
Published as a conference paper at ICLR 2023

PATCHDCT: PATCH REFINEMENT FOR HIGH QUALITY
INSTANCE SEGMENTATION

Qinrou Wen1, Jirui Yang2, Xue Yang3, Kewei Liang1,∗
1School of Mathematical Sciences, Zhejiang University 2Alibaba Group
3Department of CSE, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
{qinrou.wen,matlkw}@zju.edu.cn, jirui.yjr@alibaba-inc.com
yangxue-2019-sjtu@sjtu.edu.cn
PyTorch Code: https://github.com/olivia-w12/PatchDCT

ABSTRACT

High-quality instance segmentation has shown emerging importance in computer
vision. Without any refinement, DCT-Mask directly generates high-resolution
masks by compressed vectors. To further refine masks obtained by compressed
vectors, we propose for the first time a compressed vector based multi-stage re-
finement framework. However, the vanilla combination does not bring significant
gains, because changes in some elements of the DCT vector will affect the pre-
diction of the entire mask. Thus, we propose a simple and novel method named
PatchDCT, which separates the mask decoded from a DCT vector into several
patches and refines each patch by the designed classifier and regressor. Specifi-
cally, the classifier is used to distinguish mixed patches from all patches, and to
correct previously mispredicted foreground and background patches. In contrast,
the regressor is used for DCT vector prediction of mixed patches, further refin-
ing the segmentation quality at boundary locations. Experiments on COCO show
that our method achieves 2.0%, 3.2%, 4.5% AP and 3.4%, 5.3%, 7.0% Boundary
AP improvements over Mask-RCNN on COCO, LVIS, and Cityscapes, respec-
tively. It also surpasses DCT-Mask by 0.7%, 1.1%, 1.3% AP and 0.9%, 1.7%,
4.2% Boundary AP on COCO, LVIS and Cityscapes. Besides, the performance of
PatchDCT is also competitive with other state-of-the-art methods.

1 INTRODUCTION

Instance segmentation (Li et al., 2017; He et al., 2017) is a fundamental but challenging task in
computer vision, which aims to locate objects in images and precisely segment each instance. The
mainstream instance segmentation methods follow Mask-RCNN (He et al., 2017) paradigm, which
often segment instances in a low-resolution grid (Kang et al., 2020; Cheng et al., 2020c; Chen
et al., 2019; Ke et al., 2021). However, limited by the coarse mask representation (i.e. 28 ×
28 in Mask-RCNN), most of these algorithms cannot obtain high-quality segmentation results due
to the loss of details. DCT-Mask (Shen et al., 2021) achieves considerable performance gain by
predicting an informative 300-dimensional Discrete Cosine Transform (DCT) (Ahmed et al., 1974)
vector compressed from a 128 × 128 mask. To further improve the segmentation results of DCT-
Mask, we follow the refine mechanism (Ke et al., 2022; Zhang et al., 2021; Kirillov et al., 2020) to
correct the mask details in a multi-stage manner.

A straightforward implementation is to refine the 300-dimensional DCT vector multiple times. How-
ever, experimental results show that this naive implementation does not succeed, which improves
mask average precision (mAP) by 0.1% from 36.5% to 36.6% on COCO val set. The main reason
for the limited improvement is that the full 300-dimensional DCT vector is not suitable for refining
some important local regions, such as wrong predicted regions and boundary regions in masks. As
each pixel value in the mask is calculated by all elements of the DCT vector in the inference stage,
once some elements in the DCT vector change, the entire mask will change, and even the correct
segmentation areas may be affected, refer to Figure 1a.

∗Corresponding author is Kewei Liang.

1

https://github.com/olivia-w12/PatchDCT

Published as a conference paper at ICLR 2023

(a) Influence of element change in DCT-Mask (b) Influence of element change in PatchDCT

Figure 1: (a) Influence of elements changes in DCT vectors for DCT-Mask. The blue block denotes
the changed elements. The box with a blue border represents the part of the mask affected by the
changes in element values. The change of some elements will affect the entire mask. (b) Influence
of elements changes in DCT vectors for PatchDCT. Changing some elements of a vector will only
affect the corresponding patch.

To overcome the above issue, we propose a novel method, called PatchDCT, which divides the mask
decoded from a DCT vector into several independent patches and refines each patch with a three-
class classifier and a regressor, respectively. In detail, each patch is first classified into one of three
categories: foreground, background, and mixed by the classifier, and then previously mispredicted
foreground and background patches will be corrected. Mixed patches are fed into the regressor to
predict their corresponding n-dimensional (n ≪ 300) DCT vectors. In the inference stage, we use
Inverse Discrete Cosine Transform (IDCT) to decode the predicted vectors of the mixed patches as
their refined masks, and merge them with the masks of other foreground and background patches
to obtain a high-resolution mask. It is also worth emphasizing that each patch is independent, so
the element change of a DCT vector will only affect the corresponding mixed patch, as shown
in Figure 1b. In general, patching allows the model to focus on the refinement of local regions,
thereby continuously improving the quality of segmentation, resulting in significant performance
improvements. Our main contributions are:

1) To our best knowledge, PatchDCT is the first compressed vector based multi-stage refinement
detector to predict high-quality masks.

2) PatchDCT innovatively adopts the patching technique, which successfully allows the model to
focus on the refinement of important local regions, fully exploiting the advantages of multi-stage
refinement and high-resolution information compression.

3) Compared to Mask RCNN, PatchDCT improves about 2.0% AP and 3.4% Boundary AP on
COCO, 3.2% AP and 5.3% Boundary AP on LVIS∗1, 4.5% AP and 7.0% Boundary AP on
Cityscapes. It also achieves 0.7% AP and 0.9% Boundary AP on COCO, 1.1% AP and 1.7% Bound-
ary AP on LVIS∗, 1.3% AP and 4.2% Boundary AP on Cityscapes over DCT-Mask.

