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ABSTRACT

Repository-level pretraining is commonly used to enable large language models
for code to leverage codebase-wide context. This enhances their ability to generate
accurate and context-aware code completions. In this work, we investigate how
different repository-processing strategies affect in-context learning in OpenCoder,
a 1.5B-parameter model. We extend its context window from 4,096 to 16,384 to-
kens by training on additional 1B tokens of curated repository-level data. Despite
relying on a smaller dataset than competing models (which often use hundreds
of billions of tokens), our model achieves comparable performance on the Long
Code Arena benchmark. We find that various repository-processing techniques
yield similarly strong results, with the primary gain coming from adapting to a
new rotary positional embedding (RoPE) scaling parameter. Finally, we show
that a simpler file-level training approach at the original sequence length remains
highly effective, opening up repository-level code completion research to settings
with more constrained data and compute resources.

1 INTRODUCTION AND MOTIVATION

Large Language Models (LLMs) trained on source code, commonly known as Code LLMs, have
demonstrated impressive capabilities on a variety of code-related tasks (Lu et al., 2021; Jimenez
et al., 2023; Hou et al., 2024; Jiang et al., 2024). Traditionally, these models are pretrained on
individual files, effectively capturing local context but often missing broader, project-level informa-
tion. To address this limitation, several recent works have incorporated a repository-level pretraining
phase, i.e., a stage of pretraining during which the model gets training examples from entire reposi-
tories to learn context spanning multiple files, shared dependencies, and cohesive development pat-
terns. For example, models such as DeepSeek Coder, Starcoder 2, Qwen2.5 Coder and CodeGemma
(Guo et al., 2024; Lozhkov et al., 2024; Hui et al., 2024; CodeGemma Team et al., 2024) incorporate
repository-level pretraining to extend their context windows and capture cross-file relationships. Be-
yond repository-level pretraining, other techniques have been investigated (Guo et al., 2023; Zhang
et al., 2023; 2024).

While repository-level pretraining enhances long-context capabilities, it also introduces significant
challenges. Firstly, it requires huge amounts of data, e.g., Qwen2.5 Coder’s repository-level pre-
training leverages approximately 300B tokens of repository data. Secondly, long sequences can
strain computational resources due to the quadratic complexity of traditional transformer architec-
ture. Recent advances in efficient attention mechanisms (for example, Flash Attention and Ring
Attention (Dao, 2023; Liu et al., 2023a)) have enabled training with context lengths typically in the
tens of thousands of tokens, and even millions of tokens for smaller models. However, effective
utilization of repository-level information remains challenging both for training and inference (Ding
et al., 2022; Liu et al., 2023b; Ding et al., 2024; Pei et al., 2023).

In this work, we focus on a single line repository-level code completion and study context exten-
sion pretraining for various repository preprocessing approaches. Following the Long Code Arena
benchmark (Bogomolov et al., 2024) terminology, we evaluate the impact of different context com-
posers, i.e., processors that transform repository files into context strings. Our approach builds on
the OpenCoder base model (Huang et al., 2024), originally configured with a 4,096 (4K) context
window, by training on repository-level input sequences of up to 16,384 (16K) tokens. This exten-
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sion results in significantly improved performance on 16K token sequences compared to the initial
configuration.

We assess our methods using the Project-Level Code Completion task from the Long Code Arena
benchmark, which effectively estimates a model’s ability to handle cross-file dependencies in realis-
tic settings. By isolating the impact of repository-level pretraining and comparing different context
composer strategies, our study provides practical insights for enhancing long-context code comple-
tion performance.

The main contributions of this paper are:

1. We boost the project-level code completion performance of OpenCoder 1.5B to state-of-
the-art levels using only 1B tokens of training data;

2. Our experiments reveal that the choice of context composer during pretraining has only a
marginal impact on final model quality, with performance scores ranging from 45.2 to 48.8
(out of 100) on the chosen metric.

