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ABSTRACT

Traditional Federated Learning (FL) approaches assume collaborative clients with
aligned objectives working towards a shared global model. However, in many
real-world scenarios, clients act as rational players with individual objectives and
strategic behaviors, a concept that existing FL frameworks are not equipped to ad-
equately address. To bridge this gap, we introduce Multiplayer Federated Learn-
ing (MpFL), a novel framework that models the clients in the FL environment as
players in a game-theoretic context, aiming to reach an equilibrium. In this sce-
nario, each player tries to optimize their own utility function, which may not align
with the collective goal. Within MpFL, we propose Per-Player Local Stochas-
tic Gradient Descent (PEARL-SGD), an algorithm in which each player/client
performs local updates independently and periodically communicates with other
players. We theoretically analyze PEARL-SGD and prove that it reaches a neigh-
borhood of equilibrium with less communication in the stochastic setup than its
non-local counterpart. Finally, we experimentally verify our theoretical findings.

1 INTRODUCTION

Federated Learning (FL) has emerged as a powerful collaborative learning paradigm where multiple
clients jointly train a machine learning model without sharing their local data. In the classical FL
setting, a central server coordinates multiple clients (e.g., mobile devices, edge devices) to collab-
oratively learn a shared global model without exchanging their own training data (Kairouz et al.,
2021; Konečnỳ et al., 2016; McMahan et al., 2017b; Li et al., 2020a). In this scenario, each client
performs local computations on its private data and periodically communicates model updates to the
server, which aggregates them to update the global model. This collaborative approach has been
successfully applied in various domains, including natural language processing (Liu et al., 2021;
Hard et al., 2018), computer vision (Liu et al., 2020a; Li et al., 2021), and healthcare (Antunes et al.,
2022; Xu et al., 2021).

Despite their success, traditional FL frameworks rely on the key assumption that all participants are
fully cooperative and share aligned objectives, collectively working towards optimizing the perfor-
mance of a shared global model (e.g., minimizing the average of individual loss functions). This
assumption overlooks situations where participants have individual objectives, or competitive in-
terests that may not align with the collective goal. Diverse examples of such scenarios have been
considered in the game theory literature, including Cournot competition in economics (Ahmed &
Agiza, 1998), optical networks (Pan & Pavel, 2007), electricity markets (Saad et al., 2012), energy
consumption control in smart grid (Ye & Hu, 2017), or mobile robot control (Kalyva & Psillakis,
2024). In the current era dominated by large-scale machine learning, relevant game-theoretic learn-
ing applications involving a large network of players could emerge.

To address these limitations of classical FL approaches, we propose a novel framework called Multi-
player Federated Learning (MpFL), which models the FL process as a game among rational players
with individual utility functions. In MpFL, each participant is considered a player who aims to
optimize their own objective while interacting strategically with other players in the network via a
central server. This game-theoretic perspective acknowledges that participants may act in their self-
interest, have conflicting goals, or be unwilling to fully cooperate. By incorporating these dynamics,
MpFL provides a more realistic and flexible foundation for FL in competitive and heterogeneous
environments.
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In the literature, there are multiple strategies that aim to incorporate a personalization approach
into classical FL, including multi-task learning (Smith et al., 2017; Mills et al., 2021), transfer
learning (Khodak et al., 2019), and mixing of the local and global models (Hanzely & Richtárik,
2020; Hanzely et al., 2020), to name a few. However, to the best of our knowledge, none of them is
able to formulate the behaviour of the clients/players in a non-cooperative environment. This gap is
precisely what MpFL aims to address.

In this work, we make the following main contributions:

• Introducing Multiplayer Federated Learning (MpFL). We develop a novel MpFL framework,
which models the FL process as a game among rational players with individual utility functions.
In MpFL, each client within the FL environment is viewed as a player of the game, and their local
models are viewed as their actions. Each player constantly adjusts their model (action) to optimize
their own objective function, and the MpFL framework aims for each player to reach to a Nash
equilibrium by collaboratively training their model under the orchestration of a central server (e.g.,
service provider), while keeping the training data decentralized. That is, MpFL extends the scope
of FL to scenarios where clients are allowed to have more general, diversified, possibly competing
objectives.

• Design and analysis of Per-Player Local SGD. To handle the Multiplayer Federated Learning
framework, we introduce Per-Player Local SGD (PEARL-SGD), a new algorithm inspired by
the stochastic gradient descent ascent method in minimax optimization, that is able to handle
the competitive nature of the players/clients. In PEARL-SGD, each player performs local SGD
steps independently on their own actions/strategies (keeping the strategies of the other players
fixed), and the udpated actions/models are periodically communicated with the other players of
the network via a central server.

• Convergence guarantees for PEARL-SGD on heterogeneous data. We provide tight conver-
gence guarantees for PEARL-SGD, in both deterministic and stochastic regimes with heteroge-
neous data (see Table 1 for a summary of our results).

– Deterministic setting: For the full-batch (deterministic) variant of PEARL-SGD, we prove
that under suitable assumptions, PEARL-SGD converges linearly to an equilibrium for any
communication period τ > 1, provided that the constant step-size γ is sufficiently small
(see Theorem 3.3). In this setting, no communication gain is achieved via our analysis.

– Stochastic setting: In its more general version, PEARL-SGD assumes that each player uses an
unbiased estimator of its gradient in the update rule. For this setting, we provide two Theorems
based on two different step-size choices:

* Constant step-size: We show that under the same assumptions as in the deterministic case,
PEARL-SGD converges linearly to a neighborhood of equilibrium (see Theorem 3.4). In
Corollary 3.5, we show that with appropriate step-size depending on the total number of
local SGD iterations T , PEARL-SGD achieves Õ(1/T ) convergence rate with improved
communication complexity when T is sufficiently large.

* Decreasing step-size rule: We prove that PEARL-SGD converges to an exact equilibrium
(without neighborhood of convergence) with sublinear convergence (see Theorem 3.6). In
this scenario, the asymptotic rate and communication complexity are essentially the same
as in Corollary 3.5, but this result does not require the step-sizes to depend on T .

• Numerical Evaluation: We provide extensive numerical experiments verifying our theoretical
results and show the benefits in terms of communications of PEARL-SGD over its non-local
counterpart in the MpFL settings.

2 MULTIPLAYER FEDERATED LEARNING AND CLOSELY RELATED SETTINGS

In this section, we introduce the framework of Multiplayer Federated Learning and explain its main
differences compared to the classical FL (Kairouz et al., 2021) and Federated Minimax Optimization
(Deng & Mahdavi, 2021; Sharma et al., 2022; Zhang et al., 2023).

2.1 PROBLEM SETUP: MPFL

Multiplayer Federated Learning (MpFL) is a machine learning setting that combines the benefits
of a game-theoretic formulation with classical federated learning. In this setting, the problem is
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Table 1: Summary of theoretical results for PEARL-SGD. Theorem 3.3 considers the full-batch
(deterministic) scenario. Theorem 3.4 and Theorem 3.6 both considers the general stochastic case.
These results differ in the step-size choice; the former uses a constant step-size, while the latter
uses decreasing step-sizes. In the Convergence column, “Linear” and “Sublinear” indicates the
convergence rate, “Exact” refers to convergence to an equilibrium, and “Neighborhood” refers to
convergence to a neighborhood of an equilibrium.

Theorem Setting Step-size Convergence

Theorem 3.3 Deterministic Constant Linear+Exact

Theorem 3.4 Stochastic Constant Linear+Neighborhood

Theorem 3.6 Stochastic Decreasing Sublinear+Exact

an n-player game in which multiple players/clients (e.g., mobile devices or whole organizations)
communicate with each other via a central server (e.g., service provider) to reach an equilibrium.
That is, reach a set of strategies—one for each player—such that no player can unilaterally deviate
from their strategy to achieve a better payoff, given the strategies chosen by all other players.

In classical n-player games, communication between players was assumed to be cheap, easy, and
straightforward, mainly because all players were in close proximity and had direct access to one
another. This assumption made communication an insignificant concern in typical game theory
analysis. However, with the advent of new large-scale machine learning applications, this is no
longer the case. Nowadays, communication between players can be expensive and challenging,
especially in distributed systems where the clients/players are geographically dispersed or operate
under communication constraints. Addressing communication costs and designing communication-
efficient algorithms for n-player games have become increasingly important, and this is precisely
the challenge that Multiplayer Federated Learning aims to address.

Figure 1: Illustration of MpFL for
heterogeneous functions fi. The goal
is for each player to reach the equilib-
rium (x1

⋆, . . . , x
n
⋆ ) (see (1)) with as lit-

tle communication as possible.

Multiplayer games, where multiple players each minimize
their own cost function that is affected by the actions of the
others, are a long-studied, fundamental topic in mathematics
and economics. (Nash Jr, 1950; Nash, 1951; Shapley, 1953;
Schelling, 1980; Kreps et al., 1982; Harsanyi & Selten, 1988;
Luce & Raiffa, 1989; Kreps, 1990; Von Neumann & Morgen-
stern, 2007). More recently, there has been increasing interest
of the ML community in game-theoretic problems with moti-
vating applications, including adversarial learning (Goodfel-
low et al., 2014; Daskalakis et al., 2018), multi-agent rein-
forcement learning (MARL) (Lanctot et al., 2017; Li et al.,
2022; Sokota et al., 2023), and language models (Gemp et al.,
2024; Jacob et al., 2024).

Equilibrium in n-player game. Let xi ∈ Rdi denote the action of player i ∈ [n] and let x =
(x1, . . . , xn) ∈ RD = Rd1+···+dn be the joint action/strategy. Let fi(x1, . . . , xn) : Rd1+···+dn →
R be the function of player i and let x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ RD−di be the vector of
all players’ actions except that of player i. With this notation in place, the goal of the n-player game
is to find an equilibrium x⋆ = (x1

⋆, . . . , x
n
⋆ ) ∈ RD satisfying fi(x

i
⋆;x

−i
⋆ ) ≤ fi(x

i;x−i
⋆ ) for each

xi ∈ Rdi , i = 1, . . . , n, where fi(x
i;x−i) = fi(x

1, . . . , xn).

MpFL: Multiplayer game in FL environment. In the setting of interest of this paper, we focus
on an n-player game in which multiple players/clients (e.g., mobile devices or whole organizations)
communicate via a central server (e.g., service provider) to reach an equilibrium. In this setting, the
classical clients of the federated learning environment are players of the n-player game, and each of
them represents a client to the system (see Figure 1). Mathematically, the problem is formulated as

find
x⋆=(x1

⋆,...,x
n
⋆ )

fi(x
i
⋆;x

−i
⋆ ) ≤ fi(x

i;x−i
⋆ ), ∀xi ∈ Rdi , for i ∈ [n],

where fi(x
1, . . . , xn) = Eξi∼Di

[
fi,ξi(x

1, . . . , xn)
]
.

(1)
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Here Di denotes the data distribution of the i-th player, fi,ξi is the loss of the i-th player for a data
point ξi sampled fromDi. In the FL environment, each client/player uses the strategies of all players
to execute local updates and by keeping the other strategies fixed, and update their own value which
later share with the master server that concatenates all new strategies and send them back to all
players. Similar to the classical FL regime, our setting focuses on heterogeneous data (non-i.i.d) as
we do not make any restrictive assumption on the data distribution Di or the similarity between the
functions of the players.

