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ABSTRACT
Remote photoplethysmography (rPPG) measurement enables non-contact physio-
logical monitoring but suffers from accuracy degradation under head motion and
illumination changes. Existing deep learning methods are mostly heuristic and
lack theoretical grounding, limiting robustness and interpretability. In this work,
we propose a physics-informed rPPG paradigm derived from the Navier–Stokes
equations of hemodynamics, showing that the pulse signal follows a second-order
dynamical system whose discrete solution naturally leads to a causal convolution,
justifying the use of a Temporal Convolutional Network (TCN). Based on this prin-
ciple, we design the PHASE-Net, a lightweight model with three key components:
1) Zero-FLOPs Axial Swapper module to swap or transpose a few spatial chan-
nels to mix distant facial regions, boosting cross-region feature interaction without
changing temporal order; 2) Adaptive Spatial Filter to learn a soft spatial mask per
frame to highlight signal-rich areas and suppress noise for cleaner feature maps;
and 3) Gated TCN, a causal dilated TCN with gating that models long-range tem-
poral dynamics for accurate pulse recovery. Extensive experiments demonstrate
that PHASE-Net achieves state-of-the-art performance and strong efficiency, of-
fering a theoretically grounded and deployment-ready rPPG solution.

1 INTRODUCTION
Continuous monitoring of physiological signals, such as heart rate and heart rate variability, is fun-
damental to managing personal health and well-being. Traditional methods rely on contact-based
sensors like ECG electrodes or pulse oximeters, which, despite their accuracy, are often inconve-
nient and uncomfortable for long-term, daily use. Remote photoplethysmography (rPPG) (??) has
emerged as a revolutionary alternative, capable of reconstructing the pulse-wave signal from subtle,
cardiac-induced variations in skin blood volume captured by a standard camera—all in a non-contact
and imperceptible manner. This remarkable potential has positioned rPPG as a key enabling tech-
nology for a wide range of applications, including telemedicine, personal wellness tracking, driver
monitoring, and affective computing (Chen et al., 2018; McDuff et al., 2014).
Despite its promise, the widespread adoption of rPPG in real-world scenarios faces significant hur-
dles. The core difficulty lies in the extremely faint nature of the physiological signal, which is easily
overwhelmed by various noise sources (De Haan & Jeanne, 2013; Wang et al., 2017). For instance,
involuntary head movements, facial expressions, and fluctuations in ambient illumination can intro-
duce artifacts that are orders of magnitude stronger than the authentic pulse signal. To address these
challenges, deep learning-based methods (Yu et al., 2019; Chen & McDuff, 2018; Yu et al., 2022)
have become the dominant paradigm, demonstrating superior performance over traditional signal
processing techniques by learning to regress the rPPG signal end-to-end from noisy video data.
However, we observe a fundamental limitation in the design philosophy of current deep learning
models: they are, to a large extent, heuristic. Researchers typically frame rPPG as a generic spatio-
temporal signal processing task, with network architectures often resulting from empirical trial-and-
error. This “black-box” approach lacks a deep-seated understanding of the intrinsic physical laws
governing the rPPG signal. This deficiency leads to two primary issues: 1) Models may overfit to
dataset-specific noise patterns, resulting in poor generalization and a lack of robustness in unseen
conditions, and 2) their poor interpretability makes it difficult to understand their decision-making
process or guarantee their validity from a theoretical standpoint. This raises a critical question: Can
we design an rPPG model whose architecture is a direct embodiment of the signal’s physical princi-
ples, rather than merely a product of data fitting?
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In this paper, to solve the above-mentioned issues, we introduce the PHASE-Net (Physics-grounded
Harmonic Attention System for Efficient rPPG measurement), a novel modeling framework
rooted in the first principles of physics. Instead of treating the model as a black box, we begin
with the Navier-Stokes equations for hemodynamics. Through a rigorous mathematical derivation,
we reveal that the local pulse-wave dynamics can be physically described by a second-order damped
harmonic oscillator model. Crucially, we further prove that the discrete-time solution to this physical
model is formally equivalent to a causal convolution operator. This profound discovery provides an
unequivocal theoretical justification for our use of a Temporal Convolutional Network (TCN) as the
core dynamics modeling block, endowing our model with a powerful, physically-plausible inductive
bias. The main contributions are summarized as follows:
• We propose a new rPPG modeling paradigm grounded in the first principles of physics and math-
ematics, for the first time establishing a theoretical bridge between the underlying physiological
dynamics and a specific network architecture (causal convolution).

• We design a novel zero-FLOP module, ZAS (Zero-FLOPs Axial Swapper), which performs re-
versible spatial permutations on a small subset of channels to inject early cross-region interactions
and strengthen long-range spatial dependencies without affecting the temporal axis.

• We introduce an Adaptive Spatial Filtering (ASF) module that not only generates a frame-wise
spatial mask to highlight pulse-rich facial regions but also performs spatial aggregation and com-
putes a first-order temporal derivative, concatenating it with the aggregated features to encode
local pulse dynamics, thereby significantly enhancing model robustness under complex real-world
conditions.

• Our final model, PHASE-Net, achieves state-of-the-art performance on multiple public datasets
within an extremely lightweight architecture, demonstrating that theoretical rigor and practical
efficiency can be achieved in unison.

2 RELATED WORK
2.1 TRADITIONAL SIGNAL PROCESSING BASED METHODS FOR RPPG MEASUREMENT
Early approaches typically extracted spatially averaged RGB traces from a facial region of inter-
est (ROI) and applied Blind Source Separation (BSS) methods—such as ICA (Poh et al., 2010) or
PCA (Lewandowska et al., 2011)—to separate the blood volume pulse (BVP) from noise. Building on
skin–reflection priors, color–space designs such as CHROM (De Haan & Jeanne, 2013), POS (Wang
et al., 2016), and 2SR (Wang et al., 2021) introduced specific projections or subspace rotations to
enhance robustness against motion and illumination changes. These techniques established the foun-
dation of rPPG research but rely on strong handcrafted assumptions and often break down under
complex real-world motions or severe lighting variations.

2.2 DEEP LEARNING MODELS FOR RPPG MEASUREMENT
With the advent of deep learning, end-to-end networks have become dominant by directly learn-
ing spatio-temporal features from raw pixels and achieving large performance gains. 2D/3D CNNs
such as DeepPhys (Chen & McDuff, 2018), PhysNet (Yu et al., 2019), and EfficientPhys (Liu et al.,
2023) capture both spatial patterns and short-term dynamics but are computationally expensive and
parameter-heavy. To better model long-range temporal dependencies, researchers have moved from
CNN–RNN hybrids to Transformers (PhysFormer (Yu et al., 2022)) and selective state-space models
(PhysMamba (Luo et al., 2024), RhythmMamba (Zou et al., 2025)) that enable linear-time sequence
modeling with fine-grained temporal context. Most recently, PhysLLM (Xie et al., 2025) frames
rPPG prediction as a language-like sequence modeling task, leveraging large language model back-
bones for stronger generalization. Despite their success, these architectures are largely borrowed
from other domains and remain black-box, limiting interpretability and cross-domain robustness.

2.3 PHYSICS-INFORMED APPROACHES
Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) embed governing equations—
typically partial differential equations—into the learning objective and have achieved remarkable
success in fluid and solid mechanics by providing strong physical priors in data-scarce settings. In
video-based physiological sensing, however, such principled integration of physics is still rare. Re-
cent rPPG studies introduce periodic or contrastive physical losses (Choi & Lee, 2025; Sun & Li,
2024), but the network architectures themselves remain unconstrained by the underlying hemody-
namics. Our proposed PHASE-Net differs fundamentally: starting from a hemodynamic formula-
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Figure 1: An overview of the PHASE-Net. The Vision Encoder comprises three Efficient Spatio-Temporal
Blocks extracting spatio–temporal features from video inputs. These are fed into an Adaptive Spatial Filter
module that computes filtered features via convolution layers and differential operations. The temporally refined
features are then processed by a GTCN block, which uses dual-path Temporal Convolutional Networks with tanh
and sigmoid gates for fusion. Also shown are the inner contents of ESTBlock (Efficient Spatio-Temporal Block)
including ZAS (Zero-FLOPs Axial Swapper) that swaps spatial/temporal axes without adding FLOP.

tion, we derive a causal-convolution network whose computational structure is dictated by the physics
itself, yielding a model that is both high-performing and intrinsically interpretable.

