Under review as submission to TMLR

Reasonable Effectiveness of Random Weighting:
A Litmus Test for Multi-Task Learning

Anonymous authors
Paper under double-blind review

Abstract

Multi-Task Learning (MTL) has achieved success in various fields. However, how to balance
different tasks to achieve good performance is a key problem. To achieve task balancing,
there are many works to carefully design dynamical loss/gradient weighting strategies but
the basic random experiments are ignored to examine their effectiveness. In this paper, we
propose the Random Weighting (RW) methods, including Random Loss Weighting (RLW)
and Random Gradient Weighting (RGW), where an MTL model is trained with random
loss/gradient weights sampled from a distribution. To show the effectiveness and necessity
of RW methods, theoretically we analyze the convergence of RW and reveal that RW has a
higher probability to escape local minima, resulting in better generalization ability. Empir-
ically, we extensively evaluate the proposed RW methods to compare with twelve state-of-
the-art methods on five image datasets and two multilingual problems from the XTREME
benchmark to show RW methods can achieve comparable performance with state-of-the-art
baselines. Therefore, we think that the RW methods are important baselines for MTL and
should attract more attention.

1 Introduction

Multi-Task Learning (MTL) (Caruanal, [1997; [Zhang & Yang}, 2021; Vandenhende et al.,[2021) aims to jointly
train several related tasks to improve their generalization performance by leveraging common knowledge
among them. Since MTL could not only significantly reduce the model size as well as speed up the inference
but also improve the performance, it has been successfully applied to various fields (Zhang & Yang 2021)).
However, when all the tasks are not highly related, which may be reflected via conflicting gradients or
dominating gradients (Yu et al., 2020)), it is more difficult to train an MTL model than training them
separately because some tasks dominantly influence model parameters, leading to unsatisfactory performance
for other tasks. This phenomenon is related to the task balancing problem (Vandenhende et al., 2021) in
MTL.

Recently, several works focus on tackling this issue from an optimization perspective via dynamically weight-
ing task losses or balancing task gradients in the training process, called loss balancing and gradient balancing
methods, respectively. However, all of the existing works take Equal Weighting (EW') which uses the fixed
and equal weights in the whole training process as a basic baseline to test the effectiveness of their methods.
We think that this baseline is not sufficient and it is quite necessary to conduct random experiments, which
is missing in existing works, as a baseline to test them.

Therefore, in this paper, we propose the Random Weighting (RW) methods including Random Loss Weight-
ing (RLW) and Random Gradient Weighting (RGW) as more reasonable baselines to test loss and gra-
dient balancing methods, respectively. Specifically, in each training iteration, we first sample loss/gradient
weights from a distribution with some possible normalization and then minimize the aggregated loss/gradient
weighted by the random loss/gradient weights. Although the RW methods seem unreasonable, they can not
only converge but also achieve comparable performance with existing methods that use carefully tuned
weights. Thus, we think the RW methods are important baselines for MTL and deserve more attention.
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To better understand the effectiveness and necessity of RW methods, we provide both theoretical analyses
and empirical evaluations. Theoretically, we show RW methods are the stochastic variants of EW. From
this perspective, we give a convergence analysis for RW methods. Besides, we can show that RW methods
have a higher probability to escape local minima than EW, resulting in better generalization performance.
Empirically, we investigate lots of State-Of-The-Art (SOTA) task balancing approaches including four loss
balancing methods and eight gradient balancing methods. On five Computer Vision (CV) datasets and two
multilingual problems from the XTREME benchmark (Hu et al., [2020), we show that RW methods can
consistently outperform EW and have competitive performance with existing SOTA methods.

In summary, the main contributions of this paper are three-fold.

o We propose the simple RW methods as novel baselines and litmus tests for MTL.
e We provide the convergence guarantee and effectiveness analysis for RW methods.

o Extensive experiments show that RW can outperform EW and achieve comparable performance with
the SOTA methods.

2 An Overview of Task Balancing Methods

Notations. Suppose there are T tasks and task ¢ has its corresponding dataset D;. An MTL model
usually contains two parts of parameters: task-sharing parameters 6 and task-specific parameters {1 }7_;.
For example, in CV, 6 usually denotes parameters in the feature extractor shared by all the tasks and
represents parameters in the task-specific output module for task t. Let £:(D;;0,1;) denotes the average loss
on Dy for task t. {\;}1; are task-specific loss weights with a constraint that Al > 0 for all #’s. Similarly,
{M}L_ | denote task-specific gradient weights.

Conventional Baseline with Fixed Weights. Since there are multiple losses in MTL, they usually are
aggregated as a single one via loss weights as

T
L0, {¢e}{y) = ZAéft(Dt;eﬂﬁt) (1)

t=1

Apparently, the most simple method for loss weighting is to assign the same weight to all the tasks in the
whole training process, i.e., without loss of generality, A} = % for all ¢’s in every iteration. This approach is
a common baseline in MTL and it is called EW in this paper.

Loss Balancing Methods. To achieve task balancing and improve the performance of MTL model, loss
balancing methods aim to study how to generate appropriate loss weights {\!}X; in Eq. in every itera-
tion and some representative methods include Uncertainty Weights (UW) (Kendall et al., 2018), Dynamic
Weight Average (DWA) (Liu et al., [2019), IMTL-L (Liu et al., 2021b) and Multi-Objective Meta Learning
(MOML) (Ye et all) [2021). These four methods focus on using higher loss weights for more difficult tasks
measured by the uncertainty, learning speed, relative loss value, and validation performance, respectively.
When minimizing Eq. , the learning rate of optimizing each task-specific parameter 1; will be affected by
the corresponding loss weight AL, which is the major difference between loss balancing and gradient balancing
methods.

Gradient Balancing Methods. This type of methods think that the task balancing problem is caused
by conflicting task gradients and the inappropriate gradient to update task-sharing parameters, thus they
solve it via generating appropriate gradient weights {\/}Z_; to balance the task gradients and make a better

update of 8 in every iteration as
T

0 =0—n> NVoli(Di;0,1). (2)

t=1
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Noticeably, in such type methods, the gradient weights {\{}7Z_; only affect the task-sharing parameter 6 but
not task-specific parameters {1}, each of which is updated by the ¢-th task gradient V., €, (Dy;0,,).