Assumptions of multiplayer game. Let us now present the main assumptions on the functions
of the multiplayer game, which we later use to provide the convergence analysis for the proposed
Per-Player Local SGD. Here, we denote the gradient of fi (function of player i ∈ [n]) with respect
to xi by: ∇xifi(x

1, . . . , xn) = ∇fi(xi;x−i). This convention allows us to remove the cumbersome
subscript xi from the∇ notation; we only differentiate fi with respect to xi but never with x−i.

In our work, we make two main assumptions on the functions fi of each player i ∈ [n]. We assume
that the function is convex and smooth.
Assumption 2.1 (Convex (CVX)). For i ∈ [n], for any x−i ∈ RD−di , the local function
fi(·;x−i) : Rdi → R is convex. That is, for any xi, yi ∈ Rdi and x−i ∈ RD−di ,

fi(y
i;x−i) ≥ fi(x

i;x−i) +
〈
∇fi(xi;x−i), yi − xi

〉
Assumption 2.2 (Smoothness (SM)). For i ∈ [n], for any x−i ∈ RD−di , the local function
fi(·;x−i) : Rdi → R is Li-smooth. That is, for any xi, yi ∈ Rdi and x−i ∈ RD−di ,∥∥∇fi(xi;x−i)−∇fi(yi;x−i)

∥∥ ≤ Li

∥∥xi − yi
∥∥ .

As we explained in the stochastic regime of MpFL we have fi(x
1, . . . , xn) =

Eξi∼Di

[
fi,ξi(x

1, . . . , xn)
]
. In that scenario, to have convergence guarantees for PEARL-

SGD, we need the following assumption of bounded variance. This is a common assumption
in stochastic optimization literature which guarantees that the variance of the stochastic gradient
oracle is bounded.
Assumption 2.3 (Bounded Variance (BV)). For each i = 1, . . . , n, we assume

Eξi∼Di

[∥∥∇fi,ξi(xi;x−i)−∇fi(xi;x−i)
∥∥2] ≤ σ2

i , ∀xi ∈ Rdi , x−i ∈ RD−di .

2.2 COMPARISON WITH CLOSELY RELATED FL FRAMEWORKS

Having presented the MpFL setting, let us now provide a short survey of related setups from classical
FL and federated minimax optimization and compare them with our proposed MpFL. Additional list
of related work is provided in Appendix A.

Federated learning. In its basic formulation, classical federated learning can be expressed as the
minimization of the objective function (Kairouz et al., 2021),

minimize
x∈Rd

f(x) = 1
n

∑n
i=1 fi(x) where fi(x) = Eξi∼Di

[Fi(x, ξ
i)].

Here, x ∈ Rd represents the parameter for the global model, fi denotes the local objective function
at client i, and Di denotes the data distribution of client i. The local loss functions Fi(x, ξ

i) are
often the same across all clients, but the local data distribution Di will often vary, capturing data
heterogeneity. The foundational communication-efficient algorithm for this setup is FedAvg (Local
SGD), proposed and massively popularized by McMahan et al. (2017a). Despite its simplicity, Local
SGD has shown empirical success in terms of convergence speed and communication frequency, and
many works have provided theoretical explanation for this performance (Stich, 2019; Dieuleveut &
Patel, 2019; Stich & Karimireddy, 2020; Khaled et al., 2020).

In these works, clients work in a fully cooperative manner to find x⋆ = argminx∈Rd f(x), unlike
our proposed MpFL where the clients who now serve as players of the game seek an equilibrium
among possibly competing (non-cooperative) objectives.
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Federated minimax optimization. Federated minimax optimization was more recently proposed
as a federated extension of minimax optimization problems, where the problem is formulated as:

minimize
x∈Rdx

maximize
y∈Rdy

L(x) = 1
n

∑n
i=1 Li(x, y) where Li(x, y) = Eξi∼Di

[ϕi(x, y, ξ)].

Here n is the number of clients, and Li(x, y) is the local loss function at client i that depends on
both x and y, defined as Li(x, y) = Eξi∼Di

[ϕi(x, y, ξ)]. Note that here each client has access to
the information of both players x and y. ϕi(x, y, ξ) denotes the loss for ξ, sampled from the local
data distribution Di at client i. Based on the properties of the model, the functions Li(x, y) can
be smooth/non-smooth, convex/non-convex with respect to player x, and concave/non-concave with
respect to player y. The extension of Local SGD to these problems are Local Stochastic Gradient
Descent-Ascent (SGDA) (Deng & Mahdavi, 2021; Sharma et al., 2022) or Local Stochastic Extra-
gradient (SEG) (Beznosikov et al., 2020; 2022). More recently there were also approaches using
primal-dual updates (Condat & Richtárik, 2022) and client-drift mitigation (Zhang et al., 2023).

While this line of work also studied federated learning in the context of (minimax) games, it is
totally different from MpFL. The setup assumes that each FL client has access to both players of the
minimax game, and they do not take the multiplayer aspect into account. In contrast, in MpFL, each
client is a player of a large-scale multiplayer game who only has access to their objective fi and its
gradient, and only updates their action xi. We design the novel PEARL-SGD algorithm, suitable
for the MpFL setting, a task not possible using the existing Local SGDA and Local SEG methods.

3 PEARL-SGD: ALGORITHM AND CONVERGENCE GUARANTEES

In this section, we introduce and analyze Algorithm 1, named Per-Player Local SGD (PEARL-
SGD), which is suitable for the MpFL setting we described in Section 2.

PEARL-SGD works by having the clients/players of the game run SGD independently in parallel
for updating their strategy (keeping the strategies x−i of the other players fixed) and communicates
the strategies of players only once in a while (via a central server). In more detail, in every round of
PEARL-SGD, each player i ∈ [n] runs τ iterations of SGD with respect to fi(·, x−i), with x−i fixed
to the information of the other players’ actions obtained from the previous synchronization. Once
each player completes τ SGD iterations (local updates), the server collects actions of all players,
and distributes the concatenation of all updated strategies to all players (synchronization step).

Note that the synchronization step involves transferring D = (d1 + · · · + dn)-dimensional vector
(different from communication from classical FL where the dimension does not scale with n). This
is a significant computational overhead, and it is required at every iteration for the non-local version
of PEARL-SGD. We aim to reduce this overhead by communicating less frequently (with τ > 1).

We emphasize that PEARL-SGD and its convergence hold without any assumption on players’ data
distributionsDi, i.e., fi’s can be very different among players and the setting is fully heterogeneous.

Algorithm 1 Per-Player Local SGD (PEARL-SGD)
Input: Step-sizes γk > 0, Synchronization interval τ ≥ 1, Number of rounds R ≥ 1
Output: xτR ∈ RD

for p = 0, . . . , R− 1 do
Master server collects and distributes xτp = (x1

τp, . . . , x
n
τp) to players i = 1, . . . , n

for k = τp, . . . , τ(p+ 1)− 1 do
for i = 1, . . . , n do

Draw ξik ∼ Di

gik ← ∇fi,ξik(x
i
k;x

−i
τp)

xi
k+1 ← xi

k − γkg
i
k

end for
end for

end for

Assumptions on the joint gradient operator. We require some definitions and additional as-
sumptions in order to carry out the theory. Define the joint gradient operator 𝔽 : RD → RD as

𝔽(x) =
(
∇f1(x1;x−1), . . . ,∇fn(xn;x−n)

)
.

5
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Assumption 3.1 (Quasi-strong monotonicity (QSM)). There exists a unique equilibrium x⋆ =
(x1

⋆, . . . , x
n
⋆ ) ∈ RD, for which 𝔽(x⋆) = 0, and µ > 0 such that for any x ∈ RD,

⟨𝔽(x),x− x⋆⟩ ≥ µ ∥x− x⋆∥2.

(QSM) is a concept extending the quasi-strong convexity (Gower et al., 2019) to the context of vari-
ational inequality problems (VIPs). This condition has been called with several different names in
the literature, such as strong coherent VIPs (Song et al., 2020), VIPs with strong stability con-
dition (Mertikopoulos & Zhou, 2019), or the strong Minty variational inequality (Diakonikolas
et al., 2021). It is more general than strong monotonicity, and captures several non-monotone
problems. Loizou et al. (2021) proposed this assumption for the analysis of SGDA, ensuring the
convergence of SGDA dynamics in minimax games without the well-known issues of cycling or
diverging (Mescheder et al., 2017; Daskalakis et al., 2018). Later, this also appeared in the study of
Stochastic Extragradient (Gorbunov et al., 2022) and Stochastic Past Extragradient methods as well
(Choudhury et al., 2024).

Assumption 3.2 (Star-cocoercivity (SCO)). 𝔽 is 1
ℓ -star-cocoercive, i.e., there is ℓ > 0 such that

for any x ∈ RD, ⟨𝔽(x),x− x⋆⟩ ≥ 1
ℓ ∥𝔽(x)∥

2.

Star-cocoercivity generalizes the class of coercive operators and, interestingly, can hold for non-
Lipschitz operators (Loizou et al., 2021). This has also been taken as minimal assumption for SGDA
analysis in prior work (Beznosikov et al., 2023).

Note that (QSM) and (SCO) together imply µ ∥x− x⋆∥ ≤ ∥𝔽(x)∥ ≤ ℓ ∥x− x⋆∥ for any x ∈ RD,
which implies µ ≤ ℓ. We call κ = ℓ/µ ≥ 1 the condition number of the problem.

3.1 CONVERGENCE OF PEARL-SGD: DETERMINISTIC SETUP

First, we provide the convergence result for PEARL-SGD with constant step-size γk ≡ γ in the
full-batch (deterministic) scenario, where there is no noise in the gradient computation. While this
is recovered as a special case of Theorem 3.4, we state it separately because the deterministic case
provides several points of discussion which worth emphasis on their own.

Theorem 3.3. Assume (CVX), (SM), (QSM) and (SCO), and let Lmax = max{L1, . . . , Ln}. Let
0 < γk ≡ γ ≤ 1

ℓτ+2(τ−1)Lmax
√
κ

, and κ = ℓ/µ is the condition number. Then the Deterministic
PEARL-SGD (Algorithm 1 with full-batch) converges with the rate

∥xτR − x⋆∥2 ≤ (1− γτµζ)
R ∥x0 − x⋆∥2

where ζ = 2− γℓτ − 2(τ − 1)γLmax

√
κ/3 > 0 (by the choice of γ).

Theorem 3.3 shows that deterministic PEARL-SGD converges linearly to an equilibrium. This
distinguishes our result from the analyses of local gradient descent for finite sum minimization in
heterogeneous data setups, where one has convergence to a neighborhood of optimum even when
there is no noise (Khaled et al., 2020), unless further correction mechanism is used (Mishchenko
et al., 2022). In addition, let us note that when τ = 1, the step-size constraint and the convergence
rate of Theorem 3.3 coincide with those from the analysis of the gradient descent-ascent (GDA)
under (QSM) and (SCO) assumptions of (Loizou et al., 2021) showing the tightness of our analysis.

Player drift and step-size constraint. If γ does not appropriately scale down with τ , then at
each round, players’ actions (SGD iterates) converge to minimizers of local functions. Generally,
this causes PEARL-SGD to quickly diverge away from the equilibrium. We call this phenomenon
player drift, analogous to client drift of classical FL, enforcing the O(1/τ) step-size.