3 METHODOLOGY
3.1 PHYSICS-INFORMED TEMPORAL MODELING
Our proposed model, PHASE-Net, is founded on the principle that the neural network architecture
for rPPG should serve as a parameterized approximation of the underlying physical laws of hemo-
dynamics. This section details this principled approach. We first establish the link between visual
observations and the latent physiological state. We then derive the governing physical law for this
state and, finally, show its computational equivalence to our network architecture, which justifies our
choice of a Temporal Convolutional Network (TCN).

3.1.1 THE PHYSICAL OBSERVATION MODEL: FROM PIXELS TO LATENT STATE
Our derivation begins by establishing a link between the camera’s visual signal and the physiological
state of interest. This link is based on two principles: 1) The Beer-Lambert Law, which states that
changes in captured pixel intensity Δ𝐼 (𝑡) are proportional to changes in subcutaneous blood volume
Δ𝑉 (𝑡), and 2) Vessel Compliance, where Δ𝑉 (𝑡) is proportional to the local blood pressure pulsa-
tion Δ𝑝(𝑡). We define this unobservable pressure pulsation as our target physical state, 𝑧(𝑡). This
establishes a direct relationship:

𝑧(𝑡) ∝ Δ𝑉 (𝑡) ∝ Δ𝐼 (𝑡).
This physical relationship is the cornerstone of our methodology. It guarantees that the desired bi-
ological information, 𝑧(𝑡), is linearly encoded within the pixel value changes captured in the video
stream𝑉 . The task of our visual encoder, 𝑓𝑒𝑛𝑐, is therefore to disentangle and extract this information
from the noisy observations to produce a feature estimate 𝑧𝑟𝑎𝑤:

𝑧𝑟𝑎𝑤 = 𝑓𝑒𝑛𝑐 (𝑉) ≈ 𝑧(𝑡). (1)

This estimate 𝑧𝑟𝑎𝑤 is inevitably noisy. Our subsequent temporal model must leverage the physical
laws governing 𝑧(𝑡) to purify this estimate.

3.1.2 GOVERNING DYNAMICS: FROM FLUID DYNAMICS TO AN ODE
We now establish the dynamical equation that the ‘clean’ latent signal 𝑧(𝑡) must obey. We start from
the Navier-Stokes equations, the most accurate physical description of blood flow:

𝜌

(
𝜕u
𝜕𝑡

+ (u · ∇)u
)
= −∇𝑝 + 𝜇∇2u, (2)

∇ · u = 0. (3)
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Given the intractability of this non-linear PDE system for our task, we introduce a series of physically-
justified simplifications. First, we linearize the equations by considering the small pulsation compo-
nent around the steady-state flow. Second, to model the collective effect in a skin patch, we perform
1D-averaging along the pressure wave’s principal axis. This yields a set of 1D linearized equations
for momentum and continuity, where the viscous effects are modeled as a linear drag term −𝑘𝑢′ and
vessel elasticity is incorporated via a compliance term 𝐶.
By combining these 1D equations and eliminating the velocity variable 𝑢′ (see Appendix C for de-
tailed derivation), we arrive at a Damped Wave Equation that describes the propagation of the
pressure pulse 𝑝′:

𝜕2𝑝′

𝜕𝑡2
+ 𝛼𝜕𝑝

′

𝜕𝑡
= 𝑐2 𝜕

2𝑝′

𝜕𝑥2 , (4)

where 𝛼 is a damping coefficient and 𝑐 is the wave speed. Crucially, the rPPG task involves a single-
point observation at a fixed facial location (𝑥 = 𝑥0). At this fixed point, the spatial derivative term
𝑐2 𝜕2 𝑝′

𝜕𝑥2 represents the elastic restoring force from the surrounding tissue and fluid, which can be
approximated as being proportional to the pressure deviation itself. This reduces the PDE to a clas-
sic second-order Ordinary Differential Equation (ODE), the Forced Damped Harmonic Oscillator
model:

𝑑2𝑧(𝑡)
𝑑𝑡2

+ 𝛼 𝑑𝑧(𝑡)
𝑑𝑡

+ 𝜔2𝑧(𝑡) = 𝑢(𝑡), (5)

Here, 𝑧(𝑡) := 𝑝′ (𝑥0, 𝑡) is our latent signal, 𝜔2 is the effective restoring force coefficient, and 𝑢(𝑡)
represents external driving forces such as motion-induced noise. This ODE provides a powerful
physical prior for the dynamics of any true rPPG signal.

3.1.3 COMPUTATIONAL EQUIVALENCE: FROM AN ODE TO A TCN ARCHITECTURE
The final step is to translate this physical law into a neural network architecture. We discretize the
continuous ODE (Eq. 5) using a semi-implicit Euler method, which can be precisely represented as
a Linear Time-Invariant State-Space Model :

x𝑡 = Ax𝑡−1 + B𝑎𝑡 ,
𝑧𝑡 = Cx𝑡 ,

(6)

where the state vector x𝑡 = [𝑧𝑡 , 𝑣𝑡 ]𝑇 contains the position and velocity of the oscillator, and the input
𝑎𝑡 is the discretized external force. The system matrices (A,B,C) are determined entirely by the
physical parameters (𝛼, 𝜔) and the time step Δ𝑡.
Analyzing the solution to this state-space model leads to our core theoretical findings, which we
formalize as two propositions.
Proposition 1 (Equivalence to Causal Convolution). The solution 𝑧𝑡 of the LTI system in Eq. 6 can
be expressed as a causal convolution of all past inputs:

𝑧𝑡 =
∞∑
𝑚=0

𝑔[𝑚] · 𝑎𝑡−𝑚, where 𝑔[𝑚] = CA𝑚B.

Significance: This result rigorously transforms the physical model from a recursive form into a convo-
lutional form, providing a theoretical basis for using a convolutional network to model the dynamics.
Proposition 2 (FIR Approximation). The Infinite Impulse Response (IIR) convolution above can be
approximated with arbitrary precision 𝜀 by a Finite Impulse Response (FIR) filter of sufficient length,
which is precisely the computation performed by a Temporal Convolutional Network (TCN).
Significance: This provides the final guarantee that a TCN is a principled architectural choice for
implementing the physical dynamics of the rPPG signal with controllable error.
These propositions form a complete logical chain from first principles to a specific network archi-
tecture. Therefore, the choice of a TCN in our PHASE-Net is not a heuristic one; it is the direct
architectural embodiment of the physical laws governing the rPPG signal. Its role is to take the
noisy feature estimate 𝑧𝑟𝑎𝑤 and filter it such that the output conforms to this physically-mandated
dynamical structure. Details can be seen in Appendix C. For theoretical guarantees of cross-domain
generalization, please refer to Appendix D.
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3.2 ZERO-FLOPS AXIAL SWAPPER
The Zero-FLOPs Axial Swapper (ZAS) is a lightweight, parameter-free operator that introduces
early cross-region interactions with zero computational cost. It performs a reversible block-wise
spatial transpose on a small subset of channels while strictly preserving the temporal dimension,
providing richer spatial dependencies for subsequent physics-informed temporal modeling.