4) Demonstrated by experiments on COCO test-dev, the performance of PatchDCT is also competi-
tive with other state-of-the-art methods.

2 RELATED WORK

Instance segmentation. Instance segmentation assigns a pixel-level mask to each instance of in-
terest. Mask-RCNN (He et al., 2017) generates bounding boxes for each instance with a powerful
detector (Ren et al., 2015) and categorizes each pixel in bounding boxes as foreground or back-
ground to obtain 28 × 28 binary grid masks. Several methods that build on Mask-RCNN improve
the quality of masks. Mask Scoring RCNN (Huang et al., 2019) learns to regress mask IoU to select
better-quality instance masks. HTC (Chen et al., 2019) utilizes interleaved execution, mask informa-
tion flow, and semantic feature fusion to improve Mask-RCNN. BMask RCNN (Cheng et al., 2020c)
adds a boundary branch on Mask-RCNN to detect the boundaries of masks. Bounding Shape Mask
R-CNN (Kang et al., 2020) improves performance on object detection and instance segmentation by
its bounding shape mask branch. BCNet (Ke et al., 2021) uses two GCN (Welling & Kipf, 2016) lay-
ers to detect overlapping instances. Although these algorithms have yielded promising results, they
are still restricted in the low-resolution mask representation and thus do not generate high-quality
masks.

1COCO dataset with LVIS annotations

2

Published as a conference paper at ICLR 2023

Figure 2: The pipeline of PatchDCT. The classifier differentiates foreground, background and mixed
patches. The regressor predicts the DCT vectors of mixed patches. Masks of mixed patches are
obtained by patch DCT vectors. PatchDCT combines masks of all patches to obtain an entire mask
of instance. The entire mask of instance output by PatchDCT can be fed into another PatchDCT
module for a finer mask. For the architecture of multi-stage PatchDCT: ‘F’ is the feature map
cropped from FPN-P2. ‘M’ is the high-resolution mask. ‘P’ is the PatchDCT module.

Towards high-quality instance segmentation. To take full advantage of high-resolution masks,
DCT-Mask (Shen et al., 2021) learns to regress a 300-dimensional DCT vector compressed from a
128 × 128 mask. SOLQ (Dong et al., 2021) is a query-based method, which also encodes high-
resolution masks into DCT vectors and predicts the vectors by queries. Both of these methods
generate high-resolution masks in a one-shot manner, without any refinement. Although they have
made considerable gains, there is still potential for improvement. Multi-stage refinement is another
common technique for obtaining high-quality masks. PointRend (Kirillov et al., 2020) adaptively
selects several locations to refine, rendering 224×224 masks from 7×7 coarse masks. RefineMask
(Zhang et al., 2021) introduces semantic segmentation masks as auxiliary inputs, and generates
112 × 112 masks in a multi-stage manner. Mask Transfiner (Ke et al., 2022) represents image
regions as a quadtree and corrects the errors of error-prone tree nodes to generate 112× 112 masks.
PBR (Tang et al., 2021) is a post-processing method that refines patches along the mask boundaries.
Unlike these refinement methods based on the binary grid mask representation, our method is based
on compressed vectors.

Generating high-quality masks is also one of the main concerns in the field of semantic segmen-
tation. CRFasRNN (Zheng et al., 2015) connects CRF (Krähenbühl & Koltun, 2011) with FCN
(Long et al., 2015), formulating mean-field approximate inference for the CRF with Gaussian pair-
wise potentials as Recurrent Neural Networks. DeepLab (Chen et al., 2017) effectively improves
the quality of masks by using atrous convolution for receptive field enhancement, ASPP for multi-
scale segmentation, and CRF for boundary refinement. SegModel (Shen et al., 2017) utilizes a
guidance CRF to improve the segmentation quality. CascadePSP (Cheng et al., 2020b) trains inde-
pendently a refinement module designed in a cascade fashion. RGR (Dias & Medeiros, 2018) is a
post-processing module based on region growing. In contrast, PatchDCT can obtain high-quality
segmentation results in an end-to-end learning manner without any additional post-processing.

3 METHODS

In this section, we show the difficulties in refining DCT vectors and then introduce PatchDCT to
overcome these difficulties and generate finer masks.

3.1 DIFFICULTIES IN REFINING DCT VECTORS

Given a K ×K mask, DCT-Mask (Shen et al., 2021) encodes the mask MK×K into the frequency
domain Mf

K×K :

Mf
K×K(u, v) =

2

K
C(u)C(v)

K−1∑
x=0

K−1∑
y=0

MK×K(x, y) cos
(2x+ 1)uπ

2K
cos

(2y + 1)vπ

2K
, (1)

3

Published as a conference paper at ICLR 2023

where C(w) = 1/
√
2 for w = 0 and C(w) = 1 otherwise. Non-zero values are concentrated in the

upper left corner of Mf
K×K , which are low-frequency elements that contain the most information of

the mask. The N -dimensional DCT vector is obtained by zigzag scanning (Al-Ani & Awad, 2013)
Mf

K×K and selecting the top-N elements.