Some representative works include MGDA-UB (Sener & Koltun, 2018]), Gradient Normalization
(GradNorm) (Chen et al., [2018b), Projecting Conflicting Gradient (PCGrad) (Yu et all 2020), Gra-
dient sign Dropout (GradDrop) (Chen et al., 2020), Impartial Multi-Task Learning (IMTL-G) (Liu et al.,
2021b)), Gradient Vaccine (GradVac) (Wang et al.| |2021), Conflict-Averse Gradient (CAGrad) (Liu et al.|
2021a), and RotoGrad (Javaloy & Valera),|2022). Those eight methods focus on finding an aggregated gradi-
ent by linearly combining all the task gradients under different constraints such as equal gradient magnitude
in GradNorm and equal gradient projection in IMTL-G to eliminate the gradient conflicting.

Compared with the EW method, those two types of methods use a dynamic weighting process where
loss/gradient weights vary over training iterations or epochs. Thus, it is natural to think how about training
an MTL model with random weights. Inspired by this, we propose the RW methods by randomly sampling
loss/gradient weights in each iteration as the random experiments for loss/gradient balancing methods, re-
spectively. Besides, we think RW methods are more reasonable baselines than EW as the litmus tests for
MTL methods.

3 The Random Weighting Methods

In this section, we introduce the RW methods, including the RLW and RGW methods.

We focus on the update of task-sharing parameter 6 as it is the key problem in MTL. In the following, we
mainly introduce the RLW method as the RGW method acts similarly to the RLW method. For notation
simplicity, we do not distinguish between A! and A/ and denote them by \;. Besides, we denote £(f) =
(01(D1;0,41), - b7 (D7;0,17)), where the datasets {D;}7_, and the task-specific parameters {1;}]_, are
omitted for brevity.

Different from those loss balancing methods, RLW considers the loss weights A = (A1, ,Ar) € RT as
random variables and samples them from a random distribution in each iteration. To guarantee loss weights
in X to be non-negative, we can first sample A = (A1, - -- , Ap) from any distribution p(A) and then normalize
X into A via a mapping f, where f : RT — AT~ is a normalization function such as the softmax function
and AT~! denotes a simplex in RT, ie., X € AT7! means Zle At = 1 and A\; > 0 for all . Note that

p(A) is different from p(A) unless f is an identity function. Finally, RLW updates the § by computing the
aggregated gradient Vo' £(6).

In this way, the RLW method uses dynamical loss weights in the training process, which is similar to
existing loss balancing methods, but RLW uses random weights instead of carefully designed ones in the
existing works. Therefore, RLW is a basic random experiment for those loss balancing methods to examine
their effectiveness, which indicates RLW is a more reasonable baseline than the conventional EW.

Algorithm 2 A Training Iteration in RGW
1: Input: numbers of tasks 7', learning rate 7,
dataset {D;}X_,, weight distribution p(X), nor-
malization function f
2: Output: task-sharing parameter 6, task-
specific parameters {¢;}1_;
fort=1to T do

Algorithm 1 A Training Iteration in RLW
1: Input: numbers of tasks T, learning rate n,
dataset {D;}_,, weight distribution p(X), nor-
malization function f
2: Output: task-sharing parameter 6, task-
specific parameters {¢}}1_;

3:
3: fort=1to 7T do
4:  Compute loss £(Dy; 0,1); 4 Compute loss &(Dt’ 0,¢1); .
5. end for 5: Compute gradient g, = Vgl or V 4y;
) . S 3 Lo 6: end for
o ?Iirélfievge}g'hts A from p(A) aEdRrﬁ%émﬁléfﬁog 7. Sample weights X from p(A) and normalize it
7. g/zg_nv’ZT Aele(Dys 0,101); into A via f; . > RGW Method
: o P 8: 0" =0—-nVod ,_1 \gi;

8 fort=1to T do

9: Y =Py — NV, Mle(Dy; 0,11);
10: end for

9: fort=1to T do

10: Y = Pr — NV, Le(Ds; 0,11 );
11: end for
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Noticeably, the loss weights A are random variables and vary over training iterations, thus it is apparently
that the gradient VoA T £(6) of RLW is an unbiased estimation of the gradient E[A]T V£(6), where E[A] is the
expectation of A over the whole training process. This means that the RLW method is a stochastic variant of
the loss balancing method with fixed weights E[A]. In particular, if E[A] is proportional to (7, - , =), RLW
is a stochastic variant of the conventional EW baseline. In Section [d] we theoretically show that RLW has
a better generalization performance that EW because of the extra randomness from loss weight sampling,
which indicates the RLW method is a more effective baseline than EW.

Similar to RLW, in each iteration, RGW first randomly samples gradient weights A from p(;\), then nor-
malizes it to obtain A via f, and finally updates the task-sharing parameter # by computing the aggregated
gradient VQATK(F)). Following previous works (Sener & Koltun, |2018; |Chen et al., |2020; |Liu et al., 2021b;
Javaloy & Valera), 2022)), we compute the gradient with respect to the final hidden feature representation z
output from the shared parameter instead of the task-sharing parameter 6 to reduce the computational cost.
Thus, RGW is a random experiment for gradient balancing methods.

In this paper, we use the standard normal distribution for p(A) and the softmax function for f in both
the RLW and RGW methods since it is easy to implement, has a more stable performance (as shown in
experimental results in Section , and is as efficient as the EW strategy (as shown in experimental results
in Section . Besides, E[)] is proportional to (4, -+, 7) as proved in Appendix [A] thus it is fair to
compare with the EW strategy.

The training algorithms of both RW methods are summarized in Algorithm [I] and 2] The only difference
between the RW methods and the existing works is the generation of loss/gradient weights (i.e., Line 6 in
Algorithm [1| and Line 7 in Algorithm . Apparently, the sampling operation in the RW methods is very
easy to implement and only bring negligibly additional computational costs when compared with the existing
works. Note that random weights are involved in the update of task-specific parameters in the RLW method
but not the RGW method (i.e., Line 9 in Algorithm [I]and Line 10 in Algorithm [2)).

4 Analysis

In this section, we analyze how the extra randomness from the loss/gradient weight sampling affects the
convergence and effectiveness of the RW methods compared with the EW strategy.

We focus on the update of task-sharing parameter 6 and take RLW as an example for analysis, which can
easily be extended to the RGW method. For notation simplicity, we simply use ¢;(6) instead of £;(Dy; 0, 1;)
to denote the loss function of task ¢ in this section and Appendix [B] For ease of analysis, we make the
following assumption.