3.2 CONVERGENCE OF PEARL-SGD: STOCHASTIC SETUP

We now discuss the convergence of PEARL-SGD with stochastic gradients. We first present the
convergence of PEARL-SGD to a neighborhood of an equilibrium x⋆ given constant step-sizes
γk ≡ γ, and then discuss the communication complexity gain we achieve. Then we present the
convergence result using a decreasing step-size selection, showing sublinear convergence to the

6
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exact equilibrium x⋆ rather than its neighborhood. While we defer the details of the proofs to
Appendix B, we provide a proof outline for Theorem 3.4 in Section 3.3.

Theorem 3.4. Assume (CVX), (SM), (BV), (QSM) and (SCO) hold. Let 0 < γk ≡ γ ≤
1

ℓτ+2(τ−1)Lmax
√
κ

and denote q = Lmax/
√
ℓµ. Then PEARL-SGD exhibits the rate:

E
[
∥xτR − x⋆∥2

]
≤ (1− γτµζ)

R ∥x0 − x⋆∥2 +
(
1 + (τ − 1)

(
(4 +

√
3q)γτLmax +

q

2τ

)) γσ2

µζ
.

where σ2 =
∑n

i=1 σ
2
i and ζ = 2− γℓτ − 2(τ − 1)γLmax

√
κ/3 > 0 by the choice of γ.

When τ = 1, with γ ≤ 1/ℓ, the above rate becomes E
[
∥xR − x⋆∥2

]
≤ (1 − γµ)R ∥x0 − x⋆∥2 +

γσ2
/µ, which is consistent with the usual analysis of the SGDA. Note that σ2 is the sum of playerwise

variances σ2
i ≥ Eξi∼Di

[∥∥∇fi,ξi(xi;x−i)−∇fi(xi;x−i)
∥∥2], which represents the upper bound on

the variance in estimating the joint gradient operator 𝔽(·).
Based on Theorem 3.4, we show the convergence rate in terms of the total number of SGD iterations
per player, T = τR, and discuss the communication complexity of PEARL-SGD.

Corollary 3.5. Under the assumptions of Theorem 3.4, let q = Lmax/
√
ℓµ, γ = 1

µη(1+2q) and
T = τR = 2 (1 + 2q) η log η, where η > κτ is chosen so that T is a multiple of τ . Then

E
[
∥xT − x⋆∥2

]
= Õ

(
(1 + q)2 ∥x0 − x⋆∥2

T 2
+

(1 + q)σ2

µ2T
+

(1 + q) τ2Lmaxσ
2

µ3T 2

)

where Õ-notation drops polylogarithmic factors in T .

Optimal τ and communication complexity. In Corollary 3.5, the Õ
(
(1+q)2∥x0−x⋆∥2

/T 2
)

term
decays fast (as T grows) and the terms proportional to σ2 become dominant. The order of
convergence is no slower than the near-optimal Õ (1/T) rate, provided that τ2Lmaxσ

2
/µ3T 2 =

O
(
σ2
/µ2T

)
⇐⇒ τ = O

(√
µT/Lmax

)
. Up to this factor we can gain theoretical improvement

in the communication cost compared to fully communicating case τ = 1 (provided that T is suffi-
ciently large), and the resulting communication complexity is T/τ = Θ

(√
TLmax/µ

)
= Θ

(√
T
)

.

Convergence to equilibrium via decreasing step-sizes. We conclude the section with conver-
gence result for PEARL-SGD using a decreasing step-size selection. While showing a similar
convergence rate in terms of T as in Corollary 3.5, Theorem 3.6 has the advantage of not requiring
to fix T in advance to determine the step-sizes.

Theorem 3.6. Under the assumptions of Theorem 3.4, let q = Lmax/
√
ℓµ, and choose the step-

sizes γk =

{
1

ℓτ(1+2q) if p < 2(1 + 2q)κ
1
τµ

2p+1
(p+1)2 if p ≥ 2(1 + 2q)κ

for τp ≤ k ≤ τ(p+ 1)− 1, p = 0, . . . , R− 1. Then

PEARL-SGD converges with the rate

E
[
∥xT − x⋆∥2

]
≤ 4(1 + 2q)2κ2τ2 ∥x0 − x⋆∥2

eT 2
+

4(1 + q)σ2

µ2T

+
4(1 + 2q)2κτσ2

µ2T 2

(
1 +

2τ√
κ

)
+

32(1 + q)τ2Lmaxσ
2 log T

µ3T 2

where T = τR is the total number of iterations.

3.3 PROOF OUTLINE

In this section, we provide a proof outline for Theorem 3.4. The key components of the proof are
as follows: (i) a round of local SGD in PEARL-SGD behaves like a large single descent step with

7
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respect to the joint gradient operator 𝔽 except for local error terms caused by running multiple SGD
steps locally (Lemma 3.7), and (ii) we bound these local error terms (Lemma 3.8).

Lemma 3.7. Assume (SM), and let Lmax = max{L1, . . . , Ln}. Let 0 ≤ p ≤ R − 1 be a fixed
round index in PEARL-SGD and suppose γk ≡ γ > 0 for k = τp, . . . , τ(p + 1) − 1. Then for
arbitrary α > 0, we have

E
[∥∥xτ(p+1) − x⋆

∥∥2 ∣∣∣xτp

]
≤ (1 + (τ − 1)αγ) ∥xτp − x⋆∥2 − 2γτ ⟨𝔽(xτp),xτp − x⋆⟩

+
γL2

max

α

τp+τ−1∑
j=τp+1

E
[
∥xτp − xj∥2

∣∣∣xτp

]
+ E

[
∥xτp − xk∥2

∣∣∣xτp

]
.

Local error bound. Lemma 3.7 shows that we need to bound the quantity

E
[
∥xτp − xk∥2

∣∣∣xτp

]
=

n∑
i=1

E
[∥∥xi

τp − xi
k

∥∥2 ∣∣∣xτp

]
(2)

for k = τp+ 1, . . . , τ(p+ 1). This is achieved by the following result.

Lemma 3.8. Suppose Assumptions (CVX), (SM) and (BV) hold. For a fixed i ∈ [n] and a fixed
communication round p in PEARL-SGD, suppose γk ≡ γ for k = τp, . . . , τ(p + 1) − 1, where
0 < γ ≤ 1

Li
min

{
1, 1

τ−1

}
. Then for t = 0, . . . , τ ,

E
[∥∥xi

τp − xi
τp+t

∥∥2 ∣∣∣xτp

]
≤ γ2t2

∥∥∇f(xi
τp;x

−i
τp)
∥∥2 + γ2t (1 + 2(t− 1)(t+ 1)γLi)σ

2
i .

Here we sketch the proof of Lemma 3.8 and clarify the role of Assumption (CVX). By assuming that
each fi(·;x−i

τp) is convex and Li-smooth, we can prove Lemma 3.9, showing that the expectation
of squared gradient norm is “almost” nonincreasing along the local SGD steps, except for some
additional term due to stochasticity. Then, we rewrite each summand in (2) as

E
[∥∥xi

τp − xi
k

∥∥2 ∣∣∣xτp

]
= E

γ2

∥∥∥∥∥∥
k−1∑
j=τp

gij

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣xτp

 = E

γ2

∥∥∥∥∥∥
k−1∑
j=τp

∇fi,ξij (x
i
j ;x

−i
τp)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣xτp

 (3)

and use Lemma 3.9 to bound (3).

Lemma 3.9. Under the assumptions of Lemma 3.8, for j = τp+ 1, . . . , τ(p+ 1),

E
[∥∥∇fi(xi

j ;x
−i
τp)
∥∥2 ∣∣∣xτp

]
≤
∥∥∇fi(xi

τp;x
−i
τp)
∥∥2 + 2(j − τp)γLiσ

2
i .

Remark. Given (3), it is tempting to apply Jensen’s inequality to the rightmost quantity and then
apply Lemma 3.9. However, this results in a bound that is looser than our Lemma 3.8. We need
more careful arguments regarding the expectations, which we detail throughout Appendix B.

Proof outline for Theorem 3.4. We combine Lemmas 3.7 and 3.8, and then apply (SCO) to eliminate
the ∥𝔽(xτp)∥2 terms to obtain

E
[∥∥xτ(p+1) − x⋆

∥∥2 ∣∣∣xτp

]
≤ (1 + (τ − 1)αγ) ∥xτp − x⋆∥2 + (terms proportional to σ2)

−
(
2γτ − γ2τ2ℓ− γ3L2

maxτ
2(τ − 1)ℓ

3α

)
︸ ︷︷ ︸

:=C

⟨𝔽(xτp),xτp − x⋆⟩ (4)

Provided that C ≥ 0, we can upper bound the second line of (4) by−Cµ ∥xτp − x⋆∥2 using (QSM).

Then we choose α = γτLmax

√
ℓµ
3 which minimizes the resulting coefficient of ∥xτp − x⋆∥2, and

rewrite it in the form 1−γτµζ. Finally, take expectation over xτp in (4) and unroll the recursion.

8
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4 NUMERICAL EXPERIMENTS

In this section, we conduct experiments to assess the empirical performance of PEARL-SGD and
verify our theory. We show two setups: first, a minimax game (where n = 2) and second, a multi-
player game with n = 5 players. Details of the experiments are provided in Appendix C.

4.1 QUADRATIC MINIMAX GAME

Consider the minimax game minu∈Rd maxv∈Rd L (u, v) = 1
M

∑M
m=1 Lm (u, v) where Lm (u, v) is

as below (Am,Bm,Cm are matrices and am, cm are vectors). In this two-player zero-sum game,
we have n = 2 with f1(x

1;x2) = L(x1, x2) and f2(x
2;x1) = −L(x1, x2).

Lm (u, v) := 1
2 ⟨u,Amu⟩+ ⟨u,Bmv⟩ − 1

2 ⟨v,Cmv⟩+ ⟨am, u⟩ − ⟨cm, v⟩ .

PEARL-SGD with tuned step-size. In this experiment, we demonstrate the empirical perfor-
mance of PEARL-SGD with varying values of τ . For each τ ∈ {1, 2, 4, 5, 8, 20}, we tune γ
by running PEARL-SGD with each γ ∈ {10−1, 10−2, . . . , 10−6}, and plot the best relative error
∥xτp−x⋆∥2

/∥x0−x⋆∥2 (y-axis) versus the communication round index p (x-axis).

Figure 2a presents results from Deterministic PEARL-SGD. We observe that performance improves
as τ is increased from 1 to 5, and then degrades. Figure 2b presents results under stochasticity,
imposed by mini-batching from the finite sum. We repeat each experiment 5 times and plot the
mean relative error with standard deviation (shaded region). Here we observe the lowest relative
errors with large values of τ , demonstrating the advantage of larger synchronization intervals in
PEARL-SGD given stochastic gradients.
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Figure 2: Performance of PEARL-SGD on quadratic minimax game, with different τ . Figures 2a
(deterministic) and 2b (stochastic) show the performance of PEARL-SGD with empirically tuned
step-sizes, and Figures 2c (deterministic) and 2d (stochastic) show the performance with tight theo-
retical step-sizes.