Mathematical Definition. Let the input feature map be

𝑋 ∈ R𝐵×𝐶×𝑇×𝐻×𝑊 , (7)
where 𝐵 is the batch size, 𝐶 the channel dimension, 𝑇 the temporal length, and 𝐻,𝑊 the spatial
dimensions. ZAS acts only on the last 𝑘 = ⌊𝑝𝐶⌋ channels (0 < 𝑝 < 1), leaving the remaining 𝐶 − 𝑘
channels unchanged:

𝑋 =
[
𝑋id, 𝑋swap

]
, 𝑋id ∈ R𝐵×(𝐶−𝑘 )×𝑇×𝐻×𝑊 . (8)

Given a block size 𝑏, each spatial slice of 𝑋swap is partitioned into non-overlapping 𝑏 × 𝑏 blocks

P : R𝐻×𝑊 → R
𝐻
𝑏 ×𝑊

𝑏 ×𝑏×𝑏, (9)
and a two-dimensional transpose is applied inside every block

T (𝑍)𝑢,𝑣 = 𝑍𝑣,𝑢, 𝑍 ∈ R𝑏×𝑏 . (10)
The overall ZAS transformation is

ZAS(𝑋swap) = P−1 (T (P(𝑋swap))
)
, 𝑋̃ =

[
𝑋id, ZAS(𝑋swap)

]
. (11)

Theoretical Properties
Proposition 3 (Self-inversion).

ZAS(ZAS(𝑋swap)) = 𝑋swap.

This property guarantees that ZAS is a complete and reversible mapping, which ensures feature con-
sistency and stable gradient propagation even when ZAS is repeatedly applied in deep networks.
Proposition 4 (Energy preservation and 1-Lipschitz). Because both P and T are pure permutations,

∥ZAS(𝑋swap)∥2 = ∥𝑋swap∥2, Lip(ZAS) = 1.

The output norm exactly matches the input norm, preventing signal amplification or attenuation and
improving training stability.

Complexity. ZAS introduces no learnable parameters and no multiply–accumulate operations, re-
sulting in theoretical FLOPs of 0 and parameter count of 0. Its runtime cost is dominated by indexing,
with time complexity

𝑂 (𝐵 · 𝑘 · 𝑇 · 𝐻 ·𝑊).
The detailed description of the ZAS module is provided in the Appendix E.

3.3 ADAPTIVE SPATIAL FILTER
The feature representations learned from video for rPPG are inherently subject to the challenge of
spatial heterogeneity. The target physiological signal exhibits a high signal-to-noise ratio (SNR)
only in specific facial regions (e.g., the forehead and cheeks), while other areas are dominated by
irrelevant nuisance variations, such as non-rigid deformations from facial expressions and specular
reflections under changing illumination. In this context, a naive aggregation operator like Global
Average Pooling (GAP), which imposes a uniform prior over all spatial locations, is suboptimal and
inevitably produces corrupted temporal features where signal-bearing patterns are contaminated by
these nuisance variations.
To address this challenge, we introduce a learnable, dynamic spatial filtering mechanism called the
Adaptive Spatial Filter (ASF), which adaptively aggregates information from the high-dimensional
feature map and further enriches the representation by explicitly encoding temporal dynamics. Given
spatio-temporal features 𝑍 ∈ R𝐵×𝐶

′×𝑇×𝐻×𝑊 from the visual encoder, ASF first estimates an unnor-
malized spatial logit map 𝑀 ′

𝑡 ∈ R𝐵×1×𝐻×𝑊 for each frame 𝑡 via a lightweight convolutional network
𝑓𝑐𝑜𝑛𝑣:

𝑀 ′
𝑡 = 𝑓𝑐𝑜𝑛𝑣 (𝑍:,:,𝑡 ). (12)
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The logits are converted into a normalized attention mask 𝑀𝑡 through a spatial Softmax:

vec(𝑀𝑡 ) = softmax
(
vec(𝑀 ′

𝑡 )
)
, (13)

where vec(·) flattens the spatial dimensions (𝐻,𝑊). This mask assigns higher weights to signal-rich
regions and lower weights to noisy ones. The weighted feature for each frame is then obtained by

𝑍̂𝑡 = 𝑍:,:,𝑡 ⊙ 𝑀𝑡 , (14)

where ⊙ denotes element-wise multiplication with broadcasting. Aggregating over the spatial di-
mensions yields a robust 1D feature vector

z𝑡 =
∑
ℎ,𝑤

𝑍̂𝑡 ,:,ℎ,𝑤 . (15)

To explicitly capture the local temporal dynamics of the rPPG signal, ASF further computes the
first-order temporal derivative of the aggregated sequence:

v𝑡 = z𝑡 − z𝑡−1, 𝑡 = 2, . . . , 𝑇, (16)

where v𝑡 represents the instantaneous “velocity’’ of the latent pulse representation. The final ASF
output is formed by channel-wise concatenation of the static aggregated feature and its temporal
derivative,

z′𝑡 = [ z𝑡 , v𝑡 ], (17)
which preserves both the spatially purified intensity and the short-term temporal variation of the
underlying blood volume pulse.
From a representation learning perspective, ASF acts as a disentangling mechanism. It collapses
the noisy spatial dimensions while simultaneously encoding instantaneous temporal changes, yield-
ing a low-dimensional but high-fidelity sequence that serves as an ideal input for the downstream
physics-informed temporal model. By providing both clean spatial aggregation and explicit motion-
aware dynamics, ASF enables the physical model to focus on fitting the intrinsic hemodynamic pat-
terns rather than combating confounding visual noise, thereby improving accuracy and generaliza-
tion.

3.4 TRAINING OBJECTIVE
The primary training objective Lpred for the proposed PHASE-Net is to maximize the morphological
similarity between the predicted rPPG waveform ŷ ∈ R𝑇 and the ground truth signal y ∈ R𝑇 . We
employ a Negative Pearson Correlation loss, which directly optimizes this objective and is a strong
standard for physiological signal regression:

Lpred = −
∑𝑇
𝑡=1 ( 𝑦̂𝑡 − ¯̂y)(𝑦𝑡 − ȳ)√∑𝑇

𝑡=1 ( 𝑦̂𝑡 − ¯̂y)2 ∑𝑇
𝑡=1 (𝑦𝑡 − ȳ)2

, (18)

where ¯̂y and ȳ denote the mean values of the predicted and ground truth signals, respectively.

4 EXPERIMENTS
We evaluate on UBFC-rPPG (Bobbia et al., 2017), PURE (Stricker et al., 2014), BUAA-
MIHR/BUAA (Xi et al., 2020), and MMPD (Tang et al., 2023) under standard intra-dataset and
cross-dataset protocols. Dataset descriptions and implementation details are in Appendix A and B.

4.1 INTRA-DATASET EVALUATION
We first evaluate PHASE-Net on the standard intra-dataset benchmark, where the model is trained
and tested on splits from the same dataset to measure predictive power under consistent conditions.
The detailed results are presented in Table 1. Across all four benchmarks, PHASE-Net delivers the
lowest or near-lowest errors and the highest correlations. On UBFC-rPPG, our method achieves an
MAE of 0.15 bpm and RMSE of 0.53 bpm with 𝑅 = 0.99, surpassing the previous best MAE of 0.16
bpm by LST-rPPG and demonstrating excellent waveform fidelity. On PURE, PHASE-Net attains a
remarkable 0.14 bpm MAE and 0.35 bpm RMSE while maintaining 𝑅 = 0.99, cutting the MAE by
roughly half compared with strong recent baselines such as RhythmFormer (0.27 bpm) or PhysDiff
(0.29 bpm). Even on the more challenging BUAA dataset, which features significant illumination
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changes and device diversity, our model achieves 5.89 bpm MAE and 7.89 bpm RMSE with a pos-
itive correlation of 0.48; competing deep models such as PhysFormer suffer negative correlations
and considerably higher errors. On MMPD, which introduces diverse sensors and colored lighting,
PHASE-Net reaches 4.78 bpm MAE and 8.22 bpm RMSE with 𝑅 = 0.71, again outperforming
all baselines and preserving temporal structure despite domain complexity. These results highlight
that PHASE-Net delivers low errors across both controlled (UBFC, PURE) and complex (BUAA,
MMPD) settings, with high correlations ensuring faithful waveform recovery for downstream anal-
ysis. Its physics-driven causal convolution, adaptive spatial filter, and parameter-free ZAS module
together enable these gains with only 0.29 M parameters, achieving strong accuracy, robustness, and
efficiency.
Additional qualitative examples of predicted versus ground-truth rPPG signals are provided in Ap-
pendix G, where the waveform and PSD plots further illustrate the fidelity of PHASE-Net’s predic-
tions .
Table 1: Intra-dataset evaluation on UBFC-rPPG, PURE, BUAA and MMPD datasets. Best results are in bold.

