Published as a conference paper at ICLR 2023

PATCHDCT: PATCH REFINEMENT FOR HIGH QUALITY
INSTANCE SEGMENTATION

Qinrou Wen', Jirui Yang?, Xue Yang?, Kewei Liang! *

1School of Mathematical Sciences, Zhejiang University ~ 2Alibaba Group

3Department of CSE, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
{ginrou.wen,matlkw}@zju.edu.cn, jirui.yjr@alibaba-inc.com
yangxue-2019-sjtul@sijtu.edu.cn

PyTorch Code: https://github.com/olivia-wl2/PatchDCT

ABSTRACT

High-quality instance segmentation has shown emerging importance in computer
vision. Without any refinement, DCT-Mask directly generates high-resolution
masks by compressed vectors. To further refine masks obtained by compressed
vectors, we propose for the first time a compressed vector based multi-stage re-
finement framework. However, the vanilla combination does not bring significant
gains, because changes in some elements of the DCT vector will affect the pre-
diction of the entire mask. Thus, we propose a simple and novel method named
PatchDCT, which separates the mask decoded from a DCT vector into several
patches and refines each patch by the designed classifier and regressor. Specifi-
cally, the classifier is used to distinguish mixed patches from all patches, and to
correct previously mispredicted foreground and background patches. In contrast,
the regressor is used for DCT vector prediction of mixed patches, further refin-
ing the segmentation quality at boundary locations. Experiments on COCO show
that our method achieves 2.0%, 3.2%, 4.5% AP and 3.4%, 5.3%, 7.0% Boundary
AP improvements over Mask-RCNN on COCO, LVIS, and Cityscapes, respec-
tively. It also surpasses DCT-Mask by 0.7%, 1.1%, 1.3% AP and 0.9%, 1.7%,
4.2% Boundary AP on COCO, LVIS and Cityscapes. Besides, the performance of
PatchDCT is also competitive with other state-of-the-art methods.

1 INTRODUCTION

Instance segmentatlon ( ; , ) is a fundamental but challenging task in
computer vision, which aims to 1ocate objects in images and precisely segment each instance. The
mainstream instance segmentation methods follow Mask-RCNN ( , ) paradlgm which
often segment instances in a low-resolution grid ( s ; ;

). However, limited by the coarse mask representatlon (ie. 28 x
28 in Mask RCNN) most of these algorithms cannot obtain high-quality segmentation results due
to the loss of details. DCT-Mask ( , ) achieves considerable performance gain by
predicting an informative 300-dimensional Discrete Cosine Transform (DCT) ( , )
vector compressed from a 128 x 128 mask. To further improve the segmentatlon results of DCT-
Mask, we follow the refine mechanism ( s ; , ; s ) to
correct the mask details in a multi-stage manner.

A straightforward implementation is to refine the 300-dimensional DCT vector multiple times. How-
ever, experimental results show that this naive implementation does not succeed, which improves
mask average precision (mAP) by 0.1% from 36.5% to 36.6% on COCO val set. The main reason
for the limited improvement is that the full 300-dimensional DCT vector is not suitable for refining
some important local regions, such as wrong predicted regions and boundary regions in masks. As
each pixel value in the mask is calculated by all elements of the DCT vector in the inference stage,
once some elements in the DCT vector change, the entire mask will change, and even the correct
segmentation areas may be affected, refer to Figure 1a.

*Corresponding author is Kewei Liang.
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Figure 1: (a) Influence of elements changes in DCT vectors for DCT-Mask. The blue block denotes
the changed elements. The box with a blue border represents the part of the mask affected by the
changes in element values. The change of some elements will affect the entire mask. (b) Influence
of elements changes in DCT vectors for PatchDCT. Changing some elements of a vector will only
affect the corresponding patch.

To overcome the above issue, we propose a novel method, called PatchDCT, which divides the mask
decoded from a DCT vector into several independent patches and refines each patch with a three-
class classifier and a regressor, respectively. In detail, each patch is first classified into one of three
categories: foreground, background, and mixed by the classifier, and then previously mispredicted
foreground and background patches will be corrected. Mixed patches are fed into the regressor to
predict their corresponding n-dimensional (n < 300) DCT vectors. In the inference stage, we use
Inverse Discrete Cosine Transform (IDCT) to decode the predicted vectors of the mixed patches as
their refined masks, and merge them with the masks of other foreground and background patches
to obtain a high-resolution mask. It is also worth emphasizing that each patch is independent, so
the element change of a DCT vector will only affect the corresponding mixed patch, as shown
in Figure 1b. In general, patching allows the model to focus on the refinement of local regions,
thereby continuously improving the quality of segmentation, resulting in significant performance
improvements. Our main contributions are:

1) To our best knowledge, PatchDCT is the first compressed vector based multi-stage refinement
detector to predict high-quality masks.