2 EXPERIMENT DESIGN

We start this section with a description of the data sourcing and preparation steps, then explain
our training setup, and finally we detail our evaluation strategy. In addition, we discuss the role of
context composers — repository processing functions, and their distinct modes for the training and
evaluation phases.

2.1 TRAINING DATA

To collect the training data, we follow the approach from the Long Code Arena benchmark, see
Bogomolov et al. (2024) for more details. Starting with open-source GitHub repositories in Python
and then traverse the Git commit history for each repository to extract repository data. Filtering
process is described in B.1

The repository data for each commit consists of two elements: (1) repository snapshot — a context
source with contents of all code and text files before the commit; (2) completion files — list of files
to perform completion on with contents of all .py files added in that commit.

The resulting raw repositories dataset contains 1,640 repositories, 160,801 commits, and 361,052
completion files. The total number of characters in completion files is 1.7B, and in repository snap-
shot files — 4.8T.

To get a context string from the repository data, we apply a context composer to a repository snap-
shot. A context composer is a repository processor that (1) sorts a subset of files (or file chunks)
from the repository snapshot by relevance (based on specified criteria), (2) retrieves the most rele-
vant ones that fit within the context window, and (3) concatenates them into a single string with the
most relevant file at the end.

For each context composer in the list provided in Appendix A.1, we prepare the composed dataset
from the raw repositories dataset which consists of two columns: (1) completion file — one file from
the completion files; (2) composed context — string with the result of the context composer.

Of the various context composers used in our experiments, we highlight the following two for clarity
and conciseness.

1. File-level — Produces an empty context.

2. Path Distance .py — The context is built solely from .py files, sorted in descending
order by their path distance from the completion file. For files with the same distance, a
secondary sort uses the Intersection over Union (IoU) score of their matching lines.

Note that rows from the raw repositories dataset can produce multiple rows of the composed dataset
with one row for each completion file.

2



Published as a conference paper at ICLR 2025

2.2 TRAINING

For each context composer, we pretrain OpenCoder 1.5B model (Huang et al., 2024) on the corre-
sponding composed dataset with a context window size of 16,384 tokens.

In our training mode for the context composer, we aim to include as many files as possible in the
context string. To achieve this, we truncate both the context string and the completion file, ensuring
that the context-to-completion token ratio is at least 3 : 1. For more details, see Appendix C.2.

To extend the model context window size, we change RoPE’s base frequency θ from 10,000 to
500,000 following the ABF approach (Xiong et al., 2023); our focus is on this method, although
alternative approaches exist (Chen et al., 2023; Peng et al., 2023; Zhong et al., 2024; Liu et al.,
2023c).

To evaluate models after training on approximately 1 billion tokens, and in accordance with our
training hyperparameters (see Appendix C.1), we save the model’s weights at the 512th optimization
step, referring to this saved state as a checkpoint.

2.3 EVALUATION

Our evaluation setup is based on the large context dataset, which is a part of the Project-level code
completion task from the Long Code Arena dataset (LCA-large) (Bogomolov et al., 2024). The
task is to write the next line of code based on the file prefix and the repository snapshot, with the
evaluation metric being Exact Match (percentage of correct answers). Additionally, each line has
one of six categories that corresponds to various scenarios of project cross-file dependencies. We use
categories infile and inproject, i.e., a completion line that contains an API declared in the completion
file or in repository snapshot files. These two categories indicate in-context learning capabilities the
best out of six, since they contain more project-specific information.

We evaluate each checkpoint on infile and inproject categories for two different context composers
in the evaluation mode: (1) FL-4K: File-Level composer with maximum sequence length 4K to-
kens, and (2) PD-16K: Path Distance .py composer with maximum sequence length 16K tokens.
Moreover, we calculate RCB: repository-context boost, i.e., the difference between scores for the
PD-16K and FL-4K composers.