Method UBFC-rPPG PURE BUAA MMPD

MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑

Green (Verkruysse et al., 2008) 19.73 31.00 0.37 10.09 23.85 0.34 6.89 10.39 0.60 21.68 27.69 -0.01
ICA (Poh et al., 2010) 16.00 25.65 0.44 4.77 16.07 0.72 - - - 18.60 24.30 0.01

CHROM (De Haan & Jeanne, 2013) 4.06 8.83 0.89 5.77 14.93 0.81 - - - 13.66 18.76 0.08
POS (Wang et al., 2016) 4.08 7.72 0.92 3.67 11.82 0.88 - - - 12.36 17.71 0.18
PhysNet (Yu et al., 2019) 2.95 3.67 0.97 2.10 2.60 0.99 10.89 11.70 -0.04 4.80 11.80 0.60

Meta-rPPG (Lee et al., 2020) 5.97 7.42 0.57 2.52 4.63 0.98 - - - - - -
PhysFormer (Yu et al., 2022) 0.92 2.46 0.99 1.10 1.75 0.99 8.45 10.17 -0.06 11.99 18.41 0.18
EfficientPhys (Liu et al., 2023) 1.41 1.81 0.99 4.75 9.39 0.99 16.09 16.80 0.14 13.47 21.32 0.21

Contrast-Phys+ (Sun & Li, 2024) 0.21 0.80 0.99 0.48 0.98 0.99 - - - - - -
DiffPhys (Chen et al., 2024) 1.05 1.63 0.99 1.46 5.88 0.90 - - - - - -

RhythmFormer (Zou et al., 2025) 0.50 0.78 0.99 0.27 0.47 0.99 9.19 11.93 -0.10 4.69 11.31 0.60
STFPNet (Li et al., 2025b) 0.41 0.95 0.99 0.47 0.67 0.99 - - - - - -
Style-rPPG (Liu et al., 2025) 0.17 0.41 0.99 0.39 0.62 0.99 - - - - - -
LST-rPPG (Li et al., 2025a) 0.16 0.57 0.99 0.32 0.62 0.99 - - - - - -
PhysDiff (Qian et al., 2025) 0.33 0.57 0.99 0.29 0.54 0.99 - - - 7.17 9.63 0.78

PHASE-Net (Ours) 0.15 0.53 0.99 0.14 0.35 0.99 5.89 7.89 0.48 4.78 8.22 0.71

4.2 GENERALIZATION ABILITY EVALUATION
Multi-Domain Generalization. We evaluate PHASE-Net using the leave-one-out protocol, train-
ing on three datasets and testing on the remaining one to simulate deployment in unseen environments
and rigorously assess domain invariance.
As shown in Table 2, PHASE-Net achieves the best overall performance on all four transfer directions,
often by a large margin. When transferring to PURE, it records 2.86 bpmMAE and 9.66 bpm RMSE
with 𝑅 = 0.91, outperforming the next best deep model RhythmFormer (21.11/25.76) by over an
order of magnitude. For BUAA with severe illumination variation, it attains 2.56 bpm MAE and
3.25 bpm RMSE with 𝑅 = 0.96, whereas PhysFormer shows errors above 22 bpm and near-zero
correlation. Even in the more moderate UBFC and MMPD transfers, PHASE-Net remains superior:
10.04/15.56 bpm MAE/RMSE (𝑅 = 0.65) on UBFC and 10.33/16.20 bpm (𝑅 = 0.40) on MMPD,
outperforming both classical signal-processing baselines and recent deep networks.
These results confirm that PHASE-Net learns physics-aligned representations rather than dataset-
specific appearance cues, providing stable predictive power and strong cross-domain robustness even
when the target domain differs greatly from the training distributions. The combination of a causal
convolution derived from hemodynamic principles, an adaptive spatial filter that focuses on signal-
rich regions, and the parameter-free ZAS module collectively reinforces temporal consistency and
prevents overfitting to superficial domain artifacts.

Limited-Source Domain Generalization. We further evaluate a limited-source setting where the
model is trained on only two datasets and tested on a third unseen target domain, simulating de-
ployment with scarce and heterogeneous training data. Table 3 shows that PHASE-Net consistently

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Multi-domain generalization evaluation (Leave-One-Out Protocol). U=UBFC-rPPG, P=PURE,
B=BUAA-MIHR, M=MMPD. Best results are marked in bold.
Method Other→U Other→P Other→B Other→M

MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑

Green (Verkruysse et al., 2008) 19.73 31.00 0.37 10.09 23.85 0.34 6.89 10.39 0.60 21.68 27.69 -0.01
CHROM (De Haan & Jeanne, 2013) 7.23 8.92 0.51 9.79 12.76 0.37 6.09 8.29 0.51 13.66 18.76 0.08
POS (Wang et al., 2016) 7.35 8.04 0.49 9.82 13.44 0.34 5.04 7.12 0.63 12.36 17.71 0.18

EfficientPhys (Liu et al., 2023) 12.87 18.80 0.19 7.15 15.04 0.23 32.30 34.00 -0.03 12.87 18.80 0.19
PhysFormer (Yu et al., 2022) 10.29 18.13 0.60 19.75 24.30 0.24 22.09 26.21 0.03 13.90 19.30 0.06
PhysNet (Yu et al., 2019) 13.83 23.66 0.35 33.23 35.25 -0.15 12.75 16.37 0.08 13.37 16.64 0.29
RhythmFormer (Zou et al., 2025) 14.71 22.49 0.43 21.11 25.76 0.04 6.04 10.84 0.42 16.14 20.50 -0.11

PHASE-Net (Ours) 10.04 15.56 0.65 2.86 9.66 0.91 2.56 3.25 0.96 10.33 16.20 0.40

achieves the best or near-best results across all source–target pairs. When trained on PURE+UBFC
and tested on the challenging MMPD, our model reaches an MAE of 9.76 bpm and RMSE of 16.07
bpm (𝑅 = 0.39), outperforming RhythmFormer and other deep baselines. Training on PURE+BUAA
yields similar gains, with MAE/RMSE of 11.38/15.96 bpm, while generalization to the illumination-
sensitive BUAA dataset is especially strong: using PURE+UBFC as sources, PHASE-Net lowers
the MAE to 2.91 bpm and RMSE to 4.23 bpm with a correlation of 0.92, well ahead of all com-
petitors. These results confirm that by leveraging physics-grounded modeling, PHASE-Net captures
domain-invariant physiological dynamics rather than overfitting to superficial dataset biases.