2) PatchDCT innovatively adopts the patching technique, which successfully allows the model to
focus on the refinement of important local regions, fully exploiting the advantages of multi-stage
refinement and high-resolution information compression.

3) Compared to Mask RCNN, PatchDCT improves about 2.0% AP and 3.4% Boundary AP on
COCO, 3.2% AP and 5.3% Boundary AP on LVIS*!, 4.5% AP and 7.0% Boundary AP on
Cityscapes. It also achieves 0.7% AP and 0.9% Boundary AP on COCO, 1.1% AP and 1.7% Bound-
ary AP on LVIS*, 1.3% AP and 4.2% Boundary AP on Cityscapes over DCT-Mask.

4) Demonstrated by experiments on COCO test-dev, the performance of PatchDCT is also competi-
tive with other state-of-the-art methods.

2 RELATED WORK

Instance segmentation. Instance segmentation assigns a pixel-level mask to each instance of in-
terest. Mask-RCNN ( , ) generates bounding boxes for each instance with a powerful
detector ( , ) and categorizes each pixel in bounding boxes as foreground or back-
ground to obtain 28 X 28 binary grid masks. Several methods that build on Mask-RCNN improve
the quality of masks. Mask Scoring RCNN ( , ) learns to regress mask IoU to select
better-quality instance masks. HTC ( s ) utilizes interleaved execution, mask informa-
tion flow, and semantic feature fusion to improve Mask-RCNN. BMask RCNN ( )
adds a boundary branch on Mask-RCNN to detect the boundaries of masks. Bounding Shape Mask
R-CNN ( , ) improves performance on object detection and instance segmentation by
its bounding shape mask branch. BCNet ( R ) uses two GCN ( s ) lay-
ers to detect overlapping instances. Although these algorithms have yielded promising results, they
are still restricted in the low-resolution mask representation and thus do not generate high-quality
masks.

'COCO dataset with LVIS annotations



Published as a conference paper at ICLR 2023

L ul ¥ A ot

= | L uz*‘wl o o )(Zg ;@iﬁ!

Feature from FPN-P2 Regressar % _. . Comvaa_Coma cony Convﬁfl"'iﬁ
o2 l,zxw WW Wi o

Detail of the PatchDCT

1
1
1
1

Classifier
Multi-stage &
Mask obtained by DCT 5
PatchDCT ;;

Classification results

Figure 2: The pipeline of PatchDCT. The classifier differentiates foreground, background and mixed
patches. The regressor predicts the DCT vectors of mixed patches. Masks of mixed patches are
obtained by patch DCT vectors. PatchDCT combines masks of all patches to obtain an entire mask
of instance. The entire mask of instance output by PatchDCT can be fed into another PatchDCT
module for a finer mask. For the architecture of multi-stage PatchDCT: ‘F’ is the feature map
cropped from FPN-P2. ‘M’ is the high-resolution mask. ‘P’ is the PatchDCT module.

Towards high-quality instance segmentation. To take full advantage of high-resolution masks,
DCT-Mask ( , ) learns to regress a 300-dimensional DCT vector compressed from a
128 x 128 mask. SOLQ ( s ) is a query-based method, which also encodes high-
resolution masks into DCT vectors and predicts the vectors by queries. Both of these methods
generate high-resolution masks in a one-shot manner, without any refinement. Although they have
made considerable gains, there is still potential for improvement. Multi-stage refinement is another
common technique for obtaining high-quality masks. PointRend ( , ) adaptively
selects several locations to refine, rendering 224 x 224 masks from 7 x 7 coarse masks. RefineMask
( , ) introduces semantic segmentation masks as auxiliary inputs, and generates
112 x 112 masks in a multi-stage manner. Mask Transfiner ( , ) represents image
regions as a quadtree and corrects the errors of error-prone tree nodes to generate 112 x 112 masks.
PBR ( , ) is a post-processing method that refines patches along the mask boundaries.
Unlike these refinement methods based on the binary grid mask representation, our method is based
on compressed vectors.