Assumption 1. Ep,[||V4(Dy;0)|%] equals o, the loss function £;(0) of task ¢ is L;-Lipschitz continuous
w.r.t. 0, and X satisfies Ex[A] = p.

In the following theorem, we analyze the convergence property of Algorithm [I] for the RLW method.

Theorem 1. Suppose the loss function £;(0) of task t is ci-strongly convexr. We define 6, = argming X' £(6)
and denote by 0y the solution in the k-th iteration. If n, the step size or equivalently the learning rate,
satisfies n < 1/2¢, where ¢ = mini<;<r{c;}, then under Assumptz'on we have

K
E[|0r — 0.]°] < (1—2770)k||90—9*||2+27, 3)
2

where K = Zle of. Then for any positive ¢, E[||0, — 0,]*] < e can be achieved after k = 35 log (=)
iterations with n = <<, where g = E[||6p — 0.]|*].

K’

Theorem [I] shows that the RLW method with a fixed step size has a linear convergence up to a radius
around the optimal solution, which is similar to the EW strategy according to the property of the standard
Stochastic Gradient Descent (SGD) method (Moulines & Bach| [2011; Needell et al.l [2016). Although the
RLW method has a larger £ than the EW strategy, i.e., kpw = Z;‘ll u? - Zil 0? < K, which may possibly
require more iterations for the RLW method to reach the same accuracy as the EW strategy, experimental
results in Section [5.4] show that empirically this does not cause much difference.
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We next analyze the effectiveness of the RLW method from the perspective of stochastic optimization. It
is observed that the SGD method can escape sharp local minima and converge to a better solution than
Gradient Descent (GD) techniques under various settings with the help of noisy gradients (Hardt et al.,|2016;
Kleinberg et all [2018). Inspired by those works, we prove Theorem [2 to show that the extra randomness
in the RLW method can help RLW to better escape sharp local minima and achieve better generalization
performance than the EW strategy.

Before presenting the theorem, for the ease of presentation, we introduction some notations. Here we
consider the update step of these stochastic methods as 041 = 0, — (V" £(0;,) + &), where &, is a noise
with E[¢x] = 0 and [|&]|? < r, and r denotes the intensity of the noise. For the analysis, we construct
an intermediate sequence ¢ = 0 — nVp'£€(0;). Then we get E¢, [pri1] = ox — nVEe, [T £(pr — 1ék)].
Therefore, the sequence {¢x} can be regarded as an approximation of using GD to minimize the function
Eg, [ (¢ —nék)]-

Theorem 2. Suppose VI (0) is M;-Lipschitz continuous and ||&||> < r. If the loss function {:(6)
of task t is ci-ome point strongly convexr w.r.t. a local minimum 0. after convolved with noise £, i.e.,

(VEeli (o —n&),p — 0.) > cillp — 0.]|%, then under Assumption after K = %log (%) iterations with

n < 5%, with probability at least 10, we have ||ox —0.[* < i—? where eg = E|l0o—0.|%], ¢ = minj<;<7{c:},
M = maxi<;<r{M;}, p=2nc —n?>M?, and B = n*r?(1 +nM)?2.

Theorem [2] only requires that ¢;(6) is ci-one point strongly convex w.r.t. 6, after convolved with noise &,
which can hold for deep neural networks (Safran et al., [2021). It also implies that for both RLW and EW
methods, their solutions have high probabilities to be close to a local minimum 6, depending on the noise &.
Note that by adding extra noise, the sharp local minimum will disappear and only the flat local minimum
with a large diameter will still exist (Kleinberg et al., |2018). On the other hand, those flat local minima
could satisfy the one point strongly convexity assumption made in Theorem [2] thus the diameter of the
converged flat local minimum is affected by the noise intensity.

Remark 1. Converging to flat local minima is important in neural network training because flat local
minima may lead to better generalization (Chaudhari et al.l |2019; Keskar et al., |2017). Due to the extra
randomness from the sampling of loss weights, the RLW method can have a larger noise with a larger r
than the EW strategy (refer to Appendix . Hence, according to Theorem [2[ and the above discussion,
the RLW method can better escape sharp local minima and converge to a flatter local minimum than EW,
resulting in better generalization performance.

5 Experiments

In this section, we empirically evaluate the proposed RLW and RGW methods on five computer vision
datasets (i.e., NYUv2, CityScapes, CelebA, Office-31, and Office-Home) and two multilingual problems from
the XTREME benchmark (Hu et al., [2020)). All the experiments are conducted on one single NVIDIA
GeForce RTX 3090 GPU. The experimental results on the CityScapes, CelebA, Office-31, and Office-Home
datasets are put in Appendix [C}

Compared methods. The baseline methods in comparison include several SOTA task balancing methods
as introduced in Section [2} including four loss balancing methods (i.e., UW, DWA, IMTL-L, and MOML)
and eight gradient balancing methods (i.e., MGDA-UB, GradNorm, PCGrad, GradDrop, IMTL-G, GradVac,
CAGrad, and RotoGrad). For all the baseline methods, we directly use the optimal hyperparameters used
in their original papers.

Network architecture. The network architecture we used adopts the Hard-Parameter Sharing (HPS)
pattern (Caruanay, [1993), which shares bottom layers of the network for all the tasks and uses separate top
layers for each task. Other MTL architectures are studied in Section [5.6

Evaluation metric. For homogeneous MTL problems (e.g., the XTREME benchmark and Office-31
dataset) which contain tasks of the same type such as the classification task, we directly use the average
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performance among tasks as the performance metric. For heterogeneous MTL problems (e.g., the NYUv2
dataset) that contain tasks of different types and may have multiple evaluation metrics for each task, by
following (Maninis et alJ [2019; Vandenhende et al. 2021, we use the average of the relative improvement
over the EW method on each metric of each task as the performance measure, which is formulated as

o (“1)Per My — MEY)
MEW ’

1< 1
A, =100% x = 3 —
P %XT;Nt

where N; denotes the number of metrics in task ¢, M; , denotes the performance of a task balancing method
for the nth metric in task ¢, MtEXV is defined similarly for the EW method, and p: , is set to 1 if a higher
value indicates better performance for the nth metric in task ¢t and otherwise 0.

n=1

5.1 Results on the NYUv2 Dataset

Dataset. The NYUv2 dataset (Silberman et al., 2012) is an indoor scene understanding dataset, which
consists of video sequences recorded by the RGB and Depth cameras in the Microsoft Kinect. It contains 795
and 654 images for training and testing, respectively. This dataset includes three tasks: 13-class semantic
segmentation, depth estimation, and surface normal prediction.