In the inference stage, Mf
K×K is recovered by filling the remaining elements to zero. Then each

pixel in the mask MK×K is calculated as follow:

MK×K(x, y) =
2

K
C(x)C(y)

K−1∑
u=0

K−1∑
v=0

Mf
K×K(u, v) cos

(2x+ 1)uπ

2K
cos

(2y + 1)vπ

2K
, (2)

Equation 2 reveals that each pixel in the mask MK×K is calculated by all elements of Mf
K×K . When

refining the N -dimensional DCT vector, once an element is incorrectly changed, all pixels in MK×K

will be affected, even those correctly segmented regions, which is also shown in Figure 1. Therefore,
when fixing some specific error regions (e.g. borders), it is difficult to get the correct refinement
result unless all the elements in the DCT vector are correctly refined. In practice, however, it is
almost impossible to correctly predict all N elements.

3.2 PATCHDCT

To prevent the above issue when refining the global DCT vector, we propose a method named
PatchDCT, which divides the K ×K mask into m×m patches and refines each patch respectively.
The overall architecture of PatchDCT is shown in Figure 2, which mainly consists of a three-class
classifier and a DCT vector regressor. Specifically, the classifier is used to identify mixed patches and
refine foreground and background patches. Each mixed patch is then refined by an n-dimensional
DCT vector, which is obtained from the DCT vector regressor.

Table 1: Mask AP obtained by different
lengths of ground-truth DCT vectors using
Mask-RCNN framework on COCO val2017.
The 1×1 patch size represents the binary grid
mask representation. Low-dimensional DCT
vectors are able to provide enough ground
truth information.

Resolution Patch Size Dim. AP
112× 112 1× 1 1 57.6
112× 112 8× 8 3 55.8
112× 112 8× 8 6 57.1
112× 112 8× 8 9 57.5
112× 112 8× 8 12 57.5
112× 112 112× 112 200 55.8
112× 112 112× 112 300 56.4

Three-class classifier. We define the patches with
only foreground pixels and only background pixels
as foreground patches and background patches, re-
spectively, while the others are mixed patches. The
task of differentiating patch categories is accom-
plished by a fully convolutional three-class classi-
fier. Moreover, the mispredicted initial foreground
and background patches are corrected by the classi-
fier. We utilize a three-class classifier instead of a
DCT vector regressor to refine foreground and back-
ground patches because of the particular form of
their DCT vectors. For background patches, sim-
ply from Equation 1, all elements of DCT vectors
are zero. For foreground patches, all elements are
zero except for the first element named DC com-
ponent (DCC), which is equal to the patch size m.
The mathematical proof of the DCT vector form for
the foreground patches is shown in the Appendix.
DCT vector elements of foreground and background
patches are discrete data that are more suitable for classification. Referring to Figure 3, DCT vector
elements of mixed patches are continuously distributed and therefore more suitable for regression.

Regressor. Similar to the phenomenon described in DCT-Mask (Shen et al., 2021), refining high-
resolution masks with the binary grid mask representation introduces performance degradation due
to the high training complexity (refer to DCT-Mask (Shen et al., 2021) for more details). Learning
to regress informative DCT vectors eases the training process. The specific experimental results are
discussed in the experiments section (Sec. 4).

The regressor is trained and inferred for mixed patches only. It is actually a boundary attention
module, since the mixed patches are distributed exactly along the boundary of the instance mask.
For each mixed patch, the regressor predicts an n-dimensional DCT vector, which is very short but
highly informative. Table 1 shows mask AP obtained by different lengths of ground truth patch DCT

4

Published as a conference paper at ICLR 2023

(a) elements of fg patches (b) elements of bg patches (c) elements of mixed patches

Figure 3: Elements of 6-dimensional DCT vectors for foreground, background and mixed patches
on COCO val2017. DCT vector elements for foreground and background patches are discrete data.
DCT vector elements for mixed patches are continuous data.

vectors using Mask-RCNN framework on COCO val2017. The low-dimensional DCT vectors have
been able to provide sufficient ground truth information.

3.3 MULTI-STAGE REFINEMENT AND LOSS FUNCTION

PatchDCT is a module where the input and output masks have the same resolution. Thus, the mask
generated by a PatchDCT module can be fed into another PatchDCT module for further refinement,
as shown in the upper right corner of Figure 2.

With multi-stage refinement, the loss function of the mask branch is defined as

Lmask = λ0LdctN +
∑
s>0

λs(Ls
clspatch

+ Ls
dctn), (3)

λ0 and λs are the loss weights. The first item LdctN of Equation 3 is the loss in predicting N -
dimensional vectors of the entire masks (Shen et al., 2021).

LdctN =
1

N

N∑
i

R(V̂i − Vi), (4)

where Vi and V̂i are the i-th element in ground-truth and the prediction vector respectively. R is the
loss function and N is the length of the vectors. The classification loss Ls

clspatch
of s-th stage is the

cross-entropy loss over three classes. The regression loss Ls
dctn

of s-th stage is

Ls
dctn =

1

Nm

Nall∑
k

[
pk

(
1

n

n∑
i

R(V̂i − Vi)

)]
, (5)

where Nm, Nall are the number of mixed patches and all patches respectively. n is the length of the
patch DCT vectors. If the k-th patch is a mixed patch, pk = 1, otherwise pk = 0, indicating that
only DCT vectors of mixed patches are regressed.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method on two standard instance segmentation datasets: COCO (Lin et al., 2014)
and Cityscapes (Cordts et al., 2016). COCO provides 80 categories with instance-level annotations.
Cityscapes is a dataset focused on urban street scenes. It contains 8 categories for instance seg-
mentation, providing 2,975, 500 and 1,525 high-resolution images (1, 024 × 2, 048) for training,
validation, and test respectively.

We report the standard mask AP metric and the Boundary AP (Cheng et al., 2021) metric (APB),
the latter focusing on evaluating the boundary quality. Following (Kirillov et al., 2020), we also
report AP∗ and AP∗

B , which evaluate COCO val2017 with high-quality annotations provided by
LVIS (Gupta et al., 2019). Note that for AP∗ and AP∗

B , models are still trained on COCO train2017.