Generating high-quality masks is also one of the main concerns in the field of semantic segmen-

tation. CRFasRNN ( , ) connects CRF ( , ) with FCN
( , ), formulating mean-field approximate inference for the CRF with Gaussian pair-
wise potentials as Recurrent Neural Networks. DeepLab ( , ) effectively improves
the quality of masks by using atrous convolution for receptive field enhancement, ASPP for multi-
scale segmentation, and CRF for boundary refinement. SegModel ( , ) utilizes a
guidance CRF to improve the segmentation quality. CascadePSP ( , ) trains inde-
pendently a refinement module designed in a cascade fashion. RGR ( , )is a

post-processing module based on region growing. In contrast, PatchDCT can obtain high-quality
segmentation results in an end-to-end learning manner without any additional post-processing.

3 METHODS

In this section, we show the difficulties in refining DCT vectors and then introduce PatchDCT to
overcome these difficulties and generate finer masks.

3.1 DIFFICULTIES IN REFINING DCT VECTORS

Given a K x K mask, DCT-Mask ( s ) encodes the mask Mg « i into the frequency
domain Mf(x K
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where C(w) = 1/+/2 for w = 0 and C(w) = 1 otherwise. Non-zero values are concentrated in the

upper left corner of M{{ « ic» Which are low-frequency elements that contain the most information of
the mask. The N-dimensional DCT vector is obtained by zigzag scanning ( , )

Mf(x x and selecting the top-/V elements.
In the inference stage, Mﬂx x 18 recovered by filling the remaining elements to zero. Then each
pixel in the mask Mg « i is calculated as follow:

9 K-1K-1
My (z,y) = gC(x)C(y) Z Z Mff(xK(u,v) cos

u=0 v=0

2z + 1 2 + 1
(22 + Dur  (2y + Ljom
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Equation 2 reveals that each pixel in the mask M x i is calculated by all elements of M{( « - When
refining the N-dimensional DCT vector, once an element is incorrectly changed, all pixels in M g » i
will be affected, even those correctly segmented regions, which is also shown in Figure 1. Therefore,
when fixing some specific error regions (e.g. borders), it is difficult to get the correct refinement
result unless all the elements in the DCT vector are correctly refined. In practice, however, it is
almost impossible to correctly predict all N elements.

3.2 PATCHDCT

To prevent the above issue when refining the global DCT vector, we propose a method named
PatchDCT, which divides the K x K mask into m x m patches and refines each patch respectively.
The overall architecture of PatchDCT is shown in Figure 2, which mainly consists of a three-class
classifier and a DCT vector regressor. Specifically, the classifier is used to identify mixed patches and
refine foreground and background patches. Each mixed patch is then refined by an n-dimensional
DCT vector, which is obtained from the DCT vector regressor.

Three-class classifier. We define the patches with

only foreground pixels and only background pixels Table 1: Mask AP obtained by different
as foreground patches and background patches, re-  jengths of ground-truth DCT vectors using
spectively, while the others are mixed patches. The Mask-RCNN framework on COCO val2017.
task of differentiating patch categories is accom- The |x1 patch size represents the binary grid

plished by a fully convolutional three-class classi- magk representation. Low-dimensional DCT
fier. Moreover, the mispredicted initial foreground vectors are able to provide enough ground

and background patches are corrected by the classi-  ruth information.
fier. We utilize a three-class classifier instead of a

DCT vector regressor to refine foreground and back- ~Resolution | Patch Size | Dim. | AP
ground patches because of the particular form of ~{195 % 112 Tx1 I 37.6
their DCT vectors. For background patches, sim- 112 % 112 8 x 8 3 35.8
ply from Equation 1, all elements of DCT vectors 112 x 112 8 % 8 6 37.1
are zero. For foreground patches, all elements are 112 % 112 8 x 8 9 575
zero except for the first element named DC com- 112 % 112 8 x 8 12 | 575
ponent (DCC), which is equal to the patch size m. 112 x 112 | 112 x 112 | 200 | 55.8
The mathematical proof of the DCT vector form for 112 x 112 | 112 x 112 | 300 | 56.4

the foreground patches is shown in the Appendix.
DCT vector elements of foreground and background
patches are discrete data that are more suitable for classification. Referring to Figure 3, DCT vector
elements of mixed patches are continuously distributed and therefore more suitable for regression.

Regressor. Similar to the phenomenon described in DCT-Mask ( , ), refining high-
resolution masks with the binary grid mask representation introduces performance degradation due
to the high training complexity (refer to DCT-Mask ( , ) for more details). Learning

to regress informative DCT vectors eases the training process. The specific experimental results are
discussed in the experiments section (Sec. 4).

