFAs provide
more component-efficient approximations than IFAs. However, in experiments on
image denoising and topic modeling tasks with real data, we find that the error of
Bayesian approximation methods overwhelms any finite approximation error, and
IFAs perform very similarly to TFAs.

1 Introduction

Many data analyses can be seen as discovering a latent set of traits in a population. For instance, we
might recover topics or themes from scientific papers, ancestral populations from genetic data, interest
groups from social network data, or unique speakers across audio recordings of many meetings [Palla
et al., 2012, Blei et al., 2010, Fox et al., 2010]. In all of these cases, we might reasonably expect the
number of latent traits present in a data set to grow with the size of the data. A powerful modelling
option is to choose a single prior that naturally yields different expected numbers of traits for different
numbers of data points. In theory, Bayesian nonparametrics (BNP) provides a rich set of priors with
this desirable property thanks to a latent countable infinity of traits, so that there are always more
traits to reveal through the accumulation of more data. This latent, infinite-dimensional parameter
presents a major practical challenge, however. It is impossible to store an infinity of random variables
in memory or learn the distribution over an infinite number of variables in finite time.

To apply BNP, a common technique is approximating the infinite-dimensional prior with a finite-
dimensional prior that essentially replaces the infinite collection of random traits by a finite subset of
“likely” traits. Unlike a fixed, finite-dimensional prior across all data set sizes, this finite-dimensional
prior is seen as an approximation to the BNP prior and thereby its cardinality is informed directly by
the BNP prior.
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Finite approximations can be divided into two approaches. On the one hand, we call those based
on truncations of the random measures underlying the nonparametric prior [Doshi-Velez et al.,
2009, Paisley et al., 2012, Roychowdhury and Kulis, 2015, Campbell et al., 2019] truncated finite
approximations (TFAs) and refer to Campbell et al. [2019] for a thorough study of constructions
for TFAs. On the other hand, independent finite approximations (IFAs) consist of independent and
identical (i.i.d.) representations of the traits together with their rates within the population [Kurihara
et al., 2007, Saria et al., 2010, Fox et al., 2010, Johnson and Willsky, 2013]; we refer to Huggins et al.
[2017] for a recent study of constructions for IFAs. The IFA approach has the potential to be simpler
to incorporate in a complex hierarchical model, to exhibit improved mixing, and to be amenable to
parallelizing computation during inference.

Our work aims to determine which approach, TFA or IFA, is the better one. We focus on two Bayesian
nonparametric target models: the beta process [Hjort, 1990, Thibaux and Jordan, 2007, Teh and Görür,
2009, Broderick et al., 2012] and Dirichlet process mixture models [Ferguson, 1973, Sethuraman,
1994]. In general, between two approximations with equal accuracy, we prefer the approximation
with fewer atoms since it will use fewer computational resources during inference. We show that, in
the worst case, TFAs are more component-efficient than IFAs. However, experiments with image
denoising and topic modeling tasks reveal that IFA and TFA have very similar performance across
the number of instantiated components. Future work should analyze the average-case behavior of
IFA, or the additional sources of error that come from approximate Bayesian inference.

In what follows, we first review the role of random measures in Bayesian nonparametrics and finite
approximations. We then quantify the effect of replacing the infinite-dimensional priors with an
IFA, providing interpretable error bounds with explicit dependence on the size of the approximation
and the data cardinality. Finally, we confirm through experiments with image denoising and topic
modeling that IFAs and TFAs perform similarly on applied problems.

2 Nonparametric models and finite approximations

We start by summarizing relevant background on nonparametric priors constructed from completely
random measures, and how truncated and independent finite approximations for these priors are
constructed. We also describe in detail the target Bayesian nonparametric processes under focus.
Let ψi represent the ith trait of interest and Let θi represent the rate, or frequency, of this trait in the
population. We can collect the pairs of traits with their frequencies (ψi, θi) in a measure that places
non-negative mass θi at location ψi: Θ :=

∑I
i=1 θiδψi

. I , the total number of traits, may be finite or,
as in the nonparametric setting, countably infinite. To perform Bayesian inference, we need to choose
a prior distribution on Θ and a likelihood for the observed data Y1:N := {Yn}Nn=1 given Θ, and then
we must apply Bayes theorem to obtain the posterior on Θ given the observed data.

Completely random measures. Most common BNP priors can be conveniently formulated as
completely random measures (CRMs) or normalizations of CRMs. CRMs are constructed from
Poisson point processes. Consider a Poisson point process on R+ := [0,∞) with rate measure ν(dθ)
such that ν(R+) =∞ and

∫
min(1, θ)ν(dθ) <∞. Such a process generates an infinite number of

rates (θi)
∞
i=1, θi ∈ R+, having an almost surely finite sum

∑∞
i=1 θi < ∞. We assume throughout

that ψi ∈ Ψ for some space Ψ and ψi
i.i.d.∼ H for some diffuse distribution H . H serves as a prior

on the trait values; for instance, in topic modeling, each topic is a probability vector in the simplex
of vocabulary words, and it is typical to use H = Dir. In general, the resulting measure Θ is a
completely random measure (CRM) [Kingman, 1967]. As shorthand, we will write CRM(H, ν)
for the completely random measure generated as just described: Θ :=

∑
i θiδψi

∼ CRM(H, ν).
The corresponding normalized CRM (NCRM) is Ξ := Θ/Θ(Ψ), which is a discrete probability
measure. The set of atom locations of Ξ is the same as that of Θ, while the atom sizes are normalized
Ξ =

∑
i ξiδψi

where ξi = θi/(
∑
j θj).

Finite approximations. Since the sequence (θi)
∞
i=1 is countably infinite, it may be difficult to

simulate or perform posterior inference in the full model. One approximation scheme is to define the
finite approximation ΘK :=

∑K
i=1 θiδψi

. Since it involves a finite number of parameters, ΘK can be
used for efficient posterior inference, including with black-box MCMC and VB algorithms — but
some approximation error is introduced by not using the full CRM Θ.
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A truncated finite approximation (TFA) [Doshi-Velez et al., 2009, Paisley et al., 2012, Roychowdhury
and Kulis, 2015] requires constructing an ordering on the indices of the atoms sizes (θi)

∞
i=1 such that

θi is a function of some auxiliary random variables ξ1, . . . , ξi; hence, θi+1 reuses the same auxiliary
randomness as θi as well as an additional random variable ξi+1. These approximations are nested; in
general, the approximation quality increases with K, and to refine existing truncations, it suffices to
generate the next terms in the sequence.

An independent finite approximation (IFA) involves choosing a sequence of probability measures
ν1, ν2, . . . such that for any approximation level K, we choose θ1, . . . , θK

i.i.d.∼ νK . The νK are
chosen in such a way that ΘK

D
=⇒ Θ as K →∞; that is, the IFAs converge in distribution to the

CRM. The pros and cons of the IFA invert those of the TFA: the atoms are now i.i.d., potentially
making inference easier, but a completely new approximation must be constructed if K changes.

For the normalized atom sizes ξi = θi/
∑
j θj , finite approximations also involve random measures

with finite support ΞK =
∑K
i=1 ξiδψi

. TFAs can be defined in one of two ways. In the first approach,
the TFA corresponding to the CRM can be normalized to form the approximation of the NCRM
[Campbell et al., 2019]. The second approach instead directly constructs an ordering over the
sequence (ξi)

∞
i=1 and truncates this representation [Ishwaran and James, 2001, Blei and Jordan, 2006].

We consider a single way to construct IFAs in the normalized case; we take the IFA approximation
for the unnormalized CRM and normalize it to form the approximation of the corresponding NCRM.

Beta-Bernoulli model. The first model under focus is the beta process [Hjort, 1990, Thibaux and
Jordan, 2007]. We denote its distribution as BP(γ, α), with scale parameter α > 0, mass parameter
γ > 0, and rate measure ν(dθ) = γα1[θ ≤ 1]θ−1(1 − θ)α−1dθ. The beta process prior on Θ is
combined with a Bernoulli likelihood that generates trait counts for each data point. A collection
of conditionally independent observations X1:N given Θ are distributed according to the likelihood
process LP(l,Θ) — i.e., Xn :=

∑
i xniδψi

i.i.d.∼ LP(Ber,Θ) — if xni ∼ Ber(· | θi) independently
across i and i.i.d. across n. Since the trait counts are typically latent in a full generative model
specification, define the observed data Yn |Xn

indep∼ f(· |Xn) for a probability kernel f . The target
nonparametric model can thus be summarized as

Θ ∼ BP(γ, α;H), Xn|Θ
i.i.d.∼ LP(Ber; Θ), Yn|Xn

indep∼ f(· |Xn), n = 1, 2, . . . , N. (1)

Dirichlet process mixture model. The second model under focus is the Dirichlet process [DP]
[Ferguson, 1973, Sethuraman, 1994] — which is the normalization of a non-power law gamma
process. The Dirichlet process is one of the most widely used nonparametric priors. The gamma
process CRM has rate measure ν(dθ) = γλθ−1e−λθdθ. We denote its distribution as ΓP(γ, λ). The
normalization of ΓP(γ, 1) is a Dirichlet process with mass parameter γ [Kingman, 1975, Ferguson,
1973]. We consider Dirichlet process mixture models [Antoniak, 1974] with latent clusters Xn

mapping to observations Yn through the observational likelihood f :

Θ ∼ DP(α;H), Xn|Θ
i.i.d.∼ Θ, Yn|Xn

indep∼ f(· |Xn), n = 1, 2, . . . , N. (2)

3 Theoretical error bounds

In this section, we derive novel upper and lower bounds on the approximation error incurred by IFA
as a function of the approximation level K and data cardinality N . The upper bound holds for any
observational likelihood f mapping from latents to observations, while the lower bound holds for
“bad” f . Juxtaposed with upper bounds for TFA, they reveal that in the worst case, for the same K,
the IFA error is much larger than TFA error.