3 RESULTS

In the following subsections, we present our main results: first, we achieve state-of-the-art quality
on LCA-large with much less extensive repository-level pretraining; second, we demonstrate the
impact of the context composer choice on the result of repository-level pretraining. Additionally,
we provide a more detailed comparative study of repository-level pretraining in the Appendix.

3.1 BENCHMARKING AGAINST STATE-OF-THE-ART

To estimate the effectiveness of our trained models, we compare them to DeepSeek Coder 1.3B,
OpenCoder 1.5B with no repository-level pretraining, and Qwen2.5-Coder 0.5B and 1.5B. These
models serve as strong baselines, representing state-of-the-art performance in similar parameter
ranges. Results are shown in Table 1.

We started with OpenCoder model which is pretty good on file-level code completion among the
similar size models and got a significant gain by file-level pretraining on just 1B tokens 1. This
approach serves as a guideline for scenarios with limited data and low GPU resources, since we
do not need repositories, and do not actually need long context for training. We can even achieve
Qwen2.5-Coder performance level with 1B tokens of curated repository-level data.

3.2 IMPACT OF CONTEXT COMPOSER CHOICE

Findings in the previous subsection leave an open question if there is even better composer for
repository-level pretraining. To answer this question, we evaluate all studied composers and present

1While the model had access to 1B tokens, it was actually used just 72M tokens for training.
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Table 1: Comparison of existing models on LCA-large for the line categories: inproject and infile.
FL-4K and PD-16K report Exact Match scores for File-level and Path Distance .py evaluation
composers. RCB represents the repository-context boost score.

inproject infile
Model FL-4K PD-16K RCB FL-4K PD-16K RCB

Qwen2.5-Coder 0.5B 22.6 44.2 +21.6 27.5 43.2 +15.7

DeepSeek Coder 1.3B 25.1 42.3 +17.2 30.3 43.8 +13.5
OpenCoder 1.5B 26.4 0.0 –26.4 32.6 0.0 –32.6
Qwen2.5-Coder 1.5B 27.2 48.5 +21.3 34.3 49.7 +15.4
Ours (OpenCoder 1.5B)

File-level pretr. 25.9 45.2 +19.3 33.0 44.6 +11.6
Path Distance .py pretr. 26.2 48.8 +22.6 33.1 47.6 +14.5

Table 2: Results of evaluating checkpoints after repository-level pretraining. Evaluation dataset
is LCA-large for the line categories: inproject and infile. FL-4K and PD-16K report Exact Match
scores for File-level and Path Distance .py evaluation composers.

Pretraining
Composer

inproject infile
FL-4K PD-16K FL-4K PD-16K

Base model (no training) 26.4 0.0 32.6 0.0
File-level 25.9 45.2 33.0 44.6
Path Distance .py 26.2 48.8 33.1 47.6
Other Pretraining Composers 25.5 – 26.5 46.8 – 48.7 32.3 – 33.3 45.6 – 47.8

condensed results for in Table 2 and extended results in Table 3. Our experiments demonstrate the
performance variations across repository level pretrainings with different context composers.

We observe that file-level composer pretraining results in +19.3 repository-context boost, with other
pretraining strategies getting repository-context boost within a +20.3 to +22.9 range. Combining
with comparable values of the Exact Match, we validate that adapting to the longer context window,
i.e., new RoPE’s base frequency, rather than the specific sequence composition, is the primary factor
in repository-level pretraining, with context composers contributing only marginally for suggested
approaches.

4 CONCLUSION

In this paper, we address the challenge of project-level code completion by evaluating pretraining for
code LLM on various data extracted from repository. Our extensive experiments demonstrate that
even relatively small training dataset and simple context composer (e.g., file-level or path distance) is
enough to get a model comparable to the latest state-of-the-art code LLMs. This insight reduces the
complexity of repository-level pretraining, which effectively minimizes the technical complexities
and encourages to broadly research the topic.