Implementation details. For the NYUv2 dataset, the DeepLabV3+ architecture (Chen et al. 2018al) is
used. Specifically, a ResNet-50 network pre-trained on the ImageNet dataset with dilated convolutions (Yu
et al),[2017) is used as a shared encoder among tasks and the Atrous Spatial Pyramid Pooling (ASPP) (Chen
et al.l 2018a)) module is used as the task-specific head for each task. Input images are resized to 288 x 384.
The Adam optimizer (Kingma & Bal 2015) with the learning rate as 10~* and the weight decay as 107°
is used for training and the batch size is set to 8. We use the cross-entropy loss, L; loss, and cosine loss
as the loss function of the semantic segmentation, depth estimation, and surface normal prediction tasks,
respectively.

Table 1: Performance on the NYUv2 dataset with three tasks: 13-class semantic segmentation, depth
estimation, and surface normal prediction. The best results for each task on each measure over loss/gradient
balancing methods are marked with superscript /1. The best results for each task on each measure over
all methods are highlighted in bold. 1 () indicates that the higher (lower) the result, the better the
performance.

Segmentation Depth Surface Normal
Methods . Angle Distance Within ¢° ALt
mlIoU?T Pix Acct Abs Err] Rel Err| P
Mean| Median| 11.257 22.51 307

EW 53.77 75.45 0.3845 0.1605 23.5737 17.0438 35.04  60.93  72.07 +0.00%

) UwW 54.14 75.92 0.3833 0.1597 23.2989 16.8691 35.33  61.37  72.48 +0.64%
;g DWA 53.81 75.56 0.3792* 0.1565* 23.6111 17.0609 34.89  60.89  T71.97 +0.63%
@ IMTL-L 53.50 75.18 0.3824 0.1596 23.3805 16.8088 35.44  61.43  72.43 +0.35%
2 MOML 54.98* 75.98* 0.3877 0.1618 23.2401* 16.7388  35.90*  61.81*  T72.76*  +0.76%
RLW (ours)  54.11 75.77 0.3809 0.1575 23.3777  16.7385*  35.71 61.52 7245  +1.04%*
MGDA-UB 50.42 73.46 0.3834 0.15551  22.7827% 16.14327 36.907  62.88 73.61 +0.38%
GradNorm 53.58 75.06 0.3931 0.1663 23.4360 16.9844 35.11 61.11 72.24 -0.99%

= PCGrad 53.70 75.41 0.3903 0.1607 23.4281 16.9699 35.16  61.19  72.28 -0.16%
f GradDrop 53.58 75.56 0.3855 0.1592 23.5518 17.0137 35.08  60.97  72.02 +0.08%
E IMTL-G 53.54 75.45 0.3880 0.1589 23.0530 16.4328 36.21 62.31 73.15 +0.80%
=2 GradVac 54.89" 75.98" 0.3828 0.1635 23.6865 17.1301 34.82  60.71 71.81 +0.07%
&) CAGrad 53.12 75.19 0.3871 0.1599 22.5257 15.8821 37.42  63.507 74.177  +1.36%"
RotoGrad 53.90 75.46 0.3812 0.1596 23.0197 16.3714 36.37  62.28  73.05 +1.19%
RGW (ours) 53.85 75.87 0.37721 0.1562 23.6725 17.2439 34.62 6049 7175 +0.62%

Results. The results of different methods on the NYUv2 dataset are shown in Table The top row
shows the performance of the widely used EW strategy and we use it as a baseline to measure the relative
improvement of different methods as shown in the definition of A,. Rows 2-5 and 7-14 show the results of
loss balancing and gradient balancing methods, respectively.
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According to the results, we can see that both the RLW and RGW methods gain performance improvement
over the EW strategy, which implies that training with extra randomness can have a better generalization
ability. Besides, RLW has an improvement of 1.04% over the EW strategy and it is higher than all loss
balancing methods. As for gradient balancing methods, half of those methods have negligible or even
negative improvement over the EW strategy and RGW can outperform five of them. Compared with all
baselines, RLW is even higher than all of them except the CAGrad and RotoGrad methods, which indicates
the random weights can easily beat the carefully designed ones.

According to the above analysis, there are two important conclusions. Firstly, the conventional EW strategy
is a weaker baseline than RLW and RGW for MTL. Secondly, RW methods are competitive to SOTA methods
and even performs better than some of them.

5.2 Results on the XTREME benchmark

Dataset. The XTREME benchmark (Hu et al., [2020)) is a large-scale multilingual multi-task benchmark
for cross-lingual generalization evaluation, which covers fifty languages and contains nine tasks. We conduct
experiments on two tasks containing Paraphrase Identification (PI) and Part-Of-Speech (POS) tagging in
this benchmark. The datasets used in the PI and POS tasks are the PAWS-X dataset (Yang et al., [2019)
and Universal Dependency v2.5 treebanks (Nivre et al., |2020), respectively. On each task, we construct
a multilingual problem by choosing the four languages with largest numbers of data, i.e., English (en),
Mandarin (zh), German (de) and Spanish (es), for the PI task and English, Mandarin, Telugu (te) and
Vietnamese (vi) for the POS task. The statistics for each language are summarized in Table [2| Different
from the NYUv2 dataset where different tasks share the same input data, in those multilingual problems,
each language/task has its own input data.

Table 2: The numbers of training, validation, and test data for each language in PI and POS problems from
the XTREME benchmark.

PI POS

en 49.4K+2.0K+2.0K 6.9K+1.8K+3.2K
zh 49.4K+2.0K+2.0K 4.0K+0.5K+2.9K
de 49.4K+42.0K+42.0K -

es 49.4K+2.0K+2.0K -
te - 1.0K+0.1K+0.1K
vi - 1.4K+0.8K+0.8K

Implementation details. For each multilingual problem in the XTREME benchmark, a pre-trained
multilingual BERT (mBERT) model (Devlin et al., 2019) implemented via the open-source transformers
library (Wolf et all 2020)) is used as the shared encoder among languages and a fully connected layer is
used as the language-specific output layer for each language. The Adam optimizer with the learning rate as
2 x 10~° and the weight decay as 1078 is used for training and the batch size is set to 32. The cross-entropy
loss is used for the two multilingual problems.

