
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOMATED DESIGN OF AGENTIC SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Researchers are investing substantial effort in developing powerful general-
purpose agents, wherein Foundation Models are used as modules within agen-
tic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the
history of machine learning teaches us that hand-designed solutions are eventu-
ally replaced by learned solutions. We describe a newly forming research area,
Automated Design of Agentic Systems (ADAS), which aims to automatically cre-
ate powerful agentic system designs, including inventing novel building blocks
and/or combining them in new ways. We further demonstrate that there is an un-
explored yet promising approach within ADAS where agents can be defined in
code and new agents can be automatically discovered by a meta agent program-
ming ever better ones in code. Given that most programming languages are Turing
Complete, this approach theoretically enables the learning of any possible agentic
system: including novel prompts, tool use, workflows, and combinations thereof.
We present a simple yet effective algorithm named Meta Agent Search to demon-
strate this idea, where a meta agent iteratively programs interesting new agents
based on an ever-growing archive of previous discoveries. Through extensive ex-
periments across multiple domains including coding, science, and math, we show
that our algorithm can progressively invent agents with novel designs that greatly
outperform state-of-the-art hand-designed agents. Importantly, we consistently
observe the surprising result that agents invented by Meta Agent Search maintain
superior performance even when transferred across domains and models, demon-
strating their robustness and generality. Provided we develop it safely, our work
illustrates the potential of an exciting new research direction toward automatically
designing ever-more powerful agentic systems to benefit humanity.1

1 INTRODUCTION

Foundation Models (FMs) such as GPT (OpenAI, 2024; 2022) and Claude (Anthropic, 2024b) are
quickly being adopted as powerful general-purpose agents for agentic tasks that need flexible rea-
soning and planning (Wang et al., 2024). Despite recent advancements in FMs, solving problems re-
liably often requires an agent to be a compound agentic system with multiple components instead of
a monolithic model query (Zaharia et al., 2024; Rocktäschel, 2024). Additionally, to enable agents to
solve complex real-world tasks, they often need access to external tools such as search engines, code
execution, and database queries. As a result, many effective building blocks of agentic systems have
been proposed, such as chain-of-thought planning and reasoning (Wei et al., 2022; Yao et al., 2023;
Hu & Clune, 2024), memory structures (Zhang et al., 2024c; Lewis et al., 2020), tool use (Schick
et al., 2023; Qu et al., 2024), and self-reflection (Madaan et al., 2024; Shinn et al., 2023). Although
these agents have already seen significant success across various applications (Wang et al., 2024),
developing these building blocks and combining them into complex agentic systems often requires
domain-specific manual tuning and substantial effort from both researchers and engineers.

However, the history of machine learning reveals a recurring theme: manually created artifacts be-
come replaced by learned, more efficient solutions (Clune, 2019) over time as we get more compute
and data (Sutton, 2019). An early example is from computer vision, where hand-designed features
like HOG (Dalal & Triggs, 2005) were eventually replaced by learned features from Convolutional
Neural Networks (CNNs, Krizhevsky et al. (2012)). More recently, AutoML methods (Hutter et al.,

1All code will be open-sourced on release.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Summary and motivation: “Based on
the insights from previous agents …”,
Name: “Divide and Conquer Agent”,

Code: “def forward(Task):
 ……
 return Answer”

Meta Agent

Next interesting agent

Agent Archive
Test performance on tasksInput

Refine until novel
and error-free

Examples of Discovered Agents

Multi-step Peer Review Agent

Experts

Answers

Reviewers

Task

Verified Multimodal Agent

Task

Visual
Paradigm

Verifier

Verified
Paradigm

Visual
Analyzer

COT

Answer

Task Sub-problem
Division

sub
sub

sub

sub

sub

Experts

Answers

Ensemble

Answer

Divide and Conquer Agent

Reviews

and add to archive

New Agent

…

Figure 1: Overview of the proposed algorithm Meta Agent Search and examples of discovered
agents. In our algorithm, we instruct the “meta” agent to iteratively program new agents, test their
performance on tasks, add them to an archive of discovered agents, and use this archive to inform the
meta agent in subsequent iterations. We show three example agents across our runs, with all names
generated by the meta agent. The detailed code of example agents can be found in Appendix H.

2019) and AI-Generating Algorithms (AI-GAs, Clune (2019)) have also demonstrated the superior-
ity of learned AI systems compared to hand-designed AI systems. For example, the current best-
performing CNN models come from Neural Architecture Search (Elsken et al., 2019; Shen et al.,
2023) instead of manual design; in LLM alignment, learned loss functions (Lu et al., 2024a) out-
perform most hand-designed ones such as DPO (Rafailov et al., 2024); The AI Scientist (Lu et al.,
2024b) demonstrates an automated research pipeline, including the development of novel ML algo-
rithms; and an endless number of robotics learning environments can be automatically generated in
works like OMNI-EPIC (Faldor et al., 2024), which demonstrate surprising creativity in generated
environments and allow more efficient environment creation than the manual approach (see more
examples in Section 5). Therefore, in this paper, we propose a new research question: Can we
automate the design of agentic systems?

To explore the above research question, we describe a newly forming research area we call
Automated Design of Agentic Systems (ADAS), which aims to automatically invent novel build-
ing blocks and design powerful agentic systems (Section 2). We argue that ADAS may prove to
be the fastest path to developing powerful agents, and show initial evidence that learned agents can
greatly outperform hand-designed agents. Considering the tremendous number of building blocks
yet to be discovered in agentic systems (Section 5), it would take a long time for our research com-
munity to discover them all. Even if we successfully discover most of the useful building blocks,
combining them into effective agentic systems for massive real-world applications would still be
challenging and time-consuming, given the many different ways the building blocks can combine
and interact with each other. In contrast, with ADAS, the building blocks and agents can be learned
in an automated fashion. ADAS may not only potentially save human effort in developing powerful
agents but also could be a faster path to more effective solutions than manual design.

Although a few existing works can be considered as ADAS methods, most of them focus only on
designing prompts (Yang et al., 2024; Fernando et al., 2024), greatly limiting their ability to invent
flexible design patterns in agents (Section 5). In this paper, we show that there is an unexplored
yet promising approach to ADAS where we can define the entire agentic system in code and new
agents can be automatically discovered by a “meta” agent programming ever better ones in code.
Given that most programming languages, such as Python, which we use in this paper, are Turing
Complete (Boyer & Moore, 1983; Ladha, 2024), searching within a code space theoretically enables
an ADAS algorithm to discover any possible agentic systems, including all components such as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

prompts, tool use, workflows, and more. Furthermore, with recent FMs being increasingly proficient
in coding, we can use FMs as meta agents to create new agents in code for ADAS, enabling novel
agents to be programmed in an automated manner.

Following the aforementioned ideas, we present Meta Agent Search in this paper as one of the first
algorithms in ADAS that enables complete design in code space (Figure 1). The core concept of
Meta Agent Search is to instruct a meta agent to iteratively create interestingly new agents, evaluate
them, add them to an archive that stores discovered agents, and use this archive to help the meta agent
in subsequent iterations create yet more interestingly new agents. Similar to existing open-endedness
algorithms that leverage human notions of interestingness (Zhang et al., 2024a; Lu et al., 2024c),
we encourage the meta agent to explore interesting (e.g., novel or worthwhile) agents. To validate
the proposed approach, we evaluate the proposed Meta Agent Search on: (1) the challenging ARC
logic puzzle task (Chollet, 2019) that aims to test the general intelligence of an AI system, (2) four
popular benchmarks on reading comprehension, math, science questions, and multi-task problem
solving, and (3) the transferability of discovered agents to held-out domains and models (Section 4).

Our experiments show that the discovered agents substantially outperform state-of-the-art hand-
designed baselines. For instance, our agents improve F1 scores on reading comprehension tasks
in DROP (Dua et al., 2019) by 13.6/100 and accuracy rates on math tasks in MGSM (Shi et al.,
2023) by 14.4%. Additionally, they improve accuracy over baselines by 25.9% and 13.2% on
GSM8K (Cobbe et al., 2021) and GSM-Hard (Gao et al., 2023) math tasks, respectively, after trans-
ferring across domains. The promising performance of our algorithm over hand-designed solutions
illustrates the potential of ADAS in automating the design of agentic systems. Furthermore, the
experiments demonstrate that the discovered agents not only perform well when transferring across
similar domains but also exhibit strong performance when transferring across dissimilar domains,
such as from mathematics to reading comprehension. This highlights the robustness and transfer-
ability of the agentic systems discovered by Meta Agent Search. In conclusion, our work opens up
many exciting research directions and encourages further studies (Section 6).

2 AUTOMATED DESIGN OF AGENTIC SYSTEMS (ADAS)

Search Space

E.g. Agents defined by code

Search Algorithm

E.g. LLM defines agents using code

Evaluation Function

E.g. Accuracy on the task

Where is the
capital of Canada

Ottawa

Sample

New Agent

Evaluate the

Objectives

Agent

…
…

1 + 1 = ?

LLM

Figure 2: The three key components of Automated Design of Agentic Systems (ADAS). The
search space determines which agentic systems can be represented in ADAS. The search algorithm
specifies how the ADAS method explores the search space. The evaluation function defines how to
evaluate a candidate agent on target objectives such as performance.

At the time of writing, the community has not reached a consensus on the definitions or terminolo-
gies of agents. Here, by agents we refer to agentic systems that involve Foundation Models (FMs) as
modules in the workflow to solve tasks by planning, using tools, and carrying out multiple, iterative
steps of processing (Chase, 2024; Ng, 2024). In this paper, we describe a newly forming research
area Automated Design of Agentic Systems (ADAS). Similar to research areas in AI-GAs (Clune,
2019) and AutoML (Hutter et al., 2019), such as Neural Architecture Search (Elsken et al., 2019), we
formulate ADAS as an optimization process and identify three key components of ADAS algorithms
(Figure 2).

Formulation

Automated Design of Agentic Systems (ADAS) involves using a search algorithm to dis-
cover agentic systems across a search space that optimize an evaluation function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Search Space: The search space defines which agentic systems can be represented and thus
discovered in ADAS. For example, works like PromptBreeder (Fernando et al., 2024) mutate
only the text prompts of an agent, but their other components, such as workflow, remain the same.
Thus, in these search spaces, agents that have a different workflow than the predefined one can not
be represented. Existing works also explore search spaces such as graph structures (Zhuge et al.,
2024) and feed-forward networks (Liu et al., 2023).

• Search Algorithm: The search algorithm defines how ADAS algorithms explore the search space.
Since the search space is often very large or even unbounded, the exploration-exploitation trade-
off (Sutton & Barto, 2018) should be considered. Ideally, the algorithm can both quickly discover
high-performance agentic systems and avoid remaining stuck in a local optimum. Existing ap-
proaches include using Reinforcement Learning (Zhuge et al., 2024) or an FM iteratively gener-
ating new solutions (Fernando et al., 2024) as search algorithms.

• Evaluation Function: Depending on the application of the ADAS algorithm, we may consider
different objectives to optimize, such as performance, cost, latency, or safety of agents. An eval-
uation function defines how to evaluate a candidate agent on those objectives. For example, to
assess the agent’s performance on unseen future data, a simple method is to calculate the accuracy
rate on the validation data for a task, which is commonly adopted in existing works (Zhuge et al.,
2024; Fernando et al., 2024).

Although many search space designs are possible and some have already been explored (Section 5),
there is an unexplored yet promising approach where we can define the entire agentic system in
code and new agents can be automatically discovered by a meta agent programming ever better ones
in code. Searching within a code space theoretically enables the ADAS algorithm to discover any
possible building blocks (e.g., prompts, tool use, workflow) and agentic systems that combine any
of these building blocks in any way. This approach also offers better interpretability for agent design
patterns since the program code is often readable, making debugging easier and enhancing AI safety.
Additionally, compared to search spaces using networks (Liu et al., 2023) or graphs (Zhuge et al.,
2024), searching in a code space allows us to more easily build on existing human efforts. For ex-
ample, it is possible to search within open-source agent frameworks like LangChain (LangChainAI,
2022) and build upon all existing building blocks (e.g., RAG, search engine tools). Finally, since
FMs are proficient in coding, utilizing a code search space allows us to leverage existing expertise
from FMs during the search process. In contrast, search algorithms in custom search spaces, such as
graphs, may be much less efficient due to the absence of these priors. Therefore, we argue that the
approach of using programming languages as the search space should be studied more in ADAS.