5

Published as a conference paper at ICLR 2023

Table 2: Mask AP on COCO with different backbones based on Mask-RCNN framework. AP∗ is
results obtained from COCO with LVIS annotations. APB is Boundary AP. AP∗

B is Boundary AP
using LVIS annotations. Models with R101-FPN and RX101-FPN are trained with ‘3×’ schedule.
Runtime is measured on a single A100. Considering the significant improvement of masks, the cost
in the runtime is almost negligible.

Backbone Model AP APS APM APL APB AP∗ AP∗
S AP∗

M AP∗
L AP∗

B FPS

R50-FPN
Mask-RCNN 35.2 17.2 37.7 50.3 21.1 37.6 21.3 43.7 55.1 24.8 13.9
DCT-Mask 36.5 17.7 38.6 51.9 23.6 39.7 23.5 46.5 58.5 28.4 13.2
PatchDCT 37.2 18.3 39.5 54.2 24.5 40.8 23.0 47.7 60.7 30.1 12.3

R101-FPN
Mask-RCNN 38.6 19.5 41.3 55.3 24.5 41.4 24.5 47.9 61.0 29.0 13.8
DCT-Mask 39.9 20.2 42.6 57.3 26.8 43.7 25.8 50.5 64.6 32.4 13.0
PatchDCT 40.5 20.8 43.3 57.7 27.6 44.4 27.0 51.5 65.3 33.8 11.8

RX101-FPN
Mask-RCNN 39.5 20.7 42.0 56.5 25.3 42.1 25.4 48.0 61.4 29.7 13.3
DCT-Mask 41.2 21.9 44.2 57.7 28.0 45.2 27.4 52.6 64.2 34.0 12.9
PatchDCT 41.8 22.5 44.6 58.7 28.6 46.1 27.8 53.0 66.1 35.4 11.7

Table 3: Results on Cityscapes val set. APB is Boundary AP. All models are based on R50-FPN
backbone. PatchDCT achieves the best performance.

Methods Resolution AP AP50 APB

Mask-RCNN (He et al., 2017) 28× 28 33.7 60.9 11.8
Panoptic-DeepLab (Cheng et al., 2020a) - 35.3 57.9 16.5
PointRender (Kirillov et al., 2020) 224× 224 35.9 61.8 16.7
DCT-Mask (Shen et al., 2021) 112× 112 36.9 62.9 14.6
RefineMask (Zhang et al., 2021) 112× 112 37.6 63.3 17.4
Mask Transfiner (Ke et al., 2022) 112× 112 37.9 64.1 18.0
PatchDCT (Ours) 112× 112 38.2 64.5 18.8

4.2 IMPLEMENT DETAILS

We build the model based on DCT-Mask (Shen et al., 2021). We first decode the 300-dimensional
DCT vector to obtain a 112 × 112 mask. This mask is then fed into PatchDCT, together with a
42 × 42 feature map cropped from FPN-P2 (Lin et al., 2017). PatchDCT refines each patch of the
mask and outputs a 112 × 112 mask. We set the patch size to 8 and each patch is represented by
a 6-dimensional DCT vector. Our model is class-specific by default, i.e. one mask per class. L1
loss and cross-entropy loss are used for DCT vector regression and patch classification respectively.
By default, only one PatchDCT module is used, and both λ0 and λ1 are set to 1. We implement
our algorithm based on Detectron2 (Wu et al., 2019), and all hyperparameters remain the same as
Mask-RCNN in Detectron2. Unless otherwise stated, 1× learning schedule is used.

4.3 MAIN RESULTS

Results on COCO. We compare PatchDCT with Mask-RCNN and DCT-Mask over different back-
bones. As shown in Table 2, on COCO val2017 with R50-FPN, PatchDCT improves 2.0% AP and
3.4% APB over Mask-RCNN. Compared with DCT-Mask, PatchDCT also achieves 0.7% AP and
0.9% APB improvements. When evaluating with LVIS annotations, PatchDCT yields significant
gains of 3.2% AP∗ and 5.3% AP∗

B over Mask-RCNN, and 1.1% AP∗ and 1.7% AP∗
B over DCT-

Mask. Consistent improvements are observed on R101-FPN and RX101-FPN. Since AP∗ and AP∗
B

are evaluated with high-quality annotations, the significant improvements of these two metrics em-
phasize the superiority of our model. In addition, considering the improvement in mask quality, the
cost in runtime is almost negligible, i.e. about 1.5 FPS degradation on the A100 GPU.

We also compare the performance of PatchDCT with state-of-the-art methods of instance segmen-
tation on COCO test-dev2017. With RX101 backbone, PatchDCT surpasses PointRender (Kirillov
et al., 2020) and RefineMask (Zhang et al., 2021), which are both multi-stage refinement methods
based on binary grid masks, by 0.8% and 0.4%. PatchDCT also achieves comparable performance
with Mask Transfiner (Ke et al., 2022) with R101 backbone. However, Mask-Transifer runs at
5.5 FPS on the A100 GPU, which is almost two times slower than PatchDCT. With Swin-B back-

6

Published as a conference paper at ICLR 2023

Table 4: Comparison of different methods on COCO test-dev2017. MS denotes using multi-scale
training. ‘3×’ schedules indicates 36 epochs for training. Runtime is measured on a single A100.