Although our findings are promising, they have certain limitations. Our experiments are limited
to the OpenCoder model, and it remains unclear whether they generalize to other LLMs. A key
direction for future work is to apply our approach on a broader range of Code LLMs. However,
recent Code LLMs were released after the repository-level pretraining stage, which may introduce
inconsistencies in evaluation.
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A CONTEXT COMPOSERS

A.1 COMPLETE LIST

All composers follow two standard preprocessing steps, filtering out empty files and normalizing all
line separators to Line Feed (LF). With these shared characteristics, the full list of context composers
ensures comprehensive coverage for research exploration.

1. File-level — Produces an empty context.
2. Path Distance .py — Constructs the context using only files with the .py extension.

The selected files are sorted in descending order based on their path distance from the
completion file. If multiple files share the same path distance, a secondary sorting step is
applied using the Intersection over Union (IoU) metric, computed over lines shared with the
completion file. The IoU metric is calculated on lines with leading and trailing whitespace
characters removed, considering only those lines that are at least five characters long after
the whitespace removal.

3. Lines IoU .py — Similar to the Path Distance .py method but does not apply the primary
sorting step based on path distance. Instead, files are directly ranked using the IoU metric.

4. Code Chunks — Removes all docstrings, comments, and import statements from the con-
text produced by Path Distance .py.

5. Half-memory .py — Starts with the context produced by Path Distance .py. Each line is
independently removed with a dropout probability of 0.5, maintaining the overall saturation
of the context window.

6. Declarations .py — Builds upon Path Distance .py by filtering out all non-declarative
elements, retaining only function and class declarations.

7. Text Chunks .py — Uses Path Distance .py as the base method. All code is removed
from the context, leaving docstrings and comments only.

8. Text files — Constructs the context using files with the extensions .json, .yaml, .yml,
.sh, .md, .txt, and .rst. The selected files are grouped in ascending order of rel-
evance: [.json], [.yaml, .yml], [.sh], [.md, .txt, .rst]. Within each group, a
secondary sorting step is performed in descending order based on path distance from the
completion file.

9. Random files — Constructs the context by randomly ordering all files from the repository
snapshot.

10. Random .py — Selects only files with the .py extension and orders them randomly.
11. Mixed context2 — The context for each data point is constructed by randomly selecting

one of the following composers: File-level, Path Distance .py, Half-memory .py, Decla-
rations .py, Text files, Random files, or Duplication.

Furthermore, we propose four additional context composers, which are omitted from the results
discussion as they do not reflect realistic scenarios.

1. Random tokens — Constructs the context using a randomly sampled sequence of non-
special tokens, each selected independently and with equal probability.

2. Duplication — Constructs the context by concatenating the content of the completion file
repeatedly until the maximum context window size is reached.

3. Leak — Starts with the context produced by Path Distance .py. The completion file is
randomly split into five segments at newline characters, which then disjointedly replace
context lines at random positions, approximately preserving the original token count.

4. Masked Leak — Starts with the context produced by Path Distance .py. The completion
file is divided into segments, each consisting of five lines with one overlapping line at the
beginning and one at the end. These segments independently and disjointedly replace con-
text lines at random positions. Additionally, each token in the context has a 0.15 probability
of being replaced with a different non-special token.

2Duplication composer is disabled in evaluation mode
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For each composer we also consider two modifications:

• reversed — we retrieve files that fit into the context window with the composer and reverse
their order, so the most relevant one is in the beginning of the context string;

• irrelevant — we reverse the order of files obtained from the composer and therefore retrieve
most irrelevant files.

A.2 INPUT FORMATTING

All composers employ a uniform strategy for input formatting. The files processed by a composer
undergo a predefined formatting pattern 1, which uses a special token from the OpenCoder’s vo-
cabulary. Subsequently, the processed files are concatenated into a single string, referred to as the
composed context.

<file sep># {file name}\n{file content}

Figure 1: File Representation

A similar transformation is applied independently to the completion file.