3.1 Beta-Bernoulli model

We first discuss how approximation error is defined. Let FAK be some finite approximation at level
K. After replacing the beta process with FAK , we have the following generative process

ΘK ∼ FAK , Zn|ΘK
i.i.d.∼ LP(Ber; ΘK), Wn|Zn

indep∼ f(.|Zn), n = 1, 2, . . . , N. (3)
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Let PN,∞ be the distribution of the observations Y1:N in Equation (1), and PN,K be the distribution
of the observations W1:N in Equation (3). We define approximation error to be the total variation
distance dTV (PN,K , PN,∞) between the two observational process [Ishwaran and Zarepour, 2002,
Doshi-Velez et al., 2009, Paisley et al., 2012, Campbell et al., 2019]. Recall that total variation
distance is the supremum difference in probability mass over measurable sets.

Paisley and Carin [2009], Huggins et al. [2017] constructed IFAs where each νK is a proper beta
distribution:

IFAK :=

K∑
i=1

ξK,iδψK,i
where ξK,i

i.i.d.∼ Beta(γα/K,α) and ψK,i
i.i.d.∼ H. (4)

We now quantify the approximation error for IFAK . Let PN,K be the observational process using
IFAK in Equation (4). Theorem 3.1 upper bounds the approximation error.
Theorem 3.1 (Upper bound for beta-Bernoulli). There exist positive constantsC ′, C ′′, C ′′′ depending
only on γ and α such that

dTV (PN,∞, PN,K) ≤ C ′ + C ′′ ln2N + C ′′′ lnN lnK

K
.

Theorem 3.1 states that the IFA approximation error grows as O(ln2N) with fixed K and decreases
as O

(
lnK
K

)
for fixed N . For fixed K, we expect that the error increases as N increases. In particular,

as the data set size N increases, we expect to see increasingly smaller components represented in the
data. To capture these components, we require finite approximations of increasingly larger sizes. For
fixed N , the error goes to zero at least as fast as O

(
lnK
K

)
.

The 1/K dependence in the upper bound in Theorem 3.1 is tight (modulo logarithmic factors).
Theorem 3.2 (Lower bound for beta-Bernoulli). There exists an observational likelihood f , indepen-
dent of K and N , such that for any N ,

dTV (PN,∞, PN,K) ≥ C(γ)
γ2

K

1

(1 + γ/K)2
,

where C(γ) := 1
8

1
γ+exp(−1)(γ+1)max(12γ2,48γ,28) .

While Theorem 3.1 implies that an IFA with K = O (poly(lnN)/ε) atoms suffices in approximating
the target model to less than ε error, Theorem 3.2 implies that an IFA with K = Ω (1/ε) atoms is
necessary in the worst case. This dependence on ε means that IFAs are worse than TFAs in theory.
For example, consider Bondesson approximations [Bondesson, 1982] of BP(γ, α;H) for α > 1

TFAK :=

K∑
k=1

θkδψk
where θk = Vk exp(−Γk/γα), Vk

iid∼ Beta(1, α− 1) and ψk
iid∼ H. (5)

The following result gives a bound on the error of the Bondesson approximation:
Proposition 3.3. [Campbell et al., 2019, Appendix A.1] Let QN,K be the distribution of the
observational process using TFAK . Then:

dTV
(
PN,∞, PQN,K

)
≤ Nγ

(
γα

1 + γα

)K
.

Proposition 3.3 implies that a TFA with K = O (ln (N/ε)) atoms suffices in approximating the target
model to less than ε error. Modulo log factors, comparing the necessary 1

ε level for IFA and the
sufficient ln

(
1
ε

)
level for TFA, we conclude that the necessary size for IFA is exponentially larger

than the sufficient size for TFA, in the worst case.

3.2 Dirichlet process mixture model

Approximation error is defined analogously to the previous section. After replacing the Dirichlet
process with some finite approximation FAK , we have the following generative process:

ΘK ∼ FAK , Zn|ΘK
i.i.d.∼ ΘK , Wn|Zn

indep∼ f(.|Zn), n = 1, 2, . . . , N. (6)
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Let PN,∞ be the distribution of the observations Y1:N in Equation (2), and PN,K be the distribution
of the observations W1:N in Equation (6). Approximation error remains the total variation distance
dTV (PN,K , PN,∞).

Acharya et al. [2015], Huggins et al. [2017] constructed IFAs targeting gamma process ΓP(α, 1;H)
where each νK is a proper gamma distribution:

IFAK :=

K∑
i=1

ξK,iδψK,i
where ξK,i

i.i.d.∼ Gamma(α/K, 1) and ψK,i
i.i.d.∼ H.

Because the normalization of independent gamma random variables is a Dirichlet random variable,
the normalization of IFAK is equal in distribution to

FSDK :=

K∑
i=1

pK,iδψK,i
where ψK,i

i.i.d.∼ H and {pK,i}Ki=1 ∼ Dir
( α
K

1K

)
. (7)

We now quantify the approximation error for FSDK .

Theorem 3.4 (Upper bound for DP mixture model). For some constants C1, C2, C3 that depend only
on α,

dTV (PN,∞, PN,K) ≤ C1 + C2 ln2N + C3 lnN lnK

K
.

Theorem 3.4 is similar to Theorem 3.1. The O(ln2N) growth of the bound for fixed N can likely
be reduced to O(lnN), the inherent growth rate of DP mixture models [Arratia et al., 2003, Section
5.2]. The O

(
lnK
K

)
rate of decrease to zero is tight because of a 1

K lower bound on the approximation
error.

Theorem 3.5 (1/K lower bound). There exists an observational likelihood f(.), independent of
K,N , such that for any N ≥ 2,

dTV (PN,∞, PN,K) ≥ α

1 + α

1

K
.

While Theorem 3.4 implies that the normalized IFAK with K = O (poly(lnN)/ε) atoms suffices in
approximating the DP mixture model to less than ε error, Theorem 3.5 implies that a normalized IFA
with K = Ω (1/ε) atoms is necessary in the worst case. This worst-case behavior is analogous to
Theorem 3.2 for DP-based models.

The 1
ε dependence means that IFAs are worse than TFAs in theory. It is known that small TFA models

are already excellent approximations of the DP. For example, consider truncated stick-breaking
approximation of DP(α;H) [Sethuraman, 1994]:

TSBK :=

K∑
k=1

ξkδψk
where ξi = vi

i−1∏
j=1

(1− vj) with vi
i.i.d.∼ Beta(1, α) and ψk

i.i.d.∼ H. (8)

The following result gives a bound on the error of the truncated stick-breaking approximation:

Proposition 3.6. [Ishwaran and James, 2001, Theorem 2] Let QN,K be the distribution of the
observations under TSBK . Then

dTV (PN,∞, QN,K) ≤ 2N exp

(
−K − 1

α

)
.

Proposition 3.6 implies that a TFA with K = O (ln (N/ε)) atoms suffices in approximating the DP
mixture model to less than ε error. Modulo log factors, comparing the necessary 1

ε level for IFA
and the sufficient ln

(
1
ε

)
level for TFA, we conclude that the necessary size for normalized IFA is

exponentially larger than the sufficient size for TFA, in the worst case.

5



Figure 1: Original versus corrupted images. The number plotted on top of the noisy image is peak
signal-to-noise-ratio, or PSNR, with respect to the noiseless image.

4 Performance in applications

We compare the practical performance of IFAs and TFAs on two real-data examples: an image denois-
ing application using the beta-Bernoulli model and topic modeling using a hierarchical modification
of DP mixtures. Existing empirical work (e.g., Doshi-Velez et al. [2009, Table 1,2] and Kurihara
et al. [2007, Figure 4]) suggests two patterns: that the approximations improve in performance as the
number of instantiated atoms K increase, and for the same K, normalized IFA and TFA have similar
performance. Our experiments confirm and expand upon these previous findings. The worst-case
behaviors discussed in the previous section are perhaps too pessimistic, since the observational
likelihoods f that trigger the lower bounds are different from usage in common probabilistic models.

4.1 Image denoising

Image denoising through dictionary learning is an application where finite approximations of BNP
model — in particular beta-Bernoulli — have proven useful [Zhou et al., 2009]. The goal is recovering
the original noiseless image (left of Figure 1) from a corrupted one (right of Figure 1). To do so,
the input image is deconstructed into small contiguous patches and we postulate that each patch is a
combination of underlying basis elements. By estimating the coefficients expressing the combination,
one can denoise the individual patches and ultimately the overall image. Posterior inference using the
beta-Bernoulli process allows simultaneous estimation of both basis elements and basis assignments,
and automatically deals with the cumbersome problem of calibrating the number of basis elements.
Better denoised images have high peak signal-to-noise-ratio, or PSNR [Hore and Ziou, 2010], with
respect to the noiseless image.

We use a sequential1 Gibbs sampler, which traverses the posterior over latent variables following a
fixed scheme. The final denoised image is a weighted average of the candidate images encountered
during the sampler run. We initialize the latent variables at random, as well as in the simulation of the
Gibbs conditionals. For a 256× 256 image like the right panel of Figure 1, the number of extracted
patches, N , is about 60k.

In Figure 2a, the quality of denoised images improves with increasing K. And the quality is very
similar across the two types of approximation. Both kinds perform much better than the baseline
(i.e., the noisy input image). The improvement with K is largest for small K, and plateaus for larger
values of K. For a given approximation level, the quality of TFA denoising and that of IFA are almost
the same. The denoised image from TFA is more similar to the denoised image from IFA than it is
similar to the original image, indicated by the large gap in PSNR. The error bars reflect randomness
in both initialization and simulation of the conditionals across 5 trials.

Figure 2b uses the output of inference with IFA model as initial values for inference with TFA;
similarly Figure 2c uses the output of TFA for inference with IFA. For both kinds of approximation,

1We introduce patches (i.e. the observed data) in epochs. The sampler only modifies the latent variables of
the current epoch’s observations.
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(a) Performance across K (b) TFA training (c) IFA training

Figure 2: Image denoising results on the house image.