Method Backbone MS Sched. AP AP50 AP75 APS APM APL FPS
BMask RCNN (Cheng et al., 2020c) R101-FPN 1× 37.7 59.3 40.6 16.8 39.9 54.6 -
Mask-RCNN (He et al., 2017) R101-FPN ✓ 3× 38.8 60.9 41.9 21.8 41.4 50.5 13.8
BCNet (Ke et al., 2021) R101-FPN ✓ 3× 39.8 61.5 43.1 22.7 42.4 51.1 -
DCT-Mask (Shen et al., 2021) R101-FPN ✓ 3× 40.1 61.2 43.6 22.7 42.7 51.8 13.0
Mask Transfiner (Ke et al., 2022) R101-FPN ✓ 3× 40.7 - - 23.1 42.8 53.8 5.5
SOLQ (Dong et al., 2021) R101-FPN ✓ 50e 40.9 - - 22.5 43.8 54.6 10.7
MEInst (Zhang et al., 2020) RX101-FPN ✓ 3× 36.4 60.0 38.3 21.3 38.8 45.7 -
HTC (Chen et al., 2019) RX101-FPN 20e 41.2 63.9 44.7 22.8 43.9 54.6 4.3
PointRend (Kirillov et al., 2020) RX101-FPN ✓ 3× 41.4 63.3 44.8 24.2 43.9 53.2 8.4
RefineMask (Zhang et al., 2021) RX101-FPN ✓ 3× 41.8 - - - - - 8.9
Mask Transfiner (Ke et al., 2022) Swin-B ✓ 3× 45.9 69.3 50.0 28.7 48.3 59.4 3.5
PatchDCT (Ours) R101-FPN ✓ 3× 40.7 61.8 44.2 22.8 43.2 52.8 11.8
PatchDCT (Ours) RX101-FPN ✓ 3× 42.2 64.0 45.8 25.0 44.5 53.9 11.7
PatchDCT (Ours) Swin-B ✓ 3× 46.6 69.7 50.8 29.0 49.0 59.9 7.3

bone, PatchDCT outperforms Mask Transfiner (Ke et al., 2022) by 0.7% AP. It is worth noting that
PatchDCT is faster than most multi-stage refinement methods since only one refine process is re-
quired. These results demonstrate the effectiveness of PatchDCT in generating high-quality masks.

Results on Cityscapes. We also report results on Cityscapes val set in Table 3. In comparison
with Mask-RCNN, PatchDCT obtains 4.5% AP and 7.0% APB improvements. It also outperforms
DCT-Mask by 1.3% AP and 4.2% APB . Compared with other SOTA methods, PatchDCT is still
competitive. PatchDCT achieves 0.8%, 1.4%, 2.1% APB gains over Mask Transfiner (Ke et al.,
2022), RefineMask (Zhang et al., 2021) and PointRender (Kirillov et al., 2020) respectively. The
large difference in APB highlights the ability of PatchDCT to generate masks with more detailed
borders.

4.4 ABLATION EXPERIMENTS

We conduct extensive ablation experiments to further analyze PatchDCT. We adopt R50-FPN as the
backbone and evaluate the performance on COCO val2017.

Simply refine DCT vectors. Simply refining the global DCT vectors does not succeed. To demon-
strate that, we design a model named ‘Two-stage DCT’, which regresses a new 300-dimensional
DCT vector after fusing the initial mask with a 42×42 feature map from FPN-P2. The refined mask
is decoded from the final DCT vector. From Table 5, Two-stage DCT achieves only little improve-
ments over DCT-Mask, since changes in some elements of the global DCT vector may affect the
entire mask, even for the correct segmentation areas. PatchDCT leverages the patching mechanism
to overcome this issue and outperforms Two-stage DCT by 1.0 AP∗

B .

Binary grid refinement. Refining masks with the binary grid mask representation can be considered
as the extreme patching mechanism, which treats each pixel as a patch. However, simply refining
high-resolution masks with the binary grid mask representation introduces performance degradation.
We construct an experiment named ‘binary grid refinement’, which predicts another 112×112 mask
with the binary grid mask representation after fusing the initial mask as well as a 56×56 feature map
from FPN-P2. Experimental results in Table 5 show that the performance of binary grid refinement
is worse than PatchDCT, and even DCT-Mask. This is because binary grid refinement requires the
refinement module to learn 12544 (112× 112) outputs, while PatchDCT only needs to learn at most
1176 (14× 14× 6) outputs, which reduces the training complexity.

Effectiveness of three-class classifier. In addition to identifying mixed patches, a more important
role of the three-class classifier is to correct previously mispredicted foreground and background
patches. To validate the effectiveness of refining non-mixed patches (i.e. foreground and background
patches), we construct a binary-class classifier, which only classifies patches as mixed or non-mixed
and keeps masks of non-mixed patches unchanged. As shown in Table 6, the binary-class classifier
is inferior to our three-class classifier by 0.3% AP and 0.4% AP∗, since the refinement of previously
incorrectly predicted foreground and background patches is ignored.

Refinement of foreground and background patches can also be accomplished with the DCT vector
regressor. However, as discussed in Sec. 3.2, the DCT vector elements of the non-mixed patches

7

Published as a conference paper at ICLR 2023

Table 5: Mask AP obtained by different refine-
ment methods on val2017. PatchDCT signifi-
cantly improves the quality of masks.

Method AP APB AP∗ AP∗
B

Binary grid 35.7 23.2 39.6 29.1
Two-stage DCT 36.6 23.9 40.1 29.1
PatchDCT 37.2 24.7 40.8 30.1

Table 6: Mask AP obtained by PatchDCT with
two-class classifier and three-class classifier on
val2017. PatchDCT with three-class classifier
achieves the best performance.