PEARL-SGD with theoretical step-size. Figures 2c and 2d demonstrates the performance of
PEARL-SGD using the theoretical step-size γ = 1/(ℓτ+2(τ−1)Lmax

√
κ) from Theorems 3.3 and

3.4 with τ ∈ {1, 2, 4, 5, 8, 20}. Figure 2c shows results from Deterministic PEARL-SGD, and
Figure 2d shows the stochastic case. In the deterministic case, as γ scales down with τ , we observe
similar linear convergence pattern for all values of τ . On the other hand, in the stochastic case,
we observe clear benefit of using larger τ ; it reaches smaller relative error within same number of
communication rounds. This is consistent with Corollary 3.5, predicting reduced communication
cost in the stochastic case.
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Figure 3: Heatmap of log(Relative Errors).

Performance of PEARL-SGD for different (γ, τ)
pairs. Figure 3 displays the heatmap of relative errors
(log-scale) after 100 communication rounds of Deter-
ministic PEARL-SGD on a quadratic minimax game.
White and yellow regions indicate divergence/poor per-
formance; darker regions indicate lower relative errors.

Figure 3 reveals a trend: for a fixed γ, PEARL-SGD’s
performance improves as τ increases up to certain thresh-
old, after which it declines and finally diverges. Another
key observation is that the dark region of the heatmap
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(signifying the best performance) takes the shape of a hyperbola. This is consistent with our The-
orem 3.3, showing the relationship γτ ∝ 1/τ where γτ is the optimal step-size choice given τ
(providing fastest convergence).

4.2 n-PLAYER GAME

In this section, we analyze an n-player game where the local function for the i-th player is given by:

minxi∈Rd fi(x
i;x−i) := 1

M

∑M
m=1 fi,m(xi;x−i), (5)

for i = 1, . . . , n (with d1 = · · · = dn = d). Each fi,m takes the form:

fi,m(xi;x−i) = 1
2 ⟨x

i,Ai,mxi⟩+
∑

1≤j≤n,j ̸=i⟨xi,Bi,j,mxj⟩+ ⟨ai,m, xi⟩,

where Ai,m,Bi,j,m ∈ Rd×d and ai,m ∈ Rd for m = 1, . . . ,M . We set the number of players to
n = 5 for the subsequent experiments.
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Figure 4: Performance of PEARL-SGD on the n-player game defined by (5), with different τ . Fig-
ures 4a (deterministic) and 4b (stochastic) show the performance of PEARL-SGD with empirically
tuned step-sizes, and Figures 4c (deterministic) and 4d (stochastic) show the performance with tight
theoretical step-sizes.

PEARL-SGD with tuned step-size. In this experiment we use tuned step-size for each choice of
synchronization interval τ ∈ {1, 2, 4, 5, 8, 20}. We use the same γ-grid

{
10−1, 10−2, · · · , 10−6

}
as in Section 4.1 and proceed similarly. Figure 4a shows that the choices τ = 2 and τ = 20
outperform the fully communicating case τ = 1 with step-size tuning. Figure 4b shows results from
the stochastic setting, indicating that using larger values of τ could lead to higher accuracy levels,
as in Section 4.1.

PEARL-SGD with theoretical step-size. Again, we run PEARL-SGD with the theoretical step-
size γ = 1/(ℓτ+2(τ−1)Lmax

√
κ) of Theorems 3.3 and 3.4, for τ ∈ {1, 2, 4, 5, 8, 20}. We set the

cocoercivity parameter to ℓ = L2
/µ according to Facchinei & Pang (2003), where L and µ are

explicitly computed Lipschitz constant and strong monotonicity parameters of 𝔽. Figure 4c displays
the results from Deterministic PEARL-SGD and similarly as in Section 4.1, we observe that all
values of τ produce indistinguishable performance plots. On the other hand, Figure 4d demonstrates
that in the general stochastic setting, PEARL-SGD with larger synchronization interval τ provides
a clear benefit of achieving smaller relative error using the same number of communication rounds.

5 CONCLUSION

In this paper, we introduce Multiplayer Federated Learning (MpFL), a FL framework under setups
where clients, strategically acting in their own interests, collaborate through a central server to train
models (actions) with the goal of reaching an equilibrium. We propose the PEARL-SGD algorithm
handling MpFL, and provide its tight convergence guarantees under heterogeneous setups where
each player has distinct objectives and data distributions. We show that PEARL-SGD provides
improved communication complexity, reducing the primary overhead in large-scale applications.

Our work offers a number of potential extensions by incorporating the ideas such as Extragradient
(Korpelevich, 1976), asynchronous updates (Dean et al., 2012; Stich, 2019), gradient compression
(Alistarh et al., 2017), gradient tracking (Nedic et al., 2017) and algorithmic correction for drifts
(Karimireddy et al., 2020; Mishchenko et al., 2022). We anticipate that our initiation of the study of
MpFL will lead to interesting future work including but not limited to these topics.
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Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and Peter Richtarik. Lower bounds and optimal
algorithms for personalized federated learning. Neural Information Processing Systems, 2020.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
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Supplementary Material
We organize the Supplementary Material as follows: Section A provides an additional survey of
related work. Section B presents the proofs of theoretical results omitted from the main text. Sec-
tion C provides the details of the experiments omitted from the main paper. Section D provides
an additional experiment on application involving the control of mobile robots. Section E provides
detailed explanation and interpretation on the theoretical assumptions made in the paper.
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A ADDITIONAL RELATED WORK AND DISCUSSION

Heterogeneity and client drift. One fundamental challenge for theory of Local SGD (FedAvg)
is heterogeneity, i.e., varying fi’s due to differences in local data distributions (Konečný et al.,
2016; Li et al., 2020b). Under such setup, Local SGD is prone to client drift (Zhao et al., 2018;
Karimireddy et al., 2020) where local descent trajectories head toward distinct minima (of local
objectives), and convergence theories require either additional assumptions (Wang et al., 2019; Yu
et al., 2019; Haddadpour & Mahdavi, 2019; Li et al., 2020b) or technical analyses (Khaled et al.,
2020; Koloskova et al., 2020) to control this drift. Some papers, based on theoretical insights,
introduced/analyzed correction mechanisms for Local SGD to mitigate client drift (Karimireddy
et al., 2020; Gorbunov et al., 2021; Mitra et al., 2021; Mishchenko et al., 2022; Hu & Huang, 2023;
Grudzień et al., 2023). We note that the n-player game setup of MpFL is also fully heterogeneous as
each player has distinct (possibly even conflicting) objective functions, and consequently, we have
the analogous concept of player drift.

Client drift vs. Player drift. Two two concepts of drifts are seemingly similar, but they are distinct
concepts. Here we highlight the key differences between them. The client drift occurs in the classical
FL (minimization) setup

min
x∈Rd

1

n

n∑
i=1

fi(x),

and indicates the phenomenon where each client i converges to xi
⋆ = argminx∈Rd fi(x) (if exces-

sive number of local steps are performed using large step-sizes). Usually, this leads Local SGD to
converge to the mean of xi

⋆’s, instead of x⋆ = argminx∈Rd f(x) (so the problem is the convergence
to a biased—incorrect—solution). On the other hand, player drift occurs in the MpFL setup, and
indicates each client i converging to xi

⋆(x
−i
τp) := argminxi∈Rdi fi(x

i;x−i
τp) (in the extreme case).

Note that there is a dependency on x−i
τp , the strategy of other players. This could lead PEARL-SGD

dynamics to even diverge away to the infinity, which can be checked with simple examples, e.g., a
two-player quadratic minimax game minu∈R maxv∈R

µ
2u

2 + uv − µ
2 v

2 with µ < 1.

In short, there are three notable conceptual differences: 1) the setup in which they occur, 2) depen-
dency of undesirable local solutions on other players’ iterates, and 3) dynamics of the algorithm
(incorrect convergence vs. divergence).

FL frameworks with individual models. There are several distinct contexts for FL frameworks
where each client learns an individual model. In Personalized FL (Fallah et al., 2020; T. Dinh et al.,
2020; Hanzely et al., 2020; Hanzely & Richtárik, 2020; Deng et al., 2020; Tan et al., 2023), clients
aim to learn models tailored to each local distributions, while benefiting from collaborative learning.
In Vertical FL (Yang et al., 2019; Liu et al., 2022; 2024) scenarios, multiple organizations hold dis-
tinct features from the common set of samples and they collaborate to train their each local model.
In Federated Transfer Learning (Sharma et al., 2019; Liu et al., 2020b; Feng et al., 2022), the par-
ticipating organizations similarly keep and train local models, but their datasets have heterogeneity
over both sample and feature spaces with limited overlaps. Federated Multi-Task Learning (Smith
et al., 2017; Marfoq et al., 2021; Mills et al., 2021) extends FL to cases where each client solves
different, but related tasks.

Distributed coordinate descent methods. In the “homogeneous” case of MpFL, where all play-
ers share the same objective f , our PEARL-SGD seems related to distributed coordinate descent
methods (Richtárik & Takáč, 2016), where coordinates of the optimization variable are partitioned
and distributed to multiple computers, working in parallel to minimize f . However, the main mo-
tivation of coordinate descent is to gain speedup via parallelization of gradient computation over
nodes, and hence they focus on how the number of workers or the number of random coordinates
chosen per iteration affects the convergence rate. On the other hand, PEARL-SGD aims to reduce
the cost of communication among players, and we focus on how large τ (the communication period)
can become without compromising the convergence rate.
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B OMITTED PROOFS FOR PER-PLAYER LOCAL SGD (PEARL-SGD)

B.1 PROOF OF LEMMA 3.7

For k = τp+ 1, . . . , τ(p+ 1), we have

∥xk − x⋆∥2 =

n∑
i=1

∥∥xi
k − xi

⋆

∥∥2
=

n∑
i=1

∥∥xi
k − xi

⋆ −
(
xi
τp − xi

k

)∥∥2
=

n∑
i=1

[∥∥xi
τp − xi

⋆

∥∥2 − 2
〈
xi
τp − xi

⋆, x
i
τp − xi

k

〉
+
∥∥xi

τp − xi
k

∥∥2]
= ∥xτp − x⋆∥2 − 2γ

n∑
i=1

k−1∑
j=τp

〈
xi
τp − xi

⋆, g
i
j

〉
+

n∑
i=1

∥∥xi
τp − xi

k

∥∥2 , (6)

where
gij = ∇fi,ξij (x

i
j ;x

−i
τp)

for j = τp, . . . , k − 1 and i = 1, . . . , n. Note that we have
Eξiτp

[
−
〈
xi
τp − xi

⋆, g
i
τp

〉 ∣∣xτp

]
= −

〈
xi
τp − xi

⋆,∇fi(xi
τp;x

−i
τp)
〉
,

while for the other indices j = τp+ 1, . . . , k − 1, we have the upper bound
Eξij

[
−
〈
xi
τp − xi

⋆, g
i
j

〉 ∣∣xi
j

]
= −

〈
xi
τp − xi

⋆,∇fi(xi
j ;x

−i
τp)
〉

= −
〈
xi
τp − xi

⋆,∇fi(xi
τp;x

−i
τp)
〉
+
〈
xi
τp − xi

⋆,∇fi(xi
τp;x

−i
τp)−∇fi(xi

j ;x
−i
τp)
〉

≤ −
〈
xi
τp − xi

⋆,∇fi(xi
τp;x

−i
τp)
〉
+

α

2

∥∥xi
τp − xi

⋆

∥∥2 + 1

2α

∥∥∇fi(xi
τp;x

−i
τp)−∇fi(xi

j ;x
−i
τp)
∥∥2

≤ −
〈
xi
τp − xi

⋆,∇fi(xi
τp;x

−i
τp)
〉
+

α

2

∥∥xi
τp − xi

⋆

∥∥2 + L2
i

2α

∥∥xi
τp − xi

j

∥∥2
where in the fourth line, we use Young’s inequality with an arbitrary α > 0 that we determine later.
Take expectations of the both sides in (6) (conditioned on xτp), and apply the above bound with the
tower rule to obtain
E
[
∥xk − x⋆∥2

∣∣∣xτp

]
≤ ∥xτp − x⋆∥2 − 2γ

n∑
i=1

k−1∑
j=τp

〈
xi
τp − xi

⋆,∇fi(xi
τp;x

−i
τp)
〉
+ 2γ

n∑
i=1

k−1∑
j=τp+1

α

2

∥∥xi
τp − xi

⋆

∥∥2
+ 2γ

n∑
i=1

k−1∑
j=τp+1

E

[
L2
i

2α

∥∥xi
τp − xi

j

∥∥2 ∣∣∣∣xτp

]
+

n∑
i=1

E
[∥∥xi

τp − xi
k

∥∥2 ∣∣∣xτp

]
.