B TRAINING DATASET

B.1 FILTERING

To avoid training on test data, we exclude repositories used in the Long Code Arena’s Project-level
code completion task. In addition, to ensure data relevance and quality, we apply the following
filtering criteria. First, all commits made prior to 2010 are excluded. Second, completion files
with lengths outside the closed interval [800, 25000] characters are removed. Third, to eliminate
redundancy, a simple deduplication strategy is employed on completion files based on the file name
and the name of the repository to which they belong. Finally, up to 1000 of the most recently updated
unique completion files are selected from each repository. The remaining repository snapshot is
retained without additional processing.

C TRAINING DETAILS

C.1 HYPERPARAMETERS

The optimization process was conducted using the AdamW optimizer with β1 = 0.9, β2 = 0.999,
and a weight decay of 0.01. A batch size of 128 was employed, with a micro-batch size of 1 to
accommodate hardware constraints. To ensure stable training, gradient clipping was applied with
a maximum gradient Euclidean norm of 2. The learning rate was managed using a cosine decay
scheduler with a linear warm-up phase, where the maximum learning rate was set to 5 × 10−5.
The warm-up phase lasted for 256 iterations, after which the learning rate followed a cosine decay
schedule for 3244 additional iterations, reaching a minimum value of 5× 10−8.

C.2 TRAINING MODE OF CONTEXT COMPOSERS

For training, we obtain an input sequence from each row of the composed dataset by independently
tokenizing the context string and the completion file. This process ensures that the completion se-
quence does not exceed 4,096 tokens and that the total length of the concatenated input remains
within 16,384 tokens. To enforce these constraints, we apply truncation from the left for the con-
text and from the right for the completion. Given that most composed contexts exhibit high token
saturation, we maintain a context-to-completion token ratio exceeding 3 : 1.
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D EVALUATION DETAILS

D.1 EVALUATION MODE OF CONTEXT COMPOSERS

For evaluation, we obtain an input sequence for each row of the composed dataset by tokenizing the
concatenation of the context string and the completion file. We then apply truncation from the left.

Compared to the training mode (see Appendix C.2), we do not fix the maximum sequence length.
Instead, we treat it as a parameter that can be adjusted based on the evaluation requirements. For
example, in Appendix F, we demonstrate the dependency between checkpoint quality and maximum
sequence length.

We use the following four evaluation composers in our tables:

• FL-4K: File-Level composer with maximum sequence length 4K tokens. We use it to
estimate how hard the task is without any repository-context, and as a reference point for
calculating gains.

• PD-4K: Path Distance composer with maximum sequence length 4K tokens. We use it
to estimate model’s in-context learning capabilities with initial input sequence length (4K
tokens).

• PD-16K: Path Distance composer with maximum sequence length 16K tokens. We use it to
estimate model’s in-context learning capabilities with new input sequence length (16K to-
kens), and this is the main composer to compare repository-level pretraining with different
context composers.

• Or-16K: original pretraining composer in evaluation mode with maximum sequence length
16K tokens. We use it to identify the most promising composer overall. This composer
applies only to our checkpoints.

E COMPREHENSIVE COMPILATION OF EVALUATION RESULTS

We present results of our experiments in Table 3. They can be used as baselines for further research.

We additionally include results for the base model with RoPE’s base frequencies (θ) being 10,000
and 500,000, results for pretraining with file-level composer for the same values of θ. These re-
sults demonstrate that RoPE adjustments impact model quality, and that the model with initial base
frequency performs on zero-level for long contexts even after finetuning.

When using FL-4K composer, the model successfully recovers its quality after RoPE adjustments,
suggesting that file-level data alone is sufficient to restore performance. The initial model shows
strong in-context learning capabilities for the PD-4K composer, with it outperforming file-level
inference. This advantage persists after repository-level pretraining, indicating that training on the
collected data effectively retains model’s ability to utilize relevant context for shorter context size.