Classifier AP APS APM APL APB AP∗ AP∗
B

2-class 36.9 18.2 39.3 53.5 24.4 40.4 29.7
3-class 37.2 18.3 39.5 54.2 24.5 40.8 30.1

Table 7: Mask AP obtained by PatchDCT with
regressor focusing on all patches and mixed
patches on val2017. The best results are ob-
tained by regressing only the mixed patches.

Regressor AP APS APM APL APB AP∗ AP∗
B

all 36.6 17.7 39.5 52.2 23.6 39.6 28.6
mixed 37.2 18.3 39.5 54.2 24.5 40.8 30.1

Table 8: Mask AP obtained by PatchDCT
with and without the regressor on val2017.
PatchDCT benefits from the regressor.

Regressor AP APS APM APL APB AP∗ AP∗
B

36.7 18.3 39.0 53.1 23.3 39.6 27.1
✓ 37.2 18.3 39.5 54.2 24.5 40.8 30.1

Table 9: Mask AP obtained by models with
different dimensions of patch DCT vectors on
COCO val2017. Model with 6-dimensional
vectors achieves the best performance.

Patch Dim. AP APS APM APL APB AP∗ AP∗
B

3 36.8 17.6 39.2 53.5 24.0 40.5 29.5
6 37.2 18.3 39.5 54.1 24.5 40.8 30.1
9 36.9 17.1 39.3 53.3 24.3 40.6 30.1

Table 10: Mask AP obtained by multi-stage
PatchDCT on val2017. Two-stage PatchDCT
achieves a trade-off between accuracy and com-
putational complexity.

Stage AP APS APM APL APB AP∗ (G)FLOPs FPS
1 37.2 18.3 39.5 54.1 24.5 40.8 5.1 12.3
2 37.4 17.8 40.0 54.0 24.7 41.2 9.6 11.1
3 37.3 17.3 39.7 54.6 24.7 40.9 14.1 8.4

Table 11: Mask AP obtained by models
with different patch sizes on COCO val2017.
PatchDCT with 8×8 patch size obtains the best
performance.

Patch Size AP APS APM APL APB AP∗ AP∗
B

4× 4 37.0 17.5 39.3 53.8 24.4 40.5 29.8
8× 8 37.2 18.3 39.5 54.1 24.5 40.8 30.1
16× 16 37.0 17.6 39.3 53.5 24.4 40.8 30.0

Table 12: Mask AP obtained by models with
different feature map sizes on COCO val2017.
The performance saturates with the 42×42 fea-
ture map.

Feature Size AP APS APM APL APB AP∗ AP∗
B

28× 28 37.1 17.8 39.3 53.4 24.5 40.6 30.0
42× 42 37.2 18.3 39.5 54.1 24.5 40.8 30.1
56× 56 37.0 17.4 39.2 53.0 24.4 41.0 30.3

Table 13: Mask AP obtained by PatchDCT with the feature map cropped from all levels and P2 only
on COCO val2017. Model with the feature map of P2 obtains higher mAP.

Feature AP APS APM APL APB AP∗ AP∗
B

P2 37.2 18.3 39.5 54.1 24.5 40.8 30.1
P2-P5 37.1 18.2 39.3 53.3 24.4 40.6 29.8

only involve zero and m, making it ineffective to learn the DCT vectors of all patches directly. As
shown in Table 7, the performance of the method refining non-mixed regions with the DCT vector
regressor is lower than the method using a three-class classifier by 0.6% AP and 1.2% AP∗. Need to
note that, APB and AP∗

B decrease by 0.9% and 1.5% respectively, reflecting that learning to regress
non-mixed patches also affects the prediction of boundaries.

Effectiveness of the regressor. The regressor is actually a boundary attention module that generates
finer boundaries. As shown in Table 8, after removing the regressor and keeping only the classifier,
the overall AP only decreases by 0.5% , but APB and AP∗

B decrease by 1.2% and 3.0% respectively.
The phenomenon demonstrates the importance of the regressor for generating finer boundaries.

Dimension of PatchDCT vectors We look for an appropriate patch DCT vector length to encode
each mixed patch. Results in Table 9 show that the model with 6-dimensional patch DCT vectors
obtains the best performance. As also shown in Table 1, the 6-dimensional patch DCT vector already
contains most of the ground truth information. As more elements bring only very little incremental
information, regressing these elements does not improve the prediction.

Multi-stage PatchDCT. We compare the performance of the multi-stage procedure in Table 10.
One-stage PatchDCT already provides high-quality masks, while two-stage PatchDCT further im-
proves the prediction. However, the computational cost of the mask branch has nearly doubled with
tiny improvements in the quality of masks, so we choose to use one-stage PatchDCT in our paper.

8

Published as a conference paper at ICLR 2023

(a) Mask-RCNN

(b) DCT-Mask

(c) PatchDCT

Figure 4: COCO example tuples from Mask-RCNN, DCT-Mask, and PatchDCT. Mask-RCNN,
DCT-Mask and PatchDCT are trained based on R50-FPN. PatchDCT provides masks with higher
quality and finer boundaries.

Size of the patch. We evaluate the influence of patch size in Table 11. We keep the resolution of
the mask and the size of the input feature map unchanged and compare the model performance with
different patch sizes. PatchDCT with 8× 8 patches performs better than other settings.

Size of the feature map. We compare the model with different sizes of the feature map used in
PatchDCT. Table 12 illustrates that the performance saturates with the 42× 42 feature map.

Feature map from FPN. We evaluate PatchDCT with the feature map cropped from all pyramid
levels or P2. Table 13 shows that PatchDCT benefits from the finer feature map of P2.