(7)

Now we apply the identities
n∑

i=1

〈
xi
τp − xi

⋆,∇fi(xi
τp;x

−i
τp)
〉
= ⟨xτp − x⋆,𝔽(xτp)⟩ ,

n∑
i=1

∥∥xi
τp − xi

⋆

∥∥2 = ∥xτp − x⋆∥2

n∑
i=1

E
[∥∥xi

τp − xi
k

∥∥2 ∣∣∣xτp

]
= E

[
∥xτp − xk∥2

∣∣∣xτp

]
and the inequality

n∑
i=1

k−1∑
j=τp+1

E

[
L2
i

2α

∥∥xi
τp − xi

j

∥∥2 ∣∣∣∣xτp

]
≤ L2

max

2α

k−1∑
j=τp+1

n∑
i=1

E
[∥∥xi

τp − xi
j

∥∥2 ∣∣∣xτp

]

=
L2
max

2α

k−1∑
j=τp+1

E
[
∥xτp − xj∥2

∣∣∣xτp

]
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to (7) and plug in k = τ(p+ 1), which gives the desired result.

B.2 SOME GENERAL ANALYSES OF SGD

In this section we present some general properties of stochastic gradient descent (SGD) for an L-
smooth, convex function f : Rm → R. Suppose that we have a stochastic oracle ∇fξ(·) for the
gradient operator∇f(·), satisfying

Eξ[∇fξ(x)] = ∇f(x), Eξ

[
∥∇fξ(x)−∇f(x)∥2

]
≤ ρ2, ∀x ∈ Rm. (8)

This setup and the subsequent results are the abstractions of intermediate results that we need for the
proofs of Lemma 3.9 and Lemma 3.8. Specifically, we will later use the results of this section with

f(·) = fi(·;x−i
τp), ρ2 = σ2

i ,

for each i = 1, . . . , n. We make this abstraction to simplify notations and to more effectively convey
the key intuitions underlying the analyses.

Lemma B.1. Let f : Rm → R be convex and L-smooth. Suppose that a stochastic gradient oracle
∇fξ(·) satisfies (8). Let y = x− γ∇fξ(x), where 0 < γ ≤ 2

L . Then we have

Eξ

[
∥∇f(y)∥2

]
≤ ∥∇f(x)∥2 + 2γLρ2.

Proof. It is well-known that if f is convex and L-smooth, then ∇f is 1
L -cocoercive, i.e., for any

x, y ∈ Rm,

⟨x− y,∇f(x)−∇f(y)⟩ ≥ 1

L
∥∇f(x)−∇f(y)∥2 .

By cocoercivity and the step-size condition γ ≤ 2
L , we have

γ

2
∥∇f(x)−∇f(y)∥2

≤ 1

L
∥∇f(x)−∇f(y)∥2

≤ ⟨x− y,∇f(x)−∇f(y)⟩
= ⟨γ∇fξ(x),∇f(x)−∇f(y)⟩
= γ (⟨∇fξ(x),∇f(x)⟩ − ⟨∇f(x),∇f(y)⟩+ ⟨∇f(x)−∇fξ(x),∇f(y)⟩) .

Taking expectation of the both sides, we obtain

Eξ

[γ
2
∥∇f(x)−∇f(y)∥2

]
≤ Eξ [γ ⟨∇fξ(x),∇f(x)⟩ − γ ⟨∇f(x),∇f(y)⟩+ γ ⟨∇f(x)−∇fξ(x),∇f(y)⟩]
= γ ∥∇f(x)∥2 − γEξ [⟨∇f(x),∇f(y)⟩] + γEξ [⟨∇f(x)−∇fξ(x),∇f(y)⟩] .

Cancelling out the terms and dividing both sides by γ
2 , we then have

Eξ

[
∥∇f(y)∥2

]
≤ ∥∇f(x)∥2 + 2Eξ [⟨∇f(x)−∇fξ(x),∇f(y)⟩] . (9)

Now observe that
Eξ [⟨∇f(x)−∇fξ(x),∇f(y)⟩] = Eξ [⟨∇f(x)−∇fξ(x),∇f(y)−∇f(x− γ∇f(x))⟩]

because∇f(x− γ∇f(x)) is a non-random quantity and Eξ[∇f(x)−∇fξ(x)] = 0. Then
Eξ [⟨∇f(x)−∇fξ(x),∇f(y)−∇f(x− γ∇f(x))⟩]
= Eξ [⟨∇f(x)−∇fξ(x),∇f(x− γ∇fξ(x))−∇f(x− γ∇f(x))⟩]
≤ Eξ [∥∇f(x)−∇fξ(x)∥ ∥∇f(x− γ∇fξ(x))−∇f(x− γ∇f(x))∥]
≤ Eξ [∥∇f(x)−∇fξ(x)∥L ∥(x− γ∇fξ(x))− (x− γ∇f(x))∥]

= γLEξ

[
∥∇f(x)−∇fξ(x)∥2

]
= γLρ2,

and plugging this into (9) completes the proof.
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Lemma B.2. Let f : Rm → R be convex and L-smooth and let the stochastic gradient oracle
∇fξ(·) satisfy (8). Let x0 ∈ Rm be any initial point, 0 < γ ≤ 2

L , and x1, . . . , xt be a sequence
generated by the stochastic gradient descent algorithm

xs+1 = xs − γ∇fξs(xs)

for s = 0, . . . , t− 1. Then we have

E
[
∥∇f(xs)∥2

]
≤ ∥∇f(x0)∥2 + 2sγLρ2

for s = 0, . . . , t− 1.

Proof. Apply Lemma B.1 recursively and use the tower rule (law of total expectation).

Lemma B.3. Let f : Rm → R be L-smooth and let x0, . . . , xt be a sequence generated by
stochastic gradient descent

xs+1 = xs − γ∇fξs(xs)

where the stochastic gradient oracle satisfies (8). Let x̂0, . . . , x̂t be generated via deterministic
gradient descent

x̂s+1 = x̂s − γ∇f(x̂s)

where x̂0 = x0. Then, provided that 0 < γ ≤ 1
L(t−1) , we have

∥xt − x̂t∥ ≤ 3γ

t−1∑
s=0

∥∇fξs(xs)−∇f(xs)∥ .

Remark. Note that this result only assumes L-smoothness of f (which is L-Lipschitz continuity
of∇f ) and does not require convexity.

Proof. When t = 1, we have ∥xt − x̂t∥ = γ ∥∇fξ0(x0)−∇f(x0)∥ as x0 = x̂0.

Now assume t > 1. Observe that

xt − x̂t = (xt−1 − x̂t−1)− γ
(
∇fξt−1

(xt−1)−∇f(x̂t−1)
)

= (xt−1 − x̂t−1)− γ
(
∇fξt−1(xt−1)−∇f(xt−1)

)
+ γ (∇f(xt−1)−∇f(x̂t−1))

and therefore,

∥xt − x̂t∥ ≤ ∥xt−1 − x̂t−1∥+ γ
∥∥∇fξt−1

(xt−1)−∇f(xt−1)
∥∥+ γ ∥∇f(xt−1)−∇f(x̂t−1)∥

≤ (1 + γL) ∥xt−1 − x̂t−1∥+ γ
∥∥∇fξt−1(xt−1)−∇f(xt−1)

∥∥
where the last inequality uses the L-smoothness assumption. Now unrolling the recursion and using
the fact ∥x0 − x̂0∥ = 0 we obtain

∥xt − x̂t∥ ≤
t−1∑
s=0

γ(1 + γL)t−s−1 ∥∇fξs(xs)−∇f(xs)∥

≤ γ

(
1 +

1

t− 1

)t−1 t−1∑
s=0

∥∇fξs(xs)−∇f(xs−1)∥

≤ 3γ

t−1∑
s=0

∥∇fξs(xs)−∇f(xs)∥ .
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Lemma B.4. Under the assumptions of Lemma B.3, we have

E [⟨∇fξ0(x0)−∇f(x0),∇f(xt)⟩] ≤ 3tγLρ2.

Proof. Observe that because x̂t as defined in Lemma B.3 is a non-random quantity and
E [∇fξ0(x0)−∇f(x0)] = 0, we have

E [⟨∇fξ0(x0)−∇f(x0),∇f(xt)⟩]
= E [⟨∇fξ0(x0)−∇f(x0),∇f(xt)−∇f(x̂t)⟩]
≤ E [∥∇fξ0(x0)−∇f(x0)∥ ∥∇f(xt)−∇f(x̂t)∥]
≤ E [∥∇fξ0(x0)−∇f(x0)∥L ∥xt − x̂t∥]

≤ 3γLE

[
∥∇fξ0(x0)−∇f(x0)∥

t−1∑
s=0

∥∇fξs(xs)−∇f(xs)∥

]

≤ 3γLE

[
t−1∑
s=0

(
∥∇fξ0(x0)−∇f(x0)∥2

2
+
∥∇fξs(xs)−∇f(xs)∥2

2

)]
≤ 3tγLρ2.

Lemma B.5. Under the assumptions of Lemma B.3, we have

E
[
∥x0 − xt∥2

]
≤ γ2E

∥∥∥∥∥
t−1∑
s=0

∇f(xs)

∥∥∥∥∥
2
+ γ2tρ2 + (t− 1)t(t+ 1)γ3Lρ2.