K = 60. Rather than randomly initializing the latent variables at the beginning of the Gibbs sampler
of one model (i.e., cold start), we can use the last configuration of latent variables visited in the
other model as the initial state of the Gibbs sampler (i.e., warm start). To isolate the effect of the
initial conditions, all the patches are available from the start as opposed to being gradually introduced.
For both kinds of approximation, the Gibbs sampler initialized at the warm start visits candidate
images that basically have the same PSNR as the starting configuration. The early iterates of the
cold-start Gibbs sampler are noticeably lower in quality compared to the warm-start iterates, and the
quality at the plateau is still lower than that of the warm start. Each trace of PSNR of cold-start Gibbs
corresponds to a random seed in intialization and simulation of the conditionals, while each trace
of warm-start PSNR corresponds to a different final state of the alternative model’s training. The
variation across warm starts is tiny; the variation across cold starts is larger but still very small. In all,
the modes of TFA posterior are good initializations for inference with the IFA model, and vice-versa.

4.2 Topic modelling

Finally, we compare the performance of normalized IFA (i.e., FSDK , Equation (7)) and TFA (i.e.,
TSBK , Equation (8)) when used in DP-based model. In this section, we provide evidence of the
same trends in the modified HDP — a hierarchical extension of the Dirichlet process mixture model
— when analyzing Wikipedia documents.

For both IFA and TFA, we use stochastic variational inference with mean-field factorization [Hoffman
et al., 2013] to approximate the posterior over the latent topics based on training documents. The
training corpus is nearly one million documents from Wikipedia. There is randomness in the initial
values of the variational parameters, as well as in the order that data minibatches are processed.
The quality of inferred topics is measured by the predictive log-likelihood on a set of 10k held-out
documents.

In Figure 3a, the quality of the inferred topics improves as the approximation level grows; furthermore,
the quality is very similar across the two types of approximation. The improvement with K is largest
for small K; the slope plateaus for large K. For a given approximation level, the quality of TFA
topics and that of normalized IFA are almost the same. The error bars reflect variation across both
the random initialization and the ordering of data minibatches processed by stochastic variational
inference.

Figure 3b uses the output of inference with (normalized) IFA model as initial values for inference with
TFA; similarly Figure 3c uses the output of TFA for inference with (normalized) IFA. The number of
topics is fixed to be K = 300. Rather than randomly initializing the variational parameters at the start
of variational inference of one model (i.e., cold start), we can use the variational parameters at the end
of the other model’s training as the initialization (i.e., warm start). For both kinds of approximation,
the test log-likelihood basically stays the same for warm-start training iterates, hinting that such
initialization is part of an attractive region. The early iterates of cold start are noticeably lower in
quality compared to the warm iterates; however at the end of training, the test log-likelihoods are
nearly the same. Each trace of cold start corresponds to a different initialization and ordering of data
batches processed. Each trace of warm start corresponds to a different output of the other model’s
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training and a different ordering of data batches processed. The variation across either cold starts or
warm starts is small. In all, the modes of TFA posterior are good initializations for inference with the
IFA model, and vice-versa.

(a) Performance across K (b) TFA training (c) IFA training

Figure 3: Topic modeling results on Wikipedia documents.

5 Conclusion

Our analysis of independent finite approximations reveals that in the worst case, for the same number
of atoms instantiated, an independent-based approximation has larger error than a truncation-based
approximation. However, we have not observed the worst case in our experiments, suggesting that
either the error bounds can be tightened for relevant observational likelihoods f or that additional
sources of error, such as those from approximate inference, dominate approximation error made by
the finite approximations.
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A Proofs

A.1 Technical tools

Lemma A.1 (Order of growth of harmonic-like sums).

N∑
n=1

α

n− 1 + α
≥ α(lnN − ψ(α)− 1).

where ψ is the digamma function.

Proof of Lemma A.1. It is well-known (for instance https://en.wikipedia.org/wiki/
Chinese_restaurant_process) that:

N∑
n=1

α

n− 1 + α
= α[ψ(α+N)− ψ(α)]

[Gordon, 1994, Theorem 5] says that

ψ(α+N) ≥ ln(α+N)− 1

2(α+N)
− 1

12(α+N)2
≥ lnN − 1.

Lemma A.2 (Modified upper tail Chernoff bound). Let X =
∑n
i=1Xi, where Xi = 1 with proba-

bility pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ be an upper bound
on E(X) =

∑n
i=1 pi. Then for all δ > 0:

P(X ≥ (1 + δ)µ) ≤ exp

(
− δ2

2 + δ
µ

)
.

Proof of Lemma A.2. The proof relies on the regular upper tail Chernoff bound http://math.mit.
edu/~goemans/18310S15/chernoff-notes.pdf and an argument using stochastic domination.
Truly, we pad the first n Poisson trials that define X with additional trials Xn+1, Xn+2, . . . , Xn+m

where m is the smallest natural number such that µ−E[X]
m ≤ 1, each Xn+i is a Bernoulli with

probability µ−E[X]
m , and the trials are independent. Then Y = X +

∑m
j=1Xn+j is itself the sum of

Poisson trials with mean exactly µ, so the regular Chernoff bound applies:

P(Y ≥ (1 + δ)µ) ≤ exp

(
− δ2

2 + δ
µ

)
.

However by construction, X is stochastically dominated by Y , so the tail probabilities of X is
bounded by the tail probabilities of Y .

Lemma A.3 (Tail bounds for Poisson distribution). If X ∼ Poisson(λ) then for any x > 0:

P(X ≥ λ+ x) ≤ exp

(
− x2

2(λ+ x)

)
,

and for any 0 < x < λ:

P(X ≤ λ− x) ≤ exp

(
−x

2

2λ

)
.

Proof of Lemma A.3. For x ≥ −1, let ψ(x) := 2((1 + x) ln(1 + x)− x)/x2.

We first inspect the upper tail bound. If X ∼ Poisson(λ), for any x > 0, [Pollard, 2001, Exercise 3
p.272] implies that:

P(Z ≥ λ+ x) ≤ exp

(
−x

2

2λ
ψ
(x
λ

))
.
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To show the upper tail bound, it suffices to prove that x
2

2λψ
(
x
λ

)
is greater than x2

2(λ+x) . In general, we
show that for u ≥ 0:

(u+ 1)ψ(u)− 1 ≥ 0. (9)

The denominator of (u+ 1)ψ(u)− 1 is clearly positive. Consider the numerator of (u+ 1)ψ(u)− 1,
which is g(u) := 2((u+ 1)2 ln(u+ 1)− u(u+ 1)− u2. Its 1st and 2nd derivatives are:

g′(u) = 4(u+ 1) ln(u+ 1)− 2u+ 1

g′′(u) = 4 ln(u+ 1) + 2.

Since g′′(u) ≥ 0, g′(u) is monotone increasing. Since g′(0) = 1, g′(u) > 0 for u ≥ 0, hence g(u) is
monotone increasing. Because g(0) = 0, we conclude that g(u) ≥ 0 for u > 0 and Eq. (9) holds.
Plugging in u = x/λ:

ψ
(x
λ

)
≥ 1

1 + x
λ

=
λ

x+ λ
,

which shows x2

2λψ
(
x
λ

)
≥ x2

2(λ+x) .

Now we inspect the lower tail bound. We follow the proof of http://www.cs.columbia.edu/
~ccanonne/files/misc/2017-poissonconcentration.pdf. We first argue that:

P(X ≤ λ− x) ≤ exp

(
−x

2

2λ
ψ
(
−x
λ

))
. (10)

For any θ, the moment generating function E[exp(θX)] is well-defined and well-known:

E[exp(θX)] := exp(λ(exp(θ)− 1)).

Therefore:

P(X ≤ λ− x) ≤ P(exp(θX) ≤ exp(θ(λ− x)) ≤ P(exp(θ(λ− x−X)) ≥ 1)

≤ exp(θ(λ− x))E[exp(−θX)],

where we have used Markov’s inequality. We now aim to minimize exp(θ(λ− x))E[exp(−θX)] as
a function of θ. Its logarithm is:

λ(exp(−θ)− 1) + θ(λ− x).

This is a convex function, whose derivative vanishes at θ = − ln
(
1− x

λ

)
. Overall this means the

best upper bound on P(X ≤ λ− x) is:

exp
(
−λ
(x
λ

+ (1− x

λ
) ln(1− x

λ
)
))

,

which is exactly the right hand side of Eq. (10). Hence to demonstrate the lower tail bound, it suffices
to show that:

ψ
(
−x
λ

)
≥ 1.

More generally, we show that for −1 ≤ u ≤ 0, ψ(u)− 1 ≥ 0. Consider the numerator of ψ(u)− 1,
which is h(u) := 2((1 + u) ln(1 + u)− u)− u2. The first two derivatives are:

h′(u) = 2(1 + ln(1 + u))− 2u

h′′(u) =
2

1 + u
− 2

Since h′′(u) ≥ 0, h(u) is convex on [−1, 0]. Note that h(0) = 0. Also, by simple continuity
argument, h(−1) = 2. Therefore, h is non-negative on [0, 1], meaning that ψ(u) ≥ 1.