4.5 QUALITATIVE RESULTS

In Figure 4 we visualize some outputs of PatchDCT on COCO val2017. PatchDCT generates finer
boundaries among different instances, such as the shoulder of the person (the first column), the
contour of the kite (the third column), and the arm of the girl (the fourth column). PatchDCT
obtains masks of higher quality in comparison with Mask-RCNN and DCT-Mask.

5 CONCLUSIONS

In this work, we propose PatchDCT, a compressed vector based method towards high-quality in-
stance segmentation. In contrast to previous methods, PatchDCT refines each patch of masks re-
spectively and utilizes patch DCT vectors to compress boundaries that are full of details. By us-
ing a classifier to refine foreground and background patches, and predicting an informative low-
dimensional DCT vector for each mixed patch, PatchDCT generates a high-resolution mask with
fine boundaries. PatchDCT is designed with a simple and clean structure, which allows the method
to obtain high-quality segmentation with almost negligible cost in speed compared to Mask-RCNN
and DCT-Mask. We hope that our approach will benefit future studies in instance segmentation.

9

Published as a conference paper at ICLR 2023

REFERENCES

Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE transactions
on Computers, 100(1):90–93, 1974.

Muzhir Shaban Al-Ani and Fouad Hammadi Awad. The jpeg image compression algorithm. Inter-
national Journal of Advances in Engineering & Technology, 6(3):1055, 2013.

Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Zi-
wei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4974–4983, 2019.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2017.

Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig Adam, and
Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panop-
tic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12475–12485, 2020a.

Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C Berg, and Alexander Kirillov. Boundary
iou: Improving object-centric image segmentation evaluation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15334–15342, 2021.

Ho Kei Cheng, Jihoon Chung, Yu-Wing Tai, and Chi-Keung Tang. Cascadepsp: Toward class-
agnostic and very high-resolution segmentation via global and local refinement. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8890–8899, 2020b.

Tianheng Cheng, Xinggang Wang, Lichao Huang, and Wenyu Liu. Boundary-preserving mask r-
cnn. In European conference on computer vision, pp. 660–676. Springer, 2020c.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Philipe Ambrozio Dias and Henry Medeiros. Semantic segmentation refinement by monte carlo
region growing of high confidence detections. In Asian Conference on Computer Vision, pp.
131–146. Springer, 2018.

Bin Dong, Fangao Zeng, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. Solq: Segmenting objects
by learning queries. Advances in Neural Information Processing Systems, 34:21898–21909, 2021.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmen-
tation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 5356–5364, 2019.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang Huang, and Xinggang Wang. Mask scoring
r-cnn. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6409–6418, 2019.

Ba Rom Kang, Hyunku Lee, Keunju Park, Hyunsurk Ryu, and Ha Young Kim. Bshapenet: Object
detection and instance segmentation with bounding shape masks. Pattern Recognition Letters,
131:449–455, 2020.

Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Deep occlusion-aware instance segmentation with
overlapping bilayers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4019–4028, 2021.

10

Published as a conference paper at ICLR 2023

Lei Ke, Martin Danelljan, Xia Li, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu. Mask transfiner for
high-quality instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4412–4421, 2022.

Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend: Image segmentation as
rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 9799–9808, 2020.

Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs with gaussian
edge potentials. Advances in neural information processing systems, 24, 2011.

Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional instance-aware
semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2359–2367, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Falong Shen, Rui Gan, Shuicheng Yan, and Gang Zeng. Semantic segmentation via structured patch
prediction, context crf and guidance crf. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1953–1961, 2017.

Xing Shen, Jirui Yang, Chunbo Wei, Bing Deng, Jianqiang Huang, Xian-Sheng Hua, Xiaoliang
Cheng, and Kewei Liang. Dct-mask: Discrete cosine transform mask representation for instance
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8720–8729, 2021.

Chufeng Tang, Hang Chen, Xiao Li, Jianmin Li, Zhaoxiang Zhang, and Xiaolin Hu. Look
closer to segment better: Boundary patch refinement for instance segmentation. arXiv preprint
arXiv:2104.05239, 2021.

Max Welling and Thomas N Kipf. Semi-supervised classification with graph convolutional net-
works. In J. International Conference on Learning Representations (ICLR 2017), 2016.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Xue Yang and Junchi Yan. On the arbitrary-oriented object detection: Classification based ap-
proaches revisited. International Journal of Computer Vision, 130(5):1340–1365, 2022.

Xue Yang, Jirui Yang, Junchi Yan, Yue Zhang, Tengfei Zhang, Zhi Guo, Xian Sun, and Kun Fu.
Scrdet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of
the IEEE International Conference on Computer Vision, pp. 8232–8241, 2019.

Xue Yang, Junchi Yan, Ziming Feng, and Tao He. R3det: Refined single-stage detector with feature
refinement for rotating object. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 3163–3171, 2021a.

Xue Yang, Junchi Yan, Qi Ming, Wentao Wang, Xiaopeng Zhang, and Qi Tian. Rethinking rotated
object detection with gaussian wasserstein distance loss. In International Conference on Machine
Learning, pp. 11830–11841. PMLR, 2021b.

11

https://github.com/facebookresearch/detectron2

Published as a conference paper at ICLR 2023

Xue Yang, Xiaojiang Yang, Jirui Yang, Qi Ming, Wentao Wang, Qi Tian, and Junchi Yan. Learning
high-precision bounding box for rotated object detection via kullback-leibler divergence. Ad-
vances in Neural Information Processing Systems, 34:18381–18394, 2021c.

Xue Yang, Gefan Zhang, Xiaojiang Yang, Yue Zhou, Wentao Wang, Jin Tang, Tao He, and Junchi
Yan. Detecting rotated objects as gaussian distributions and its 3-d generalization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2022.