3 OUR ALGORITHM: META AGENT SEARCH

In this section, we present Meta Agent Search, a simple yet effective algorithm to demonstrate the
approach of defining and searching for agents in code. The core idea of Meta Agent Search is to
adopt FMs as meta agents to iteratively program interestingly new agents based on an ever-growing
archive of previous discoveries. Although any possible building blocks and agentic systems can
theoretically be programmed by the meta agent from scratch, it is inefficient in practice to avoid
providing the meta agent any basic functions such as FM query APIs or existing tools. Therefore,
in this paper, we define a simple framework (within 100 lines of code) for the meta agent, providing
it with a basic set of essential functions like querying FMs or formatting prompts. As a result, the
meta agent only needs to program a “forward” function to define a new agentic system, similar to
the practice in FunSearch (Romera-Paredes et al., 2024). This function takes in the information of
the task and outputs the agent’s response to the task. Details of the framework codes and examples
of the agents defined with this framework can be found in Appendix D.

As shown in Figure 1, the core idea of Meta Agent Search is to have a meta agent iteratively program
new agents in code. The algorithm proceeds as follows: (1) The archive is (optionally) initialized
with baseline agents such as Chain-of-Thought (Wei et al., 2022) and Self-Refine (Madaan et al.,
2024; Shinn et al., 2023). (2) Conditioned on the archive, the meta agent designs a new agent by
generating a high-level description of the new idea for an agentic system and then implementing it in
code. The design then undergoes two self-reflection (Madaan et al., 2024; Shinn et al., 2023) steps by
the meta agent to ensure it is novel. (3) The generated agent is evaluated using validation data from
the target domain. If errors occur during evaluation, the meta agent performs a self-reflection step to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

refine the design, repeating this process up to five times if necessary. (4) Finally, the agent is added
to the archive along with its evaluation metrics, and the process continues with the updated archive
until the maximum number of iterations is reached. A pseudocode of the algorithm is provided in
Appendix I.

Similar to existing open-endedness algorithms that leverage human notions of interesting-
ness (Zhang et al., 2024a; Lu et al., 2024c), we encourage the meta agent to explore interestingly
new (e.g., novel or worthwhile) agents based on an ever-growing archive of previous discoveries.
Here, we calculate the performance (e.g., success rate or F1 score) as the metrics for the meta agent
to maximize. The prompt and more details are presented in Appendix C.

4 EXPERIMENTS

We conduct extensive experiments on: (1) the ARC challenge (Chollet, 2019) (Section 4.1), (2) four
popular benchmarks assessing the agent’s abilities on reading comprehension, math, science ques-
tions, and multi-task problem solving (Section 4.2), and (3) the transferability of discovered agents
on math to held-out math tasks and non-math tasks (Section 4.3). We use an identical implemen-
tation of the algorithm across different tasks, with the only variation being task-specific descriptive
text included in the prompt (details are available in Appendix C). Across all experiments, we find
that the discovered agents substantially outperform baseline state-of-the-art hand-designed agents
and maintain superior performance even when transferred across domains and models.

4.1 CASE STUDY: ARC CHALLENGE

0 5 10 15 20 25
Iteration

4

6

8

10

12

14

He
ld

-o
ut

 Te
st

 A
cc

ur
ac

y
(%

)

Initially tested generating high-level strategies
before implementing low-level details.

An important strategy emerged: using multiple COTs
to generate possible answers, refining them, and
finally ensembling the best answers.

Introduced dynamic memory for doing more refinements.

Scaled up the previous idea.

Best agent: introduced multiple
critics for enhanced refinement.

Meta-Agent Search on ARC

Chain-of-Thought
Self-Refine
LLM Debate

COT-SC
Quality-Diversity
Meta-Agent Search

(a)

Task

5 COTs

5 Answers

Human-like
Critic

Feedback

Efficiency Expert

Readability Expert

Simplicity Expert

Experts

Feedback

Refinement
3 times

All
Answers

EvaluateTop-3
Answers

Ensemble

Final
Answer

Structured Feedback and Ensemble Agent

The Best Discovered Agent on ARC

(b)

Figure 3: The results of Meta Agent Search on the ARC challenge. (a) Meta Agent Search
progressively discovers high-performance agents based on an ever-growing archive of previous dis-
coveries. We report the median accuracy and the 95% bootstrap confidence interval on a held-out test
set by evaluating agents five times. (b) The visualization of the best agent discovered by Meta Agent
Search on the ARC challenge. Detailed implementation of this agent is available in Appendix E.

We first demonstrate how Meta Agent Search discovers novel agentic systems and outperforms ex-
isting state-of-the-art hand-designed agents in the Abstraction and Reasoning Corpus (ARC) chal-
lenge (Chollet, 2019). This challenge aims to evaluate the general intelligence of AI systems through
their ability to acquire new skills. Questions in ARC include (1) showing multiple examples of vi-
sual input-output grid patterns, (2) the AI system learning the transformation rule of grid patterns
from examples, and (3) predicting the output grid pattern given a test input grid pattern. Since each
question in ARC has a unique transformation rule, it requires the AI system to learn efficiently with
few-shot examples, leveraging capabilities in number counting, geometry, and topology.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Setup. Following common practice (Greenblatt, 2024), we require the agent to write code for the
transformation rule instead of answering directly. We provide tool functions in the framework (de-
scribed in Section 3) that evaluate the generated transformation code. Given the significant challenge
that ARC poses to current AI systems, we sample our data from questions with grid dimensions
≤ 5 × 5 in the “Public Training Set (Easy)”. We sample a validation set and a test set with 20 and
60 questions, respectively, for searching and testing. We calculate the validation and test accuracy
of an agent by assessing it over the validation and test sets five times to reduce the variance from the
stochastic sampling of FMs. We evaluate all discovered agents on the held-out test set and report
the test accuracy in Figure 3. Meta Agent Search runs for 25 iterations and the meta agent uses
GPT-4 (OpenAI, 2024), while discovered agents and baselines are evaluated using GPT-3.5 (Ope-
nAI, 2022) to reduce compute cost. More algorithmic details and examples of ARC questions can
be found in Appendix E.

Baselines. We compared against five state-of-the-art hand-designed agents: (1) Chain-of-Thought
(COT, Wei et al. (2022)), which instructs the agent to output the reasoning before answering to
improve complex problem-solving through intermediate steps; (2) Self-Consistency with Chain-of-
Thought (COT-SC, Wang et al. (2023b)), which ensembles multiple parallel answers from COT to
produce a more accurate answer; (3) Self-Refine (Madaan et al., 2024; Shinn et al., 2023), which
allows iterative self-reflection to correct mistakes made in previous attempts; (4) LLM-Debate (Du
et al., 2023), which enables different LLMs to debate with each other, leveraging diverse perspec-
tives to find better answers; (5) Quality-Diversity, a simplified version of Intelligent Go-Explore (Lu
et al., 2024c), which produces and ensembles diverse answers to better explore potential solutions.
The selected baselines represent widely adopted agent designs in the agent literature, embodying
key design patterns and approaches frequently utilized across various applications. By “state-of-
the-art,” we refer to these baseline designs as exemplifying important advancements and practices
within the field. We also use all baselines as initial seeds in the archive for Meta Agent Search, with
additional results for empty initialization provided in Appendix J. To ensure fair comparisons, all
baseline implementations were developed using the same framework as the Meta Agent, providing
a consistent and equitable evaluation environment. More details about baselines can be found in
Appendix G.

Results and Analysis. As shown in Figure 3a, Meta Agent Search effectively and progressively
discovers agents that perform better than state-of-the-art hand-designed baselines. Important break-
throughs are highlighted in the text boxes. As is critical in prior works on open-endedness and
AI-GAs (Zhang et al., 2024a; Faldor et al., 2024; Wang et al., 2019; 2020; Lehman & Stanley,
2011), Meta Agent Search innovates based on a growing archive of previous stepping stones. For
example, an important design pattern emerged in iteration 3 where it uses multiple COTs to gener-
ate possible answers, refines them, and finally ensembles the best answers. This became a crucial
stepping stone that subsequent designs tended to utilize. Additionally, the best-discovered agent is
shown in Figure 3b, where a complex feedback mechanism is adopted to refine answers more effec-
tively. Careful observation of the search progress reveals that this sophisticated feedback mechanism
did not appear suddenly. Instead, the ideas of incorporating diverse feedback, evaluating for various
specific traits (via experts) such as efficiency and simplicity, and simulating human-like feedback
emerged in iterations 5, 11, and 12, respectively. The final mechanism is an innovation based on
these three stepping stones. This illustrates that even though these stepping stones did not achieve
high performance immediately upon emergence, later discoveries benefited from these innovations
by combining different stepping stones, resembling crossover in evolution via LLMs (Meyerson
et al., 2023). Overall, the results showcase the potential of ADAS and the effectiveness of Meta
Agent Search to progressively discover agents that outperform state-of-the-art hand-designed base-
lines and invent novel design patterns through the innovation and combination of stepping stones.

4.2 REASONING AND PROBLEM-SOLVING DOMAINS

Setup. Next, we investigate the potential of our algorithm to improve the capabilities of agents
across math, reading, and reasoning domains. We test Meta Agent Search on four popular bench-
marks: (1) DROP (Dua et al., 2019) for evaluating Reading Comprehension; (2) MGSM (Shi et al.,
2023) for evaluating Math capability under a multi-lingual setting; (3) MMLU (Hendrycks et al.,
2021) for evaluating Multi-task Problem Solving; and (4) GPQA (Rein et al., 2023) for evaluating
the capability of solving hard (graduate-level) questions in Science. The search is conducted inde-
pendently within each domain. Meta Agent Search runs for 30 iterations. The meta agent uses GPT-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 (OpenAI, 2024), while the discovered agents and baselines are evaluated using GPT-3.5 (OpenAI,
2022). More details about datasets and experiment settings can be found in Appendix F.

Baselines. We adopt all baselines introduced in Section 4.1. Additionally, since the above do-
mains require strong reasoning skills, we include two additional baselines that specifically focus
on enhancing the reasoning capabilities of agents for a more thorough comparison: (1) Step-back
Abstraction (Zheng et al., 2023), which instructs agents to first consider the principles involved in
solving the task for better reasoning; (2) Role Assignment (Xu et al., 2023), which assigns different
roles to FMs to obtain better answers. Furthermore, we compare our approach with the state-of-the-
art prompt optimization baseline OPRO (Yang et al., 2024) to highlight the advantages of learning
all possible components of agents rather than focusing solely on prompts. More details about the
baselines can be found in Appendix G.

Table 1: Performance comparison between Meta Agent Search and state-of-the-art hand-
designed agents across multiple domains. Meta Agent Search discovers superior agents compared
to the baselines in every domain. We report the test accuracy and the 95% bootstrap confidence in-
terval on held-out test sets. The search is conducted independently for each domain. Here, and in all
tables below, we bold the entry with the highest performance for each domain, as well as all entries
whose median falls within the 95% confidence interval of the highest-performing treatment.