The regressor is trained and inferred for mixed patches only. It is actually a boundary attention
module, since the mixed patches are distributed exactly along the boundary of the instance mask.
For each mixed patch, the regressor predicts an n-dimensional DCT vector, which is very short but
highly informative. Table | shows mask AP obtained by different lengths of ground truth patch DCT
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Figure 3: Elements of 6-dimensional DCT vectors for foreground, background and mixed patches
on COCO val2017. DCT vector elements for foreground and background patches are discrete data.
DCT vector elements for mixed patches are continuous data.

vectors using Mask-RCNN framework on COCO val2017. The low-dimensional DCT vectors have
been able to provide sufficient ground truth information.

3.3 MULTI-STAGE REFINEMENT AND LOSS FUNCTION

PatchDCT is a module where the input and output masks have the same resolution. Thus, the mask
generated by a PatchDCT module can be fed into another PatchDCT module for further refinement,
as shown in the upper right corner of Figure 2.

With multi-stage refinement, the loss function of the mask branch is defined as

Lomask = XoLacty + > Ns(Litg o+ Lier,): 3)
s>0
Ao and A, are the loss weights. The first item L., of Equation 3 is the loss in predicting N-
dimensional vectors of the entire masks ( s .

N
1 ~
Lacty = 5 ZR(V; - V), 4)

where V; and V; are the i-th element in ground-truth and the prediction vector respectively. R is the
loss function and N is the length of the vectors. The classification loss £, . of s-th stage is the
cross-entropy loss over three classes. The regression loss L3, ~of s-th stage is

1 Nau 1 )
= 5 25 ot (F om0 v)
mog i

where N,,,, N, are the number of mixed patches and all patches respectively. n is the length of the
patch DCT vectors. If the k-th patch is a mixed patch, p* = 1, otherwise p* = 0, indicating that
only DCT vectors of mixed patches are regressed.

. ®)

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method on two standard instance segmentation datasets: COCO ( R )
and Cityscapes ( , ). COCO provides 80 categories with instance-level annotations.
Cityscapes is a dataset focused on urban street scenes. It contains 8 categories for instance seg-
mentation, providing 2,975, 500 and 1,525 high-resolution images (1,024 x 2,048) for training,
validation, and test respectively.

We report the standard mask AP metric and the Boundary AP ( , ) metric (APp),
the latter focusing on evaluating the boundary quality. Following ( , ), we also
report AP* and AP%, which evaluate COCO val2017 with high-quality annotations provided by
LVIS ( , ). Note that for AP* and AP%, models are still trained on COCO train2017.
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Table 2: Mask AP on COCO with different backbones based on Mask-RCNN framework. AP* is
results obtained from COCO with LVIS annotations. APg is Boundary AP. AP} is Boundary AP
using LVIS annotations. Models with R101-FPN and RX101-FPN are trained with ‘3%’ schedule.
Runtime is measured on a single A100. Considering the significant improvement of masks, the cost
in the runtime is almost negligible.

Backbone | Model AP [ AP; AP, AP, | AP; | AP | AP, AP, AP, | AP, | FPS
Mask-RCNN | 352 | 172 377 503 | 21.1 | 37.6 | 21.3 437 55.1 | 248 | 139
R50-FPN | DCT-Mask | 365 | 17.7 386 51.9 | 236 | 39.7 | 235 465 585 | 284 | 132
PatchDCT | 37.2 | 183 39.5 542 | 245 | 40.8 | 23.0 477 60.7 | 30.1 | 123
Mask-RCNN | 38.6 | 19.5 413 553 | 245 | 41.4 | 245 479 610 | 290 | 138
RI0I-FPN | DCT-Mask | 39.9 | 202 426 573 | 268 | 437 | 258 505 646 | 324 | 13.0
PatchDCT | 40.5 | 20.8 433 577 | 27.6 | 444 | 270 515 653 | 33.8 | 11.8
Mask-RCNN | 395 | 20.7 420 565 | 253 | 42.1 | 254 480 614 | 29.7 | 13.3
RXI0I-FPN | DCT-Mask | 412 | 21.9 442 577 | 280 | 452 | 274 526 642 | 340 | 129
PatchDCT | 41.8 | 22.5 44.6 587 | 28.6 | 46.1 | 27.8 53.0 66.1 | 354 | 11.7

Table 3: Results on Cityscapes val set. APp is Boundary AP. All models are based on R50-FPN
backbone. PatchDCT achieves the best performance.