Results. According to experimental results shown in Table [3| we can find some empirical observations,
which are similar to those on the NYUv2 dataset. Firstly, both the RLW and RGW strategies outperform
the EW method. Secondly, compared with the existing works, RLW and RGW can achieve comparable
performance with existing loss/gradient balancing methods, respectively. Even, RLW or RGW methods
could outperform all baseline methods. For example, RLW achieves the best performance (i.e., 90.25%
average accuracy) on the PI problem and RGW achieves the best average F1 score of 91.16% on the POS
problem. It is interesting to find that the performance of RLW and RGW are inconsistent in different
datasets. There is because the random loss weights in RLW will affect the update of task-specific parameters
while not in RGW, which has a different influence on the performance of different datasets.
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Table 3: Performance on two multilingual problems, i.e., PI and POS from the XTREME benchmark.
The best results for each language over loss/gradient balancing methods are marked with superscript */7.
The best results for each language over all methods are highlighted in bold.

‘ PI (Accuracy) ‘ POS (F1 Score)
Methods

‘ en zh de es Avg ‘ en zh te vi Avg
EW | 9429 8499  89.79  90.94  90.00 | 95.06  89.01 9141  86.65  90.53
. [9AYY 93.74  85.44* 90.24* 91.29  90.18 | 9489  88.77  90.96  87.12  90.44
;53 DWA 94.69*  84.99  89.49 91.44* 90.15 | 95.02  89.03  91.87 87.27*  90.80
» IMTL-L 93.94  84.54  89.39 91.44* 89.82 | 95.57* 89.93*  91.77  86.11  90.84
< MOML 93.89  83.74  89.94 9099  89.64 | 9515  89.11 9241  87.24  90.98"
RLW (ours) | 9429 8539  89.94  91.39 90.25* | 9501  88.87 92.86* 86.85  90.90
MGDA-UB 94.09  84.14  89.14  90.59  89.49 | 9489 8843  91.01  86.04  90.01
~ GradNorm 94.19  83.59  88.89  91.24  89.47 | 9488 8380 91.78  86.96  90.61
= PCGrad 94.19 85.49" 89.09  91.24  90.00 | 9485 8842  90.72  86.71  90.18
A GradDrop 94.29  84.44  89.69  90.94  89.84 | 95.08  89.06  90.65  87.17  90.49
g IMTL-C 94.697 8454  89.39  90.69  89.82 | 94.93  88.70  91.66  87.00  90.57
3 GradVac 94.29  84.94  89.19  90.89  89.83 | 9487 8841  90.62  86.47  90.09
S CAGrad 94.34  84.59  90.09"  90.64  89.91 | 9483 8865 9171  86.76  90.48
RotoGrad 93.99  83.89  89.29  90.94  89.52 | 9544  89.79  91.42  86.33  90.74
RGW (ours) | 94.55 8499  89.29 9140t 90.06" | 9552f 90.13"7 91.82F 87.18" 91.16f

5.3 Robustness on Distribution

In this section, we evaluate the robustness of the proposed RW methods on the sampling distribution.
Taking RLW as an example, we show its robustness by evaluating with five different sampling distributions
(i.e., p(A)) for loss weights. The five distributions are uniform distribution between 0 and 1 (denoted by
Uniform), standard normal distribution (denoted by Normal), Dirichlet distribution with a = 1 (denoted
by Dirichlet), Bernoulli distribution with probability 1/2 (denoted by Bernoulli), Bernoulli distribution
with probability 1/2 and a constraint Zthl A = 1 (denoted by c-Bernoulli). We set f as a function of
f) =X/ (Z?:l \¢) for the Bernoulli distribution and the c-Bernoulli distribution, a softmax function for
the Normal distribution and Uniform distribution, and an identity function for the Dirichlet distribution.

We can prove that all the E[A]’s under these five distributions equal (%, ceey %) (refer to Appendix, thus
it is fair to compare among them.

Figure [I| shows the results of the RLW method with 161

five sampling distributions on the NYUv2 dataset 1.4

in terms of A, where the experiment on each sam-

pling distribution is repeated for 8 times. The re- 2]
sults show that the RLW method with different dis- _ 104
tributions can always outperform the EW method, & ;g
which shows the robustness of the RLW method < - *

with respect to the sampling distribution. In ad-
dition, compared with the uniform, Dirichlet, and 0.4
Bernoulli distributions, RLW with the standard nor-
mal distribution achieves better and more stable
performance. Although RLW with the c-Bernoulli Uniform  Normal  Dirichlet  Bernoulli c-Bernoulli
distribution performs slightly better than the stan-
dard normal distribution, it is more unstable and
may need a longer training time as shown in Sec-
tion [5.4l Thus, in this paper, we use the standard
normal distribution to sample loss weights.

Figure 1: Results of the RLW method with different
sampling distributions in terms of A.
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5.4 Convergence Speed

Here we take RLW as an example to show the efficiency of RW methods. Figure [2| plots the performance
curve on both NYUv2 and CelebA validation datasets to empirically compare the convergence speed of the
EW and RLW methods.

On the NYUv2 dataset with three tasks, the performance curves of the RLW method with two sampling
distributions are similar to that of the EW method, which indicates that the RLW method has a similar
convergence property to the EW method on this dataset. As the number of tasks increases, i.e., on the
CelebA dataset with 40 tasks, we find that the RLW method with the standard normal distribution still
converges as fast as the EW method, while the RLW method with the c-Bernoulli distribution converges
slower. One reason for this phenomenon is that only one task is used to update model parameters in each
training iteration when using the c-Bernoulli distribution. Thus, in this paper, we use the standard normal
distribution, which is as efficient as the EW method.

01 ., . :
“’Qm 90
-10 Y <
04 — 881
_20 - v a
o
:\3 -30 5 8 86
= <
—40 -10 e T T T v 84 4
80 90 100 110 |120 g
~50 1 EW g 82 — EW
—604 —— RLW (Normal) —— RLW (Normal)
—— RLW (c-Bernoulli) 80 - —— RLW (c-Bernoulli)
-70 1 ! ! ! ! I ! ! ! : : : : : : : :
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
Epochs Epochs

Figure 2: Comparison on the convergence speed of the EW and RLW methods on the NYUv2 validation
dataset (Left) and the CelebA validation dataset (Right).