Table 3: Results of limited-source domain generalization on MMPD (left) and BUAA-MIHR (right).
Train Model MAE RMSE R

PURE+BUAA

Green (Verkruysse et al., 2008) 21.68 27.69 -0.01
PhysNet (Yu et al., 2019) 13.2 16.7 0.23

PhysFormer (Yu et al., 2022) 13.9 18.6 0.21
EfficientPhys (Liu et al., 2023) 11.9 18.5 0.21

RhythmFormer (Zou et al., 2025) 13.98 19.46 0.12
PHASE-Net (Ours) 11.38 15.96 0.30

PURE+UBFC

Green (Verkruysse et al., 2008) 21.68 27.69 -0.01
PhysNet (Yu et al., 2019) 11.0 17.3 0.28

PhysFormer (Yu et al., 2022) 11.4 17.5 0.23
EfficientPhys (Liu et al., 2023) 11.8 18.9 0.22

RhythmFormer (Zou et al., 2025) 10.50 16.72 0.28
PHASE-Net (Ours) 9.76 16.07 0.39

BUAA+UBFC

Green (Verkruysse et al., 2008) 21.68 27.69 -0.01
PhysNet (Yu et al., 2019) 13.5 17.0 0.09

PhysFormer (Yu et al., 2022) 13.2 16.5 0.12
EfficientPhys (Liu et al., 2023) 15.5 20.8 0.03

RhythmFormer (Zou et al., 2025) 12.57 17.45 0.15
PHASE-Net (Ours) 11.84 17.47 0.15

Train Model MAE RMSE R

PURE+MMPD

Green (Verkruysse et al., 2008) 6.89 10.39 0.60
PhysNet (Yu et al., 2019) 20.97 24.75 0.01

PhysFormer (Yu et al., 2022) 14.86 18.26 0.03
EfficientPhys (Liu et al., 2023) 4.15 7.14 0.77

RhythmFormer (Zou et al., 2025) 4.32 6.70 0.82
PHASE-Net (Ours) 4.03 6.21 0.85

MMPD+UBFC

Green (Verkruysse et al., 2008) 6.89 10.39 0.60
PhysNet (Yu et al., 2019) 11.40 16.72 0.14

PhysFormer (Yu et al., 2022) 10.87 16.20 0.08
EfficientPhys (Liu et al., 2023) 3.00 5.18 0.89

RhythmFormer (Zou et al., 2025) 6.20 11.23 0.49
PHASE-Net (Ours) 3.51 5.18 0.89

PURE+UBFC

Green (Verkruysse et al., 2008) 6.89 10.39 0.60
PhysNet (Yu et al., 2019) 15.34 21.48 -0.29

PhysFormer (Yu et al., 2022) 18.23 22.17 0.07
EfficientPhys (Liu et al., 2023) 4.60 8.06 0.72

RhythmFormer (Zou et al., 2025) 3.90 6.51 0.82
PHASE-Net (Ours) 2.91 4.23 0.92

Efficiency Analysis. We compare both parameter counts and multiply–accumulate opera-
tions (MACs) in Table 4. Under a 128×128 spatial resolution and 𝑇=128 frames per clip,

Table 4: Efficiency analysis.

Method Param. (M) MACs (G)
TS-CAN 7.50 96.0
PhysNet 0.77 56.1
DeepPhys 7.50 96.0
EfficientPhys 7.40 45.6
PhysFormer 7.38 40.5
RhythmFormer 4.21 28.8
Contrast-Phys+ 0.85 145.7
PhysMamba 0.56 47.3
MDNet (Ours) 0.29 28.3

PHASE-Net requires only 0.29M parameters and 28.3G
MACs, notably lower than most prior arts while maintain-
ing state-of-the-art accuracy.This lightweight design en-
ables faster inference and easier deployment on edge de-
vices without sacrificing cross-domain robustness.

4.3 ABLATION STUDY
Study of Different Modules. Under the same training
and evaluation settings as the main results, we remove one
module at a time from PHASE-Net and report RMSE re-
sults on UBFC-rPPG and PURE datasets (see Fig. 2a).
The full model reaches 0.90 bpm onUBFC-rPPG and 0.14
bpm on PURE. On UBFC-rPPG, the largest degradation
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Figure 2: Comparison of different ablation studies.

appears when removing GTCN: 0.90→1.26 bpm; removing Attention is also detrimental, while re-
moving ZAS yields a smaller increase about 0.14 bpm. On PURE, Attention is the most critical:
0.14→0.36 bpm; ZAS and GTCN also help but with smaller margins.
Ablation studies reveal that all component removals degrade performance, highlighting their comple-
mentary roles. Attention is most critical in scenarios with strong local artifacts. The GTCN module
contributes significantly by capturing longer-range rhythmic stability, while the ZAS module pro-
vides low-cost early temporal alignment, yielding consistent gains. Our full model, by combining
these modules, achieves the lowest error across all evaluation scenarios.

Depth of the TCN backbone. We vary the number of TCN layers from 1 to 4 and evaluate on
UBFC-rPPG (Fig. 2b left). Performance consistently improves when increasing the depth from 1
to 3 layers: MAE drops from 0.51 to 0.15 bpm (70.6% relative reduction) and RMSE from 1.21 to
0.53 bpm (56.2%). Adding a fourth layer slightly degrades the accuracy (MAE/RMSE = 0.25/0.69).
We hypothesize that three layers provide a sufficient temporal receptive field for pulse dynamics,
while deeper stacks start to over-smooth and complicate optimization. Therefore, we set the default
depth to 3.
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Figure 3: Ablation over ZAS block sizes 𝑏.

Effect of the loss weight 𝜆. We sweep 𝜆 ∈
{0.01, 0.1, 0.5, 1} to balance training objectives (Fig. 2b
right). A clear U-shaped trend is observed: 𝜆 = 0.1
achieves the best trade-off with MAE/RMSE = 0.15/0.53
bpm. Compared to 𝜆 = 0.01, this setting reduces MAE
by 53.1% and RMSE by 43.0%. Increasing 𝜆 beyond 0.1
over-regularizes the model (e.g., 𝜆 = 1: 0.43/1.27), while
a too small weight under-utilizes the auxiliary objective
(0.32/0.93 at 𝜆 = 0.01). Unless stated otherwise, we use
𝜆 = 0.1 in all experiments.
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Figure 4: Ablation over ZAS channel
groups 𝑝𝑐 .

ZAS Ablation. We further investigate the influence of
ZAS hyper-parameters by varying both the spatial block
size 𝑏 and the number of swapped channel groups 𝑝𝑐.
As shown in Fig. 3 and Fig. 4, performance consistently
peaks at 𝑏 = 2 and 𝑝𝑐 = 2. A fine-grained 2×2 spa-
tial permutation provides sufficient cross-region mixing
while preserving local structures, and amoderate channel-
group swap delivers the strongest cross-domain robust-
ness. These results confirm that ZAS enhances gener-
alization primarily through balanced spatial interaction
rather than aggressive reordering.

5 CONCLUSION
In this paper, we introduced PHASE-Net, a physics-grounded rPPG model that embodies a damped
harmonic oscillator through a causal (finite) convolution. The design couples an adaptive spatial
filter and a Zero-FLOPs Axial Swapper (ZAS) with a compact GTCN. Experiments demonstrate a
strong balance of accuracy, cross-domain robustness, and efficiency. We hope this work encour-
ages moving from heuristic stacking toward principled, task-specific inductive biases for modeling
physiological signals from video. Building on this foundation, future work can explore extending
the physics-based formulation to multi-task physiological sensing, such as respiration or blood pres-
sure. Moreover, the modular nature of PHASE-Net makes it readily adaptable to other video-based
biomedical applications where interpretability and domain generalization are critical.
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UBFC-rPPG Bobbia et al. (2017) contains 42 RGB facial videos from 42 distinct subjects. Each
video is captured at 640×480 pixel resolution and 30 frames per second (fps). Recordings take
place under varied lighting conditions, including natural sunlight and indoor artificial illumination.
Ground-truth physiological signals are recorded via a CMS50E pulse oximeter at 60 Hz, ensuring
precise temporal alignment for evaluation.
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oximeter sampling at 60 Hz. PURE is particularly valuable for evaluating rPPG performance during
facial movements.
BUAA Xi et al. (2020) is designed to assess algorithmic robustness across varying illumination
intensities. The dataset features video sequences recorded under a range of controlled lighting con-
ditions, from low-light (below 10 lux) to normal brightness. In our experiments, we only utilize
videos captured under illumination levels ≥10 lux, as extremely dim lighting introduces significant
image degradation requiring specialized enhancement techniques beyond this study’s scope.
MMPDTang et al. (2023) comprises 660 videos, each lasting oneminute, collected from 33 subjects
with diverse skin tones and gender distributions. Each video is recorded at 30 fps with a resolution
of 320×240 pixels, under four distinct lighting conditions (bright, warm, dim, and colored lighting).
Subjects perform various daily activities, introducing intra-subject variability and further increasing
dataset complexity.