Lemma A.4 (Chain rule). Suppose (X1, Y1) and (X2, Y2) are two distributions, over A× B, that
have densities w.r.t a common measure. Then:

dTV (PX1,Y1
, PX2,Y2

) ≤ dTV (PX1
, PX2

) + sup
a∈A

dTV (PY1|X1=a, PY2|X2=a).
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Proof of Lemma A.4. Because both PX1,Y1 and PX2,Y2 have densities, total variation distance is half
of L1 distance between the densities:

dTV (PX1,Y1 , PX2,Y2) =
1

2

∫
(a,b)∈A×B

|PX1,Y1(a, b)− PX2,Y2(a, b)|dadb

=
1

2

∫
(a,b)∈A×B

|PX1,Y1(a, b)− PX2(a)PY1|X1
(b|a) + PX2(a)PY1|X1

(b|a)− PX2,Y2(a, b)|dadb

≤ 1

2

∫
(a,b)∈A×B

(
PY1|X1

(b|a)|PX1(a)− PX2(a)|+ PX2(a)|PY1|X1
(b|a)− PY2|X2

(b|a)|
)
dadb

=
1

2

∫
(a,b)∈A×B

PY1|X1
(b|a)|PX1(a)− PX2(a)|dadb+

1

2

∫
(a,b)∈A×B

PX2(a)|PY1|X1
(b|a)− PY2|X2

(b|a)|dadb.

where we have used triangle inequality. Regarding the first term, using Fubini:

1

2

∫
(a,b)∈A×B

PY1|X1
(b|a)|PX1(a)− PX2(a)|dadb

=
1

2

∫
a∈A

(∫
b∈B

PY1|X1
(b|a)db

)
|PX1(a)− PX2(a)|da

=
1

2

∫
a∈A
|PX1(a)− PX2(a)|da

= dTV (PX1 , PX2).

Regarding the second term:

1

2

∫
(a,b)∈A×B

PX2(a)|PY1|X1
(b|a)− PY2|X2

(b|a)|dadb

=

∫
a∈A

(
1

2

∫
b∈B
|PY1|X1

(b|a)− PY2|X2
(b|a)|db

)
PX2(a)da

≤
(
sup
a∈A

dTV (PY1|X1=a, PY2|X2=a)

)∫
a∈A

PX2(a)da

= sup
a∈A

dTV (PY1|X1=a, PY2|X2=a)

Sum of the first and second upper bound give the total variation chain rule.

Lemma A.5 (Propagation rule). Suppose (X1, Y1) and (X2, Y2) are two distributions over A× B.
Suppose the conditional Y2|X2 = a is the same as the conditional Y1|X1 = a, which we just denote
as Y |X = a. Then:

dTV (PY1 , PY2) ≤ dTV (PX1 , PX2).

Proof of Lemma A.5. It is well-known that total variation between PU and PV is the infimum of
P(U 6= V ) over all couplings (U, V ) where U ∼ PU and V ∼ PV ([Madras and Sezer, 2010,
Equation 13]). For any joint distribution of (X1, Y1, X2, Y2) where marginally (X1, Y1) ∼ PX1,Y1

and (X2, Y2) ∼ PX2,Y2 , (Y1, Y2) is a coupling where Y1 ∼ PY1 and Y2 ∼ PY2 . Therefore:

dTV (PY1
, PY2

) ≤ P(Y1 6= Y2) = P(Y1 6= Y2, X1 6= X2) + P(Y1 6= Y2, X1 = X2).

Now suppose the joint distribution over (X1, Y1, X2, Y2) is such that, conditioned on X1 = X2 = a
for any a, P(Y1 = Y2|X1 = X2 = a) = 1 (when X1 6= X2, it doesn’t matter the relationship
between Y1|X1 = a and Y2|X2 = b). This is possible since the conditional Y2|X2 = a is the same
as the conditional Y1|X1 = a. For such a distribution, P(Y1 6= Y2, X1 = X2) = 0. Hence:

dTV (PY1
, PY2

) ≤ P(Y1 6= Y2, X1 6= X2) ≤ P(X1 6= X2).

Now, we recognize that (X1, X2) is an arbitrary coupling between PX1
and PX2

. Taking infimum
over all couplings, we arrive at the propagation rule.

Lemma A.6 (Product rule). Z1 = (X1, Y1) and Z2 = (X2, Y2) are two distributions over A× B.
Suppose PX1,Y1

factorizes into PX1
PY1

and similarly PX2,Y2
= PX2

PY2
. Then:

inf
coupling PZ1

,PZ2

P(Z1 6= Z2) ≤ inf
coupling PX1

,PX2

P(X1 6= X2) + inf
coupling PY1

,PY2

P(Y1 6= Y2)
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Proof of Lemma A.6. Consider any (X1, X2) that is a coupling of PX1 and PX2 , and any (Y1, Y2)
that is a coupling of PY1 and PY2 . Because of the factorization structure between the X ′s and
the Y ′, we can construct (X ′1, X

′
2, Y

′
1 , Y

′
2) such that (X ′1, X

′
2)

D
= (X1, X2), (Y ′1 , Y

′
2)

D
= (Y1, Y2),

(X ′1, Y
′
1) ∼ PX1,Y1

, (X ′2, Y
′
2) ∼ PX2,Y2

. By union bound:

P((X ′1, Y
′
1) 6= (X ′2, Y

′
2)) ≤ P(X ′1 6= X ′2) + P(Y ′1 6= Y ′2)

Because infcoupling PZ1
,PZ2

P(Z1 6= Z2) ≤ P((X ′1, Y
′
1) 6= (X ′2, Y

′
2)), we have:

inf
coupling PZ1

,PZ2

P(Z1 6= Z2) ≤ P(X ′1 6= X ′2) + P(Y ′1 6= Y ′2).

We finish the proof by taking the infimum over couplings (X1, X2) and (Y1, Y2) of the RHS.

Lemma A.7 (Total variation between Poissons [Adell and Lekuona, 2005, Corrollary 3.1]). Let P1

be the Poisson distribution with mean s, P2 the Poisson distribution with mean t. Then:

dTV (P1, P2) ≤ 1− exp(−|s− t|) ≤ |s− t|.

Proposition A.8 (Lower bound on total variation between Binomial and Poisson). For all K, it is
true that:

dTV

(
Poisson (γ) ,Binom

(
K,

γ/K

γ/K + 1

))
≥ C(γ)K

(
γ/K

γ/K + 1

)2

,

where:
C(γ) =

1

8

1

γ + exp(−1)(γ + 1) max(12γ2, 48γ, 28)
.

Proof of Proposition A.8. We adapt the proof of [Barbour and Hall, 1984, Theorem 2] to our setting.
The Poisson(γ) distribution satisfies the functional equality:

E[γy(Z + 1)− Zy(Z)] = 0, (11)

where y is any real-valued function and Z ∼ Poisson(γ).

Denote γK = γ
γ/K+1 . For m ∈ N, let

x(m) = m exp

(
− m2

γKθ

)
,

where θ is a constant which will be specified later. x(m) serves as a test function to lower bound
the total variation distance between Poisson(γ) and Binom (K, γK/K). Let Xi ∼ Ber(γKK ), inde-
pendently across i from 1 to K, and W =

∑K
i=1. Then W ∼ Binomial (K, γK/K). The following

identity is adapted from [Barbour and Hall, 1984, Equation 2.1]:

E[γKx(W + 1)−Wx(W )] =
(γK
K

)2 K∑
i=1

E[x(Wi + 2)− x(Wi + 1)]. (12)

where Wi = W −Xi.

We first argue that the right hand side is not too small i.e. for any i:

E[x(Wi + 2)− x(Wi + 1)] ≥ 1− 3γ2K + 12γK + 7

θγK
. (13)

Consider the derivative of x(m):

d

dm
x(m) = exp

(
− m2

γKθ

)(
1− 2m2

γKθ

)
≥ 1− 3m2

θγK
.

because of the easy-to-verify inequality e−x(1− 2x) ≥ 1− 3x for x ≥ 0. This means:

x(Wi + 2)− x(Wi + 1) ≥
∫ Wi+2

Wi+1

(
1− 3m2

θγK

)
dm = 1− 1

θγK
(3W 2

i + 9Wi + 7).
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Taking expectations, noting that E(Wi) ≤ γK and E(W 2
i ) = Var(Wi) + [E(Wi)]

2 ≤
∑K
j=1

γK
K +

(γK)2 = γ2K + γK we have proven Eq. (13).

Now, because of positivity of x, and that γ ≥ γK , we trivially have:

E[γx(W + 1)−Wx(W )] ≥ E[γKx(W + 1)−Wx(W )]. (14)

Combining Eq. (12), Eq. (13) and Eq. (14) we have:

E[γx(W + 1)−Wx(W )] ≥ K
(γK
K

)2(
1− 3γ2K + 12γK + 7

θγK

)
.

Recalling Eq. (11), for any coupling (W,Z) such that W ∼ Binom
(
K, γ/K

γ/K+1

)
and Z ∼

Poisson(γ):

E[γ(x(W + 1)− x(Z + 1)) + Zx(Z)−Wx(W )] ≥ γ2K
K

(
1− 3γ2K + 12γK + 7

θγK

)
.

Suppose (W,Z) is the maximal coupling attaining the total variation distance between PW and PZ
i.e. P(W 6= Z) = dTV (PY , PZ). Clearly:

γ(x(W + 1)− x(Z + 1)) + Zx(Z)−Wx(W )

≤ 1{W 6= Z} sup
m1,m2

|(γx(m1 + 1)−m1x(m1))− (γx(m2 + 1)−m2x(m2))|

≤ 21{W 6= Z} sup
m
|(γx(m+ 1)−mx(m)|.

Taking expectations on both sides, we conclude that

2dTV (PW , PZ)× sup
m
|γx(m+ 1)−mx(m)| ≥ γ2K

K

(
1− 3γ2K + 12γK + 7

θγK

)
(15)

It remains to upper bound supm |γx(m + 1) − mx(m)|. Recall that the derivative of x is
exp

(
− m2

γKθ

)(
1− 2m2

γKθ

)
, taking values in [−2e−3/2, 1]. This means for any m, −2e−3/2 ≤

x(m+ 1)− x(m) ≤ 1. Hence:

|γx(m+ 1)−mx(m)| = |γ(x(m+ 1)− x(m)) + (γ −m)x(m)|

≤ γ + (m+ γ)m exp

(
− m2

γKθ

)
≤ γ + (γ + 1)m2 exp

(
− m2

γKθ

)
≤ γ + θγK(γ + 1) exp(−1). (16)

where the last inequality owes to the easy-to-verify x exp(−x) ≤ exp(−1). Combining Eq. (16) and
Eq. (15) we have that:

dTV

(
Binomial

(
K,

γ/K

γ/K + 1

)
,Poisson(γ)

)
≥ 1

2

1− 3γ2
K+12γK+7
θγK

γ + (γ + 1)θγK exp(−1)
K
(γK
K

)2
.