5.5 Combination of Loss and Gradient Balancing Methods

The loss balancing methods are complementary with the gradient balancing methods. Following (Liu et al.|
2021b)), we train an MTL model with different combinations of loss balancing and gradient balancing methods
on the NYUv2 dataset to further improve the performance. We use the vanilla EW as the baseline to measure
the relative improvement of the other different combinations as shown in the definition of Ap.

According to the results shown in Table [4] we can see that combined with the UW, DWA and IMTL-L
methods, some gradient balancing methods performs better but others become worse. For example, A, of
the GradDrop method drops from 0.08% to —0.42% when combined with DWA. Noticeably, by combining
with the proposed RLW method, all the gradient balancing methods can achieve better performance. Besides,
on each gradient balancing method, the improvement induced by the RLW method is significantly larger
than the other three loss balancing methods as well as the EW method. Moreover, RGW can also improve
the performance of loss balancing methods except DWA. Thus, this experiment further demonstrates the
effectiveness of the proposed RW methods.

5.6 Effects of Different Architectures

The proposed RW methods can be seamlessly incorporated into all the MTL architectures. To see this, we
take RLW as an example and combine it with three different MTL architectures, i.e., cross-stitch network
(Misra et al.l 2016]), Multi-Task Attention Network (MTAN) (Liu et al., [2019), and NDDR-CNN (Gao
et al.l |2019). We use the combination of EW and HPS as the baseline to measure the relative improvement
of the other different combinations as shown in the definition of Ap.
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Table 4: Results of different combinations of loss balancing and gradient balancing methods on the NYUv2
dataset in terms of A,. The best results in each row are highlighted in bold.

EW uw DWA  IMTL-L RLW

Vanilla +0.00% +0.64% +0.63% +0.35% +1.04%
MGDA-UB  +0.38% +0.15% +0.47% -0.59% +2.01%
GradNorm  -0.99%  +0.87% -0.95%  +0.54% +0.89%
PCGrad -0.16%  +0.72% +0.19% +0.38% +0.97%
GradDrop  +0.08% +0.25% -0.42%  +0.36% +0.93%
IMTL-G ~ +0.80% +0.45% +1.20% +0.18% +1.50%
GradVac  +0.07% -0.03% +0.89% +0.69% +0.97%
CAGrad +1.36% +1.07% +1.41% +2.18% +2.20%
RotoGrad  +1.19% +1.03% +0.75% +1.40% +1.45%

RGW +0.62% +0.82% +0.41% +0.78% +1.46%

According to the results on the NYUv2 dataset as shown in Table [§] we can see that the proposed RLW
strategy outperforms the EW method under all the three architectures. When using the MTAN and NNDR-
CNN architectures, RLW achieves better performance than the CAGrad method that performs best in the
HPS architecture, which shows the potential of the proposed RLW method when choosing suitable MTL
architectures. Moreover, combined with the RLW method, CAGrad can be further improved under the four
architectures. For example, the combinations of RLW and CAGrad can achieve the best A}, of 3.53% under
the NDDR-CNN architecture.

Table 5: Results of different combinations of task balancing methods and MTL architectures on the NYUv2
dataset in terms of A,. The best results for each architecture are highlighted in bold.

HPS Cross-stitch  MTAN  NDDR-CNN

EW -+0.00% +1.43% +2.56% +1.90%
CAGrad +1.36% +2.42% +2.26% +2.83%
RLW +1.04% +2.23% +2.66% +2.91%

RLW+CAGrad +2.20% +2.76% +2.92% +3.53%

6 Conclusions

In this paper, we propose the RW methods, an important yet ignored baselines for MTL, by training an
MTL model with random loss/gradient weights. We analyze the convergence and effectiveness properties
of the proposed RW method. Moreover, we provide a consistent and comparative comparison to show the
RW methods can achieve comparable performance with state-of-the-art methods that use carefully designed
weights, which indicates the random experiments could be used to examine the effectiveness of newly proposed
MTL methods and RW methods should attract wide attention as the litmus tests. In our future work, we
will apply the RW methods to more MTL applications.
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A Proof of the Mean Value E()\)

Suppose that S\t(t =1,---,T) are independent and identically distributed (i.i.d.) random variables sampled

from the Uniform or standard Normal distributions and f is the softmax function. Then we have \; =
exp(s\t)

~17 = d
S i)
E(\;) = Efexp(A,)]E { ! :|—|—CO (e () ! )
i XP — v | exp(\;), ——-— |,
Szt P (An) Y1 exp(Am)
where Cov(-,-) denotes the covariance between two random variables. Since {S\t}t 1 are
iid random variables, we have E[exp()\;)] = Efexp();)] and Cov(exp() )1/Em 1exp(Ap)) =

Cov(exp(};), l/z _,exp(Am)). Therefore, we obtain
E(\) =E(\),V1<4,j <T.

Moreover, we have

T T
oy SN SR ST
R B !
t=1 t=1

Thus we have E(X) = (%, -+ , 7). Similarly, we can prove the same result for the Bernoulli and c-Bernoulli

distributions with the normalization function f as f(A) = A/(31—; A)-

B Proof of Section [4]

B.1 Proof of Theorem 1]

Suppose Lrrw () = AT£(6), where X is a random variable sampled from a random distribution in every
training iteration.

Since ¢, is ¢;-strongly convex w.r.t. 6, for any two points #; and 6, in R?, we have

(VATL(01) — VATL(02),01 — 02) =) A (VE(01) — VE(05),01 — 02)

M=

o~
Il
—

cidellfr — 021 (4)

W

~~
Il
-

Since 0 < A\; < 1, we have EtT:l Ay > ¢, where ¢ = miny<;<7{c;}. Then for any A, Lruw(0) is c-strongly
convex.
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With notations in Theorem |1} we have
1041 — 0u]1> = 1|0 — 6. — nVAT&(D;6)|?
= 10 = 0112 = 20 (0 — 0., TATE(D;0) ) + n* VAT €(D; 0) 2

Note that Ex [Eﬁ[vﬂe(b; ek)ﬂ = VT 4(D; ;) and
Ex [Es[IVATE(D;00)|%]] < Ex [EplIATI7[V(D: 61) ]
T T
SN B
t=1 t=1
T
<Y ol
t=1

where the first inequality is due to the Cauchy-Schwarz inequality and the third inequality isdueto 0 < Ay <1
and ), Ay = 1. Then, by defining x = Zthl o2, we obtain

Ex [Ep[10k+1 — 0:|*]] < 10k — 0:11* =27 (0 — 0, Vi " £(01)) + 1k
< (1= 20¢)[|0k — 0.1 + k. (5)

If 1 — 2nc > 0, we recursively apply the inequality over the first k iterations and we can obtain

k—1
E[|0k+1 — 04]%] < (1 —2nc)* (|60 — 0.|* + Z(l —2ne)n’k
=0
< (1=200)%16y — 6,112 + 22
< (1 200)" g — 0. + 2

Thus the inequality lb holds if n < %

According to inequality , the minimal value of a quadratic function g.(n) = (1 — 2nc)e + n*k is achieved
at 7, = =<, By setting || — 6,||* = €0, we have

E[|0k+1 — 0:11] < gj00—o.)2(1)

2|0, — 0, 202

R T
2ec?