Agent Name F1 Score Accuracy (%)
Reading Comprehension Math Multi-task Science

State-of-the-art Hand-designed Agents
Chain-of-Thought (Wei et al., 2022) 64.2± 0.9 28.0± 3.1 65.4± 3.3 29.2± 3.1

COT-SC (Wang et al., 2023b) 64.4± 0.8 28.2± 3.1 65.9± 3.2 30.5± 3.2

Self-Refine (Madaan et al., 2024) 59.2± 0.9 27.5± 3.1 63.5± 3.4 31.6± 3.2

LLM Debate (Du et al., 2023) 60.6± 0.9 39.0± 3.4 65.6± 3.3 31.4± 3.2

Step-back Abstraction (Zheng et al., 2023) 60.4± 1.0 31.1± 3.2 65.1± 3.3 26.9± 3.0

Quality-Diversity (Lu et al., 2024c) 61.8± 0.9 23.8± 3.0 65.1± 3.3 30.2± 3.1

Role Assignment (Xu et al., 2023) 65.8± 0.9 30.1± 3.2 64.5± 3.3 31.1± 3.1

Automated Design of Agentic Systems on Different Domains
Prompt Optimization (Yang et al., 2024) 69.1± 0.9 30.6± 3.2 67.6± 3.2 32.9± 3.2

Meta Agent Search (Ours) 79.4± 0.8 53.4± 3.5 69.6± 3.2 34.6± 3.2

Results and Analysis. The results across multiple domains demonstrate that Meta Agent Search
can discover agents that outperform state-of-the-art hand-designed agents (Table 1). We want to
highlight the substantial gap between the learned agents and hand-designed agents in the Reading
Comprehension and Math domains, with improvements in F1 scores by 13.6/100 and accuracy rates
by 14.4%, respectively. While Meta Agent Search also outperforms baselines in the Multi-task and
Science domains, the gap is smaller. We hypothesize that for challenging questions in the Science
and Multi-task domains, the knowledge in FMs is not sufficient to solve the questions, limiting the
improvement through optimizing agentic systems, which is a problem that will diminish as FMs
improve. In contrast, in the Reading Comprehension and Math domains, FMs possess adequate
knowledge to solve the questions, and errors could mainly be hallucinations or calculation mistakes,
which can be mitigated through well-designed agentic systems, like the ones discovered by Meta
Agent Search. Additionally, when compared to prompt optimization methods, the results demon-
strate that our proposed Meta Agent Search consistently outperforms them across all domains. This
comparison further strengthens our argument that defining agents in code and enabling the learning
of all components offer significant advantages. Overall, the results across various domains showcase
the effectiveness of Meta Agent Search in searching for agents tailored to specific domains. This
could be increasingly useful for saving human efforts and developing better task-specific agents as
we continue to create agents for a diverse set of applications (Wang et al., 2024).

4.3 GENERALIZATION AND TRANSFERABILITY

In the previous sections, we illustrated that Meta Agent Search can find effective agents for in-
dividual tasks. In this section, we further demonstrate the transferability and generalizability of
the discovered agents. To demonstrate the generalizability of the invented building blocks and de-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

sign patterns, we transfer discovered agents from the MGSM (Math) domain to both math and
non-math domains to test their ability to generalize across different tasks. We evaluate the top 3
agents from MGSM by transferring them to (1) popular math domains: GSM8K (Cobbe et al.,
2021), GSM-Hard (Gao et al., 2023), and (2) non-math domains: MMLU (Multi-task) and DROP
(Reading Comprehension), as detailed in Section 4.2. As shown in Table 2, Meta Agent Search con-
sistently outperforms the baselines. Notably, our agents improve accuracy by 25.9% on GSM8K
and 13.2% on GSM-Hard compared to the baselines when transferring within math domains. More
surprisingly, we find that agents discovered in the math domain can also be transferred to non-math
domains. While their performance does not fully match agents specifically designed for the target
domains, they still outperform state-of-the-art hand-designed baselines. More results of transfers
across domains are shown in Appendix B.

We also observe similar superiority when transferring agents across different FMs on ARC. We
test the top 3 agents with the best test accuracy evaluated with GPT-3.5 on ARC and then transfer
them to Claude-Haiku (Anthropic, 2024a), GPT-4 (OpenAI, 2024), and Claude-Sonnet (Anthropic,
2024b). As shown in Table 3, we observe that the searched agents consistently outperform the hand-
designed agents, with a substantial gap. Notably, we found that Claude-Sonnet, the most powerful
model from Anthropic, performs the best among all tested models, enabling our best agent to achieve
nearly 50% accuracy on ARC. These results on transferring across domains and models highlight
Meta Agent Search ’s ability to discover generalizable design patterns and agentic systems.

Table 2: Performance on held-out math and non-math domains when transferring top agents
from MGSM (Math). GSM8K and GSM-Hard are the held-out math domains, while MMLU is for
Multi-task, and DROP is for Reading Comprehension. Agents discovered by Meta Agent Search
consistently outperform the baselines across all domains. We report the test accuracy and the 95%
bootstrap confidence interval. The names of the top agents are generated by Meta Agent Search.

Agent Name Accuracy (%) F1 Score
MGSM GSM8K GSM-Hard MMLU DROP

Manually Designed Agents
Chain-of-Thought (Wei et al., 2022) 28.0± 3.1 34.9± 3.2 15.0± 2.5 65.4± 3.3 64.2± 0.9

COT-SC (Wang et al., 2023b) 28.2± 3.1 37.8± 3.4 15.5± 2.5 65.9± 3.2 64.4± 0.8

Self-Refine (Madaan et al., 2024) 27.5± 3.1 38.9± 3.4 15.1± 2.4 63.5± 3.4 59.2± 0.9

LLM Debate (Du et al., 2023) 39.0± 3.4 43.6± 3.4 17.4± 2.6 65.6± 3.3 60.6± 0.9

Step-back Abstraction (Zheng et al., 2023) 31.1± 3.2 31.5± 3.3 12.2± 2.3 65.1± 3.3 60.4± 1.0

Quality-Diversity (Lu et al., 2024c) 23.8± 3.0 28.0± 3.1 14.1± 2.4 65.1± 3.1 61.8± 0.9

Role Assignment (Xu et al., 2023) 30.1± 3.2 37.0± 3.4 18.0± 2.7 64.5± 3.3 65.8± 0.9

Top Agents Searched on MGSM (Math) Transferred within
Math Domains

Transferred beyond
Math Domains

Dynamic Role-Playing Architecture 53.4± 3.5 69.5± 3.2 31.2± 3.2 62.4± 3.4 70.4± 0.9

Structured Multimodal Feedback Loop 50.2± 3.5 64.5± 3.4 30.1± 3.2 67.0± 3.2 70.4± 0.9

Interactive Multimodal Feedback Loop 47.4± 3.5 64.9± 3.3 27.6± 3.2 64.8± 3.3 71.9± 0.8

5 RELATED WORK

Agentic Systems. Researchers develop various building blocks and design patterns for different
applications. Important building blocks for agentic systems include: prompting techniques (Chen
et al., 2023a; Schulhoff et al., 2024), chain-of-thought-based planning and reasoning methods (Wei
et al., 2022; Yao et al., 2023; Hu & Clune, 2024), reflection (Madaan et al., 2024; Shinn et al.,
2023), developing new skills for embodied agents in code (Wang et al., 2023a; Vemprala et al.,
2023), external memory and RAG (Zhang et al., 2024c; Lewis et al., 2020), tool use (Qu et al., 2024;
Schick et al., 2023; Nakano et al., 2021), assigning FM modules in the agentic system with different
roles and enabling them to collaborate (Hong et al., 2023; Wu et al., 2023; Qian et al., 2023; Xu
et al., 2023; Qian et al., 2024), and enabling the agent to instruct itself for the next action (Richards,
2023), etc. While the community has invested substantial effort in developing all the above important
techniques, this is only a partial list of the discovered building blocks, and many more remain to be

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance on ARC when transferring top agents from GPT-3.5 to other FMs.
Agents discovered by Meta Agent Search consistently outperform the baselines across different
models. We report the test accuracy and the 95% bootstrap confidence interval. The names of top
agents are generated by Meta Agent Search. †We manually changed this name because the original
generated name was confusing.

Agent Name Accuracy on ARC (%)
GPT-3.5 Claude-Haiku GPT-4 Claude-Sonnet

Manually Designed Agents
Chain-of-Thought (Wei et al., 2022) 6.0± 2.7 4.3± 2.2 17.7± 4.4 25.3± 5.0
COT-SC (Wang et al., 2023b) 8.0± 3.2 5.3± 2.5 19.7± 4.5 26.3± 4.9
LLM Debate (Du et al., 2023) 4.0± 2.2 1.7± 1.5 19.0± 4.5 24.7± 4.8
Self-Refine (Madaan et al., 2024) 6.7± 2.7 6.3± 2.8 23.0± 5.2 39.3± 5.5
Quality-Diversity (Lu et al., 2024c) 7.0± 2.9 3.3± 2.2 23.0± 4.7 31.7± 5.3

Top Agents Searched with GPT-3.5 Transferred to Other FMs
Structured Feedback and Ensemble Agent 13.7± 3.9 5.0± 2.5 30.0± 5.2 38.7± 5.5
Hierarchical Committee Reinforcement Agent 13.3± 3.8 8.3± 3.2 32.3± 8.9 39.7± 5.5
Dynamic Memory and Refinement Agent† 12.7± 3.9 9.7± 3.3 37.0± 5.3 48.3± 5.7

uncovered. Therefore, in this paper, we describe a newly forming research area, ADAS, which aims
to invent novel building blocks and design powerful agentic systems in an automated manner.

Existing Attempts to ADAS. There are two categories of works that attempt ADAS: those focused
on learning better prompts and those that learn more components beyond prompts. Most works fall
into the first category, where FMs are used to automate prompt engineering, primarily enhancing
the phrasing of instructions to improve reasoning (Yang et al., 2024; Fernando et al., 2024; Zhou
et al., 2024a). However, these prompts are often domain-specific and difficult to generalize. Some
works optimize role definitions within prompts (Yuan et al., 2024; Chen et al., 2023c;b; Wu et al.,
2023), as assigning personas or roles to agents has been shown to be beneficial (Xu et al., 2023).
Although tuning prompts can improve performance, other components remain fixed, limiting the
space of agents that can be discovered. The second category, which is less explored, involves learn-
ing additional components such as workflows, often representing agents as networks or graphs. In
these formulations, the FM with a certain prompt is considered a transformation function for text
on nodes, and the information flow of the text is considered as edges. For example, DyLAN (Liu
et al., 2023) uses FMs to optimize connections between nodes in a network, DSPy (Khattab et al.,
2024) optimizes across the Cartesian product of a set of possible nodes, and GPT-Swarm (Zhuge
et al., 2024) uses reinforcement learning to optimize node connections. Although these approaches
optimize workflows, many components like tool usage remain fixed. AgentOptimizer (Zhang et al.,
2024b) learns the tools used in agents and Agent Symbolic Learning (Zhou et al., 2024b) attempts
to learn prompts, tools, and workflows together. While Agent Symbolic Learning shares similar
motivations to learn more components in agents, it manually designs the search space for each com-
ponent separately, which may make it a harder search space for search algorithms. In addition, it
improves agents based on an existing complex agent, without showing the emergence of new design
patterns or building blocks. In contrast, our work represents all components in code, allowing the
search to be easier by leveraging human efforts in the existing codebase of agents and FMs’ expertise
in coding. We also demonstrate how novel and diverse building blocks and design patterns emerge
from a set of basic agent designs, illustrating the potential creativity that can emerge from ADAS.

We also include additional related work in Appendix A.1.