Methods Resolution | AP | AP;y | AP
Mask-RCNN ( s ) 28 x 28 337 | 609 | 11.8
Panoptic-DeepLab ( , ) - 353 | 579 | 165
PointRender ( , ) 224 x 224 | 359 | 61.8 | 16.7
DCT-Mask ( , ) 112 x 112 | 36.9 | 629 | 14.6
RefineMask ( , ) 112 x 112 | 37.6 | 63.3 | 174
Mask Transfiner ( s ) 112 x 112 | 379 | 64.1 18.0
PatchDCT (Ours) 112 x 112 | 38.2 | 64.5 | 18.8

4.2 IMPLEMENT DETAILS

We build the model based on DCT-Mask ( , ). We first decode the 300-dimensional
DCT vector to obtain a 112 x 112 mask. This mask is then fed into PatchDCT, together with a
42 x 42 feature map cropped from FPN-P2 ( , ). PatchDCT refines each patch of the

mask and outputs a 112 x 112 mask. We set the patch size to 8 and each patch is represented by
a 6-dimensional DCT vector. Our model is class-specific by default, i.e. one mask per class. L1
loss and cross-entropy loss are used for DCT vector regression and patch classification respectively.
By default, only one PatchDCT module is used, and both \g and \; are set to 1. We implement
our algorithm based on Detectron2 ( , ), and all hyperparameters remain the same as
Mask-RCNN in Detectron2. Unless otherwise stated, 1 x learning schedule is used.

4.3 MAIN RESULTS

Results on COCO. We compare PatchDCT with Mask-RCNN and DCT-Mask over different back-
bones. As shown in Table 2, on COCO val2017 with RS0-FPN, PatchDCT improves 2.0% AP and
3.4% APp over Mask-RCNN. Compared with DCT-Mask, PatchDCT also achieves 0.7% AP and
0.9% APp improvements. When evaluating with LVIS annotations, PatchDCT yields significant
gains of 3.2% AP* and 5.3% AP% over Mask-RCNN, and 1.1% AP* and 1.7% AP% over DCT-
Mask. Consistent improvements are observed on R101-FPN and RX101-FPN. Since AP* and AP}
are evaluated with high-quality annotations, the significant improvements of these two metrics em-
phasize the superiority of our model. In addition, considering the improvement in mask quality, the
cost in runtime is almost negligible, i.e. about 1.5 FPS degradation on the A100 GPU.

We also compare the performance of PatchDCT with state-of-the-art methods of instance segmen-
tation on COCO fest-dev2017. With RX101 backbone, PatchDCT surpasses PointRender (

s ) and RefineMask ( s ), which are both multi-stage refinement methods
based on binary grid masks, by 0.8% and 0.4%. PatchDCT also achieves comparable performance
with Mask Transfiner ( , ) with R101 backbone. However, Mask-Transifer runs at

5.5 FPS on the A100 GPU, which is almost two times slower than PatchDCT. With Swin-B back-
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Table 4: Comparison of different methods on COCO test-dev2017. MS denotes using multi-scale
training. ‘3%’ schedules indicates 36 epochs for training. Runtime is measured on a single A100.

Method Backbone MS | Sched. | AP | AP;y AP7; | APs AP, AP. | FPS
BMask RCNN ( : ) | RIOI-FPN Ix | 377] 593 406 | 168 399 546 -
Mask-RCNN ( ,2017) RIOI-FPN | v | 3x |388] 60.9 419 | 218 414 505|138
BCNet ( ,2021) RIOI-FPN | v | 3x [398 | 615 43.1 | 227 424 511 -
DCT-Mask ( ,2021) RIOI-FPN | v | 3x |40 | 612 436 | 227 427 518 | 13.0
Mask Transfiner ( ,2022) RIOI-FPN | v | 3x | 407 | - - | 231 428 538 55
SOLQ ( ,2021) RIOI-FPN | v | 50e | 409 | - - | 225 438 546|107
MEInst ( , 2020) RXI0I-FPN | v | 3x | 364 | 60.0 383 | 21.3 388 457 -
HTC ( ,2019) RX101-FPN 20e | 412 ] 63.9 447 | 228 439 546 | 43
PointRend ( , 2020) RXI0I-FPN | v | 3x | 414 | 633 448 | 242 439 532 | 84
RefineMask ( ,2021) RXI0I-FPN | v | 3x |418| - - - - - 8.9
Mask Transfiner ( s ) Swin-B v 3% 459 | 693 500 | 28.7 483 594 35
PatchDCT (Ours) RIOI-FPN | v | 3x | 407 | 61.8 442 | 228 432 528 | 118
PatchDCT (Ours) RXI01-FPN | v | 3x | 422 | 640 458 | 250 445 539|117
PatchDCT (Ours) Swin-B v | 3x | 466 ] 697 508 | 29.0 49.0 599 | 7.3
bone, PatchDCT outperforms Mask Transfiner ( , ) by 0.7% AP. It is worth noting that

PatchDCT is faster than most multi-stage refinement methods since only one refine process is re-
quired. These results demonstrate the effectiveness of PatchDCT in generating high-quality masks.