<(1-— — 6,

< (- ES) o -0,
2ec?

< (1= =) .

K

Then if E[||0x+1 — 04]|?] > ¢, we have ¢ < (1 — %)kso. Therefore, k < 525 log (£2) .

B.2 Proof of Theorem
Since ¢ = 0 — V' £(0)) and 01 = 0, — (V" £(0;,) + &), we have
Prt1 = @k — 0k — Vi L(or — &)

Since the loss function ¢;(6) of task ¢ is ¢;-one point strongly convex w.r.t. a given point 8, after convolved
with noise &, similar to inequality , we have

(VEe[n"£(o —né)l, o — 0.) > cllo — 0.7,
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where ¢ = miny<;<r{c;}. Since V() is M;-Lipschitz continuous, for any two points 6; and 6, in R?, we
have

T T
IV T(61) = VT €(02)l| = > pel| V(1) = Ve (02)]| <Y Mipu]|61 — 65 (6)
t=1 t=1
Note that ZtT:l My < M, where M = maxi<;<7{M;}. Therefore, Vi £(6) is M-Lipschitz continuous.

Then we can get

Ellors1 — 0x01°] = Elllox — nék — Vir " £(or — néi) — 0.°]
<E[llor — 0u)1* + [Inkll” + IV e " (o — n6) 1> = 2 (o1 — Os, k)
=2 (o — 04, Vi Lo — ér)) +2({V " L(or — &), nék)]
< ok = 0ul” + 0%r® + B[V " €(or — n&r)lI”] — 2ncellor — 6.
+2E[(Vi (o1, — nék) — Vi L(or), mék)]
(1 =2n0)ller — 0« + n°r® + n°E[[| M (0 — (ox — n&x))I?] + 20°r* M
(1 =2n¢)ller — 0.1 + 7% + 0> M |0k — 0.]1% + E[(0r — 0, nér)]
+0? MPE[|[né||*] + 2n°r* M
< (1=2nc+ 0> M?)|lok — 0.1 + n’r?* (1 + nM)?,

<
<

where the second inequality is due to the convexity assumption and E[£;] = 0, the third and forth inequalities
are due to the Lipschitz continuity. We set p = 2nc — n?M? and 8 = n*r?(1 + nM)2. If p > 0, we have
n < 37z, then we get

Elllor1 — 0% < (1 = p)ller — 0.1 + 8
k—1
< (1= p)¥llpo = 0.1+ > _(1—p)'B
j=0

B
< (1= p)"llpo — 0.)> + >

So if K < %log (%), we have E[||¢ri1 — 0.]%] < %. Then by the Markov inequality, with probability at
least 1 — §, we have

26
2

VK — <=
H K Q*H =5

B.3 Noise Upper Bound

Suppose the noise produced by the EW method is £ = |[VuT£(D;0) — Vi £(D;0)|| and [|€]|> < R. The
noise produced by the RLW method is £ = |[VAT£(D;0) — VT £(D;0)||. We have

€17 = IVATE(D:6) = Vi £(D;6) + Vi £(D;6) — V' £(D;6)|?
= [T~ uT) VD) + 2 (AT — D). €) + €]
Because the noise £ can be any direction, there exists a constant s > 0 such that ||£]|> = R and & =

s(AT — T )VE(D;0). Then, we have ||€]|2 < (1+25)||A — p||?||VE(D;6)||2 + R. Thus, the norm of the noise
provided by the RLW method has a larger supremum than EW.

C Additional Experimental Results

C.1 Results on the CityScapes Dataset

Dataset. The CityScapes dataset (Cordts et al., |2016)) is a large-scale urban street scene understanding
dataset and it is comprised of a diverse set of stereo video sequences recorded from 50 different cities in fine
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weather during the daytime. It contains 2,975 and 500 annotated images for training and test, respectively.
This dataset includes two tasks: 7-class semantic segmentation and depth estimation.

Implementation details. For the CityScapes dataset, the network architecture and optimizer are the
same as those in the NYUv2 dataset. We resize all the images to 128 x 256 and set the batch size to 64
for training. We use the cross-entropy loss and L; loss for the semantic segmentation and depth estimation
tasks, respectively.

Results. The results on the CityScapes dataset are shown in Table [f] The empirical observations are
similar to those on the NYUv2 dataset in Table[l] Firstly, both the RLW and RGW strategies significantly
outperform the EW method. Secondly, the RLW method can outperform most of the loss balancing baselines
except the IMTL-L method. Moreover, the RGW method achieves 2.36% performance improvement and
outperforms all of the baselines.

Table 6: Performance on the CityScapes dataset with two tasks: 7-class semantic segmentation and depth
estimation. The best results for each task on each measure over loss/gradient balancing methods are marked
with superscript */t. The best results for each task on each measure are highlighted in bold. 1 (}) means
the higher (lower) the result, the better the performance.

Segmentation Depth
Methods : Apt
mloU?T Pix Acct Abs Err] Rel Err|

EW 68.71 91.50 0.0132 45.58 +0.00%

, UW 68.84 91.53 0.0132 46.18 -0.09%
gg DWA 68.56 91.48 0.0135 44.49 +0.05%
P IMTL-L 69.71* 91.77* 0.0128* 45.08 +1.58%*
S MOML 69.34 91.65 0.0129 46.33 +0.59%
RLW (ours)  68.78 91.45 0.0134 43.68* +0.69%
MGDA-UB 68.41 91.13 0.0124f 46.85 +0.64%
GradNorm 68.60 91.48 0.0133 45.32 +0.01%

= PCGrad 68.54 91.47 0.0135 44.82 -0.10%
A GradDrop 68.62 91.45 0.0136 45.05 -0.42%
g IMTL-G 68.62 91.48 0.0130 44.29 +1.09%
3 GradVac 68.60 91.47 0.0134 44.92 -0.06%
5 CAGrad 68.89 91.50 0.0128 44.72 +1.38%
RotoGrad 68.96 91.47 0.0127 43.85T +2.13%
RGW (ours) 69.68f 91.85" 0.0127 43.91 +2.36%"

C.2 Results on the CelebA Dataset

Dataset. The CelebA dataset (Liu et al., [2015)) is a large-scale face attributes dataset with 202,599 face
images, each of which has 40 attribute annotations. It is split into three parts: 162,770, 19,867, and 19,962
images for training, validation, and testing, respectively. Hence, this dataset contains 40 tasks and each task
is a binary classification problem for one attribute.