6 DISCUSSION AND CONCLUSION

Safety Considerations. While it is highly unlikely that model-generated code will perform overtly
malicious actions in our current settings and with the Foundation Models (FMs) we use, such code
may still act destructively due to limitations in model capability or alignment (Rokon et al., 2020;
Chen et al., 2021). More broadly, research on more powerful AI systems raises the question of
whether we should be conducting research to advance AI capabilities at all. That topic clearly

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

includes the proposed Automated Design of Agentic Systems (ADAS) as a new area in AI-GA
research, which could potentially contribute to an even faster way to create Artificial General Intelli-
gence (AGI) than the current manual approach (Clune, 2019). The question of whether and why we
should pursue AGI and AI-GA has been discussed in many papers (Clune, 2019; Ecoffet et al., 2020;
Bostrom, 2002; Yudkowsky et al., 2008; Bengio et al., 2024), and is beyond the scope of this paper.
Specifically as regards to ADAS, we believe it is net beneficial to publish this work. First, this work
demonstrates that with the available API access to powerful FMs, it is easy to program powerful
ADAS algorithms, and do so without any expensive hardware like GPUs. We feel it is beneficial to
let the community know such algorithms are powerful and easy to create, so they can be informed
and account for them. Moreover, by sharing this information, we hope to motivate follow-up work
into safe-ADAS, such as algorithms that conduct ADAS safely during both search itself (e.g. not
risking running any harmful code) and that refuse to create dishonest, unhelpful, and/or harmful
agents. Such an open-source research approach to create safe-ADAS could be a better way to create
safer AI systems (Caldwell, 2011; Meta, 2024). One direction we find particularly promising is
to simply ask the Meta Agent Search algorithm to be safe during training and only create helpful,
harmless, honest agents, potentially incorporating ideas such as Constitutional AI (Bai et al., 2022).

Future Work. Our work also opens up many future research directions. Below, we discuss a few,
with additional directions provided in Appendix A.2.

• Higher-order ADAS. Since the meta agent used in ADAS to program new agents in code is
also an agent, ADAS can become self-referential where the meta agent can be improved through
ADAS as well. It would be an exciting direction to have a higher order of meta-learning to allow
the learning of the meta agent and even the meta-meta agent, etc. (Lu et al., 2023; Schmidhuber,
1987)

• Online Continual Learning. As agents are deployed, they will receive vast amounts of feedback
from both task environments and users. Continuously improving agents based on this extensive
feedback is challenging for human developers. However, with ADAS automating the design and
enhancement of agents, online continual learning becomes feasible post-deployment.

• Multi-objective ADAS. We only consider one objective (i.e., performance) to optimize in this
paper, but in practice, multiple objectives are often considered, such as cost, latency, and robust-
ness of agentic systems (Hu et al., 2021; Huang et al., 2023). Thus, integrating multi-objective
search algorithms (Deb et al., 2002) in ADAS could be promising.

• Towards a Better Understanding of FMs. Works from Neural Architecture Search (Huang
et al., 2023) show that by observing the emerged architecture, we could gain more insights into
Neural Networks. In this paper, we also gained insights about FMs from the results. For exam-
ple, the best agent with GPT-3.5 involves a complex feedback mechanism, but when we transfer
to other advanced models, the agent with a simpler feedback mechanism but more refinement
becomes a better agent (Section 4.3). This shows that GPT-3.5 may have a worse capability in
evaluating and refining the answers, so it needs a complex feedback mechanism for better refine-
ment, while other advanced models benefit more from a simpler feedback mechanism.

Conclusion. In this paper, we propose a new research problem, Automated Design of Agentic
Systems (ADAS), which aims to automatically invent novel building blocks and design powerful
agentic systems. We demonstrated that a promising approach to ADAS is to define agents in code,
allowing new agents to be automatically discovered by a “meta” agent programming them in code.
Following this idea, we propose Meta Agent Search, where the meta agent iteratively builds on
previous discoveries to program interesting new agents. The experiments show that Meta Agent
Search consistently outperforms state-of-the-art hand-designed agents across an extensive number
of domains, and the discovered agents transfer well across models and domains. Overall, our work
illustrates the potential of an exciting new research direction toward full automation in developing
powerful agentic systems from the bottom up.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/
news/claude-3-family, March 2024a. Blog post.

Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, June 2024b. Blog post.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell, Yu-
val Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, et al. Managing extreme ai risks
amid rapid progress. Science, 384(6698):842–845, 2024.

N Bostrom. Existential Risks: analyzing human extinction scenarios and related hazards. Journal
of Evolution and Technology, 9, 2002.

Robert S Boyer and J Strother Moore. A mechanical proof of the Turing completeness of pure LISP.
Citeseer, 1983.

Tracey Caldwell. Ethical hackers: putting on the white hat. Network Security, 2011(7):10–13, 2011.

Harrison Chase. What is an agent? https://blog.langchain.dev/
what-is-an-agent/, June 2024. Blog post.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the poten-
tial of prompt engineering in large language models: a comprehensive review. arXiv preprint
arXiv:2310.14735, 2023a.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Sesay Jaward, Karlsson Börje, Jie Fu, and Yemin
Shi. Autoagents: The automatic agents generation framework. arXiv preprint, 2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors. In The Twelfth International Conference on Learning Representa-
tions, 2023c.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular frame-
work. IEEE Transactions on Evolutionary Computation, 22(2):245–259, 2017.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pp.
886–893 vol. 1, 2005. doi: 10.1109/CVPR.2005.177.

11

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://blog.langchain.dev/what-is-an-agent/
https://blog.langchain.dev/what-is-an-agent/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

Aaron Dharna, Amy K Hoover, Julian Togelius, and Lisa B Soros. Transfer dynamics in emergent
evolutionary curricula. IEEE Transactions on Games, 15(2):157–170, 2022.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2368–2378, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1246.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RLˆ2: Fast
reinforcement learning via slow reinforcement learning. In International Conference on Learning
Representations, 2017.

Adrien Ecoffet, Jeff Clune, and Joel Lehman. Open questions in creating safe open-ended AI:
Tensions between control and creativity. In Conference on Artificial Life, pp. 27–35. MIT Press,
2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via mod-
els of human notions of interestingness with environments programmed in code. arXiv preprint
arXiv:2405.15568, 2024.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim
Rocktäschel. Promptbreeder: Self-referential self-improvement via prompt evolution, 2024.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Ryan Greenblatt. Getting 50% sota on arc-agi with gpt-4. https://redwoodresearch.
substack.com/p/getting-50-sota-on-arc-agi-with-gpt, July 2024. Techni-
cal Report.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Shengran Hu and Jeff Clune. Thought Cloning: Learning to think while acting by imitating human
thinking. Advances in Neural Information Processing Systems, 36, 2024.

Shengran Hu, Ran Cheng, Cheng He, Zhichao Lu, Jing Wang, and Miao Zhang. Accelerating multi-
objective neural architecture search by random-weight evaluation. Complex & Intelligent Systems,
pp. 1–10, 2021.

12

https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shihua Huang, Zhichao Lu, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Revisiting residual net-
works for adversarial robustness. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8202–8211, 2023.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, sys-
tems, challenges. Springer Nature, 2019.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compil-
ing declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Abrahim Ladha. Lecture 11: Turing-completeness. https://faculty.cc.gatech.edu/
˜ladha/S24/4510/L11.pdf, 2024. CS 4510 Automata and Complexity, February 21st,
2024, Scribed by Rishabh Singhal.

LangChainAI. Langchain: Build context-aware reasoning applications. https://github.
com/langchain-ai/langchain, 2022.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023.

Chris Lu, Sebastian Towers, and Jakob Foerster. Arbitrary order meta-learning with simple
population-based evolution. In ALIFE 2023: Ghost in the Machine: Proceedings of the 2023
Artificial Life Conference. MIT Press, 2023.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J Chan, Jakob Foerster, Mihaela van der Schaar, and
Robert Tjarko Lange. Discovering preference optimization algorithms with and for large language
models. arXiv preprint arXiv:2406.08414, 2024a.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024b.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models. arXiv preprint arXiv:2405.15143, 2024c.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm.
In Proceedings of the genetic and evolutionary computation conference, pp. 419–427, 2019.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. In The Twelfth International Conference on Learning Representa-
tions, 2023.

13

https://faculty.cc.gatech.edu/~ladha/S24/4510/L11.pdf
https://faculty.cc.gatech.edu/~ladha/S24/4510/L11.pdf
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Meta. Open source ai is the path forward. https://about.fb.com/news/2024/07/
open-source-ai-is-the-path-forward/, July 2024. News article.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 975–984, 2020.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Andrew Ng. Issue 253. https://www.deeplearning.ai/the-batch/issue-253/,
June 2024. Newsletter issue.

Ben Norman and Jeff Clune. First-explore, then exploit: Meta-learning intelligent exploration. arXiv
preprint arXiv:2307.02276, 2023.

OpenAI. Introducing chatgpt. https://openai.com/index/chatgpt/, November 2022.
Blog post.

OpenAI. Simple evals, 2023. URL https://github.com/openai/simple-evals. Ac-
cessed: 2024-08-10.

OpenAI. Gpt-4 technical report, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Tool learning with large language models: A survey. arXiv preprint
arXiv:2405.17935, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023.

14

https://about.fb.com/news/2024/07/open-source-ai-is-the-path-forward/
https://about.fb.com/news/2024/07/open-source-ai-is-the-path-forward/
https://www.deeplearning.ai/the-batch/issue-253/
https://openai.com/index/chatgpt/
https://github.com/openai/simple-evals

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Toran Bruce Richards. Autogpt. https://github.com/Significant-Gravitas/
AutoGPT, 2023. GitHub repository.

Tim Rocktäschel. Artificial Intelligence: 10 Things You Should Know. Seven Dials, September
2024. ISBN 978-1399626521.

Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E Papalexakis, and Michalis Falout-
sos. SourceFinder: Finding malware Source-Code from publicly available repositories in GitHub.
In 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020),
pp. 149–163, 2020.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Yacmpz84TH.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14
May 1987. URL http://www.idsia.ch/˜juergen/diploma.html.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A system-
atic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

Xuan Shen, Yaohua Wang, Ming Lin, Yilun Huang, Hao Tang, Xiuyu Sun, and Yanzhi Wang. Deep-
mad: Mathematical architecture design for deep convolutional neural network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6163–6173, 2023.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners. In The Eleventh International Confer-
ence on Learning Representations, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2023.

Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The myth of the objective.
Springer, 2015.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Richard S. Sutton. The bitter lesson, 2019. URL http://www.incompleteideas.net/
IncIdeas/BitterLesson.html.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: De-
sign principles and model abilities. Technical Report MSR-TR-2023-8, Microsoft, Febru-
ary 2023. URL https://www.microsoft.com/en-us/research/publication/
chatgpt-for-robotics-design-principles-and-model-abilities/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv: Arxiv-2305.16291, 2023a.

15

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://openreview.net/forum?id=Yacmpz84TH
http://www.idsia.ch/~juergen/diploma.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Poet: open-ended coevolution of
environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, pp. 142–151, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450361118. doi: 10.1145/3321707.3321799.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In International conference on machine learning, pp. 9940–9951.
PMLR, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhendong
Mao. Expertprompting: Instructing large language models to be distinguished experts. arXiv
preprint arXiv:2305.14688, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR,
2023.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoa-
gent: Towards automatic multi-agent generation via evolutionary algorithms. arXiv preprint
arXiv:2406.14228, 2024.

Eliezer Yudkowsky et al. Artificial Intelligence as a positive and negative factor in global risk.
Global catastrophic risks, 1(303):184, 2008.

Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts,
James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The shift from
models to compound ai systems. https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/, 2024.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. OMNI: Open-endedness via mod-
els of human notions of interestingness. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=AgM3MzT99c.

16

https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://openreview.net/forum?id=AgM3MzT99c

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning, 2024b.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
arXiv preprint arXiv:2404.13501, 2024c.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
arXiv preprint arXiv:2310.06117, 2023.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H Chi, Denny
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-
compose reasoning structures. arXiv preprint arXiv:2402.03620, 2024a.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024b.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl via
meta-learning. Journal of Machine Learning Research, 22(289):1–39, 2021a.