Proof. In the case t = 1, we have

E
[
∥x0 − x1∥2

]
= γ2Eξ0

[
∥∇fξ0(x0)∥2

]
≤ γ2ρ2 + γ2 ∥∇f(x0)∥2 ,

which is the desired statement. Now we use induction on t. Suppose that the result holds for any
initial point and t steps of SGD. Consider a sequence x0, . . . , xt+1 generated via SGD with initial
point x0 and step-size γ > 0. Observe that

E
[
∥x0 − xt+1∥2

]
= γ2E

∥∥∥∥∥
t∑

s=0

∇fξs(xs)

∥∥∥∥∥
2


= γ2E

∥∥∥∥∥
t−1∑
s=0

∇fξs(xs)

∥∥∥∥∥
2

+ Eξt

[
2

〈
∇fξt(xt),

t−1∑
s=0

∇fξs(xs)

〉
+ ∥∇fξt(xt)∥2

∣∣∣∣∣xt

]
≤ γ2E

∥∥∥∥∥
t−1∑
s=0

∇fξs(xs)

∥∥∥∥∥
2

+ 2

〈
∇f(xt),

t−1∑
s=0

∇fξs(xs)

〉
+ ∥∇f(xt)∥2 + ρ2

 (10)

where the third line uses the tower rule. Now observe that for s = 0, . . . , t− 1,

E [⟨∇f(xt),∇fξs(xs)⟩] = E [⟨∇f(xt),∇f(xs)⟩] + E [⟨∇f(xt),∇fξs(xs)−∇f(xs)⟩]
= E [⟨∇f(xt),∇f(xs)⟩] + E [E [⟨∇fξs(xs)−∇f(xs),∇f(xt)⟩ |xs]]

≤ E [⟨∇f(xt),∇f(xs)⟩] + 3(t− s)γLρ2
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where the last inequality uses Lemma B.4 (with xs regarded as initial point of the stochastic gradient
descent). Now we apply this inequality and the induction hypothesis to (10):

E
[
∥x0 − xt+1∥2

]
≤ γ2E

[∥∥∥∥∥
t−1∑
s=0

∇f(xs)

∥∥∥∥∥
2

+ tρ2 + (t− 1)t(t+ 1)γLρ2

+

t−1∑
s=0

(
2 ⟨∇f(xt),∇f(xs)⟩+ 6(t− s)γLρ2

)
+ ∥∇f(xt)∥2 + ρ2

]
= γ2

(
tρ2 + (t− 1)t(t+ 1)γLρ2 + 3t(t+ 1)γLρ2 + ρ2

)
+ γ2E

∥∥∥∥∥
t−1∑
s=0

∇f(xs)

∥∥∥∥∥
2

+ 2

〈
t−1∑
s=0

∇f(xs),∇f(xt)

〉
+ ∥∇f(xt)∥2


= γ2(t+ 1)ρ2 + t(t+ 1)(t+ 2)γ3Lρ2 + γ2Eξ0,...,ξt−1

∥∥∥∥∥
t∑

s=0

∇f(xs)

∥∥∥∥∥
2


where for the first equality we use
∑t−1

s=0 6(t− s) = 3t(t+ 1). This completes the induction.

Lemma B.6. Let f : Rm → R be convex and L-smooth, and let x0 ∈ Rm be any initial point.
Let x1, . . . , xt be generated by stochastic gradient descent

xs+1 = xs − γ∇fξs(xs)

with 0 < γ ≤ 1
L min

{
1, 1

t−1

}
. Then

E
[
∥x0 − xt∥2

]
≤ γ2t2 ∥∇f(x0)∥2 + γ2t(1 + 2(t− 1)(t+ 1)γL)ρ2.

Proof. Lemma B.5 gives

E
[
∥x0 − xt∥2

]
≤ γ2E

∥∥∥∥∥
t−1∑
s=0

∇f(xs)

∥∥∥∥∥
2
+ γ2tρ2 + (t− 1)t(t+ 1)γ3Lρ2. (11)

Next, by Jensen’s inequality and Lemma B.2,

E

∥∥∥∥∥
t−1∑
s=0

∇f(xs)

∥∥∥∥∥
2
 ≤ t

t−1∑
s=0

E
[
∥∇f(xs)∥2

]

≤ t

t−1∑
s=0

(
∥∇f(x0)∥2 + 2sγLρ2

)
≤ t2 ∥∇f(x0)∥2 + (t− 1)t(t+ 1)γLρ2

where the last inequality uses
∑t−1

s=0 2s = t(t− 1) ≤ (t− 1)(t+ 1). Applying the above inequality
to (11) we obtain the desired result.

B.3 PROOFS OF LEMMAS 3.9 AND 3.8

Proof of Lemma 3.9. Observe that given xτp, the sequence xi
τp, . . . , x

i
τ(p+1) is a sequence gener-

ated via stochastic gradient descent

xi
j+1 = xi

j − γ∇fi,ξij (x
i
j ;x

−i
τp)
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for the Li-smooth convex function fi(·;x−i
τp), with xi

τp as initial point, using the stochastic oracle
∇fi,ξi(·) satisfying (BV) (unbiased estimator of ∇f(·) with uniformly bounded variance ≤ σ2

i ).
Therefore, we can apply Lemma B.2 with

f(·) = fi(·;x−i
τp), ρ2 = σ2

i , x0 = xi
τp, xs = xi

j

and this immediately proves the desired statement. (Note that s is replaced with j − τp because xi
j

is obtained by j − τp steps of SGD from xi
τp.)

Proof of Lemma 3.8. This is a direct consequence of Lemma B.6 with same choice of f, ρ2, x0 as
in the proof of Lemma 3.9 and xt = xi

k.

B.4 REMAINING DETAILS IN PROOF OF THEOREM 3.4

Note that the step-size condition of Lemma 3.8 is satisfied by our step-size selection, as γ <
2

ℓτ+2(τ−1)Lmax
√
κ
≤ 1

Lmax(τ−1) (because κ ≥ 1). Now combine Lemmas 3.7 and 3.8 to obtain

E
[∥∥xτ(p+1) − x⋆

∥∥2 ∣∣∣xτp

]
≤ ∥xτp − x⋆∥2 − 2γτ ⟨xτp − x⋆,𝔽(xτp)⟩+ αγ(τ − 1) ∥xτp − x⋆∥2

+

τ(p+1)−1∑
j=τp+1

n∑
i=1

γL2
i

α

(
γ2(j − τp)2

∥∥∇f(xi
τp;x

−i
τp)
∥∥2 + γ2(j − τp) (1 + 2(j − τp− 1)(j − τp+ 1)γLi)σ

2
i

)
+

n∑
i=1

(
γ2(k − τp)2

∥∥∇f(xi
τp;x

−i
τp)
∥∥2 + γ2(k − τp) (1 + 2(k − τp− 1)(k − τp+ 1)γLi)σ

2
i

)
≤ (1 + αγ(τ − 1)) ∥xτp − x⋆∥2 − 2γτ ⟨xτp − x⋆,𝔽(xτp)⟩+

(
γ2τ2 +

γ3L2
maxτ

2(τ − 1)

3α

)
∥𝔽(xτp)∥2

+ γ2τ

(
1 + (τ − 1)γLmax

(
2(τ + 1) +

Lmax

2α
+

γL2
max

2α
(τ + 1)2

))
σ2

(12)

where for the last inequality, we replace all occurrences of Li’s by Lmax = max{L1, . . . , Ln} and
use the identities

σ2 =

n∑
i=1

σ2
i , ∥𝔽(xτp)∥2 =

n∑
i=1

∥∥∇fi(xi
τp;x

−i
τp)
∥∥2

to eliminate the summations
∑n

i=1 and use the following elementary summation results:

τ(p+1)−1∑
j=τp+1

(j − τp)2 =
(τ − 1)τ(2τ − 1)

6
≤ (τ − 1)τ2

3

τ(p+1)−1∑
j=τp+1

(j − τp) =
(τ − 1)τ

2

and

τ(p+1)−1∑
j=τp+1

(j − τp− 1)(j − τp)(j − τp+ 1) =
(τ − 2)(τ − 1)τ(τ + 1)

2
≤ (τ − 1)τ(τ + 1)2

2
.
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Now in (12), we use the Assumption (SCO) to bound

− 2γτ ⟨xτp − x⋆,𝔽(xτp)⟩+
(
γ2τ2 +

γ3L2
maxτ

2(τ − 1)

3α

)
∥𝔽(xτp)∥2

≤ −
(
2γτ − ℓ

(
γ2τ2 +

γ3L2
maxτ

2(τ − 1)

3α

))
⟨xτp − x⋆,𝔽(xτp)⟩

= −γτ
(
2− γℓτ − γ2ℓL2

maxτ(τ − 1)

3α

)
⟨xτp − x⋆,𝔽(xτp)⟩ . (13)

Provided that

2− γℓτ − γ2ℓL2
maxτ(τ − 1)

3α
≥ 0, (14)

we can again upper bound (13) using the Assumption (QSM):

− γτ

(
2− γℓτ − γ2ℓL2

maxτ(τ − 1)

3α

)
⟨xτp − x⋆,𝔽(xτp)⟩

≤ −γτ
(
2− γℓτ − γ2ℓL2

maxτ(τ − 1)

3α

)
µ ∥xτp − x⋆∥2 .

We plug this into (12) and rearrange the terms to obtain

E
[∥∥xτ(p+1) − x⋆

∥∥2 ∣∣∣xτp

]
≤
(
1 + αγ(τ − 1)− γτ

(
2− γτℓ− γ2ℓL2

maxτ(τ − 1)

3α

)
µ

)
∥xτp − x⋆∥2

+ γ2τ

(
1 + (τ − 1)γLmax

(
2(τ + 1) +

Lmax

2α
+

γL2
max

2α
(τ + 1)2

))
σ2.

(15)

Now, we optimize the coefficient of the ∥xτp − x⋆∥2 term in (15) by taking

α = argmin
α>0

αγ(τ − 1) +
γ3ℓL2

maxτ
2(τ − 1)µ

3α
= γτLmax

√
ℓµ

3
.

With this choice of α, the bound (15) becomes

E
[∥∥xτ(p+1) − x⋆

∥∥2 ∣∣∣xτp

]
≤

(
1− γτµ

(
2− γℓτ − 2(τ − 1)γLmax

√
ℓ

3µ

))
∥xτp − x⋆∥2

+ γ2τ

(
1 + (τ − 1)γLmax

(
2(τ + 1) +

1

2γτ
√

ℓµ/3
+

Lmax(τ + 1)2

2τ
√

ℓµ/3

))
σ2

≤ (1− γτµζ) ∥xτp − x⋆∥2 + γ2τσ2

(
1 + (τ − 1)

(
4γτLmax +

Lmax

2τ
√
ℓµ/3

+
γτL2

max√
ℓµ/3

))
(16)

where for the last inequality, we use τ + 1 ≤ 2τ and make the substitution

ζ = 2− γℓτ − 2(τ − 1)γLmax

√
ℓ

3µ
= 2− γℓτ − 2(τ − 1)γLmax

√
κ/3.

Note that with our choice α = γτLmax

√
ℓµ
3 and 0 < γ < 2

ℓτ+2(τ−1)Lmax
√
κ

, the condition (14) is
satisfied because

2− γℓτ − γ2ℓL2
maxτ(τ − 1)

3α
≥ 2− γℓτ − γ2ℓL2

maxτ(τ − 1)

3α

= 2− γℓτ − (τ − 1)γLmax

√
ℓ

3µ

≥ 2− γ
(
ℓτ + (τ − 1)Lmax

√
κ
)
> 0.
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Finally, unrolling the recursion (16) using the following simple lemma, with ap = E
[
∥xτp − x⋆∥2

]
,

A = τµζ and

B = τσ2

(
1 + (τ − 1)

(
4γτLmax +

Lmax

2τ
√

ℓµ/3
+

γτL2
max√

ℓµ/3

))

gives the desired rate. (Note that γA = γτµζ ≤ γτµ(2− γℓτ) ≤ γℓτ(2− γℓτ) ≤ 1.)