Implementation details. We use the ResNet-18 network as a shared feature extractor and a fully con-
nected layer with two output units as a task-specific head for each task. All the images are resized to 64 x 64.
The Adam optimizer with the learning rate as 1072 is used for training and the batch size is set to 512. The
cross-entropy loss is used for the 40 tasks.

Results. Since the number of tasks in the CelebA dataset is large, we only report the average classification

accuracy on the forty tasks in Table [7] According to the results, the proposed RLW strategy slightly
outperforms the EW method and performs comparably with loss balancing baseline methods. However, we
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Table 7: Average classification accuracy (%) of different methods on the CelebA dataset with forty tasks.
The best results over loss/gradient balancing methods are marked with superscript */1. The best results are
highlighted in bold.

Methods Avg Acc

EW 90.70

. UW 90.84
2 DWA 90.77
@ IMTL-L 90.46

S MOML 90.94*
RLW (ours) 90.73
MGDA-UB 90.40
GradNorm 90.77

= PCGrad 90.85
f GradDrop 90.71
g IMTL-G 90.80
= GradVac 90.75
3 CAGrad 90.72
RotoGrad 90.45

RGW (ours) 90.00

can find that the RGW method and most of the gradient balancing methods are worse or achieve very limited
improvement, over the EW method, which indicates the gradient weighting is not suitable for the CelebA
dataset.

C.3 Results on the Office-31 and Office-Home Datasets

Datasets. The Office-31 dataset (Saenko et al., |2010) consists of three domains: Amazon (A), DSLR
(D), and Webcam (W), where each domain contains 31 object categories, and it contains 4,110 labeled
images. We randomly split the whole dataset with 60% for training, 20% for validation, and the rest 20% for
testing. The Office-Home dataset (Venkateswara et al., |2017) has four domains: artistic images (Ar), clip
art (Cl), product images (Pr), and real-world images (Rw). It has 15,500 labeled images in total and each
domain contains 65 classes. We make the same split as the Office-31 dataset. For both datasets, we consider
the multi-class classification problem on each domain as a task. Similar to multilingual problems from the
XTREME benchmark, each task in both Office-31 and Office-Home datasets has its own input data.

Implementation details. We use the same configuration for the Office-31 and Office-Home datasets.
Specifically, the ResNet-18 network pre-trained on the ImageNet dataset is used as a shared backbone
among tasks and a fully connected layer is applied as a task-specific output layer for each task. All the input
images are resized to 224 x 224. We use the Adam optimizer with the learning rate as 10~* and the weight
decay as 107° and set the batch size to 128 for training. The cross-entropy loss is used for all tasks in both
datasets.

Results. According to the results shown in Table 8] we can see both the RLW and RGW strategies outper-
form the EW method on both two datasets in terms of the average classification accuracy over tasks, which
implies the effectiveness of the RW methods. Moreover, the RGW method achieves the best performance
(92.55% and 78.07% in term of the average accuracy) over all baselines on the Office-31 and Office-Home
datasets, respectively.
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Table 8: Classification accuracy (%) of different methods on the Office-31 and Office-Home datasets. The
best results for each domain over loss/gradient balancing methods are marked with superscript */t. The
best results for each task are highlighted in bold.

‘ Office-31 ‘ Office-Home
Methods

‘ A D W Avg ‘ Ar Cl Pr Rw Avg
EW | 8273 9672 96.11  91.85 | 6299 7648 8845  77.72 7641
) UwW 82.73  96.72* 9555  91.66 | 63.94 7562 8855  78.05  76.54
g DWA 82.22  96.72*  96.11  91.68 | 63.37  76.05  89.08  77.62  76.53
2 IMTL-L 83.76  96.72* 9555  92.01 | 65.46* 79.08* 88.45 7881  77.95*
3 MOML 84.78° 95.08  96.67F  92.17 | 64.70  77.03 8824  80.00  77.49
RLW (ours) | 83.76  96.72* 96.67* 92.38* | 62.80  76.48 90.57* 80.21* 77.52
MGDA-UB 81.02 9590 97.77T 9156 | 64.32 7529  89.72  79.35  77.17
GradNorm 83.93 97.547 9444 9197 | 65.467  75.29 88.66 78.91 77.08
= PCGrad 82.22  96.72 95,55 9149 | 63.94  76.05  88.87 7827  76.78
j’f GradDrop 84.27F 9508  96.11  91.82 | 64.70  77.03  88.02  79.13  77.22
g IMTL-G 82.22 9590  96.11  91.41 | 63.37 7605  89.19 7924  76.96
= GradVac 82.73 97.547 9555 9194 | 63.18 7648  88.66  77.83  76.53
B CAGrad 82.22  96.72  96.67  91.87 | 63.75 7594  89.08 7827  76.75
RotoGrad 82.90  96.72  96.11  91.91 | 61.85  77.03 90.36T 7859  76.95
RGW (ours) | 84271  96.72  96.67 92.557 | 65.08 78.657 88.66  79.89" 78.07f

18



	Introduction
	An Overview of Task Balancing Methods
	The Random Weighting Methods
	Analysis
	Experiments
	Results on the NYUv2 Dataset
	Results on the XTREME benchmark
	Robustness on Distribution
	Convergence Speed
	Combination of Loss and Gradient Balancing Methods
	Effects of Different Architectures

	Conclusions
	Proof of the Mean Value E()
	Proof of Section 4
	Proof of Theorem 1
	Proof of Theorem 2
	Noise Upper Bound

	Additional Experimental Results
	Results on the CityScapes Dataset
	Results on the CelebA Dataset
	Results on the Office-31 and Office-Home Datasets