Luisa M Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann, and
Shimon Whiteson. Exploration in approximate hyper-state space for meta reinforcement learning.
In International Conference on Machine Learning, pp. 12991–13001. PMLR, 2021b.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

TABLE OF CONTENTS

A More Related Work and Future Work 19

A.1 More Related Work . 19

A.2 More Future Work . 19

B Generalization and Transferability 20

C Prompts 21

D Framework Code 23

E Experiment Details for ARC Challenge 26

F Experiment Details for Reasoning and Problem-Solving Domains 29

G Baselines 30

H Example Agents 31

I Pseudocode of the Meta Agent Search 33

J Impact of Initialization 33

K Cost of Experiments 34

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A MORE RELATED WORK AND FUTURE WORK

A.1 MORE RELATED WORK

AI-Generating Algorithms and AutoML. Research in AI-Generating Algorithms (AI-
GAs, Clune (2019)) and AutoML (Hutter et al., 2019) aims to replace handcrafted components in AI
systems by learning them. This field has three key pillars: (1) meta-learning architectures, (2) meta-
learning learning algorithms, and (3) generating learning environments and training data (Clune,
2019). Neural Architecture Search (Elsken et al., 2019; Lu et al., 2019; Hu et al., 2021) exem-
plifies the first pillar by automating neural network design, while works like MAML (Finn et al.,
2017) and Meta-RL (Wang et al., 2016; Duan et al., 2017; Norman & Clune, 2023; Zintgraf et al.,
2021a;b) exemplify the second pillar, focusing on “learning to learn” for improved sample efficiency
and generalizability. The third pillar includes works like POET (Wang et al., 2019; Dharna et al.,
2022; Wang et al., 2020) and OMNI-EPIC (Faldor et al., 2024), which generate learning environ-
ments in an open-ended manner. We position Automated Design of Agentic Systems in both the
first and second pillars: meta-learning agentic architectures and leveraging in-context learning to
“learn to learn,” as shown in the ARC challenge (Section 4.1). Furthermore, recent AI-GA and
AutoML advances have also integrated Foundation Models (FMs) to write code, as seen in Fun-
Search (Romera-Paredes et al., 2024) and EoH (Liu et al., 2024), where FMs discover optimization
algorithms. In DiscoPOP (Lu et al., 2024a), FMs program loss functions for preference learning, and
Eureka (Ma et al., 2023) and language-to-reward (Yu et al., 2023) enable FMs to write reward func-
tions for reinforcement learning. OMNI-EPIC (Faldor et al., 2024) allows FMs to create robotics
learning environments. Similarly, we enable FMs to program new agents in code.

A.2 MORE FUTURE WORK

• More complex domains. Currently, we only evaluate Meta Agent Search on single-step QA
tasks in this paper. It would be interesting to extend the method to more complex domains, such
as real-world applications involving multi-step interaction with complex environments.

• Seeding ADAS with more existing building blocks. Although we can theoretically allow any
components in agentic systems to be programmed from scratch in the code space, it is not efficient
in practice. Therefore, it would be interesting to explore ADAS by standing on the shoulders of
existing human efforts, such as search engine tools, RAG (Lewis et al., 2020), or functions from
existing agent frameworks like LangChain (LangChainAI, 2022). Additionally, it is interesting
to support multi-modal capabilities (e.g. vision) in FMs or allow different FMs to be available in
agentic systems. This will enable the meta agent to choose from different FMs flexibly according
to the difficulty of the instruction and whether data privacy is a priority.

• Novelty search algorithms. In Meta Agent Search, the design of the search algorithm is rela-
tively simple, focusing solely on exploring interesting new designs. A more careful design of the
search algorithm can be a promising future direction. For example, one could incorporate more
sophisticated ideas from Quality-Diversity (Mouret & Clune, 2015; Cully & Demiris, 2017), AI-
generating (Clune, 2019), and Open-ended Algorithms (Faldor et al., 2024; Zhang et al., 2024a;
Stanley & Lehman, 2015; Stanley et al., 2019). One could also include more classic approaches
to balance exploration and exploitation (Sutton & Barto, 2018; Liu et al., 2024).

• More Intelligent Evaluation Functions. In this work, we simply evaluate discovered agents
on the evaluation set and use the numerical performance results. However, this approach is both
expensive and misses a lot of information. A promising future direction is to enable the meta
agent to analyze detailed running logs during the evaluation, which contain rich information on
the failure and success modes for better debugging and improving agentic systems (Zhou et al.,
2024b). Also, many tasks involve subjective answer evaluations (Chiang et al., 2024; Lu et al.,
2024b) that do not have ground-truth answers. It is also important to design novel evaluation
functions in ADAS to address these tasks. Finally, in this work, we targeted only one domain
during the search. It would be interesting to explore whether ADAS algorithms can design even
better generalist agents when specifically searching for agents capable of performing well across
multiple domains.

• Understanding the emergence of complexity from human organizations. Beyond potentially
saving researchers’ efforts and improving upon the manual design of agentic systems, the research

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

in ADAS is also scientifically intriguing as it sheds light on the origins of complexity emerging
from human organization and society. The agentic system is a machine learning system that oper-
ates primarily over natural language—a representation that is interpretable to humans and used by
humans in constructing our organization and society. Thus, there is a close connection between
agentic systems and human organizations, as shown in works incorporating the organizational
structure for human companies in agents (Hong et al., 2023) or simulating a human town with
agents (Park et al., 2023). Therefore, the study in ADAS may enable us to observe how to create
a simple set of conditions and have an algorithm to bootstrap itself from simplicity to produce
complexity in a system akin to human society.

B GENERALIZATION AND TRANSFERABILITY

In this section, we present more details of the experiments in Section 4.3 and the complete results of
transferring agents across different domains.

For the results shown in Table 3, we use “gpt-4o-2024-05-13” for GPT-4, “claude-3-haiku-
20240307” for Claude-Haiku, and “claude-3-5-sonnet-20240620” for Claude-Sonnet.

Table 4: Performance on different math domains when transferring top agents from MGSM to
other math domains. Agents discovered by Meta Agent Search consistently outperform the base-
lines across different math domains. We report the test accuracy and the 95% bootstrap confidence
interval. The names of top agents are generated by Meta Agent Search.

Agent Name Accuracy (%)
MGSM GSM8K GSM-Hard SVAMP ASDiv

Manually Designed Agents
Chain-of-Thought (Wei et al., 2022) 28.0± 3.1 34.9± 3.2 15.0± 2.5 77.8± 2.8 88.9± 2.2

COT-SC (Wang et al., 2023b) 28.2± 3.1 37.8± 3.4 15.5± 2.5 78.2± 2.8 89.0± 2.1

Self-Refine (Madaan et al., 2024) 27.5± 3.1 38.9± 3.4 15.1± 2.4 78.5± 2.8 89.2± 2.2

LLM Debate (Du et al., 2023) 39.0± 3.4 43.6± 3.4 17.4± 2.6 76.0± 3.0 88.9± 2.2

Step-back Abstraction (Zheng et al., 2023) 31.1± 3.2 31.5± 3.3 12.2± 2.3 76.1± 3.0 87.8± 2.3

Quality-Diversity (Lu et al., 2024c) 23.8± 3.0 28.0± 3.1 14.1± 2.4 69.8± 3.2 80.1± 2.8

Role Assignment (Xu et al., 2023) 30.1± 3.2 37.0± 3.4 18.0± 2.7 73.0± 3.0 83.1± 2.6

Top Agents Searched on MGSM (Math) Transferred within Math Domains
Dynamic Role-Playing Architecture 53.4± 3.5 69.5± 3.2 31.2± 3.2 81.5± 2.6 91.8± 1.8

Structured Multimodal Feedback Loop 50.2± 3.5 64.5± 3.4 30.1± 3.2 82.6± 2.6 89.9± 2.1

Interactive Multimodal Feedback Loop 47.4± 3.5 64.9± 3.3 27.6± 3.2 80.6± 2.8 89.8± 2.1

Table 5: Performance across multiple domains when transferring top agents from the Math
(MGSM) domain to non-math domains. Agents discovered by Meta Agent Search in the math
domain can outperform or match the performance of baselines after being transferred to domains
beyond math. We report the test accuracy and the 95% bootstrap confidence interval.

Agent Name Accuracy (%) F1 Score Accuracy (%)
Math Reading Comprehension Multi-task Science

Manually Designed Agents
Chain-of-Thought (Wei et al., 2022) 28.0± 3.1 64.2± 0.9 65.4± 3.3 29.2± 3.1
COT-SC (Wang et al., 2023b) 28.2± 3.1 64.4± 0.8 65.9± 3.2 30.5± 3.2
Self-Refine (Madaan et al., 2024) 27.5± 3.1 59.2± 0.9 63.5± 3.4 31.6± 3.2
LLM Debate (Du et al., 2023) 39.0± 3.4 60.6± 0.9 65.6± 3.3 31.4± 3.2
Step-back Abstraction (Zheng et al., 2023) 31.1± 3.2 60.4± 1.0 65.1± 3.3 26.9± 3.0
Quality-Diversity (Lu et al., 2024c) 23.8± 3.0 61.8± 0.9 65.1± 3.1 30.2± 3.1
Role Assignment (Xu et al., 2023) 30.1± 3.2 65.8± 0.9 64.5± 3.3 31.1± 3.1

Top Agents Searched on Math (MGSM) Transferred beyond Math Domains
Dynamic Role-Playing Architecture 53.4± 3.5 70.4± 0.9 62.4± 3.4 28.6± 3.1

Structured Multimodal Feedback Loop 50.2± 3.5 70.4± 0.9 67.0± 3.2 28.7± 3.1

Interactive Multimodal Feedback Loop 47.4± 3.5 71.9± 0.8 64.8± 3.3 29.9± 3.2

We transfer the discovered agent from the MGSM (Math) domain to other math domains to test
whether the invented agents can generalize across different domains. Similarly, we test the top

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

3 agents from MGSM and transfer them to (1) four popular math domains: GSM8K (Cobbe et al.,
2021), GSM-Hard (Gao et al., 2023), SVAMP (Patel et al., 2021), and ASDiv (Miao et al., 2020) and
(2) three domains beyond math adopted in Section 4.2. As shown in Table 4, we observe a similar
superiority in the performance of Meta Agent Search compared to baselines. More surprisingly, we
observe that agents discovered in the math domain can be transferred to non-math domains (Table 5).
While the performance of agents originally searched in the math domain does not fully match that of
agents specifically designed for the target domains, they still outperform (in Reading Comprehension
and Multi-task) or match (in Science) the state-of-the-art hand-designed agent baselines. These
results illustrate that Meta Agent Search can discover generalizable design patterns and agentic
systems.

C PROMPTS

We use the following prompts for the meta agent in Meta Agent Search. Variables in the prompts
that vary depending on domains and iterations are highlighted.

We use the following system prompt for every query in the meta agent.

System prompt for the meta agent.

You are a helpful assistant. Make sure to return in a WELL-FORMED JSON object.

We use the following prompt for the meta agent to design the new agent based on the archive of
previously discovered agents.

Main prompt for the meta agent.

You are an expert machine learning researcher testing various agentic systems. Your objective is to
design building blocks such as prompts and workflows within these systems to solve complex tasks.
Your aim is to design an optimal agent performing well on [Brief Description of the Domain].

[Framework Code]

[Output Instructions and Examples]

[Discovered Agent Archive] (initialized with baselines, updated at every iteration)

Your task
You are deeply familiar with prompting techniques and the agent works from the literature. Your goal is
to maximize the specified performance metrics by proposing interestingly new agents.
Observe the discovered agents carefully and think about what insights, lessons, or stepping stones can
be learned from them.
Be creative when thinking about the next interesting agent to try. You are encouraged to draw inspiration
from related agent papers or academic papers from other research areas.
Use the knowledge from the archive and inspiration from academic literature to propose the next inter-
esting agentic system design.
THINK OUTSIDE THE BOX.

The domain descriptions are available in Appendices E and F and the framework code is available
in Appendix D. We use the following prompt to instruct and format the output of the meta agent.
Here, we collect and present some common mistakes that the meta agent may make in the prompt.
We found it effective in improving the quality of the generated code. These formatting prompts are
inspired by Lu et al. (2024a).