B IMPLEMENTATION DETAILS
Our PHASE-Net is implemented using PyTorch. The input to the network is a sequence of 128
frames, resized to 128 × 128. We trained the model for 15 epochs using the Adam optimizer with a
learning rate of 10−4 and a batch size of 4. The loss function hyperparameter was set to 𝜆 = 0.1. All
experiments were conducted on a single NVIDIA H100 GPU.

C DETAILED DERIVATION OF THE PHYSICS-INFORMED TEMPORAL MODEL
This appendix provides the detailed mathematical derivations for the physics-informed temporal
model, as summarized in Section 3.1.

C.1 DERIVATION OF THE DAMPED WAVE EQUATION (PDE)
Our goal is to derive a single equation for the pressure pulsation 𝑝′ from the 1D linearized equations
for momentum and continuity:

𝜌
𝜕𝑢′

𝜕𝑡
+ 𝑘𝑢′ = −𝜕𝑝

′

𝜕𝑥
(19)

𝜕𝑄′

𝜕𝑥
= −𝐶 𝜕𝑝

′

𝜕𝑡
(20)

where 𝑄′ = 𝐴𝑢′ is the flow rate, and 𝐴 is the cross-sectional area of the vessel. The derivation
proceeds in the following steps:
1. We take the partial derivative of the momentum equation (Eq. 19) with respect to the spatial

variable 𝑥:
𝜕

𝜕𝑥

(
𝜌
𝜕𝑢′

𝜕𝑡
+ 𝑘𝑢′

)
=
𝜕

𝜕𝑥

(
−𝜕𝑝

′

𝜕𝑥

)
Assuming fluid properties 𝜌, 𝑘 are locally uniform and swapping the order of differentiation, we
get:

𝜌
𝜕

𝜕𝑡

(
𝜕𝑢′

𝜕𝑥

)
+ 𝑘

(
𝜕𝑢′

𝜕𝑥

)
= −𝜕

2𝑝′

𝜕𝑥2 (21)

2. We relate the velocity gradient 𝜕𝑢′𝜕𝑥 to the flow rate gradient 𝜕𝑄
′

𝜕𝑥 . Since𝑄′ = 𝐴𝑢′, under the small
pulsation assumption, the area 𝐴 can be approximated by its mean value 𝐴̄, so 𝑄′ ≈ 𝐴̄𝑢′. Taking
the spatial derivative yields:

𝜕𝑢′

𝜕𝑥
≈ 1
𝐴̄

𝜕𝑄′

𝜕𝑥
(22)

3. We substitute Eq. 22 into Eq. 21 to replace the velocity gradient with the flow rate gradient:

𝜌
𝜕

𝜕𝑡

(
1
𝐴̄

𝜕𝑄′

𝜕𝑥

)
+ 𝑘

𝐴̄

(
𝜕𝑄′

𝜕𝑥

)
= −𝜕

2𝑝′

𝜕𝑥2

4. Finally, we use the continuity equation (Eq. 20) to replace the flow rate gradient term 𝜕𝑄′

𝜕𝑥 with
the pressure term −𝐶 𝜕𝑝′

𝜕𝑡 :

𝜌

𝐴̄

𝜕

𝜕𝑡

(
−𝐶 𝜕𝑝

′

𝜕𝑡

)
+ 𝑘

𝐴̄

(
−𝐶 𝜕𝑝

′

𝜕𝑡

)
= −𝜕

2𝑝′

𝜕𝑥2

12
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Rearranging the terms, we obtain:

𝜌𝐶

𝐴̄

𝜕2𝑝′

𝜕𝑡2
+ 𝑘𝐶

𝐴̄

𝜕𝑝′

𝜕𝑡
=
𝜕2𝑝′

𝜕𝑥2

5. By defining new physical constants for wave speed squared (𝑐2 := 𝐴̄
𝜌𝐶 ) and a damping-related

coefficient, we arrive at the final Damped Wave Equation presented in the main text:

𝜕2𝑝′

𝜕𝑡2
+ 𝛼𝜕𝑝

′

𝜕𝑡
= 𝑐2 𝜕

2𝑝′

𝜕𝑥2 (23)

C.2 DISCRETIZATION AND STATE-SPACE FORMULATION
We start with the second-order ODE for the damped harmonic oscillator:

𝑑2𝑧(𝑡)
𝑑𝑡2

+ 𝛼 𝑑𝑧(𝑡)
𝑑𝑡

+ 𝜔2𝑧(𝑡) = 𝑢(𝑡) (24)

First, we convert this into a system of two first-order ODEs by defining the state vector x(𝑡) =
[𝑧(𝑡), 𝑣(𝑡)]𝑇 , where 𝑣(𝑡) = 𝑑𝑧 (𝑡 )

𝑑𝑡 is the velocity.

𝑑𝑧(𝑡)
𝑑𝑡

= 𝑣(𝑡)

𝑑𝑣(𝑡)
𝑑𝑡

= −𝛼𝑣(𝑡) − 𝜔2𝑧(𝑡) + 𝑢(𝑡)

We discretize this system using a semi-implicit Euler method with a time step Δ𝑡. Let 𝑧𝑡 ≈ 𝑧(𝑡Δ𝑡)
and 𝑎𝑡 ≈ 𝑢(𝑡Δ𝑡). The update rules are:

𝑣𝑡 = 𝑣𝑡−1 + Δ𝑡 · (−𝛼𝑣𝑡 − 𝜔2𝑧𝑡−1 + 𝑎𝑡 ) (25)
𝑧𝑡 = 𝑧𝑡−1 + Δ𝑡 · 𝑣𝑡 (26)

We first solve for 𝑣𝑡 from Eq. 25:

(1 + 𝛼Δ𝑡)𝑣𝑡 = 𝑣𝑡−1 − 𝜔2Δ𝑡𝑧𝑡−1 + Δ𝑡𝑎𝑡

𝑣𝑡 =
1

1 + 𝛼Δ𝑡 𝑣𝑡−1 −
𝜔2Δ𝑡

1 + 𝛼Δ𝑡 𝑧𝑡−1 +
Δ𝑡

1 + 𝛼Δ𝑡 𝑎𝑡

Substituting this into Eq. 26 gives the update for 𝑧𝑡 :

𝑧𝑡 = 𝑧𝑡−1 + Δ𝑡

(
1

1 + 𝛼Δ𝑡 𝑣𝑡−1 −
𝜔2Δ𝑡

1 + 𝛼Δ𝑡 𝑧𝑡−1 +
Δ𝑡

1 + 𝛼Δ𝑡 𝑎𝑡
)

𝑧𝑡 =

(
1 − 𝜔2Δ𝑡2

1 + 𝛼Δ𝑡

)
𝑧𝑡−1 +

Δ𝑡
1 + 𝛼Δ𝑡 𝑣𝑡−1 +

Δ𝑡2

1 + 𝛼Δ𝑡 𝑎𝑡

We can now write these two update rules in the standard LTI State-Space Model form x𝑡 = Ax𝑡−1 +
B𝑎𝑡 , where x𝑡 = [𝑧𝑡 , 𝑣𝑡 ]𝑇 :

x𝑡 =


1 − 𝜔2Δ𝑡2

1 + 𝛼Δ𝑡
Δ𝑡

1 + 𝛼Δ𝑡

− 𝜔2Δ𝑡
1 + 𝛼Δ𝑡

1
1 + 𝛼Δ𝑡

︸                           ︷︷                           ︸
A

x𝑡−1 +


Δ𝑡2

1 + 𝛼Δ𝑡
Δ𝑡

1 + 𝛼Δ𝑡

︸       ︷︷       ︸
B

𝑎𝑡 (27)

The output equation is simply 𝑧𝑡 = Cx𝑡 , with C = [1 0].