For the PD-16K composer, the initial model, without RoPE adaptation, fails completely, but RoPE
scaling alone improves Exact Match scores. Further pretraining yields gains of +19 for file-level
training and +22 for the best composer in inproject category, with all final scores being slightly
higher than file-level pretraining performance. This suggests that adapting to the longer context
window, rather than the specific sequence composition, is the primary factor in repository-level
code completion, with context composers contributing only marginally for suggested approaches
(+3 points for inproject category).

Overall, our findings emphasize that RoPE adaptation is the dominant factor in long-context perfor-
mance gains, while sequence composition plays a secondary role. Future work should explore more
effective retrieval-based strategies to maximize repository-level context utilization.

F PERFORMANCE SCALING BEYOND TRAINING CONTEXT WINDOW

The repository-level pretraining with File-level composer and Path Distance composer for maximum
sequence lengths of 4K and 16K. However, pretrained checkpoints extrapolate beyond these lengths
up to 16K and 32K as snown on Figure 2.
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Table 3: Results of evaluating all checkpoints after repository-level pretraining on all evaluation
composers. Evaluation dataset is LCA-large for the line categories: inproject and infile. Highlighted
column is the main column for in-context learning capabilities comparison.

Pretraining
Composer

inproject infile
FL-4K PD-4K PD-16K Or-16K FL-4K PD-4K PD-16K Or-16K

Base model (no training)
θ = 10,000 26.4 36.6 0.0 — 32.6 38.2 0.0 —
θ = 500,000 13.5 16.6 9.8 — 15.5 12.9 4.5 —

File-level 4K
θ = 10,000 26.2 36.4 0.0 26.2 32.7 38.1 0.0 32.7
θ = 500,000 25.9 36.1 45.2 25.9 33.0 38.1 44.6 33.0

Path Distance .py 26.2 37.0 48.8 48.8 33.1 38.7 47.6 48.8
reversed 26.1 36.9 48.3 43.2 32.9 38.8 47.5 44.0
irrelevant 25.8 36.5 47.9 26.7 32.5 38.1 46.7 33.4

Lines IoU .py 25.7 36.3 48.7 51.8 33.2 38.4 47.7 50.1
reversed 26.1 36.8 48.4 43.5 33.2 38.9 47.4 44.6
irrelevant 25.8 36.4 47.5 26.7 32.7 38.4 46.6 33.4

Code Chunks .py 25.9 36.5 47.9 47.8 32.8 38.2 47.5 47.9
reversed 26.1 36.5 47.8 41.3 32.8 38.3 47.4 43.0
irrelevant 25.8 36.5 47.7 26.9 32.3 37.9 46.3 33.2

Half-memory .py 25.7 36.0 47.4 38.6 32.9 38.4 46.6 38.7
reversed 25.7 36.2 47.3 35.0 32.9 38.2 46.5 36.9
irrelevant 25.8 36.0 47.0 27.5 32.4 37.7 46.5 33.0

Declarations .py 25.9 36.5 46.8 28.2 32.6 38.1 46.1 34.4
reversed 25.7 36.5 46.9 28.1 32.7 38.1 45.7 34.2
irrelevant 26.2 36.3 47.2 28.2 32.4 38.4 45.6 33.9

Text Chunks .py 26.1 36.6 47.5 26.9 33.0 38.5 46.9 33.2
reversed 26.0 36.1 47.4 26.8 32.9 38.5 46.2 33.5
irrelevant 25.9 36.4 47.2 26.8 32.7 38.5 46.2 33.8

Text files 25.9 36.2 47.1 26.9 33.0 38.6 46.4 33.5
reversed 26.0 36.5 46.9 26.7 33.2 38.4 46.2 33.1
irrelevant 26.0 36.5 47.1 27.0 32.7 38.2 46.3 33.7