Results on Cityscapes. We also report results on Cityscapes val set in Table 3. In comparison
with Mask-RCNN, PatchDCT obtains 4.5% AP and 7.0% APp improvements. It also outperforms
DCT-Mask by 1.3% AP and 4.2% APp. Compared with other SOTA methods, PatchDCT is still
competitive. PatchDCT achieves 0.8%, 1.4%, 2.1% APp gains over Mask Transfiner ( R

), RefineMask ( , ) and PointRender ( , ) respectively. The
large difference in APp highlights the ability of PatchDCT to generate masks with more detailed
borders.

4.4 ABLATION EXPERIMENTS

We conduct extensive ablation experiments to further analyze PatchDCT. We adopt R50-FPN as the
backbone and evaluate the performance on COCO val2017.

Simply refine DCT vectors. Simply refining the global DCT vectors does not succeed. To demon-
strate that, we design a model named ‘Two-stage DCT’, which regresses a new 300-dimensional
DCT vector after fusing the initial mask with a 42 x 42 feature map from FPN-P2. The refined mask
is decoded from the final DCT vector. From Table 5, Two-stage DCT achieves only little improve-
ments over DCT-Mask, since changes in some elements of the global DCT vector may affect the
entire mask, even for the correct segmentation areas. PatchDCT leverages the patching mechanism
to overcome this issue and outperforms Two-stage DCT by 1.0 AP%.

Binary grid refinement. Refining masks with the binary grid mask representation can be considered
as the extreme patching mechanism, which treats each pixel as a patch. However, simply refining
high-resolution masks with the binary grid mask representation introduces performance degradation.
We construct an experiment named ‘binary grid refinement’, which predicts another 112 x 112 mask
with the binary grid mask representation after fusing the initial mask as well as a 56 x 56 feature map
from FPN-P2. Experimental results in Table 5 show that the performance of binary grid refinement
is worse than PatchDCT, and even DCT-Mask. This is because binary grid refinement requires the
refinement module to learn 12544 (112 x 112) outputs, while PatchDCT only needs to learn at most
1176 (14 x 14 x 6) outputs, which reduces the training complexity.

Effectiveness of three-class classifier. In addition to identifying mixed patches, a more important
role of the three-class classifier is to correct previously mispredicted foreground and background
patches. To validate the effectiveness of refining non-mixed patches (i.e. foreground and background
patches), we construct a binary-class classifier, which only classifies patches as mixed or non-mixed
and keeps masks of non-mixed patches unchanged. As shown in Table 6, the binary-class classifier
is inferior to our three-class classifier by 0.3% AP and 0.4% AP*, since the refinement of previously
incorrectly predicted foreground and background patches is ignored.

Refinement of foreground and background patches can also be accomplished with the DCT vector
regressor. However, as discussed in Sec. 3.2, the DCT vector elements of the non-mixed patches
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Table 5: Mask AP obtained by different refine-
ment methods on val2017. PatchDCT signifi-
cantly improves the quality of masks.

Table 6: Mask AP obtained by PatchDCT with
two-class classifier and three-class classifier on
val2017. PatchDCT with three-class classifier
achieves the best performance.

Method AP | APg | AP* | AP}
Binary grid 3571 232 | 39.6 | 29.1
Two-stage DCT | 36.6 | 23.9 | 40.1 | 29.1
PatchDCT 37.2 | 24.7 | 40.8 | 30.1

Table 7: Mask AP obtained by PatchDCT with
regressor focusing on all patches and mixed
patches on val2017. The best results are ob-

Classifier | AP | AP; AP, AP, | AP; | AP" | AP,
2class | 369 | 182 39.3 535 | 244 | 404 | 29.7
3class | 37.2| 183 395 542 | 24.5 | 40.8 | 30.1

Table 8: Mask AP obtained by PatchDCT

with and without the regressor on val2017.

tained by regressing only the mixed patches.

Regressor | AP | APs APy AP, | APg | AP* | AP}
all 36.6 | 17.7 395 522 ] 23.6 | 39.6 | 28.6
mixed 372 | 183 395 542 | 245 | 40.8 | 30.1

PatchDCT benefits from the regressor.