C.3 PROOFS OF PROPOSITIONS
Proposition 5 (Equivalence to Causal Convolution). The solution 𝑧𝑡 of the LTI system x𝑡 = Ax𝑡−1 +
B𝑎𝑡 , 𝑧𝑡 = Cx𝑡 can be expressed as a causal convolution of all past inputs.
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Proof. By unrolling the state-space recurrence relation, we get:
x𝑡 = Ax𝑡−1 + B𝑎𝑡

= A(Ax𝑡−2 + B𝑎𝑡−1) + B𝑎𝑡
= A2x𝑡−2 + AB𝑎𝑡−1 + B𝑎𝑡
= . . .

= A𝑡x0 +
𝑡−1∑
𝑚=0

A𝑚B𝑎𝑡−𝑚

Assuming zero initial conditions (x0 = 0), the state is solely determined by the history of inputs:

x𝑡 =
𝑡−1∑
𝑚=0

A𝑚B𝑎𝑡−𝑚

Applying the output equation 𝑧𝑡 = Cx𝑡 :

𝑧𝑡 = C
𝑡−1∑
𝑚=0

A𝑚B𝑎𝑡−𝑚 =
𝑡−1∑
𝑚=0

(CA𝑚B)𝑎𝑡−𝑚

We can extend the sum to infinity by defining the kernel 𝑔[𝑚] = CA𝑚B for 𝑚 ≥ 0 and assuming a
causal system where 𝑎𝑘 = 0 for 𝑘 < 0. This gives the convolution form:

𝑧𝑡 =
∞∑
𝑚=0

𝑔[𝑚]𝑎𝑡−𝑚

For a damped system, the spectral radius 𝜌(A) < 1, ensuring the IIR filter is stable. □

Proposition 6 (FIR Approximation). The IIR convolution can be approximated with arbitrary pre-
cision 𝜀 by a Finite Impulse Response (FIR) filter of sufficient length 𝑅.

Proof. The error introduced by truncating the infinite sum (the IIR filter kernel 𝑔[𝑚]) at length 𝑅−1
is the tail of the sum:

𝑒𝑡 =

����� ∞∑
𝑚=0

𝑔[𝑚]𝑎𝑡−𝑚 −
𝑅−1∑
𝑚=0

𝑔[𝑚]𝑎𝑡−𝑚

����� =
����� ∞∑
𝑚=𝑅

𝑔[𝑚]𝑎𝑡−𝑚

�����
Let the input be bounded, ∥𝑎𝑡 ∥∞ ≤ 𝑀𝑖𝑛, and the matrix norms be bounded such that ∥A𝑚∥ ≤ 𝐾𝜌𝑚
for some constants 𝐾 > 0 and 0 < 𝜌 < 1 (guaranteed for a stable system). We can bound the error:

∥𝑒𝑡 ∥∞ ≤
∞∑
𝑚=𝑅

∥C∥∥A𝑚∥∥B∥∥𝑎𝑡−𝑚∥∞

≤
∞∑
𝑚=𝑅

∥C∥(𝐾𝜌𝑚)∥B∥𝑀𝑖𝑛

= 𝐾𝑀𝑖𝑛∥C∥∥B∥
∞∑
𝑚=𝑅

𝜌𝑚

The last term is a geometric series, which sums to 𝜌𝑅

1−𝜌 . Therefore:

∥𝑒𝑡 ∥∞ ≤ 𝐾𝑀𝑖𝑛∥C∥∥B∥ 𝜌𝑅

1 − 𝜌
To ensure the error is less than a desired precision 𝜀, we require:

𝐾𝑀𝑖𝑛∥C∥∥B∥ 𝜌𝑅

1 − 𝜌 ≤ 𝜀

Solving for 𝑅 gives the required receptive field length (filter size):

𝑅 ≥
log

(
𝐾𝑀𝑖𝑛 ∥C∥ ∥B∥

𝜀 (1−𝜌)

)
log(1/𝜌)
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This shows that a finite kernel length 𝑅 is sufficient to approximate the true physical dynamics to any
desired precision. □

D GENERALIZATION THEORY OF PHASE-NET
Problem Setup. Consider the stable linear time–invariant (LTI) system derived from the physics
model:

x𝑡 = Ax𝑡−1 + B𝑎𝑡 , 𝑧𝑡 = Cx𝑡 =
∞∑
𝑚=0

𝑔[𝑚] 𝑎𝑡−𝑚, 𝑔[𝑚] = CA𝑚B.

In the network implementation we use a finite–length causal convolution. Let the temporal window
length be 𝑅, define the input vector

𝜙𝑡 = (𝑎𝑡 , 𝑎𝑡−1, . . . , 𝑎𝑡−𝑅+1) ∈ R𝑅,

and the truncated FIR coefficient vector

𝑤 = (𝑔[0], 𝑔[1], . . . , 𝑔[𝑅 − 1]).
The predictor can be written as

𝑓 (𝜙𝑡 ) = ⟨𝑤, 𝜙𝑡 ⟩.

Physical Facts. Fact 1 (Stability). Causality and spectral normalization guarantee 𝜌(A) < 1.
Hence there exist constants 𝐾 > 0 and 0 < 𝜌 < 1 such that

∥A𝑚∥ ≤ 𝐾𝜌𝑚, ∀𝑚 ≥ 0.

Fact 2 (Magnitude and Norm Bounds). The input amplitude is bounded by 𝑀in. Weight regular-
ization ensures ∥B∥ ≤ 𝐵0 and ∥C∥ ≤ 𝐶0. Therefore the ℓ1 norm of the convolution kernel satisfies

∥𝑤∥1 =
𝑅−1∑
𝑚=0

|𝑔[𝑚] | ≤
∞∑
𝑚=0

𝐶0𝐾𝐵0𝜌
𝑚 =

𝑈

1 − 𝜌 , 𝑈 ≜ 𝐶0𝐾𝐵0.

Fact 3 (FIR Truncation Error). Because |𝑔[𝑚] | ≤ 𝑈𝜌𝑚,
∞∑
𝑚=𝑅

|𝑔[𝑚] | ≤ 𝑈𝜌𝑅

1 − 𝜌 .

Since ∥𝑎𝑡 ∥∞ ≤ 𝑀in, the difference between the infinite IIR output and the length–𝑅 FIR output
satisfies

|𝑧𝑡 − 𝑧 (𝑅)𝑡 | ≤ 𝑈

1 − 𝜌 𝑀in𝜌
𝑅 ≜ Γ𝜌𝑅 .

This term can be made arbitrarily small by increasing 𝑅.

Rademacher Complexity. Consider samples {𝜙𝑖}𝑛𝑖=1 with ∥𝜙𝑖 ∥∞ ≤ 𝑀in. The empirical
Rademacher complexity is

ℜ̂𝑛 = E𝜎
[

sup
∥𝑤 ∥1≤𝐿

1
𝑛

𝑛∑
𝑖=1

𝜎𝑖 ⟨𝑤, 𝜙𝑖⟩
]
,

where 𝜎𝑖 are independent Rademacher variables and 𝐿 = 𝑈/(1 − 𝜌).
Step 1 (Dual Norm Representation). By ℓ1–ℓ∞ duality,

ℜ̂𝑛 =
𝐿

𝑛
E𝜎




 𝑛∑
𝑖=1

𝜎𝑖𝜙𝑖





∞
.

Step 2 (Bounding the Maximal Coordinate). For any coordinate 𝑗 ≤ 𝑅, the random variable∑𝑛
𝑖=1 𝜎𝑖𝜙𝑖, 𝑗 has magnitude at most 𝑛𝑀in. Khintchine–Kahane inequality together with a union bound

yields

E𝜎 max
1≤ 𝑗≤𝑅

��� 𝑛∑
𝑖=1

𝜎𝑖𝜙𝑖, 𝑗

��� ≤ 𝑀in
√

2𝑛 log(2𝑅).
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Step 3 (Complexity Bound). Substituting the above into the dual form gives

ℜ̂𝑛 ≤ 𝐿𝑀in

√
2 log(2𝑅)

𝑛
.