Output Instruction and Example.

Output Instruction and Example:
The first key should be (“thought”), and it should capture your thought process for designing the next
function. In the “thought” section, first reason about what the next interesting agent to try should
be, then describe your reasoning and the overall concept behind the agent design, and finally detail

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

the implementation steps. The second key (“name”) corresponds to the name of your next agent
architecture. Finally, the last key (“code”) corresponds to the exact “forward()” function in Python code
that you would like to try. You must write COMPLETE CODE in “code”: Your code will be part of the
entire project, so please implement complete, reliable, reusable code snippets.

Here is an example of the output format for the next agent:
{“thought”: “**Insights:** Your insights on what should be the next interesting agent. **Overall
Idea:** your reasoning and the overall concept behind the agent design. **Implementation:** describe
the implementation step by step.”,
“name”: “Name of your proposed agent”,
“code”: “def forward(self, taskInfo): # Your code here”}

WRONG Implementation examples:
[Examples of potential mistakes the meta agent may make in implementation]

After the first response from the meta agent, we perform two rounds of self-reflection to make the
generated agent novel and error-free (Shinn et al., 2023; Madaan et al., 2024).

Prompt for self-reflection round 1.

[Generated Agent from Previous Iteration]
Carefully review the proposed new architecture and reflect on the following points:

1. **Interestingness**: Assess whether your proposed architecture is interesting or innovative
compared to existing methods in the archive. If you determine that the proposed architecture is not
interesting, suggest a new architecture that addresses these shortcomings.
- Make sure to check the difference between the proposed architecture and previous attempts.
- Compare the proposal and the architectures in the archive CAREFULLY, including their actual
differences in the implementation.
- Decide whether the current architecture is innovative.
- USE CRITICAL THINKING!

2. **Implementation Mistakes**: Identify any mistakes you may have made in the implementation.
Review the code carefully, debug any issues you find, and provide a corrected version. REMEMBER
checking ”## WRONG Implementation examples” in the prompt.

3. **Improvement**: Based on the proposed architecture, suggest improvements in the detailed
implementation that could increase its performance or effectiveness. In this step, focus on refining and
optimizing the existing implementation without altering the overall design framework, except if you
want to propose a different architecture if the current is not interesting.
- Observe carefully about whether the implementation is actually doing what it is supposed to do.
- Check if there is redundant code or unnecessary steps in the implementation. Replace them with
effective implementation.
- Try to avoid the implementation being too similar to the previous agent.

And then, you need to improve or revise the implementation, or implement the new proposed
architecture based on the reflection.

Your response should be organized as follows:

”reflection”: Provide your thoughts on the interestingness of the architecture, identify any mistakes in
the implementation, and suggest improvements.
”thought”: Revise your previous proposal or propose a new architecture if necessary, using the same
format as the example response.
”name”: Provide a name for the revised or new architecture. (Don’t put words like ”new” or ”improved”
in the name.)
”code”: Provide the corrected code or an improved implementation. Make sure you actually implement
your fix and improvement in this code.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prompt for self-reflection round 2.

Using the tips in “## WRONG Implementation examples” section, further revise the code.
Your response should be organized as follows:
Include your updated reflections in the “reflection”. Repeat the previous “thought” and “name”. Update
the corrected version of the code in the “code” section.

When an error is encountered during the execution of the generated code, we conduct a reflection
and re-run the code. This process is repeated up to five times if errors persist. Here is the prompt we
use to self-reflect any runtime error:

Prompt for self-reflection when a runtime error occurs.

Error during evaluation:
[Runtime errors]
Carefully consider where you went wrong in your latest implementation. Using insights from previous
attempts, try to debug the current code to implement the same thought. Repeat your previous thought in
“thought”, and put your thinking for debugging in “debug thought”.

D FRAMEWORK CODE

In this paper, we provide the meta agent with a simple framework to implement basic functions, such
as querying Foundation Models (FMs) and formatting prompts. The framework consists of fewer
than 100 lines of code (excluding comments). In this framework, we encapsulate every piece of
information into a namedtuple Info object, making it easy to combine different types of information
(e.g., FM responses, results from tool function calls, task descriptions) and facilitate communication
between different modules. Additionally, in the FM module, we automatically construct the prompt
by concatenating all input Info objects into a structured format, with each Info titled by its metadata
(e.g., name, author). Throughout the appendix, we renamed some variables in the code to match
the terminologies used in the main text.

Code 1: The simple framework used in Meta-Agent Search.
1 # Named tuple for holding task information
2 Info = namedtuple(’Info’, [’name’, ’author’, ’content’, ’iteration_idx’])
3

4 # Format instructions for FM response
5 FORMAT_INST = lambda request_keys: f"Reply EXACTLY with the following

JSON format.\n{str(request_keys)}\nDO NOT MISS ANY FIELDS AND MAKE
SURE THE JSON FORMAT IS CORRECT!\n"

6

7 # Description of the role of the FM Module
8 ROLE_DESC = lambda role: f"You are a {role}."
9

10 @backoff.on_exception(backoff.expo, openai.RateLimitError)
11 def get_json_response_from_gpt(msg, model, system_message, temperature):
12 \"""
13 Function to get JSON response from GPT model.
14

15 Args:
16 - msg (str): The user message.
17 - model (str): The model to use.
18 - system_message (str): The system message.
19 - temperature (float): Sampling temperature.
20

21 Returns:
22 - dict: The JSON response.
23 \"""
24 ...
25 return json_dict
26

27 class FM_Module:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

28 \"""
29 Base class for an FM module.
30

31 Attributes:
32 - output_fields (list): Fields expected in the output.
33 - name (str): Name of the FM module.
34 - role (str): Role description for the FM module.
35 - model (str): Model to be used.
36 - temperature (float): Sampling temperature.
37 - id (str): Unique identifier for the FM module instance.
38 \"""
39

40 def __init__(self, output_fields: list, name: str, role=’helpful
assistant’, model=’gpt-3.5-turbo-0125’, temperature=0.5) -> None:

41 ...
42

43 def generate_prompt(self, input_infos, instruction) -> str:
44 \"""
45 Generates a prompt for the FM.
46

47 Args:
48 - input_infos (list): List of input information.
49 - instruction (str): Instruction for the task.
50

51 Returns:
52 - tuple: System prompt and user prompt.
53

54 An example of generated prompt:
55 ""
56 You are a helpful assistant.
57

58 # Output Format:
59 Reply EXACTLY with the following JSON format.
60 ...
61

62 # Your Task:
63 You will given some number of paired example inputs and outputs.

The outputs ...
64

65 ### thinking #1 by Chain-of-Thought hkFo (yourself):
66 ...
67

68 # Instruction:
69 Please think step by step and then solve the task by writing the

code.
70 ""
71 \"""
72 ...
73 return system_prompt, prompt
74

75 def query(self, input_infos: list, instruction, iteration_idx=-1) ->
list[Info]:

76 \"""
77 Queries the FM with provided input information and instruction.
78

79 Args:
80 - input_infos (list): List of input information.
81 - instruction (str): Instruction for the task.
82 - iteration_idx (int): Iteration index for the task.
83

84 Returns:
85 - output_infos (list[Info]): Output information.
86 \"""
87 ...
88 return output_infos

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

89

90 def __repr__(self):
91 return f"{self.agent_name} {self.id}"
92

93 def __call__(self, input_infos: list, instruction, iteration_idx=-1):
94 return self.query(input_infos, instruction, iteration_idx=

iteration_idx)
95

96 class AgentSystem:
97 def forward(self, taskInfo) -> Union[Info, str]:
98 \"""
99 Placeholder method for processing task information.

100

101 Args:
102 - taskInfo (Info): Task information.
103

104 Returns:
105 - Answer (Union[Info, str]): Your FINAL Answer. Return either a

namedtuple Info or a string for the answer.
106 \"""
107 pass

With the provided framework, an agent can be easily defined with a “forward” function. Here we
show an example of implementing self-reflection using the framework.

Code 2: Self-Reflection implementation example
1 def forward(self, taskInfo):
2 # Instruction for initial reasoning
3 cot_initial_instruction = "Please think step by step and then solve

the task."
4

5 # Instruction for reflecting on previous attempts and feedback to
improve

6 cot_reflect_instruction = "Given previous attempts and feedback,
carefully consider where you could go wrong in your latest
attempt. Using insights from previous attempts, try to solve the
task better."

7 cot_module = FM_Module([’thinking’, ’answer’], ’Chain-of-Thought’)
8

9 # Instruction for providing feedback and correcting the answer
10 critic_instruction = "Please review the answer above and criticize on

where might be wrong. If you are absolutely sure it is correct,
output ’True’ in ’correct’."

11 critic_module = FM_Module([’feedback’, ’correct’], ’Critic’)
12

13 N_max = 5 # Maximum number of attempts
14

15 # Initial attempt
16 cot_inputs = [taskInfo]
17 thinking, answer = cot_module(cot_inputs, cot_initial_instruction, 0)
18

19 for i in range(N_max):
20 # Get feedback and correct status from the critic
21 feedback, correct = critic_module([taskInfo, thinking, answer],

critic_instruction, i)
22 if correct.content == ’True’:
23 break
24

25 # Add feedback to the inputs for the next iteration
26 cot_inputs.extend([thinking, answer, feedback])
27

28 # Reflect on previous attemps and refine the answer
29 thinking, answer = cot_module(cot_inputs, cot_reflect_instruction

, i + 1)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

30 return answer

E EXPERIMENT DETAILS FOR ARC CHALLENGE

Example Input-output grid #1

Example Input-output grid #2

Test grid

Answer

Figure 4: An example task from the ARC challenge (Chollet, 2019). Given the input-output grid
examples, the AI system is asked to learn the transformation rules and then apply these learned rules
to the test grid to predict the final answer.

An example task from the ARC challenge is shown in Figure 4. In the ARC challenge experiments
(Section 4.1), we represent the grids as strings of 2-D arrays, where each color is represented by
an integer. We instruct the meta agent to design agents that generate code as solutions rather than
directly outputting answers. Additionally, we provide two tool functions within the framework:
(1) to test whether the generated code can solve the example grids and (2) to obtain the task’s
answer by applying the generated code to the test grid. The accuracy rate is calculated by the Exact
Match between the reference solution and the predicted answer. The meta agent uses “gpt-4o-2024-
05-13” (OpenAI, 2024), while discovered agents and baselines are evaluated using “gpt-3.5-turbo-
0125” (OpenAI, 2022) to reduce compute cost.

The domain description of ARC for the meta agent is shown below:

Description of ARC for the meta agent.

Your aim is to find an optimal agent performing well on the ARC (Abstraction and Reasoning Corpus)
challenge.
In this challenge, each task consists of three demonstration examples, and one test example. Each
Example consists of an “input grid” and an “output grid”. Test-takers need to use the transformation
rule learned from the examples to predict the output grid for the test example.

An example task from ARC challenge:

Task Overview:
You will be given some number of paired example inputs and outputs grids. The outputs were produced
by applying a transformation rule to the input grids. In addition to the paired example inputs and

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

outputs, there is also one test input without a known output.
The inputs and outputs are each “grids”. A grid is a rectangular matrix of integers between 0 and 9
(inclusive). Each number corresponds to a color. 0 is black.
Your task is to determine the transformation rule from examples and find out the answer, involving
determining the size of the output grid for the test and correctly filling each cell of the grid with the
appropriate color or number.

The transformation only needs to be unambiguous and applicable to the example inputs and the test
input. It doesn’t need to work for all possible inputs. Observe the examples carefully, imagine the grid
visually, and try to find the pattern.