Finally, we calibrate θ. By selecting θ = max
(

12γK ,
28
γK
, 48
)

we have that the numerator of the

unwieldy fraction is at least 1
4 and its denominator is at most γ+exp(−1)(γ+1) max(12γ2, 48γ, 28),

because γK < γ. This completes the proof.

Lemma A.9 (Multinomial-Poisson approximation). Let {pi}∞i=1, pi ≥ 0,
∑∞
i=1 pi < 1. Suppose

there are n independent trials: in each trial, success of type i has probability pi. Let X = {Xi}∞i=1
be the number of type i successes after n trial. Let Y = {Yi}∞i=1 be independent Poisson random
variables, where Yi has mean npi. Then:

dTV (X,Y ) ≤ n

( ∞∑
i=1

pi

)2

.
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Proof of Lemma A.9. First we remark that both X and Y can be sampled in two-steps.

• Regarding X , first sample N1 ∼ Binom (n,
∑∞
i=1 pi). Then, for each 1 ≤ k 6= N1, sample

Zk where P(Zk = i) = pi∑∞
j=1 pj

. Then, Xi =
∑N1

k=1 1{Zk = i} for each i.

• Regarding Y , first sample N2 ∼ Poisson (n
∑∞
i=1 pi). Then, for each 1 ≤ k ≤ N2, sample

Tk where P(Tk = i) = pi∑∞
j=1 pj

. Then, Yi =
∑N2

k=1 1{Tk = i} for each i.

The two-step sampling perspective for X comes from rejection sampling: to generate a success of
type k, we first generate some type of success, and then re-calibrate to get the right proportion for
type k. The two-step perspective for Y comes from the thinning property of Poisson distribution
[Last and Penrose, 2017, Exercise 1.5]. The thinning property implies that for any finite index set K,
all {Yi} for i ∈ K are mutually independent and marginally, Yi ∼ Poisson(npi). Hence the whole
collection {Yi}i=1 are independent Poissons and the mean of Yi is npi.

Observing that the conditional X|N1 = n is the same as Y |N2 = n, we use propagation rule
Lemma A.5:

dTV (X,Y ) ≤ dTV (N1, N2).

Total variation between N1 and N2 is just the classic Binomial-Poisson approximation Le Cam
[1960].

dTV (N1, N2) ≤ n

( ∞∑
i=1

pi

)2

.

A.2 Beta-Bernoulli model

The marginal process characterization describes the probabilistic model not through the two-stage
sampling Θ ∼ CRM(H, ν) and Xn |Θ

iid∼ LP(l; Θ), but through the conditional distributions
Xn|Xn−1, Xn−2, . . . , X1 i.e. the underlying Θ has been marginalized out. This perspective removes
the need to infer a countably infinite set of target variables. In addition, the exchangeability between
X1, X2, . . . , XN i.e. the joint distribution’s invariance with respect to ordering of observations
[Aldous, 1985], often enables the development of inference algorithms, namely Gibbs samplers.

The marginal representation of beta-Bernoulli model is the well-known Indian buffet process.

Proposition A.10 (Beta-Bernoulli marginal process [Griffiths and Ghahramani, 2011]). For any n,
Xn|Xn−1, . . . , X1 is a random measure with finite support.

1. Let {ζi}Kn−1

i=1 be the union of atom locations in X1, X2, . . . , Xn−1. For 1 ≤ m ≤ n − 1, let
xm,j be the atom size of Xm at atom location ζj . Denote xn,i to be the atom size of Xn at atom
location ζi. The xn,i’s are independent across i and the p.m.f. of xn,i at x is:

hc(x|x1:(n−1)) :=

∑n−1
i=1 xi

α− 1 + n
1{x = 1}+

α+
∑n−1
i=1 (1− xi)

α− 1 + n
1{x = 0}.

2. For each x ∈ N, Xn has pn,x atoms whose atom size is exactly x. The locations of each atom
are iid H: as H is diffuse, they are disjoint from the existing union of atoms {ζi}Kn−1

i=1 . pn,x is
Poisson-distributed, independently across x, with mean Mn,x with

Mn,1 :=
γα

α− 1 + n
, Mn,x := 0 for x > 1.

The marginal representation of IFA of beta-Bernoulli model is as follows.

Proposition A.11 (IFA marginal process). For any n, Zn|Zn−1, . . . , Z1 is a random measure with
finite support.
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1. Let {ζi}Kn−1

i=1 be the union of atom locations in Z1, Z2, . . . , Zn−1. For 1 ≤ m ≤ n− 1, let zm,j
be the atom size of Zm at atom location ζj . Denote zn,i to be the atom size of Zn at atom location
ζi. zn,i’s are independently across i and the p.m.f. of zn,i at x is:

h̃c(x|x1:(n−1)) :=

∑n−1
i=1 xi + γα/K

α− 1 + n+ γα/K
1{x = 1}+

α+
∑n−1
i=1 (1− xi)

α− 1 + n+ γα/K
1{x = 0},

2. K −Kn−1 atom locations are generated iid from H . Zn has pn,x atoms whose size is exactly
x (for x ∈ N ∪ {0}) over these K −Kn−1 atom locations (the pn,0 atoms whose atom size is
0 can be interpreted as not present in Zn). The joint distribution of pn,x is a Multinomial with
K −Kn−1 trials, with success of type x having probability h̃c(x|x1:(n−1) = 0).

Let C1 = αmax(γ, 1), C2 = C3 = C4 = 0 and C5 = γ2α. It is straightforward to verify that the
functions hc, h̃c and Mn,x in Propositions A.10 and A.11 satisfy the following inequalities:

1. For all n ∈ N,
∞∑
x=1

Mn,x ≤
C1

n− 1 + C1
. (17)

2. For all n ∈ N,
∞∑
x=1

h(x|x1:(n−1) = 0) ≤ 1

K

C1

n− 1 + C1
. (18)

3. For any n ∈ N, for any {xi}n−1i=1 ,
∞∑
x=0

∣∣∣hc(x|x1:(n−1))− h̃c(x|x1:(n−1))∣∣∣ ≤ 1

K

C1

n− 1 + C1
. (19)

4. For all n ∈ N, for any K ≥ C2(lnn+ C3),
∞∑
x=1

∣∣∣Mn,x −Kh̃c(x|x1:(n−1) = 0)
∣∣∣ ≤ 1

K

C4 lnn+ C5

n− 1 + C1
. (20)

Proof of Theorem 3.1. Let β be the smallest positive constant where β2C1/(1 + β) ≥ 2. We will
focus on the case where the approximation level K is essentially Ω(lnN):

K ≥ max ((β + 1) max(C(K,C1), C(N,C1)), C2(lnN + C3)) . (21)

To see why it is sufficient, observe that the upper bound in Theorem 3.1 naturally holds for K
smaller than lnN . Total variation distance is always upper bounded by 1; if K = o(lnN), then by
selecting reasonable constants C ′, C ′′, C ′′′, we can make the right hand side at least 1, and satisfy
the inequality. In the sequel, we will only consider the situation in Eq. (21).

First, we argue that it suffices to bound the total variation distance between the feature-allocation
matrices coming from the target model and the approximate model. Given the latent measures
X1, X2, . . . , XN from the target model, we can read off the feature-allocation matrix F , which has
N rows and as many columns as there are unique atom locations among the Xi’s:

1. The ith row of F records the atom sizes of Xi.

2. Each column corresponds to an atom location: the locations are sorted first according to the index
of the first measure Xi to manifest it (counting from 1, 2, . . .), and then its atom size in Xi.

The marginal process that described the atom sizes of Xn|Xn−1, Xn−2, . . . , X1 in Proposition A.10
is also the description of how the rows of F are generated. The joint distribution X1, X2, . . . , Xn

can be two-step sampled. First, the feature-allocation matrix F is sampled. Then, the atom locations
are drawn iid from the base measure H: each column of F is assigned an atom location, and the
latent measure Xi has atom size Fi,j on the jth atom location. A similar two-step sampling generates
Z1, Z2, . . . , Zn, the latent measures under the approximate model: the distribution over the feature-
allocation matrix F ′ follows Proposition A.11 instead of Proposition A.10, but conditioned on the
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feature-allocation matrix, the process generating atom locations and constructing latent measures
is exactly the same. In other words, this implies that the conditional distributions Y1:N |F = f and
W1:N |F ′ = f are the same, since both models have the same the observational likelihood f given the
latent measures 1 through N . Denote PF to be the distribution of the feature-allocation matrix under
the target model, and PF ′ the distribution of the feature-allocation matrix under the approximate
model. Lemma A.5 implies that:

dTV (PW1:N
, PY1:N

) ≤ dTV (PF , PF ′). (22)

Next, we parametrize the feature-allocation matrices in a way that is convenient for the analysis of
total variation distance. Let J be the number of columns of F . Our parametrization involves dn,x, for
n ∈ [N ] and x ∈ N, and sj , for j ∈ [J ]:

1. For n = 1, 2, . . . , N :

(a) If n = 1, for each x ∈ N, d1,x counts the number of columns j where F1,j = x.
(b) For n ≥ 2, for each x ∈ N, let Jn = {j : ∀i < n, Fi,j = 0} i.e. no observation before n

manifests the atom locations indexed by columns in Jn. For each x ∈ N, dn,x counts the
number of columns j ∈ Jn where Fn,j = x.

2. For j = 1, 2, . . . , J , let Ij = min{i : Fi,j > 0} i.e. the first row to manifest the jth atom location.
Let sj = FIj :N,j i.e. the history of the jth atom location.

In words, dn,x is the number of atom locations that is first instantiated by the individual n and each
atom has size x, while sj is the history of the jth atom location.