Taking expectation shows that the true Rademacher complexity satisfies

ℜ𝑛 ≤
𝑈

1 − 𝜌 𝑀in

√
2 log(2𝑅)

𝑛
.

Source-Domain Generalization. Let the loss ℓ be 𝐿ℓ–Lipschitz and bounded in [0, 1]. By the
standard Rademacher generalization inequality, with probability at least 1 − 𝛿 over the random draw
of the training set,

Esrc ( 𝑓 ) ≤ Ê𝑛 ( 𝑓 ) + 2𝐿ℓℜ𝑛 + 3
√

log(2/𝛿)
2𝑛

+𝑂 (𝜌𝑅).

Plugging in the bound on ℜ𝑛 gives

Esrc ( 𝑓 ) ≤ Ê𝑛 ( 𝑓 ) +𝑂
(√

log𝑅
𝑛

)
+𝑂 (𝜌𝑅).

Target-Domain Risk. Let Psrc and Ptgt denote the source and target distributions, and W1 their
1–Wasserstein distance. Since 𝑓 is 𝐿 𝑓 –Lipschitz with

𝐿 𝑓 ≤ ∥𝑤∥1 ≤ 𝑈

1 − 𝜌 ,

the discrepancy between source and target satisfies

Disc ≤ 𝐿ℓ𝐿 𝑓W1 (Psrc, Ptgt) ≤ 𝐿ℓ
𝑈

1 − 𝜌W1 (Psrc, Ptgt).

By the triangle inequality,
Etgt ( 𝑓 ) ≤ Esrc ( 𝑓 ) + Disc.

Combining with the source bound yields

Etgt ( 𝑓 ) ≤ Ê𝑛 ( 𝑓 ) +𝑂
(√

log𝑅
𝑛

)
+𝑂 (𝜌𝑅) + 𝐿ℓ

𝑈

1 − 𝜌W1 (Psrc, Ptgt).

Choice of 𝑅. To make the truncation error 𝑂 (𝜌𝑅) smaller than the statistical term, choose

𝑅 ≳
2 log 𝑛

log(1/𝜌) = Θ(log 𝑛).

With this choice, 𝜌𝑅 is negligible and the bound simplifies to

Etgt ( 𝑓 ) ≤ Ê𝑛 ( 𝑓 ) +𝑂
(√

log log 𝑛
𝑛

)
+ 𝐿ℓ

𝑈

1 − 𝜌W1 (Psrc, Ptgt).

Comparison with Unconstrained Models. For an unconstrained temporal model with hypothesis
class Fbase, one typically has

ℜ𝑛 (Fbase) = 𝑂
(√

𝐶
𝑛

)
,

where the capacity constant 𝐶 depends on depth, width, or spectral norm and is usually much
larger than log log 𝑛. Thus the physics–informed class enjoys a strictly smaller statistical term
𝑂 (

√
log log 𝑛/𝑛) under the same sample size 𝑛.

E DETAILED DESCRIPTION OF ZAS
The Zero-FLOPs Axial Swapper (ZAS) is a lightweight spatial mixing operator designed to enrich
long-range dependencies without adding computational burden. By selectively permuting a small
subset of feature channels through block-wise transposition, ZAS introduces cross-region interac-
tions that enhance the receptive field while keeping the temporal dimension untouched. Because
the operation is purely an index reordering, it adds no learnable parameters and incurs zero FLOPs,
making it ideal for efficiency-critical scenarios and stable gradient propagation.
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Algorithm 1 Zero-FLOPs Axial Swapper (ZAS)
Feature tensor 𝑋 ∈ R𝐵×𝐶×𝑇×𝐻×𝑊

Output tensor 𝑋̃ ∈ R𝐵×𝐶×𝑇×𝐻×𝑊

Step 1. Channel partition.
Split 𝑋 into two disjoint parts:

𝑋 =
[
𝑋id, 𝑋swap

]
,

where 𝑋id contains the first 𝐶 − 𝑘 channels and 𝑋swap contains the last 𝑘 = ⌊𝑝𝐶⌋ channels to be
permuted.
Step 2. Block partition.
Given a block size 𝑏, crop the core region 𝐻2 = ⌊𝐻/𝑏⌋ · 𝑏,𝑊2 = ⌊𝑊/𝑏⌋ · 𝑏, and reshape each spatial
slice of 𝑋swap

P : R𝐻2×𝑊2 → R
𝐻2
𝑏 ×𝑊2

𝑏 ×𝑏×𝑏

into a grid of non-overlapping 𝑏 × 𝑏 blocks.
Step 3. Block-wise transpose.
For each 𝑏 × 𝑏 block 𝑍 , apply the inner transpose

T (𝑍)𝑢,𝑣 = 𝑍𝑣,𝑢.
This operation is performed independently for every block and for all batches, channels, and time
frames.
Step 4. Reconstruction.
Recover the spatial layout by the inverse partition

ZAS(𝑋swap) = P−1 (T (P(𝑋swap))
)
.

Concatenate with the unchanged channels to obtain the output:

𝑋̃ =
[
𝑋id, ZAS(𝑋swap)

]
.

Remark.
ZAS performs only index reordering and introduces zero learnable parameters and zero FLOPs; its
Jacobian is a permutation matrix, ensuring gradient safety and perfect energy preservation.

F ROBUSTNESS TO LIGHTING VARIATIONS
To further evaluate cross-illumination robustness, we measure the mean absolute error (MAE,
bpm) of PHASE-Net, PhysNet, and RhythmFormer under four representative lighting set-
tings (Fig. 5). PHASE-Net consistently achieves the lowest error across all conditions—
4.15/3.80/2.70/4.31 bpm for LED-Low/High/Incandescent/Nature—substantially outperforming
RhythmFormer (5.85/4.46/3.64/5.65 bpm) and PhysNet (18.04/17.59/16.17/21.62 bpm). In partic-
ular, PHASE-Net maintains strong accuracy in the challenging Incandescent and Nature settings,
demonstrating superior generalization to complex illumination and outdoor reflectance. These results
confirm that PHASE-Net offers a tighter error bound and greater stability for real-world deployment
under diverse lighting conditions.

G VISUALIZATION OF THE PREDICTED AND GROUND-TRUTH BVP
We randomly select representative clip samples from the UBFC-rPPG Bobbia et al. (2017) and
PURE Stricker et al. (2014) datasets and visualize both the predicted rPPG waveforms and their cor-
responding power spectral density (PSD) curves in Fig. 6 and Fig. 7. These qualitative results provide
an intuitive view of model behavior: the predicted signals not only closely follow the ground-truth
BVP in amplitude and phase but also exhibit highly consistent dominant frequency peaks in the PSD
domain, indicating accurate heart-rate estimation. Across both controlled (PURE) and more uncon-
strained (UBFC) scenarios, PHASE-Net preserves the fine-grained temporal structure of the pulse
waveform and maintains sharp, well-aligned spectral peaks, further validating its ability to recover
clean physiological rhythms despite variations in illumination, motion, and sensor noise.
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Figure 5: MAE (bpm) of PHASE-Net, PhysNet, and RhythmFormer under four lighting conditions: LED-Low,
LED-High, Incandescent, and Nature. Lower is better.

Figure 6: Visual comparison of the rPPG signals (left) predicted by PHASE-Net and their corresponding PSDs
(right), alongside the respective ground-truth in PURE Stricker et al. (2014).

Figure 7: Visual comparison of the rPPG signals (left) predicted by PHASE-Net and their corresponding PSDs
(right), alongside the respective ground-truth in UBFC-rPPG Bobbia et al. (2017).
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