Random files 26.2 37.0 48.1 29.8 32.8 38.3 47.3 34.2

Random .py 25.9 36.8 48.4 31.9 32.8 38.1 47.0 35.3

Mixed context 26.2 36.7 48.5 31.0 32.6 38.2 47.5 36.4

Random tokens 26.0 36.2 44.5 26.0 32.6 37.9 45.1 33.1

Duplication 19.6 28.8 34.7 96.7 24.5 27.0 28.1 95.0

Leak 24.9 34.8 46.1 82.9 30.8 35.5 43.6 81.6
reversed 24.3 34.7 45.6 83.8 30.8 35.3 42.8 81.0
irrelevant 24.5 34.6 45.6 82.2 31.3 35.6 43.2 79.7

Masked Leak 25.2 35.4 46.4 65.5 31.6 36.9 45.0 63.5
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Figure 2: Performance comparison of File-level and Path Distance .py approaches across different
context sizes for OpenCoder 1.5B model. The plots show the Exact Match accuracy for both inpro-
ject (top) and infile (bottom) categories. The dashed vertical lines represent the context length used
during repository-level pretraining.

Similar behavior was observed in Roziere et al. (2023) and it needs additional research.

G MASKED LOSS AND FULL LOSS RESULTS

Some context composers create out-of-distribution sequences (e.g., Declarations .py). We avoid
distribution shift by masking the loss, i.e., use only gradients from completion file tokens for training.
In case of any composer that includes unprocessed code files in the context, we lose tokens for
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training. However, the results for each composer in Table 4 are comparable for masked loss and full
loss pretraining, with the only exception being the Duplication composer.

Table 4: Comparison of checkpoints pretrained with masked loss and full loss.

Pretraining
Composer

inproject infile
FL-4K PD-4K PD-16K Or-16K FL-4K PD-4K PD-16K Or-16K

Path Distance .py
Masked loss 26.2 37.0 48.8 48.8 33.1 38.7 47.6 47.6
Full loss 26.3 36.5 48.4 48.4 33.1 38.6 47.8 47.8

Path Distance .py, reversed
Masked loss 26.1 36.9 48.3 43.2 32.9 38.8 47.5 44.0
Full loss 26.2 36.8 48.4 43.1 33.1 38.6 47.2 44.1

Path Distance .py, irrelevant
Masked loss 25.8 36.5 47.9 26.7 32.5 38.1 46.7 33.4
Full loss 25.5 36.5 48.0 26.5 33.0 38.4 46.8 33.6

Lines IoU .py
Masked loss 25.7 36.3 48.7 51.8 33.2 38.4 47.7 50.1
Full loss 25.9 36.6 48.4 51.2 32.9 38.8 47.5 49.6

Lines IoU .py, reversed
Masked loss 26.1 36.8 48.4 43.5 33.2 38.9 47.4 44.6
Full loss 26.0 36.8 48.3 43.6 33.1 38.9 47.4 44.8

Lines IoU .py, irrelevant
Masked loss 25.8 36.4 47.5 26.7 32.7 38.4 46.6 33.4
Full loss 26.2 36.8 48.2 26.6 33.3 38.7 47.2 33.3

Code Chunks .py
Masked loss 25.9 36.5 47.9 47.8 32.8 38.2 47.5 47.9
Full loss 26.5 36.8 48.7 47.7 33.2 38.6 47.8 47.8

Code Chunks .py, reversed
Masked loss 26.1 36.5 47.8 41.3 32.8 38.3 47.4 43.0
Full loss 26.4 37.0 48.7 41.5 33.3 38.8 47.8 43.4

Code Chunks .py, irrelevant
Masked loss 25.8 36.5 47.7 26.9 32.3 37.9 46.3 33.2
Full loss 25.7 36.5 48.1 26.9 33.3 38.7 47.1 33.3

Random .py
Masked loss 25.9 36.8 48.4 31.9 32.8 38.1 47.0 35.3
Full loss 26.2 36.8 48.3 32.2 33.1 38.5 47.6 36.0

Duplication
Masked loss 19.6 28.8 34.7 96.7 24.5 27.0 28.1 95.0
Full loss 25.5 35.9 46.4 97.3 32.8 38.4 44.4 96.4
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