Examples:
Example 0:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,0,5,0,0,0,0], [0,0,0,4,5,0,0,0,0], [0,0,0,4,5,4,4,0,0], [0,0,3,3,5,0,0,0,0],
[0,0,0,3,5,0,0,0,0], [0,0,0,3,5,3,3,3,0], [0,0,0,3,5,0,0,0,0], [0,0,0,0,5,0,0,0,0], [0,0,0,0,5,0,0,0,0]]
output = [[0,0,0,0], [0,0,0,0], [0,0,0,4], [0,0,4,4], [0,0,3,3], [0,0,0,3], [0,3,3,3], [0,0,0,3], [0,0,0,0],
[0,0,0,0]]

Example 1:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,2,5,0,0,0,0], [0,0,0,2,5,2,6,0,0], [0,0,0,2,5,0,0,0,0], [0,0,0,2,5,2,2,2,0],
[0,0,6,6,5,6,0,0,0], [0,0,0,2,5,0,0,0,0], [0,2,2,0,5,2,0,0,0], [0,0,0,2,5,0,0,0,0], [0,0,0,0,5,0,0,0,0]]
output = [[0,0,0,0], [0,0,0,2], [0,0,6,2], [0,0,0,2], [0,2,2,2], [0,0,6,6], [0,0,0,2], [0,2,2,2], [0,0,0,2],
[0,0,0,0]]

Example 2:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,0,5,7,0,0,0], [0,0,0,8,5,0,0,0,0], [0,0,0,8,5,0,0,0,0], [0,7,8,8,5,0,0,0,0],
[0,0,0,0,5,8,8,0,0], [0,0,0,8,5,0,0,0,0], [0,0,0,8,5,0,0,0,0], [0,0,0,0,5,8,7,0,0], [0,0,0,0,5,0,0,0,0]]
output= [[0,0,0,0], [0,0,0,7], [0,0,0,8], [0,0,0,8], [0,7,8,8], [0,0,8,8], [0,0,0,8], [0,0,0,8], [0,0,7,8],
[0,0,0,0]]

Test Problem:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,1,5,0,0,0,0], [0,0,0,1,5,1,0,0,0], [0,1,1,1,5,1,1,1,6], [0,0,0,6,5,6,6,0,0],
[0,0,0,0,5,1,1,1,0], [0,0,0,1,5,0,0,0,0], [0,0,0,1,5,1,6,0,0], [0,0,0,0,5,6,0,0,0], [0,0,0,0,5,0,0,0,0]]

Analyze the transformation rules based on the provided Examples and determine what the output should
be for the Test Problem.

Here we present the best agent on ARC discovered by Meta Agent Search.

Code 3: The best agent on ARC discovered by Meta Agent Search
1 # Structured Feedback and Ensemble Agent
2 def forward(self, taskInfo):
3 # Step 1: Generate initial candidate solutions using multiple FM

Modules
4 initial_instruction = ’Please think step by step and then solve the

task by writing the code.’
5 num_candidates = 5 # Number of initial candidates
6 initial_module = [FM_Module([’thinking’, ’code’], ’Initial Solution’,

temperature=0.8) for _ in range(num_candidates)]
7

8 initial_solutions = []
9 for i in range(num_candidates):

10 thoughts = initial_module[i]([taskInfo], initial_instruction)
11 thinking, code = thoughts[0], thoughts[1]
12 feedback, correct_examples, wrong_examples = self.

run_examples_and_get_feedback(code)
13 if len(correct_examples) > 0: # Only consider solutions that

passed at least one example
14 initial_solutions.append({’thinking’: thinking, ’code’: code,

’feedback’: feedback, ’correct_count’: len(
correct_examples)})

15

16 # Step 2: Simulate human-like feedback for each candidate solution

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

17 human_like_feedback_module = FM_Module([’thinking’, ’feedback’], ’
Human-like Feedback’, temperature=0.5)

18 human_feedback_instruction = ’Please provide human-like feedback for
the code, focusing on common mistakes, heuristic corrections, and
best practices.’

19

20 for sol in initial_solutions:
21 thoughts = human_like_feedback_module([taskInfo, sol[’thinking’],

sol[’code’]], human_feedback_instruction)
22 human_thinking, human_feedback = thoughts[0], thoughts[1]
23 sol[’human_feedback’] = human_feedback
24

25 # Step 3: Assign expert advisors to evaluate and provide targeted
feedback

26 expert_roles = [’Efficiency Expert’, ’Readability Expert’, ’
Simplicity Expert’]

27 expert_advisors = [FM_Module([’thinking’, ’feedback’], role,
temperature=0.6) for role in expert_roles]

28 expert_instruction = ’Please evaluate the given code and provide
targeted feedback for improvement.’

29

30 for sol in initial_solutions:
31 sol_feedback = {}
32 for advisor in expert_advisors:
33 thoughts = advisor([taskInfo, sol[’thinking’], sol[’code’]],

expert_instruction)
34 thinking, feedback = thoughts[0], thoughts[1]
35 sol_feedback[advisor.role] = feedback
36 sol[’expert_feedback’] = sol_feedback
37

38 # Step 4: Parse and structure the feedback to avoid redundancy and
refine the solutions iteratively

39 max_refinement_iterations = 3
40 refinement_module = FM_Module([’thinking’, ’code’], ’Refinement

Module’, temperature=0.5)
41 refined_solutions = []
42

43 for sol in initial_solutions:
44 for i in range(max_refinement_iterations):
45 combined_feedback = sol[’feedback’].content + sol[’

human_feedback’].content + ’’.join([fb.content for fb in
sol[’expert_feedback’].values()])

46 structured_feedback = ’ ’.join(set(combined_feedback.split())
) # Avoid redundancy

47 refinement_instruction = ’Using the structured feedback,
refine the solution to improve its performance.’

48 thoughts = refinement_module([taskInfo, sol[’thinking’], sol[
’code’], Info(’feedback’, ’Structured Feedback’,
structured_feedback, i)], refinement_instruction, i)

49 refinement_thinking, refined_code = thoughts[0], thoughts[1]
50 feedback, correct_examples, wrong_examples = self.

run_examples_and_get_feedback(refined_code)
51 if len(correct_examples) > 0:
52 sol.update({’thinking’: refinement_thinking, ’code’:

refined_code, ’feedback’: feedback, ’correct_count’:
len(correct_examples)})

53 refined_solutions.append(sol)
54

55 # Step 5: Select the best-performing solutions and make a final
decision using an ensemble approach

56 sorted_solutions = sorted(refined_solutions, key=lambda x: x[’
correct_count’], reverse=True)

57 top_solutions = sorted_solutions[:3] # Select the top 3 solutions
58

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

59 final_decision_instruction = ’Given all the above solutions, reason
over them carefully and provide a final answer by writing the
code.’

60 final_decision_module = refinement_module([’thinking’, ’code’], ’
Final Decision Module’, temperature=0.1)

61 final_inputs = [taskInfo] + [item for solution in top_solutions for
item in [solution[’thinking’], solution[’code’], solution[’
feedback’]]]

62 final_thoughts = final_decision_module(final_inputs,
final_decision_instruction)

63 final_thinking, final_code = final_thoughts[0], final_thoughts[1]
64 answer = self.get_test_output_from_code(final_code)
65 return answer

F EXPERIMENT DETAILS FOR REASONING AND PROBLEM-SOLVING
DOMAINS

To reduce costs during search and evaluation, we sample subsets of data from each domain. For
GPQA (Science), we use GPQA diamond and the validation set consists of 32 questions, while
the remaining 166 questions form the test set. For the other domains, the validation and test sets are
sampled with 128 and 800 questions, respectively. We evaluate agents five times for GPQA and once
for the other domains to maintain a consistent total number of evaluations. Each domain uses zero-
shot style questions, except DROP (Reading Comprehension), which uses one-shot style questions
following the practice in (OpenAI, 2023). The meta agent uses “gpt-4o-2024-05-13” (OpenAI,
2024), while discovered agents and baselines are evaluated using “gpt-3.5-turbo-0125” (OpenAI,
2022) to reduce compute cost.

We present the description of each domain we provide to the meta agent.

Description of DROP (Reading Comprehension).

Your aim is to find an optimal agent performing well on the Reading Comprehension Benchmark
Requiring Discrete Reasoning Over Paragraphs (DROP), which assesses the ability to perform discrete
reasoning and comprehend detailed information across multiple paragraphs.

An example question from DROP:

You will be asked to read a passage and answer a question.

Passage:
Non-nationals make up more than half of the population of Bahrain, with immigrants making up
about 55% of the overall population. Of those, the vast majority come from South and Southeast
Asia: according to various media reports and government statistics dated between 2005-2009 roughly
290,000 Indians, 125,000 Bangladeshis, 45,000 Pakistanis, 45,000 Filipinos, and 8,000 Indonesians.

Question: What two nationalities had the same number of people living in Bahrain between
2005-2009?
Answer [Not Given]: Pakistanis and Filipinos

Description of GPQA (Science) for the meta agent.

Your aim is to find an optimal agent performing well on the GPQA (Graduate-Level Google-Proof Q&A
Benchmark). This benchmark consists of challenging multiple-choice questions across the domains of
biology, physics, and chemistry, designed by domain experts to ensure high quality and difficulty.

An example question from GPQA:

Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively.
We want to clearly distinguish these two energy levels. Which one of the following options could be
their energy difference so that they be clearly resolved?

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Answer choices:
10−9 eV
10−8 eV
10−7 eV
10−6 eV

Correct answer [Not provided]:
10−7 eV

Explanation [Not provided]:
According to the uncertainty principle, Delta E* Delta t=hbar/2. Delta t is the lifetime and Delta E is the
width of the energy level. With Delta t=10−9 s==> Delta E1= 3.3 10−7 ev. And Delta t=10−11 s gives
Delta E2=3.310−8 eV. Therefore, the energy difference between the two states must be significantly
greater than 10−7 ev. So the answer is 10−4 ev.

Description of MGSM (Math) for the meta agent.

Your aim is to find an optimal agent performing well on the Multilingual Grade School Math Benchmark
(MGSM) which evaluates mathematical problem-solving abilities across various languages to ensure
broad and effective multilingual performance.

An example question from MGSM:

Question: この数学の問題を解いてください。

近所では、ペットのウサギの数がペットの犬と猫を合わせた数よりも12匹少ない。犬1匹あ
たり2匹の猫がおり、犬の数は60匹だとすると、全部で近所には何匹のペットがいますか？

Answer (Not Given): 348

Description of MMLU (Mult-task) for the meta agent.

Your aim is to find an optimal agent performing well on the MMLU (Massive Multitask Language
Understanding) benchmark, a challenging evaluation that assesses a model’s ability to answer questions
across a wide range of subjects and difficulty levels. It includes subjects from STEM, social sciences,
humanities, and more.

An example question from MMLU:

Answer the following multiple-choice question.

The constellation ... is a bright W-shaped constellation in the northern sky.

(A) Centaurus
(B) Cygnus
(C) Cassiopeia
(D) Cepheus

G BASELINES

In this paper, we implement five state-of-the-art hand-designed agent baselines for experiments
on ARC (Section 4.1): (1) Chain-of-Thought (COT) (Wei et al., 2022), (2) Self-Consistency with
Chain-of-Thought (COT-SC)(Wang et al., 2023b), (3) Self-Refine (Madaan et al., 2024; Shinn et al.,
2023), (4) LLM-Debate (Du et al., 2023), and (5) Quality-Diversity, a simplified version of Intelli-
gent Go-Explore (Lu et al., 2024c).

In addition to these baselines, we implement two more for experiments on Reasoning and Problem-
Solving domains (Section 4.2): (6) Step-back Abstraction (Zheng et al., 2023) and (7) Role Assign-
ment (Xu et al., 2023). An example implementation of Self-Refine with our simple framework is
shown in Appendix D.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

In COT, we prompt the FM to think step by step before answering the question. In COT-SC, we
sample N = 5 answers and then perform an ensemble using either majority voting or an FM query.
In Self-Refine, we allow up to five refinement iterations, with an early stop if the critic deems the
answer correct. In LLM-Debate, each debate module is assigned a unique role, such as Physics
Expert or Chemistry Expert, and the debate lasts for two rounds. In Quality-Diversity, we conduct
three iterations to collect diverse answers based on previously proposed ones. In Role Assignment,
we use an FM query to first choose a role from a predefined set, and then use another FM query to
answer the question by acting within the chosen role.