Regressor | AP | APs APy, AP, | APg | AP | AP
36.7 | 183  39.0 53.1 | 233 | 39.6 | 27.1
v 372 | 183 395 542 | 245 | 40.8 | 30.1

Table 9: Mask AP obtained by models with
different dimensions of patch DCT vectors on
COCO val2017. Model with 6-dimensional
vectors achieves the best performance.

Table 10: Mask AP obtained by multi-stage
PatchDCT on val2017. Two-stage PatchDCT
achieves a trade-off between accuracy and com-
putational complexity.

PaichDim. | AP | AP; AP, AP, | AP; | AP" | AP}, Stage | AP [ APs AP, AP, | AP; | AP" | (GIFLOPs | FPS

3 368 | 17.6 392 535 | 240 | 405 | 295 T [372| 183 395 541 | 245 [ 408 | 51 123

6 372 | 183 395 54.1 | 245 | 40.8 | 30.1 2 374 | 178 40.0 540 | 247 | 412 9.6 1.1

9 369 | 171 393 533 | 243 | 406 | 301 3 1373|173 397 546 | 247 | 409 | 141 8.4
Table 11: Mask AP obtained by models Table 12: Mask AP obtained by models with

with different patch sizes on COCO val2017.
PatchDCT with 8 x 8 patch size obtains the best
performance.

different feature map sizes on COCO val2017.
The performance saturates with the 42 x 42 fea-
ture map.

Patch Size

AP

APy, AP, | APp | AP | AP} Feature Size | AP | APs APy, AP, | AP | AP* | AP}

4x4 37.0 | 175 393 538 | 244 | 405 | 29.8 28 x 28 37.1 | 17.8 393 534 | 245 | 40.6 | 30.0
8 x 8 372 | 183 395 541 | 245 | 40.8 | 30.1 42 x 42 37.2 | 183 395 541 | 245 | 40.8 | 30.1
16 x 16 370 | 17.6 393 535 | 244 | 40.8 | 30.0 56 x 56 370 | 174 392  53.0 | 244 | 41.0 | 30.3

Table 13: Mask AP obtained by PatchDCT with the feature map cropped from all levels and P2 only
on COCO val2017. Model with the feature map of P2 obtains higher mAP.

Feature | AP | AP5 AP,, AP, | APy | AP* | AP}
P2 372 | 183 395 541 | 245 | 40.8 | 30.1
P2-P5 | 37.1 | 182 393 533 | 244 | 40.6 | 29.8

only involve zero and m, making it ineffective to learn the DCT vectors of all patches directly. As
shown in Table 7, the performance of the method refining non-mixed regions with the DCT vector
regressor is lower than the method using a three-class classifier by 0.6% AP and 1.2% AP*. Need to
note that, AP and AP} decrease by 0.9% and 1.5% respectively, reflecting that learning to regress
non-mixed patches also affects the prediction of boundaries.

Effectiveness of the regressor. The regressor is actually a boundary attention module that generates
finer boundaries. As shown in Table 8, after removing the regressor and keeping only the classifier,
the overall AP only decreases by 0.5% , but APg and AP} decrease by 1.2% and 3.0% respectively.
The phenomenon demonstrates the importance of the regressor for generating finer boundaries.

Dimension of PatchDCT vectors We look for an appropriate patch DCT vector length to encode
each mixed patch. Results in Table 9 show that the model with 6-dimensional patch DCT vectors
obtains the best performance. As also shown in Table 1, the 6-dimensional patch DCT vector already
contains most of the ground truth information. As more elements bring only very little incremental
information, regressing these elements does not improve the prediction.

Multi-stage PatchDCT. We compare the performance of the multi-stage procedure in Table 10.
One-stage PatchDCT already provides high-quality masks, while two-stage PatchDCT further im-
proves the prediction. However, the computational cost of the mask branch has nearly doubled with
tiny improvements in the quality of masks, so we choose to use one-stage PatchDCT in our paper.
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(a) Mask-RCNN

(b) DCT-Mask

(c) PatchDCT

Figure 4: COCO example tuples from Mask-RCNN, DCT-Mask, and PatchDCT. Mask-RCNN,
DCT-Mask and PatchDCT are trained based on R50-FPN. PatchDCT provides masks with higher
quality and finer boundaries.

Size of the patch. We evaluate the influence of patch size in Table 11. We keep the resolution of
the mask and the size of the input feature map unchanged and compare the model performance with
different patch sizes. PatchDCT with 8 x 8 patches performs better than other settings.

Size of the feature map. We compare the model with different sizes of the feature map used in
PatchDCT. Table 12 illustrates that the performance saturates with the 42 x 42 feature map.