∑N
n=1

∑∞
x=1 dn,x is exactly J , the

number of columns. We use the short-hand d to refer to the collection of dn,x and s the collection
of sj . There is a one-to-one mapping between (d, s) and the feature allocation matrix f . Let (D,S)
be the distribution of d and s under the target model, while (D′, S′) is the distribution under the
approximate model. We now aim to compare the joint distribution:

dTV (PF , PF ′) = dTV (PD,S , PD′,S′).

Because total variation distance is the infimum of difference probability over all couplings, to
find an upper bound on dTV (PD,S , PD′,S′), it suffices to demonstrate a joint distribution such that
P((D,S) 6= (D′, S′)) is small. The rest of the proof is dedicated to that end. To start, we only assume
that (D,S,D′, S′) is a proper coupling, in that marginally (D,S) ∼ PD,S and (D′, S′) ∼ PD′,S′ .
As we progress, gradually more structure is added to the joint distribution (D,S,D′, S′) to control
P((D,S) 6= (D′, S′)).

We first decompose P((D,S) 6= (D′, S′)) into other probabilistic quantities which can be analyzed
using. Define the typical set:

D∗ =

{
d :

N∑
n=1

∞∑
x=1

dn,x ≤ (β + 1) max(C(K,C1), C(N,C1))

}
.

d ∈ D∗ means that the feature-allocation matrix f has a bounded number of columns. The claim is
that:

P((D,S) 6= (D′, S′)) ≤ P(D 6= D′) + P(S 6= S′|D = D′, D ∈ D∗) + P(D /∈ D∗). (23)

This is true from basic properties of probabilities and conditional probabilities:

P((D,S) 6= (D′, S′))

= P(D 6= D′) + P(S 6= S′, D = D′)

= P(D 6= D′) + P(S 6= S′, D = D′, D ∈ D∗) + P(S 6= S′, D = D′, D /∈ D∗)
≤ P(D 6= D′) + P(S 6= S′|D = D′, D ∈ D∗) + P(D /∈ D∗),

The three ideas behind this upper bound are the following. First, because of the growth condition, we
can analyze the atypical set probability P(D /∈ D∗). Second, because of the total variation between
hc and h̃c, we can analyze P(S 6= S′|D = D′, D ∈ D∗). Finally, we can analyze P(D 6= D′)

because of the total variation between Kh̃c and Mn,.. In what follows we carry out the program.
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Atypical set probability The P(D /∈ D∗) term in Eq. (23) is easiest to control. Under the tar-
get model Proposition A.10, the Di,x’s are independent Poissons with mean Mi,x, so the sum∑N
i=1

∑∞
x=1Di,x is itself a Poisson with mean M =

∑N
i=1

∑∞
x=1Mi,x. Because of Lemma A.3,

for any x > 0:

P

(
N∑
i=1

∞∑
x=1

Di,x > M + x

)
≤ exp

(
− x2

2(M + x)

)
.

For the event P(D /∈ D∗), M + x = (β + 1) max(C(K,C1), C(N,C1)), M ≤ C(N,C1) due to
Eq. (17), so that x ≥ βmax(C(K,C1), C(N,C1)). Therefore:

P(D /∈ D∗) ≤ exp

(
− β2

2(β + 1)
max(C(K,C1), C(N,C1))

)
. (24)

Difference between histories To minimize the difference probability between the histories of atom
sizes i.e. the P(S 6= S′|D = D′, D ∈ D∗) term in Eq. (23), we will use Eq. (19). The claim is, there
exists a coupling of S′|D′ and S|D such that:

P(S 6= S′|D = D′, D ∈ D∗) ≤ (β + 1) max(C(K,C1), C(N,C1))

K
C(N,C1). (25)

Fix some d ∈ D∗ – since we are in the typical set, the number of columns in the feature-allocation
matrix is at most (β+1) max(C(K,C1), C(N,C1)). Conditioned onD = d, there is a finite number
of history variables S, one for each atom location; similar for conditioning of S′ on D′ = d. For both
the target and the approximate model, the density of the joint distribution factorizes:

P(S = s|D = d) =

J∏
j=1

P(Sj = sj |D = d)

P(S′ = s|D′ = d) =

J∏
j=1

P(S′j = sj |D′ = d),

since in both marginal processes, the atom sizes for different atom locations are independent of each
other. This means we can use Lemma A.6:

dTV (PS|D=d, PS′|D′=d) ≤
J∑
j=1

dTV (PSj |D=d, PS′j |D′=d).

We inspect each dTV (PSj |D=d, PS′j |D′=d). Fixing d also fixes Ij , the first row to manifest the jth
atom location. The history sj is then a N − Ij + 1 dimensional integer vector, whose tth entry is
the atom size over the jthe atom location of the t+ Ij − 1 row. Because of Eq. (19), we know that
conditioned on the same partial history Sj(1 : (t− 1)) = S′j(1 : (t− 1)) = s, the distributions Sj(t)
and S′j(t) are very similar. The conditional distribution Sj(t)|D = d, Sj(1 : (t−1)) = s is governed
by hc Proposition A.10 while S′j(t)|D′ = d, S′j(1 : (t− 1)) = s is governed by h̃c Proposition A.11.
Hence:

dTV

(
PSj(t)|D=d,Sj(1:(t−1))=s, PS′j(t)|D′=d,S′j(1:(t−1))=s

)
≤ 2

1

K

C1

t+ Ij − 2 + C1
,

for any partial history s. To use this conditional bound, we again leverage Lemma A.4 to compare
the joint Sj = (Sj(1), Sj(2), . . . , Sj(N − Ij + 1)) with the joint S′j = (S′j(1), S′j(2), . . . , S′j(N −
Ij + 1)), peeling off one layer at a time.

dTV (PSj |D=d, PS′j |D′=d)

≤
N−Ij+1∑
t=1

max
s
dTV

(
PSj(t)|D=d,Sj(1:(t−1))=s, PS′j(t)|D′=d,S′j(1:(t−1))=s

)

≤
N−Ij+1∑
t=1

2
1

K

C1

t+ Ij − 2 + C1

≤ 2
C(N,C1)

K
.
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Multiplying the right hand side by (β + 1) max(C(K,C1), C(N,C1)), the upper bound on J , we
arrive at the same upper bound for the total variation between PS|D=d and PS′|D′=d in Eq. (25).
Furthermore, our analysis of the total variation can be back-tracked to construct the coupling between
the conditional distributions S|D = s and S′|D′ = dwhich attains that small probability of difference.
Since the choice of conditioning d ∈ D∗ was arbitrary, we have actually shown Eq. (25).

Difference between new atom sizes Finally, to control the difference probability for the distribution
over new atom sizes i.e. the P(D 6= D′) term in Eq. (23), we will utilize Eqs. (18) and (20). For each
n, define the short-hand d1:n to refer to the collection di,x for i ∈ [n], x ∈ N, and the typical sets:

D∗n =

{
d1:n :

n∑
i=1

∞∑
x=1

di,x ≤ (β + 1) max(C(K,C1), C(N,C1))

}
.

The type of expansion performed in Eq. (23) can be done once here to see that:

P(D 6= D′)

= P((D1:(N−1, DN ) 6= (D′1:(N−1, D
′
N ))

≤ P(D1:(N−1) 6= D′1:(N−1)) + P(DN 6= D′N |D1:(N−1) = D′1:(N−1), D1:(N−1) ∈ D∗n−1) + P(D1:(N−1) /∈ D∗n−1).

Apply the expansion once more to P(D1:(N−1) 6= D′1:(N−1)), then to P(D1:(N−2) 6= D′1:(N−2)). If
we define:

Bj = P(Dj 6= D′j |D1:(j−1) = D′1:(j−1), D1:(j−1) ∈ D∗j−1),

with the special case B1 simply being P(D1 6= D′1), then:

P(D 6= D′) ≤
N∑
j=1

Bj +

N∑
j=2

P(D1:(j−1) /∈ D∗j−1). (26)

The second summation in Eq. (26), comprising of only atypical probabilities, is easier to control.
For any j, since

∑j−1
i=1

∑∞
x=1Di,x ≤

∑N
i=1

∑∞
x=1Di,x, P(D1:(j−1) /∈ D∗j−1) ≤ P(D /∈ D∗), so a

generous upper bound for the contribution of all the atypical probabilities including the first one from
Eq. (24) is:

P(D /∈ D∗) +

N∑
j=2

P(D1:(j−1) /∈ D∗j−1)

≤ exp

(
−
(

β2

2(β + 1)
max(C(K,C1), C(N,C1))− lnN

))
.

By Lemma A.1, max(C(K,C1), C(N,C1)) ≥ C1(max(lnN, lnK)− C1(ψ(C1) + 1)). Since we
have set β so that β2

β+1C1 = 2, we have:

β2

2(β + 1)
max(C(K,C1), C(N,C1))− lnN ≥ lnK − constant.

meaning the overall atypical probabilities is at most:

P(D /∈ D∗) +

N∑
j=2

P(D1:(j−1) /∈ D∗j−1) ≤ constant
K

. (27)

As for the first summation in Eq. (26), we look at the individual Bj’s. For any fixed d1:(j−1) ∈
D∗j−1 , we claim that there exists a coupling between the conditionals Dj |D1:(j−1) = d1:(j−1) and
D′j |D′1:(j−1) = d1:(j−1) such that P(Dj 6= D′j |D1:(j−1) = D′1:(j−1) = d1:(j−1)) is at most:

constant
K

1

(j − 1 + C1)2
+ constant

(lnN + lnK)

K

1

j − 1 + C1
. (28)

Because the upper bound hold for arbitrary values d1:(j−1), the coupling actually ensures that, as
long as D1:(j−1) = D′1:(j−1) for some value in D∗j−1, the probability of difference between Dj and
D′j is small i.e. Bj is at most the right hand side.
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Such a coupling exists because the total variation between the two distributions PDj |D1:(j−1)=d1:(j−1)

and PD′j |D′1:(j−1)
=d1:(j−1)

is small. In particular, there exists a distribution U = {Ux}∞x=1 of inde-
pendent Poisson random variables, such that both the total variation between PDj |D1:(j−1)=d1:(j−1)

and PU and the total variation between PD′j |D′1:(j−1)
=d1:(j−1)

and PU is small – we then use triangle
inequality to bound the original total variation. Here, each Ux has mean:

E(Ux) =

(
K −

j−1∑
i=1

∞∑
y=1

di,y

)
h̃c(x|x1:(j−1) = 0).