H EXAMPLE AGENTS

In this section, we present the detailed implementation of three example discovered agents by Meta
Agent Search shown in Figure 1. The “Multi-Step Peer Review Agent” and “Divide and Conquer
Agent” were discovered during the search in the Reading Comprehension domain (GPQA) (Rein
et al., 2023), while the “Verified Multimodal Agent” was discovered during the search in the Math
domain (MGSM) (Shi et al., 2023).

Code 4: Example discovered agent: Multi-Step Peer Review Agent
1 def forward(self, taskInfo):
2 initial_instruction = "Please think step by step and then solve the

task."
3 critique_instruction = "Please review the answer above and provide

feedback on where it might be wrong. If you are absolutely sure
it is correct, output ’True’ in ’correct’."

4 refine_instruction = "Given previous attempts and feedback, carefully
consider where you could go wrong in your latest attempt. Using

insights from previous attempts, try to solve the task better."
5 final_decision_instruction = "Given all the above thinking and

answers, reason over them carefully and provide a final answer."
6

7 FM_modules = [FM_module([’thinking’, ’answer’], ’FM Module’, role=
role) for role in [’Physics Expert’, ’Chemistry Expert’, ’Biology
Expert’, ’Science Generalist’]]

8 critic_modules = [FM_module([’feedback’, ’correct’], ’Critic’, role=
role) for role in [’Physics Critic’, ’Chemistry Critic’, ’Biology
Critic’, ’General Critic’]]

9 final_decision_module = FM_module([’thinking’, ’answer’], ’Final
Decision’, temperature=0.1)

10

11 all_thinking = [[] for _ in range(len(FM_modules))]
12 all_answer = [[] for _ in range(len(FM_modules))]
13 all_feedback = [[] for _ in range(len(FM_modules))]
14

15 for i in range(len(FM_modules)):
16 thinking, answer = FM_modules[i]([taskInfo], initial_instruction)
17 all_thinking[i].append(thinking)
18 all_answer[i].append(answer)
19

20 for i in range(len(FM_modules)):
21 for j in range(len(FM_modules)):
22 if i != j:
23 feedback, correct = critic_modules[j]([taskInfo,

all_thinking[i][0], all_answer[i][0]],
critique_instruction)

24 all_feedback[i].append(feedback)
25

26 for i in range(len(FM_modules)):
27 refine_inputs = [taskInfo, all_thinking[i][0], all_answer[i][0]]

+ all_feedback[i]
28 thinking, answer = FM_modules[i](refine_inputs,

refine_instruction)
29 all_thinking[i].append(thinking)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

30 all_answer[i].append(answer)
31

32 final_inputs = [taskInfo] + [all_thinking[i][1] for i in range(len(
FM_modules))] + [all_answer[i][1] for i in range(len(FM_modules))
]

33 thinking, answer = final_decision_module(final_inputs,
final_decision_instruction)

34

35 return answer

Code 5: Example discovered agent: Divide and Conquer Agent
1 def forward(self, taskInfo):
2 # Step 1: Decompose the problem into sub-problems
3 decomposition_instruction = "Please decompose the problem into

smaller, manageable sub-problems. List each sub-problem clearly."
4 decomposition_module = FM_Module([’thinking’, ’sub_problems’], ’

Decomposition Module’)
5

6 # Step 2: Assign each sub-problem to a specialized expert
7 sub_problem_instruction = "Please think step by step and then solve

the sub-problem."
8 specialized_experts = [FM_Module([’thinking’, ’sub_solution’], ’

Specialized Expert’, role=role) for role in [’Physics Expert’, ’
Chemistry Expert’, ’Biology Expert’, ’General Expert’]]

9

10 # Step 3: Integrate the sub-problem solutions into the final answer
11 integration_instruction = "Given the solutions to the sub-problems,

integrate them to provide a final answer to the original problem.
"

12 integration_module = FM_Module([’thinking’, ’answer’], ’Integration
Module’, temperature=0.1)

13

14 # Decompose the problem
15 thinking, sub_problems = decomposition_module([taskInfo],

decomposition_instruction)
16

17 # Ensure sub_problems is a string and split into individual sub-
problems

18 sub_problems_list = sub_problems.content.split(’\n’) if isinstance(
sub_problems.content, str) else []

19

20 # Solve each sub-problem
21 sub_solutions = []
22 for i, sub_problem in enumerate(sub_problems_list):
23 sub_problem_info = Info(’sub_problem’, decomposition_module.

__repr__(), sub_problem, i)
24 sub_thinking, sub_solution = specialized_experts[i % len(

specialized_experts)]([sub_problem_info],
sub_problem_instruction)

25 sub_solutions.append(sub_solution)
26

27 # Integrate the sub-problem solutions
28 integration_inputs = [taskInfo] + sub_solutions
29 thinking, answer = integration_module(integration_inputs,

integration_instruction)
30

31 return answer

Code 6: Example discovered agent: Verified Multimodal Agent
1 def forward(self, taskInfo):
2 # Instruction for generating visual representation of the problem
3 visual_instruction = "Please create a visual representation (e.g.,

diagram, graph) of the given problem."

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

4

5 # Instruction for verifying the visual representation
6 verification_instruction = "Please verify the accuracy and relevance

of the visual representation. Provide feedback and suggestions
for improvement if necessary."

7

8 # Instruction for solving the problem using the verified visual aid
9 cot_instruction = "Using the provided visual representation, think

step by step and solve the problem."
10

11 # Instantiate the visual representation module, verification module,
and Chain-of-Thought module

12 visual_module = FM_Module([’visual’], ’Visual Representation Module’)
13 verification_module = FM_Module([’feedback’, ’verified_visual’], ’

Verification Module’)
14 cot_module = FM_Module([’thinking’, ’answer’], ’Chain-of-Thought

Module’)
15

16 # Generate the visual representation of the problem
17 visual_output = visual_module([taskInfo], visual_instruction)
18 visual_representation = visual_output[0] # Using Info object

directly
19

20 # Verify the visual representation
21 feedback, verified_visual = verification_module([taskInfo,

visual_representation], verification_instruction)
22

23 # Use the verified visual representation to solve the problem
24 thinking, answer = cot_module([taskInfo, verified_visual],

cot_instruction)
25 return answer

I PSEUDOCODE OF THE META AGENT SEARCH

In this section, we provide the pseudocode for the Meta Agent Search algorithm to clarify its im-
plementation and workflow. The pseudocode outlines the iterative process of designing, evaluating,
and refining agents using a meta agent, as described in the main text.

Algorithm 1 Meta Agent Search Algorithm

1: Input: Target domain validation data, maximum iterations N
2: Output: Archive of discovered agents
3: Initialize archive A with baseline agents (e.g., Chain-of-Thought, Self-Refine)
4: for i = 1 to N do
5: Design Step: Meta agent generates a new agent:
6: (a) Outputs design reasoning
7: (b) Implements the design in code
8: (c) Performs two self-reflection steps to ensure novelty and correctness
9: Evaluation Step: Evaluate the new agent on target domain validation data:

10: (a) If the agent produces errors during evaluation, refine the design up to 5 iterations
11: (b) Re-run the evaluation after each refinement
12: Update Step: Add the refined agent and its evaluation metrics to the archive A
13: end for
14: Return: Final archive A

J IMPACT OF INITIALIZATION

One of the key claims of our work is that the code space representation allows for better utilization
of existing human efforts (Section 2), enabling a more efficient search process than starting entirely

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

from scratch. To further investigate the effects of initialization, we conducted experiments where
the Meta Agent Search algorithm was run without any initial agent designs, contrasting with our
standard approach that incorporates human-designed solutions into the search process.

The results, presented in Table 6, demonstrate that even without initial agent designs, Meta Agent
Search discovers agents that outperform all hand-crafted baselines across all evaluated domains.
This finding underscores the robustness of our method, as it effectively leverages the inherent struc-
ture of the code space to explore and optimize agent designs.

Interestingly, while the inclusion of good initial solutions generally leads to improved performance,
the math domain exhibited a unique outcome: starting from scratch resulted in superior performance.
We hypothesize that the absence of predefined design patterns in this case encouraged a broader
and more diverse exploration of reasoning strategies within the limited number of iterations. Such
diversity appears particularly beneficial for math tasks, which demand flexible and varied approaches
to reasoning.

This observation opens up an intriguing avenue for future research: exploring how the choice and
quality of initialization impact search effectiveness across different domains. For instance, it would
be valuable to identify conditions under which starting without initial solutions may yield perfor-
mance gains, or to design strategies that combine the advantages of both initialization and broad
exploration.

Table 6: Performance comparison of Meta Agent Search with and without initial agent designs
across multiple domains. The results show that even without initialization, Meta Agent Search out-
performs hand-designed baselines in all domains. However, incorporating initial solutions generally
leads to better performance, except in the math domain, where starting without initialization yields
superior results.

Agent Name F1 Score Accuracy (%)
Reading Comprehension Math Multi-task Science

State-of-the-art Hand-designed Agents
Chain-of-Thought (Wei et al., 2022) 64.2± 0.9 28.0± 3.1 65.4± 3.3 29.2± 3.1

COT-SC (Wang et al., 2023b) 64.4± 0.8 28.2± 3.1 65.9± 3.2 30.5± 3.2

Self-Refine (Madaan et al., 2024) 59.2± 0.9 27.5± 3.1 63.5± 3.4 31.6± 3.2

LLM Debate (Du et al., 2023) 60.6± 0.9 39.0± 3.4 65.6± 3.3 31.4± 3.2

Step-back Abstraction (Zheng et al., 2023) 60.4± 1.0 31.1± 3.2 65.1± 3.3 26.9± 3.0

Quality-Diversity (Lu et al., 2024c) 61.8± 0.9 23.8± 3.0 65.1± 3.3 30.2± 3.1

Role Assignment (Xu et al., 2023) 65.8± 0.9 30.1± 3.2 64.5± 3.3 31.1± 3.1

Automated Design of Agentic Systems on Different Domains
Meta Agent Search (Empty Initialization) 73.9± 0.9 67.5± 3.3 68.5± 3.3 32.7± 3.2

Meta Agent Search 79.4± 0.8 53.4± 3.5 69.6± 3.2 34.6± 3.2

K COST OF EXPERIMENTS

A single run of search and evaluation on ARC (Section 4.1) costs approximately $500 USD in
OpenAI API costs, while a run within the reasoning and problem-solving domains (Section 4.2)
costs about $300 USD.

The primary expense comes from querying the “gpt-3.5-turbo-0125” model during the evaluation of
discovered agents. Notably, the latest GPT-4 model, “gpt-4o-mini,” is less than one-third the price
of “gpt-3.5-turbo-0125” and offers better performance, suggesting that we could achieve improved
results with Meta Agent Search at just one-third of the cost. Additionally, as discussed in Section 6,
the current naive evaluation function is both expensive and overlooks valuable information. We an-
ticipate that future work adopting more sophisticated evaluation functions could significantly reduce
the cost of ADAS algorithms.

34

	Introduction
	Automated Design of Agentic Systems (ADAS)
	Our Algorithm: Meta Agent Search
	Experiments
	Case Study: ARC Challenge
	Reasoning and Problem-Solving Domains
	Generalization and transferability

	Related Work
	Discussion and Conclusion
	More Related Work and Future Work
	More Related Work
	More Future Work

	Generalization and Transferability
	Prompts
	Framework Code
	Experiment Details for ARC Challenge
	Experiment Details for Reasoning and Problem-Solving Domains
	Baselines
	Example Agents
	Pseudocode of the Meta Agent Search
	Impact of Initialization
	Cost of Experiments