Xue Yang, Junchi Yan, Wenlong Liao, Xiaokang Yang, Jin Tang, and Tao He. Scrdet++: Detecting
small, cluttered and rotated objects via instance-level feature denoising and rotation loss smooth-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):2384–2399, 2023.

Gang Zhang, Xin Lu, Jingru Tan, Jianmin Li, Zhaoxiang Zhang, Quanquan Li, and Xiaolin Hu. Re-
finemask: Towards high-quality instance segmentation with fine-grained features. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6861–6869, 2021.

Rufeng Zhang, Zhi Tian, Chunhua Shen, Mingyu You, and Youliang Yan. Mask encoding for single
shot instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10226–10235, 2020.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Da-
long Du, Chang Huang, and Philip HS Torr. Conditional random fields as recurrent neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1529–1537,
2015.

Yue Zhou, Xue Yang, Gefan Zhang, Jiabao Wang, Yanyi Liu, Liping Hou, Xue Jiang, Xingzhao
Liu, Junchi Yan, Chengqi Lyu, Wenwei Zhang, and Kai Chen. Mmrotate: A rotated object de-
tection benchmark using pytorch. In Proceedings of the 30th ACM International Conference on
Multimedia, pp. 7331–7334, 2022.

A MORE QUALITATIVE RESULTS

A.1 TWO-STAGE DCT

We visualize some outputs of two-stage DCT and compare them with DCT-Mask to demonstrate the
disadvantages of simply combining DCT-Mask with multi-stage progress.

As shown in Figure 5, in two-stage DCT, the areas that were previously correctly predicted may be
influenced in refinement. The phenomenon further proves the difficulties in refining DCT vectors
directly.

A.2 QUALITATIVE RESULTS ON CITYSCAPES

We show some qualitative results on Cityscapes in Figure 6. In comparison with Mask-RCNN and
DCT-Mask, PatchDCT generates finer boundaries that greatly improve the quality of masks.

B MORE TECHNICAL DETAILS

We prove that all elements except the DCCs for foreground patches are zero.

It can be derived from Equation 6 that DCC is equal to the patch size m in the foreground patch
since Mm×m(x, y) = 1.

DCC =
1

m

m−1∑
x=0

m−1∑
y=0

Mm×m(x, y) = m, (6)

Note that for a m×m patch Mf
m×m(u, v) Equation 1 can be written as

Mf
m×m(u, v) =

2

m
C(u)C(v)

(
m−1∑
x=0

A(x, u)

)(
m−1∑
y=0

A(y, v)

)
, (7)

12

Published as a conference paper at ICLR 2023

(a) (b)

(c) (d)

Figure 5: Visualization of DCT-Mask (left) and two-stage DCT (right). Areas that were correctly
predicted are influenced by the refinement.

(a) Mask-RCNN (b) DCT-Mask (c) PatchDCT

Figure 6: Cityscapes example tuples from Mask-RCNN, DCT-Mask, and PatchDCT. Mask-RCNN,
DCT-Mask and PatchDCT are trained based on R50-FPN. PatchDCT generates masks with finer
boundaries.

where A(a, b) = cos (2a+1)bπ
2m .

If u is odd,

A(m− 1− x, u) = cos
(2(m− 1− x) + 1)uπ

2m

= cos

(
− (2x+ 1)uπ

2m
+ uπ

)
= −A(x, u), (8)

If u is even and larger than zero, since from Euler’s formula

eiθ = cosθ + isinθ, (9)

13

Published as a conference paper at ICLR 2023

We have
m−1∑
x=0

A(x, u) =

m−1∑
x=0

cos
(2x+ 1)uπ

2m

= Re

(
m−1∑
x=0

e
(2x+1)uπi

2m

)

= Re

(
e

uπi
2m

1− euπi

1− e
uπi
m

)
= 0, (10)

Since u is even,

euπi = cos(uπ) + isin(uπ) = 1, (11)

We obtain
m−1∑
x=0

A(x, u) = 0, ∀u ̸= 0, (12)

Therefore for foreground patches

Mf
m×m(i, j) =

{
m, i = 0, j = 0,
0, otherwise.

(13)

This illustrates except the DCCs, elements of DCT vectors of foreground patches are all zero.

C LIMITATIONS AND FUTURE OUTLOOK

In the process of visualization, we observe that the model may generate masks with holes. These
problems usually occur in semantical ambiguous areas, and rarely in the center of the mask where
the semantic information is very clear. We demonstrate some typical bad cases in Figure 7. In
these cases, the model either misclassifies these patches or generates imprecise patch DCT vectors,
resulting in disconnected masks. We leave better classification and regression vectors as future work.
In addition, we also plan to carry out further verification in other more challenging areas, such as
aerial images, medical images, etc. Taking aerial images as an example, this field still focuses
on the research of object detection (Yang et al., 2019; 2021a;b;c; 2023), especially oriented object
detection (Yang & Yan, 2022; Zhou et al., 2022; Yang et al., 2022), which lacks the exploration of
more precise positioning tasks, i.e instance segmentation.

14

Published as a conference paper at ICLR 2023

(a)

(b)

(c)

Figure 7: Visualization of typical bad cases of our model, PatchDCT (left) and ground truth (right).
15

	Introduction
	Related Work
	Methods
	Difficulties in Refining DCT Vectors
	PatchDCT
	Multi-stage Refinement and Loss Function

	Experiments
	Datasets
	Implement Details
	Main Results
	Ablation Experiments
	Qualitative Results

	Conclusions
	More Qualitative Results
	Two-stage DCT
	Qualitative results on Cityscapes

	More Technical Details
	black Limitations and Future Outlook