On the one hand, conditioned on D′1:(j−1) = d1:(j−1), D′j = {D′j,x}∞x=1 is the joint distribution of

types of successes of type x, where there are K −
∑j−1
i=1

∑∞
x=1 di,x independent trials and types

x success has probability h̃c(x|x1:(j−1) = 0) by Proposition A.11. Because of Lemma A.9 and
Eq. (18):

dTV

(
PD′j |D′1:(j−1)

=d1:(j−1)
, PU

)
≤

(
K −

j−1∑
i=1

∞∑
y=1

di,y

)( ∞∑
x=1

h̃c(x|x1:(j−1) = 0)

)2

≤ K
(

1

K

C1

j − 1 + C1

)2

≤ C2
1

K

1

(j − 1 + C1)2
. (29)

On the other hand, conditioned on D1:(j−1), Dj = {Dj,x}∞x=1 consists of independent Poissons,
where the mean of Dj,x is Mj,x by Proposition A.10. We recursively apply Lemma A.6 and
Lemma A.7:

dTV (PU , PDj
)

≤
∞∑
x=1

dTV (PUx , PDj,x)

≤
∞∑
x=1

∣∣∣∣∣Mj,x −

(
K −

j−1∑
i=1

∞∑
y=1

di,y

)
h̃c(x|x1:(j−1) = 0)

∣∣∣∣∣
≤
∞∑
x=1

(
|Mj,x −Kh̃c(x|x1:(j−1) = 0)|+

j−1∑
i=1

∞∑
y=1

di,yh̃c(x|x1:(j−1) = 0)

)

≤
∞∑
x=1

|Mj,x −Kh̃c(x|x1:(j−1) = 0)|+

(
j−1∑
i=1

∞∑
y=1

di,y

)( ∞∑
x=1

h̃c(x|x1:(j−1) = 0)

)
. (30)

The first term is upper bounded by Eq. (20). Regarding the second term, since we are in the typical
set,

∑j−1
i=1

∑∞
y=1 di,y is upper bounded. Therefore the overall bound on the second term is:

(β + 1) max(C(K,C1), C(N,C1))
1

K

C1

j − 1 + C1
.

Combining the two bounds give the bound on dTV (PU , PDj ):

1

K

C4 ln j + C5

j − 1 + C1
+ (β + 1) max(C(K,C1), C(N,C1))

1

K

C1

j − 1 + C1

≤ constant
(lnN + lnK)

K

1

j − 1 + C1
. (31)

Combining Eqs. (29) and (31) gives the upper bound in Eq. (28). The summation of the right hand
side of Eq. (28) across j leads to:

N∑
j=1

Bj ≤
constant
K

+ constant
(lnN + lnK) lnN

K
. (32)
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In all, because of Eqs. (27) and (32), we can couple D and D′ such that P(D 6= D′) is at most:

constant
K

+ constant
(lnN + lnK) lnN

K
. (33)

Aggregating the results from Eqs. (24), (25) and (33), we are done.

Proof of Theorem 3.2. First we mention which probability kernel f results in the large total variation
distance. For any discrete measure

∑M
i=1 δψi

, f is the Dirac measure sitting on M , the number of
atoms.

f(.|
M∑
i=1

δψi
) := δM (.). (34)

Now we show that under such f , the total variation distance is lower bounded. First, observe that:

dTV (PY1:N
, PW1:N

) ≥ dTV (PY1 , PW1). (35)

Truly, suppose (Y1:N ,W1:N ) is any coupling of PY1:N
, PW1:N

. Elementarily we have P (Y1:N 6=
W1:N ) ≥ P (Y1 6= W1). Taking the infimum over couplings to attain the total variation distance, we
have shown Eq. (35). Hence it suffices to show:

dTV (PY1
, PW1

) ≥ C(γ)
γ2

K

1

(1 + γ/K)2
.

Recall the generative process defining PY1
and PW1

. Y1 is an observation from the target Beta-
Bernoulli model, so by Proposition A.10

NT ∼ Poisson(γ), ψk
iid∼ H, X1 =

NT∑
i=1

δψk
, Y1 ∼ f(.|X1).

W1 is an observation from the approximate model, so by Proposition A.11

NA ∼ Binom

(
K,

γ/K

1 + γ/K

)
, φk

iid∼ H, Z1 =

NA∑
i=1

δφk
, W1 ∼ f(.|Z1).

Because of the choice of f , Y1 = NT and W1 = NA. Hence, by Proposition A.8:

dTV (PY1
, PW1

) = dTV (PNT
, PNA

)

≥ C(γ)
γ2

K

1

(1 + γ/K)2
.

A.3 Dirichlet process mixture model

Our technique to analyze the error made by FSDK follows a similar vein to the technique in
Appendix A.2. We compare the joint distribution of the latents X1:N and Z1:N (with the underlying
Θ or ΘK marginalized out) using the conditional distributions Xn |X1:(n−1) and Zn |Z1:(n−1).
Before going into the proofs, we give the form of the conditionals.

The conditional X1:N |X1:(n−1) is the well-known Blackwell-MacQueen prediction rule.
Proposition A.12. Blackwell and MacQueen [1973] For n = 1, X1 ∼ H . For n ≥ 2:

Xn|Xn−1, Xn−2, . . . , X1 ∼
α

n− 1 + α
H +

∑
j

nj
n− 1 + α

δψj .

where {ψj} is the set of unique values among Xn−1, Xn−2, . . . , X1 and nj is the cardinality of the
set {i : 1 ≤ i ≤ n− 1, Xi = ψj}.
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The conditionals Zn |Z1:(n−1) are related to the Blackwell-MacQueen prediction rule.

Proposition A.13. Pitman [1996] For n = 1, Z1 ∼ H . For n ≥ 2, let {ψj}Jnj=1 be the set of unique
values among Zn−1, Zn−2, . . . , Z1 and nj is the cardinality of the set {i : 1 ≤ i ≤ n− 1, Zi = ψj}.
If Jn < K:

Zn|Zn−1, Zn−2, . . . , Z1 ∼
(K − Jn)α/K

n− 1 + α
H +

Jn∑
j=1

nj + α/K

n− 1 + α
δψj

,

Otherwise, if Jn = K, there is zero probability of drawing a fresh component from H i.e. Zn comes
only from {ψj}j=1Jn:

Zn|Zn−1, Zn−2, . . . , Z1 ∼
Jn∑
j=1

nj + α/K

n− 1 + α
δψj

,

Jn ≤ K is an invariant of these of prediction rules: once Jn = K, all subsequent Jm for m ≥ n is
also equal to K.

Proof of Theorem 3.4. First, because of Lemma A.5, it suffices to show that dTV (PX1:N
, PZ1:N

) is
small, since the conditional distributions of the observations given the latent variables are the same
across target and approximate models.

To show that dTV (PX1:N
, PZ1:N

) is small, we will construct a coupling of X1:N and Z1:N such that
for any n ≥ 1:

P(Xn 6= Zn|X1:(n−1) = Z1:(n−1)) ≤ 2
α

K

Jn
n− 1 + α

, (36)

where Jn is the number of unique atom locations among X1:(n−1). Such a coupling exists because
the total variation distance between the prediction rules Xn |X1:(n−1) and Zn |Z1:(n−1) is small: as
total variation is the minimum difference probability, there exists a coupling that achieves the total
variation distance. Consider any measurable set A. If Jn < K, the probability of A under the two
rules are respectively:

α(1− Jn/K)

n− 1 + α
H(A) +

Jn∑
j=1

nj + α/K

n− 1 + α
δψj (A)

α

n− 1 + α
H(A) +

Jn∑
j=1

nj
n− 1 + α

δψj
(A)

meaning the absolute difference in probability mass is:∣∣∣∣∣∣ αK JnH(A)

n− 1 + α
− α

K

Jn∑
j=1

δj(A)

n− 1 + α

∣∣∣∣∣∣ ≤
∣∣∣∣ αK JnH(A)

n− 1 + α

∣∣∣∣+

∣∣∣∣∣∣ αK
Jn∑
j=1

δj(A)

n− 1 + α

∣∣∣∣∣∣
≤ α

K

Jn
n− 1 + α

+
α

K

Jn
n− 1 + α

= 2
α

K

Jn
n− 1 + α

.

The same upper bound holds for the case Jn = K. The couplings for different n are naturally glued
together because of the recursive nature of the conditional distributions.

We now show that for the coupling satisfying Eq. (36), the overall probability of difference P(X1:N 6=
Z1:N ) is small. Define the short hand:

C(N,α) :=

N∑
n=1

α

n− 1 + α
.

The definition of the typical set depends on the relative deviation δ, which we calibrate at the end of
the proof. Define the typical set:

Dn :=
{
x1:(n−1) : Jn ≤ (1 + δ) max(C(N − 1, α), C(K,α))

}
.
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In other words, the number of unique values among the x1:(n−1) is small. The following decomposi-
tion is used to investigate the difference probability on the typical set:

P(X1:N 6= Z1:N ) = P((X1:(N−1), XN ) 6= (Z1:(N−1), ZN ))

= P(X1:(N−1) 6= Z1:(N−1)) + P(XN 6= ZN , X1:(N−1) = Z1:(N−1)) (37)

The second term can be further expanded:

P(XN 6= ZN ,X1:(N−1) = Z1:(N−1), X1:(N−1) ∈ DN )

+ P(XN 6= ZN , X1:(N−1) = Z1:(N−1), X1:(N−1) /∈ DN )

The former term is at most:

P(XN 6= ZN |X1:(N−1) = Z1:(N−1), X1:(N−1) ∈ DN ),

while the latter term is at most:
P(X1:(N−1) /∈ DN ).