Feature map from FPN. We evaluate PatchDCT with the feature map cropped from all pyramid
levels or P2. Table 13 shows that PatchDCT benefits from the finer feature map of P2.

4.5 QUALITATIVE RESULTS

In Figure 4 we visualize some outputs of PatchDCT on COCO val2017. PatchDCT generates finer
boundaries among different instances, such as the shoulder of the person (the first column), the
contour of the kite (the third column), and the arm of the girl (the fourth column). PatchDCT
obtains masks of higher quality in comparison with Mask-RCNN and DCT-Mask.

5 CONCLUSIONS

In this work, we propose PatchDCT, a compressed vector based method towards high-quality in-
stance segmentation. In contrast to previous methods, PatchDCT refines each patch of masks re-
spectively and utilizes patch DCT vectors to compress boundaries that are full of details. By us-
ing a classifier to refine foreground and background patches, and predicting an informative low-
dimensional DCT vector for each mixed patch, PatchDCT generates a high-resolution mask with
fine boundaries. PatchDCT is designed with a simple and clean structure, which allows the method
to obtain high-quality segmentation with almost negligible cost in speed compared to Mask-RCNN
and DCT-Mask. We hope that our approach will benefit future studies in instance segmentation.
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A  MORE QUALITATIVE RESULTS

A.1 Two-STAGE DCT

We visualize some outputs of two-stage DCT and compare them with DCT-Mask to demonstrate the
disadvantages of simply combining DCT-Mask with multi-stage progress.

As shown in Figure 5, in two-stage DCT, the areas that were previously correctly predicted may be
influenced in refinement. The phenomenon further proves the difficulties in refining DCT vectors
directly.

A.2  QUALITATIVE RESULTS ON CITYSCAPES

We show some qualitative results on Cityscapes in Figure 6. In comparison with Mask-RCNN and
DCT-Mask, PatchDCT generates finer boundaries that greatly improve the quality of masks.

B MORE TECHNICAL DETAILS

We prove that all elements except the DCCs for foreground patches are zero.

It can be derived from Equation 6 that DCC is equal to the patch size m in the foreground patch
since My, xm(z,y) = 1.

m—1m—1

DCC = % DD Mysm(w,y) = m, (6)

=0 y=0

Note that for a m x m patch M, !

mXxXm

M 1.0) = 2O)C() <Z A<x,u>> <Z A(y,m) | ™
=0 y=0

(u, v) Equation 1 can be written as
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()

Figure 5: Visualization of DCT-Mask (left) and two-stage DCT (right). Areas that were correctly
predicted are influenced by the refinement.
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Figure 6: Cityscapes example tuples from Mask-RCNN, DCT-Mask, and PatchDCT. Mask-RCNN,
DCT-Mask and PatchDCT are trained based on R50-FPN. PatchDCT generates masks with finer
boundaries.

(2a+1)bw

where A(a,b) = cos =5

If w is odd,
2(m—-1—x)+ 1ur

A(m —1—z,u) = cos

2m
= CcoS (_M + U7T>
2m
= —A(z,u), ®)

If w is even and larger than zero, since from Euler’s formula

e = cosl + isind, )
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We have
m—1 m—1
(2 Du
> Alwu) =) co ix >
=0 =0
< (2:!:+1)u7r1>
1 U‘ITZ
= Re <€ 2m W) = O, (10)
1—em
Since u is even,
"™ = cos(ur) + isin(ur) = 1, (11)
We obtain
m—1
> A(z,u) =0, Vu#0, (12)
=0

Therefore for foreground patches
f ; ; - m7 7’ = 0’.] = 0’
My (6:7) = { 0, otherwise. (3)
This illustrates except the DCCs, elements of DCT vectors of foreground patches are all zero.

C LIMITATIONS AND FUTURE OUTLOOK

In the process of visualization, we observe that the model may generate masks with holes. These
problems usually occur in semantical ambiguous areas, and rarely in the center of the mask where
the semantic information is very clear. We demonstrate some typical bad cases in Figure 7. In
these cases, the model either misclassifies these patches or generates imprecise patch DCT vectors,
resulting in disconnected masks. We leave better classification and regression vectors as future work.
In addition, we also plan to carry out further verification in other more challenging areas, such as
aerial images, medical images, etc. Taking aerial 1mages as an example, this field still focuses
on the research of object detectlon ( s ; ;bic; ), especially oriented object
detection ( s ; s ), which lacks the exploration of
more precise positioning tasks ie 1nstance segmentation.
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Figure 7: Visualization of typical bad cases of our model, PatchDCT (left) and ground truth (right).
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