Lemma B.7. Let γ,A,B > 0 with γA ≤ 1. If a sequence a0, . . . , aR ∈ R satisfies

ap+1 ≤ (1− γA)ap + γ2B

for p = 0, . . . , R− 1, then aR ≤ (1− γA)Ra0 +
γB
A .

Proof of Lemma B.7. As there is nothing to prove if γA = 1, suppose γA < 1. Recursively apply-
ing the given inequality we have

aR ≤ (1− γA)aR−1 + γ2B ≤ · · · ≤ (1− γA)Ra0 + γ2B

R−1∑
p=0

(1− γA)p.

Now apply the bound
∑R−1

p=0 (1 − γA)p ≤
∑∞

p=0(1 − γA)p = 1
1−(1−γA) = 1

γA to the above
inequality.

B.5 PROOF OF COROLLARY 3.5

First, because η > κτ , we have

γ <
1

µκτ
(
1 + 2Lmax√

ℓµ

) =
1

ℓτ
(
1 + 2Lmax√

ℓµ

) ≤ 1

ℓτ + 2(τ − 1)Lmax

√
ℓ
µ

=
1

ℓτ + 2(τ − 1)Lmax
√
κ
.

Hence we can apply Theorem 3.4. Now observe that ζ > 2− γ (ℓτ + 2(τ − 1)Lmax
√
κ) > 1, and

(1− u)R ≤ e−uR for u < 1, so

(1− γτµζ)R ≤ e−γµζτR ≤ e−γµT = e−2 log η =
1

η2
=

4(log η)2(1 + 2q)2

T 2
= Õ

(
(1 + q)2

T 2

)
where we use T = 2(1 + 2q)η log η and remove the factor log η < log T within the Õ notation.
Next, for the terms proportional to σ2, we have(

1 + (τ − 1)

(
4γτLmax +

Lmax

2τ
√

ℓµ/3
+

γτL2
max√

ℓµ/3

))
γσ2

µζ

≤ γσ2

µ

(
1 + τ

(
4γτLmax +

√
3q

2τ
+
√
3γτLmaxq

))

≤ γσ2

µ

(
1 +

√
3q

2

)
+

γ2τ2Lmaxσ
2

µ
(4 +

√
3q)

=
σ2(1 +

√
3q/2)

µ2η(1 + 2q)
+

τ2Lmaxσ
2(4 +

√
3q)

µ3η2(1 + 2q)2

= Õ
(
(1 + q)σ2

µ2T
+

(1 + q)τ2Lmaxσ
2

µ3T 2

)
.

Combining these with Theorem 3.4 we arrive at the desired conclusion.
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B.6 PROOF OF THEOREM 3.6

Note that we use constant step-size γk ≡ γτp within each communication round p, i.e., for τp ≤
k ≤ τ(p+ 1)− 1, so we can apply the bound (16) from the proof of Theorem 3.4, provided that

γτp ≤
1

ℓτ + 2(τ − 1)Lmax
√
κ
.

This clearly holds true when p < 2(1 + 2q)κ− 1, and when p ≥ 2(1 + 2q)κ− 1 then

γτp =
1

τµ

2p+ 1

(p+ 1)2
<

1

τµ

2

p+ 1
≤ 1

τµ

1

(1 + 2q)κ
=

1

ℓτ + 2τLmax
√
κ

so we see that the step-size condition is satisfied. Furthermore we have

ζτp = 2− γτpℓτ − 2(τ − 1)γτpLmax

√
κ/3 > 1,

so (16), with q = Lmax√
ℓµ

and taking expectation with respect to xτp, gives

E
[∥∥xτ(p+1) − x⋆

∥∥2] ≤ (1− γτpτµζτp)E
[
∥xτp − x⋆∥2

]
+ γ2

τpτσ
2

(
1 + (τ − 1)

(
γτpτLmax(4 +

√
3q) +

√
3

2τq

))
≤ (1− γτpτµ)E

[
∥xτp − x⋆∥2

]
+ (1 + q)γ2

τpτσ
2 + 4(1 + q)γ3

τpτ
2(τ − 1)Lmaxσ

2.

(17)

For p ≥ 2(1 + 2q)κ− 1, plugging in γτp = 1
τµ

2p+1
(p+1)2 we obtain

E
[∥∥xτ(p+1) − x⋆

∥∥2] ≤ p2

(p+ 1)2
E
[
∥xτp − x⋆∥2

]
+

(2p+ 1)2σ2(1 + q)

τµ2(p+ 1)4

(
1 +

4(τ − 1)Lmax(2p+ 1)

µ(p+ 1)2

)
.

Multiplying τ2(p+ 1)2 to both sides and upper-bounding 2p+1
p+1 ≤ 2, we obtain

(τ(p+ 1))2E
[∥∥xτ(p+1) − x⋆

∥∥2] ≤ (τp)2E
[
∥xτp − x⋆∥2

]
+

4(1 + q)τσ2

µ2

(
1 +

8(τ − 1)Lmax

µ(p+ 1)

)
.

Let p0 = ⌈2(1 + 2q)κ− 1⌉. Chaining the above inequality for p = p0, . . . , R− 1 gives

(τR)2E
[
∥xτR − x⋆∥2

]
≤ (τp0)

2E
[
∥xτp0 − x⋆∥2

]
+

4(1 + q)τ(R− p0)σ
2

µ2
+

32(1 + q)τ(τ − 1)Lmaxσ
2

µ3

R−1∑
p=p0

1

p+ 1

≤ (τp0)
2E
[
∥xτp0 − x⋆∥2

]
+

4(1 + q)τ(R− p0)σ
2

µ2
+

32(1 + q)τ2Lmaxσ
2 log(R/p0)

µ3

where we use
∑R−1

p=p0

1
p+1 ≤

∫ R

p0

dp
p = log R

p0
. Now substitute T = τR using the upper bounds

τ(R− p0) ≤ τR = T and log(R/p0) ≤ log T , we can write

T 2E
[
∥xT − x⋆∥2

]
≤ (τp0)

2E
[
∥xτp0 − x⋆∥2

]
+

4(1 + q)Tσ2

µ2
+

32(1 + q)τ2Lmaxσ
2 log T

µ3
.

(18)

As γk is constantly γ0 = 1
ℓτ(1+2q) over rounds p = 0, . . . , p0−1, we can directly apply Theorem 3.4

with R = p0 and similar simplification of the σ2-terms as in (17) to bound

E
[
∥xτp0

− x⋆∥2
]
≤
(
1− µ

ℓ(1 + 2q)

)p0

∥x0 − x⋆∥2 +
(1 + q)γ0σ

2

µ
(1 + 4γ0τ(τ − 1)Lmax)

≤
(
1− 1

κ(1 + 2q)

)κ(1+2q)

∥x0 − x⋆∥2 +
σ2

ℓµτ

(
1 +

4(τ − 1)Lmax

ℓ(1 + 2q)

)
≤ ∥x0 − x⋆∥2

e
+

σ2

ℓµτ

(
1 +

2τ√
κ

)
,
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where the second line uses p0 ≥ 2(1 + 2q)κ − 1 ≥ κ(1 + 2q), and the third line uses the bound(
1− 1

t

)t ≤ 1
e for t > 1 and 4(τ−1)Lmax

ℓ(1+2q) ≤ 4qτ
√
ℓµ

ℓ(1+2q) ≤ 2τ
√

µ
ℓ = 2τ√

κ
. Now plugging this into (18)

and dividing both sides by T 2 we obtain

E
[
∥xT − x⋆∥2

]
≤ p20τ

2 ∥x0 − x⋆∥2

eT 2
+

τp20σ
2

ℓµT 2

(
1 +

2τ√
κ

)
+

4(1 + q)σ2

µ2T
+

32(1 + q)τ2Lmaxσ
2 log T

µ3T 2

≤ 4(1 + 2q)2κ2τ2 ∥x0 − x⋆∥2

eT 2
+

4(1 + q)σ2

µ2T
+

4(1 + 2q)2κτσ2

µ2T 2

(
1 +

2τ√
κ

)
+

32(1 + q)τ2Lmaxσ
2 log T

µ3T 2
.

which is the desired result.
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C DETAILS OF NUMERICAL EXPERIMENTS

C.1 QUADRATIC MINIMAX GAME

Data Generation. Here, we generate the matrices Am, Bm,Cm ∈ Rd×d and vectors am, cm ∈
Rd to ensure the quadratic game f(x1, x2) is strongly convex-strongly concave and smooth. Am,
Bm,Cm are generated such that they are positive semi-definite and their eigenvalues lie in the
interval [µA, LA] , [0, LB ] and [µC , LC ] respectively (Loizou et al., 2021). In all our experiments,
we generate the data with dimension d = 10 and for M = 100, where M represents the number of
samples. To implement the PEARL-SGD, we consider two computational nodes, one corresponding
to the x1 variable and the other to the x2 variable.

C.2 n-PLAYER GAME

Data Generation. In this setup, we use d = 10 and M = 100 in all our experiments. The
matrices Ai,m are generated randomly with their eigenvalues in the range [µA, LA] (here we choose
µA, LA > 0). Similarly, for 1 ≤ i < j ≤ n, we generate the matrices Bi,j,m randomly such that
their eigenvalues lie in the interval [0, LB]. However, for 1 ≤ j < i ≤ n, we set Bj,i,m = −B⊤

i,j,m.
This data generation procedure ensures that the operator corresponding to the objective function (5)
satisfies the (QSM) assumption. We provide a proof below:

The operator corresponding to the n-Player Game (5) satisfies the quasi-strong monotonicity (QSM)
assumption. We have

fi(x
1, . . . , xn) =

1

2

〈
xi,Aix

i
〉
+
〈
ai, x

i
〉
+
∑
j ̸=i

〈
xi,Bi,jx

j
〉

for i = 1, . . . , n. Then taking the partial gradient of fi with respect to xi we get

∇fi(xi;x−i) = Aix
i + ai +

∑
j ̸=i

Bi,jx
j .

Therefore,

∇fi(xi;x−i)−∇fi(xi
⋆;x

−i
⋆ ) =

Aix
i + ai +

∑
j ̸=i

Bi,jx
j

−
Aix

i
⋆ + ai +

∑
j ̸=i

Bi,jx
j
⋆


= Ai(x

i − xi
⋆) +

∑
j ̸=i

Bi,j(x
j − xj

⋆)

and

⟨𝔽(x)− 𝔽(x⋆),x− x⋆⟩ =
n∑

i=1

〈
∇fi(xi;x−i)−∇fi(xi

⋆;x
−i
⋆ ), xi − xi

⋆

〉
=

n∑
i=1

〈
xi − xi

⋆,Ai(x
i − xi

⋆)
〉
+

n∑
i=1

∑
j ̸=i

〈
xi − xi

⋆,Bi,j(x
j − xj

⋆)
〉

If Bj,i = −B⊺
i,j for all i ̸= j then the double summation vanishes because for any i ̸= j,〈

xi − xi
⋆,Bi,j(x

j − xj
⋆)
〉
+
〈
xj − xj

⋆,Bj,i(x
i − xi

⋆)
〉
= 0.