To recap, we can bound P(X1:N 6= Z1:N ) by bounding three quantities:

1. The difference probability of a shorter process P(X1:(N−1) 6= Z1:(N−1)).

2. The difference probability of the prediction rule on typical sets P(XN 6= ZN |X1:(N−1) =
Z1:(N−1), X1:(N−1) ∈ DN ).

3. The probability of the atypical set P(X1:(N−1) /∈ DN ).

By recursively applying the expansion initiated in Eq. (37) to P(X1:(N−1) 6= Z1:(N−1)), we actually
only need to bound difference probability of the different prediction rules on typical sets and the
atypical set probabilities.

Regarding difference probability of the different prediction rules, being in the typical set allows us to
control Jn in Eq. (36). Summation across n = 1 through N gives the overall bound of:

2
α

K
(1 + δ) max(C(N − 1, α), C(K,α))C(N,α) ≤ constant

lnN(lnN + lnK)

K
. (38)

Regarding the atypical set probabilities, because Jn−1 is stochastically dominated by Jn i.e., the
number of unique values at time n is at least the number at time n−1, all the atypical set probabilities
are upper bounded by the last one i.e. P(X1:(N−1) /∈ DN ). JN−1 is the sum of independent Poisson
trials, with an overall mean equaling exactly C(N − 1, α). Therefore, the atypical event has small
probability because of Lemma A.2:

P(JN−1 > (1 + δ) max(C(N − 1, α), C(K,α))

≤ exp

(
− δ2

2 + δ
max(C(N − 1, α), C(K,α)

)
.

Even accounting for all N atypical events, the total probability is small:

exp

(
−
(

δ2

2 + δ
max(C(N − 1, α), C(K,α)− ln(N − 1)

))
By Lemma A.1, max(C(N−1, α), C(K−1, α) ≥ αmax(ln(N−1), lnK−α(ψ(α)+1). Therefore,
if we set δ such that δ2

2+δα = 2, we have:

δ2

2 + δ
max(C(N − 1, α), C(K − 1, α)− ln(N − 1) ≥ lnK − constant

meaning the overall atypical probabilities is at most:

constant
K

. (39)

The overall total variation bound combines Eqs. (38) and (39).
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Proof of Theorem 3.5. First we mention which probability kernel f results in the large total variation
distance: the pathological f is the Dirac measure i.e., f(· |x) = δx(.).

Now we show that under such f, the total variation distance is lower bounded. Observe that it suffices
to understand the total variation between PY1,Y2

and PW1,W2
. Truly, suppose (Y1:N ,W1:N ) is any

coupling of PY1:N
and PW1:N

. Elementarily we have P (Y1:N 6= W1:N ) ≥ P ((Y1, Y2) 6= (W1,W2)).
Taking the infimum, we have:

dTV (PN,∞, PN,K) ≥ dTV (PY1,Y2
, PW1,W2

).

Since f is Dirac, Xn = Yn and Zn = Wn and we have:

dTV (PY1,Y2 , PW1,W2) = dTV (PX1,X2 , PZ1,Z2).

Now, let (X1, X2), (Z1, Z2) be any coupling of PX1,X2
and PZ1,Z2

. We have:

P((X1, X2) 6= (Z1, Z2)) = P(X2 6= Z2|X1 = Z1) + P(X1 6= Z1)P(X2 = Z2|X1 = Z1)

≥ P(X2 6= Z1|X1 = Z2).

We now investigate how small P(X2 6= Z2|X1 = Z2) can be. In the conditioning X1 = Z1, let the
common atom be ψ1. The prediction rule X2|X1 = ψ1 puts mass 1

1+α on ψ1 while the prediction

rule Z2|Z1 = ψ1 puts mass 1+α/K
1+α . This means that the total variation distance between the two

prediction rules is at least:
1 + α/K

1 + α
− 1

1 + α
=

α

1 + α

1

K
.

Since the minimum difference probability is at least the total variation distance, we conclude that for
any coupling (X1, X2), (Z1, Z2)

P(X2 6= Z2|X1 = Z1) ≥ α

1 + α

1

K
.

Hence we have a lower bound on P((X1, X2) 6= (Z1, Z2)) itself. As the coupling was arbitrary, we
take the infimum to attain the lower bound on total variation.

B Experimental setup

B.1 Image denoising

The experiments in this section aim to isolate the effect of TFA versus IFA, by fitting different
approximations of the beta-Bernoulli model to denoise2 an image. We give a description of our
models and their hyper-parameter settings. Each patch xi is flattened into a vector in Rn. Let In be
the n× n identity matrix, and similarly for IK . The base measure generating the basis elements is
the same:

ψk
iid∼ N (0, n−1In) k = 1, 2, . . . ,K

The observational likelihood conditioned on feature-allocation matrix F ∈ {0, 1}N×K and basis
elements {ψk}Kk=1 is the same for both models.

γw ∼ Gamma(10−6, 10−6)

γe ∼ Gamma(10−6, 10−6)

wi
iid∼ N (0, γ−1w IK) i = 1, 2, . . . , N

εi
iid∼ N (0, γ−1e In) i = 1, 2, . . . , N

xi =

K∑
k=1

Fi,kwi,kψk + εi i = 1, 2, . . . , N

(40)

2The posterior over (trait, frequency) and per-observation allocation is traversed for a certain number of steps
using a Gibbs sampler. Each visited dictionary and assignment is used to compute each patch’s mean value: the
candidate output pixel value is the mean over patches covering that pixel. We aggregate the output images across
Gibbs steps by a weighted averaging mechanism.
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where we are using the shape-rate parametrization of the gamma. Finally, how the feature-allocation
matrix F is generated is the sole difference between TFA and IFA. The underlying beta process being
approximated has rate measure ν(θ) = θ−11{θ ≤ 1}.

• TFA:
vk

iid∼ Beta(1, 1)

πk =

k∏
i=1

vi, k = 1, 2, . . . ,K

Fi,k|πk
indep∼ Ber(πk) i = 1, 2, . . . , N

• IFA:

πk
iid∼ Beta

(
1

K
, 1

)
k = 1, 2, . . . ,K

Fi,k|πk
indep∼ Ber(πk) i = 1, 2, . . . , N

In Eq. (40), we are enriching the basic feature-allocation structure by introducing weights wi,k which
allow an observation to manifest a non-integer (and potentially negative) scaled version of the basis
element. Following [Zhou et al., 2009], we are uninformative about the noise precisions by choosing
Gamma(10−6, 10−6). Regarding the choice of hyper-parameters for the underlying beta process,
[Zhou et al., 2009] suggests that the performance of the denoising routine is insensitive to the choice
of γ and α: we picked γ, α = 1 for computational convenience, especially since for the beta process
for α = 1 admits the simple stick-breaking construction.

B.2 Topic modelling

Nearly 1m random wikipedia documents were downloaded and processed following [Hoffman et al.,
2010].

IFA:

G0 ∼ FSDK(ω,Dir(η1V ))

Gd ∼ T-DPT (α,G0) independently across d = 1, 2, . . . , D

βdn|Gd ∼ Gd(.) independently across n = 1, 2, . . . , Nd
wdn|βdn ∼ Categorical(βdn) independently across n = 1, 2, . . . , Nd

TFA:

G0 ∼ T-DPK(ω,Dir(η1V ))

Gd ∼ T-DPT (α,G0) independently across d = 1, 2, . . . , D

βdn|Gd ∼ Gd(.) independently across n = 1, 2, . . . , Nd
wdn|βdn ∼ Categorical(βdn) independently across n = 1, 2, . . . , Nd

Hyper-parameter settings follow [Wang et al., 2011] in that η = 0.01, α = 1.0, ω = 1.0, T = 20.

We approximate the posterior in each model using stochastic variational inference [Hoffman et al.,
2013]. Both models have nice conditional conjugacies that allow the use of exponential family
variational distributions and closed-form expectation equations. Batch size is 500, learning rate
parametrized by ρt = (t + τ)−κ where by default τ = 1.0 and κ = 0.9. The learning rate for
warm-start training is slightly different from that for cold start, to reflect the fact that many batches of
data had been processed leading up to the warm-start variational parameters.

We discuss how held-out log-likelihood is computed. Each held-out document d′ is separated into
two parts who and wobs3, with no common words between the two. In our experiments, we set 75%

3How each document is separated into these two parts can have an impact on the range of test log-likelihood
values encountered. For instance, if the first (in order of appearance in the document) x% of words were the
observed words and the last (100− x)% words were unseen, then the test log-likelihood is low, presumably
since predicting future words using only past words and without any filtering is challenging. Randomly assigning
words to be observed and unseen gives better test log-likelihood.
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of words to be observed, the remaining 25% unseen. The predictive distribution of each word wnew
in the who is exactly equal to:

p(wnew|D, wobs) =

∫
θd′ ,β

p(wnew|θd′ , β)p(θd′ , β|D, wobs)dθd′dβ.

This is an intractable computation as the posterior p(θd′ , β|D, wobs) is not analytical. We approximate
it with a factorized distribution:

p(θd′ , β|D, wobs) ≈ q(β|D)q(θd′),

where q(β|D) is fixed to be the variational approximation found during training and q(θd′) minimizes
the KL between the variational distribution and the posterior. Operationally, we do an E-step for the
document d′ based on the variational distribution of β and the observed words wobs, and discard the
distribution over zd′,., the per-word topic assignments because of the mean-field assumption. Using
those approximations, the predictive approximation is approximately:

p(wnew|D, wobs) ≈ p̃(wnew|D, wobs) =

K∑
k=1

Eq(θd′(k))Eq(βk(wnew)),

and the final number we report for document d′ is:

1

|who|
∑

w∈who

log p̃(w|D, wobs).
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