Then, provided that each Ai ⪰ µI we see that 𝔽 is µ-QSM. (Actually it is µ-strongly monotone.)
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D ADDITIONAL EXPERIMENT: MOBILE ROBOT CONTROL

Here, we consider a distributed control problem of mobile robots from (Kalyva & Psillakis, 2024).
This is a multi-agent system where each robot has its own objective, depending on the positions
xi ∈ Rd (corresponding to action/strategy in our formulation of multiplayer game) of each i-th
robot. Specifically, the objective function of the robot i is:

fi(x) = Ji1(x
i) + Ji2(x

i;x−i),

where Ji1(x
i) = ci

2 ∥x
i − xi

anc∥2 represents the cost penalizing the distance of agent i from some
anchor point xi

anc ∈ Rd, and Ji2(x
i;x−i) = di

2

∑N
j=1 ∥xi − xj − hij∥2 is the cost associated with

the relative displacement between the robots’ positions. The control problem finds an equilibrium
of the n-player game, which is the concatenation of all robots’ position vectors, ensuring that each
robot stays close to xi

anc while maintaining designated displacement from other robots. We follow
the choice of parameter values ci, di, x

i
anc, hij from (Kalyva & Psillakis, 2024): n = 5, d = 1,

ci = 10 + i/6, di = i/6,(
x1
anc, x

2
anc, x

3
anc, x

4
anc, x

5
anc

)
= (1,−4, 8,−9, 13)

and

(hij)1≤i≤5
1≤j≤5

=


0 5 −7 9 −8
−5 0 −6 2 −9
7 6 0 7 −4
−9 −2 −7 0 −2
8 9 4 2 0

 .

We add Gaussian noise to the gradients to simulate stochasticity. In this setup, all our theoretical
assumptions are satisfied.
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Figure 5: Performance of PEARL-SGD on the distributed mobile robot control problem.

We implement PEARL-SGD with synchronization intervals τ ∈ {1, 2, 4, 5, 8, 20} and the theo-
retical step-size γ = 1

ℓτ+Lmax(τ−1)
√
κ

. Figure 5a shows that with larger values of τ , PEARL-
SGD achieves better accuracy (in terms of distance to x⋆) within a given number of communication
rounds. This highlights the potential benefit of using local update steps in solving real-data problems
formulated as multiplayer games. Figure 5b displays how the local objective values fi behave under
PEARL-SGD, in the case τ = 5.
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E DISCUSSION ON THEORETICAL ASSUMPTIONS

E.1 POSSIBLE SIMPLIFICATION OF ASSUMPTIONS: ASSUMING COCOERCIVITY OF 𝔽

In fact, the convergence of PEARL-SGD can still be proved even if the three assumptions (CVX),
(SM) and (SCO) are replaced with the single assumption that 𝔽 : RD → RD is 1

ℓ -cocoercive, i.e.,

⟨𝔽(x)− 𝔽(y),x− y⟩ ≥ 1

ℓ
∥x− y∥2 , ∀x,y ∈ RD. (COCO)

In the subsequent paragraphs, we explain in detail why this is the case. However, we emphasize
here that if we derived all convergence theory using (COCO) in place of (CVX), (SM) and (SCO)
and did not distinguish the role of Li’s (the local Lipschitzness parameters from (SM)) from that of
ℓ, then the resulting convergence rates would have become much more pessimistic (worse) in many
cases. Therefore, in our work, we choose to use the current set of assumptions. It allows us to more
clearly present the tight dependency of convergence rates to Li’s. Also note that assuming (CVX),
(SM) and (SCO) is strictly more general than assuming (COCO), as we illustrate in Appendix E.2.

(COCO) implies (CVX), (SM) and (SCO). Trivially, (COCO) implies (SCO). Furthermore, if 𝔽
is 1

ℓ -cocoercive, then 𝔽 is monotone:

⟨𝔽(x)− 𝔽(y),x− y⟩ ≥ 0, ∀x,y ∈ RD, (19)

and ℓ-Lipschitz continuous:

∥𝔽(x)− 𝔽(y)∥ ≤ ℓ ∥x− y∥ , ∀x,y ∈ RD. (20)

In particular, for each i = 1, . . . , n, we can take

x = (x1, . . . , xi−1, xi, xi+1, . . . , xn), y = (x1, . . . , xi−1, yi, xi+1, . . . , xn) (21)

in (19), which gives 〈
∇fi(xi;x−i)−∇fi(yi;x−i), xi − yi

〉
≥ 0

for any xi, yi ∈ Rdi and x−i ∈ RD−di . That is, the gradient of fi(·;x−i) : Rdi → R is a monotone
operator on Rdi , and this implies that fi(·;x−i) is convex, i.e., (CVX) holds. Similarly, plugging the
choice (21) into (20) we obtain∥∥∇fi(xi;x−i)−∇fi(yi;x−i)

∥∥ ≤ ℓ
∥∥xi − yi

∥∥ ,
showing that (SM) holds, with Li = ℓ. Therefore, all theorems from the main paper hold under
the assumptions (QSM), (COCO), and (BV), with ℓ in place of Lmax in step-size restrictions and
convergence rates.

What do we lose by replacing Lmax with ℓ? The previous discussion shows that we can assume
(COCO) and replace all occurrences of Lmax with ℓ within the theory. In this case, however, the
step-size conditions in Theorems 3.3 and 3.4 become

γ ≤ 1

ℓ(τ + 2(τ − 1)
√
κ)

= O
(

1

ℓτ
√
κ

)
, (22)

and the
√
κ factor in the denominator is undesirable as it significantly restricts the range of step-size

one can use if κ is large. Furthermore, in Corollary 3.5 and Theorem 3.6, the factor q becomes√
ℓ
µ =
√
κ, causing the constant factors in the convergence bounds to potentially become large.

In the following, we demonstrate the commonality of the parameter regime Lmax ≪ ℓ, showing why
it is beneficial to keep the dependency on Lmax tight as we do. First, let 𝔽 be a generic µ-strongly
monotone and M -Lipschitz continuous operator. Then the tight (smallest) cocoercivity parameter
one can guarantee on 𝔽 is ℓ = M2/µ (Facchinei & Pang, 2003) (tightness can be shown using, e.g.,
the scaled relative graph theory in Ryu et al. (2022), Ryu & Yin (2022, Chapter 13)). On the other
hand, we have

Lmax ≤ max
i=1,...,n

sup
x=(xi,x−i),y=(yi,x−i)

xi ̸=yi

∥𝔽(x)− 𝔽(y)∥
∥x− y∥

≤ sup
x ̸=y

∥𝔽(x)− 𝔽(y)∥
∥x− y∥

= M,
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i.e., M is an upper bound on Lmax (better than ℓ). Therefore, ℓ is at least ℓ
M = ℓ√

ℓµ
=
√
κ times

larger than Lmax, and the largest step-size allowed in Theorems 3.3 and 3.4 is

1

ℓτ + 2(τ − 1)Lmax
√
κ
= Ω

(
1

ℓτ

)
which is in contrast with (22) where we used ℓ in place of Lmax and obtained

√
κ times smaller

step-size range. Additionally, note that in this case q = Lmax√
ℓµ

= Lmax

M ≤ 1 in Corollary 3.5 and
Theorem 3.6, so we can avoid the κ-dependent factors appearing in the convergence results.

We present yet another major problem class for which Lmax ≪ ℓ. Consider a two-player matrix
game, regularized by adding strongly convex (resp. strongly concave) quadratic terms in x (resp. y):

minimize
u∈Rm

maximize
v∈Rm

L(u, v) = µ

2
∥u∥2 + g⊺u+ u⊺Bv − h⊺v − µ

2
∥v∥2 (23)

where B ∈ Rm×m, g, h ∈ Rm. In our n-player game notation, the first and second players re-
spectively use the objective function f1(x

1;x2) = L(x1, x2) and f2(x
2;x1) = −L(x1, x2). In this

case, the operator 𝔽 is µ-strongly monotone with µ and M -Lipschitz continuous with parameter

M ≥
√
∥B∥22 + µ2 ≥ ∥B∥2. Note that the cocoercivity parameter ℓ is at least M (and at most

M2/µ). On the other hand,

∇f1(x1;x2) = µx1 + g +Bx2, ∇f2(x2;x1) = µx2 + h−B⊺x1,

so the Lipschitz constant for ∇f1 with x2 fixed (resp. ∇f2 with x1 fixed) is µ, i.e., Lmax = µ.
Therefore, we have Lmax ≪ ℓ in this scenario, as strength of regularization µ is usually small
compared to the smoothness parameter M . The same principle applies to the n-player analogue of
this setup we use in Section 4.2, where each player has the objective function

fi(x
i;x−i) =

1

2

〈
xi,Aix

i
〉
+
〈
ai, x

i
〉
+
∑

1≤j≤n
j ̸=i

〈
xi,Bi,jx

j
〉

with Bj,i = −B⊺
i,j . If the quadratic terms are the small regularization terms introduced to induce

convergence, so that Ai = µI with µ≪ ∥Bi,j∥2, then we have Lmax = µ≪ maxi ̸=j ∥Bi,j∥2 ≤ ℓ.

E.2 EXAMPLE OF NON-COCOERCIVE 𝔽 SATISFYING (CVX), (SM), (QSM) AND (SCO)

Consider the two-player game where two players have the objectives

f1(u; v) =
u2

2
φ(v)

f2(v;u) =
v2

2
φ(u)

where φ : R→ R is defined by

φ(t) =
(
µ+ (ℓ− µ) sin2 t

)
.

Here 0 < µ < ℓ, and we use the notation x = (u, v) ∈ R × R instead of x = (x1, x2) for better
readability. Note that because φ satisfies

0 < µ ≤ φ(t) ≤ ℓ, ∀t ∈ R,

f1(·, v) : R → R is convex (quadratic) for any v ∈ R, and so is f2(u, ·) for any u ∈ R. Therefore,
this game satisfies (CVX). For any x = (u, v), we have

𝔽(x) = (∇uf1(u; v),∇vf2(v;u)) = (uφ(v), vφ(u)) .

Therefore, the unique equilibrium of the game is x⋆ = (u⋆, v⋆) = (0, 0). Additionally, observe that

∇uuf1(u; v) = φ(v) ∈ [µ, ℓ], ∇vvf2(v;u) = φ(u) ∈ [µ, ℓ].

In particular, the both second derivatives are bounded, so (SM) is satisfied. Next, we have

⟨𝔽(x),x− x⋆⟩ = u2φ(v) + v2φ(u) ≥ µ(u2 + v2) = µ ∥x− x⋆∥2 ,
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i.e., 𝔽 satisfies (QSM). Finally, we have

∥𝔽(x)∥2 = u2φ(v)2 + v2φ(u)2 ≤ max{φ(v), φ(u)}
(
u2φ(v) + v2φ(u)

)
≤ ℓ ⟨𝔽(x),x− x⋆⟩ ,

showing that 𝔽 satisfies (SCO).

On the other hand, 𝔽 is not cocoercive with respect to any parameter; in fact, it is not even Lipschitz
continuous. This is because the cross-derivatives

∇uvf1(u; v) = (ℓ− µ)u sin(2v), ∇vuf2(u; v) = (ℓ− µ)v sin(2u)

are unbounded over R ×R.

Note that while we provided a two-player example for simplicity, one can easily use the essentially
same ideas to construct a non-cocoercive n-player game satisfying our assumptions with any n > 2.
For example, we can choose fi(x

i;x−i) = (xi)2

2 φ(xi+1) where we identify xn+1 = x1.
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