
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT MATTERS IN DEEP LEARNING FOR TIME SERIES
FORECASTING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models have grown increasingly popular in time series applications.
However, the large quantity of newly proposed architectures, together with often
contradictory empirical results, makes it difficult to assess which components
contribute significantly to final performance. We aim to make sense of the current
design space of deep learning architectures for time series forecasting by discussing
the design dimensions and trade-offs that can explain, often unexpected, observed
results. We discuss the necessity of grounding model design on principles for
forecasting groups of time series and how such principles can be applied to current
models. In particular, we assess how concepts such as locality and globality apply
to recent forecasting architectures. We show that accounting for these aspects can
be more relevant for achieving accurate results than adopting specific sequence
modeling layers and that simple, well-designed forecasting architectures can often
match the state of the art. We discuss how overlooked implementation details in
existing architectures (1) fundamentally change the class of the resulting forecasting
method and (2) drastically affect the observed empirical results. Our results call for
rethinking current faulty benchmarking practices and for the need to focus on the
foundational aspects of the forecasting problem when designing neural network
architectures. As a step in this direction, we also propose an auxiliary forecasting
model card, i.e., a template with a set of fields to characterize existing and new
forecasting architectures based on key design choices.

1 INTRODUCTION

Novel sequence modeling architectures are consistently improving the state-of-the-art in many
applications (Gu et al., 2022; Gu and Dao, 2023; Beck et al., 2024), such as text and natural language
processing. However, results in time series forecasting offer a much more uncertain way ahead, with
recent work questioning the effectiveness of modern deep learning approaches (Toner and Darlow,
2024; Zeng et al., 2023; Tan et al., 2024). The result is that current research is seemingly stuck in a
loop of positive results being quickly dismissed by new evidence that questions our understanding
of the components that contribute to obtaining accurate forecasts (Shao et al., 2024). Recent works
propose several architectures, e.g., based on attention (Zhou et al., 2021; Wu et al., 2021; Nie et al.,
2023; Liu et al., 2023a; Zhang and Yan, 2023; Liu et al., 2022a), and assess their performance
against state-of-the-art methods on common benchmarks. Most of these architectures are obtained
by stacking and combining different components and operators and involve many–often hidden–
implementation choices (e.g., parameter sharing and local parameters). However, the impact of such
design choices on the resulting model and its performance is often overlooked. As an example, in
recent works, a collection of synchronous time series is often considered as a single multivariate
signal. This approach can lead to misconceptions and results that are difficult to interpret. Starting
from this consideration, recent architectures stemming from Nie et al. (2023) rely on what has
been called–maybe improperly–channel-independence, i.e., on processing each channel of a time
series independently from others while sharing the same parameters. This approach has–somewhat
surprisingly–led to superior results when compared to standard multivariate models. However, when
these channels correspond to different univariate and homogeneous (related) time series (as is often
the case in commonly used benchmarks), “channel-independence” corresponds to adopting the
framework of global models, which is well understood in time series analysis (Benidis et al., 2022;
Salinas et al., 2020; Januschowski et al., 2020; Montero-Manso and Hyndman, 2021). While this

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

might sound simply an issue of naming conventions, it can provide clear explanations for observed
results (Montero-Manso and Hyndman, 2021) and unlock new designs (Wang et al., 2019; Smyl,
2020). For example, there is a large body of literature on methods that account for dependencies
among synchronous time series while keeping (part of) the model global (Cini et al., 2023; Sen et al.,
2019). As an additional example, other works have recently observed that applying attention among
channels can improve performance (Liu et al., 2023a; Zhang and Yan, 2023). However, if we consider
the different channels as a collection of correlated time series, similar attention operators have been
routinely used in spatiotemporal forecasting models (Ma et al., 2019; Grigsby et al., 2021; Marisca
et al., 2022; Liu et al., 2023b). Besides missed opportunities and insights, these aspects can also
harm the effectiveness of our benchmarking practices. Indeed, overlooked design choices can, as we
will show, lead to empirical results that are difficult to interpret and that might mislead the designer.
Moreover, as we will discuss throughout the paper, those mentioned are only a selection of the issues
that contribute to the current situation.

In this paper, we scan the design space of modern deep learning architectures for time series
forecasting and assess the impact that associated design choices have on current benchmarking
practices. In particular, we aim at understanding the state of the field by relying on well-understood
principles for forecasting groups of time series. In doing so, we examine recent architectures and
empirical results, highlighting the impact of overlooked aspects that are often considered as mere
implementation details. To frame the discussion, we structure our analysis by considering four
main dimensions: D1.) model configuration–i.e., selecting the model family (e.g., local, global,
or hybrid); D2.) preprocessing and exogenous variables–i.e., selecting exogenous variables and
setting up preprocessing and postprocessing operations; D3.) temporal processing–i.e., accounting
for temporal (i.e., intra-series) dependencies. D4.) spatial processing–i.e., accounting for spatial (i.e.,
inter-series) dependencies. While some of these dimensions are only partially orthogonal (e.g., space
and time contributions can be processed in an integrated way), we believe that analyzing how these
different aspects concur to characterize a model family is the key to understanding recent results. We
argue that, to assess meaningful improvements to the state of the art, any comparison must ensure
that design choices in any of these dimensions do not interfere with the evaluation of the proposed
component. In this context, our contributions are as follows.

• We analyze the current state of deep learning for time series forecasting by relying on principles
to forecast groups of time series to make sense of often contradictory empirical results.
• We empirically assess the impact of overlooked design choices and implementation details
in existing state-of-the-art architectures, and show that they explain a significant portion of the
observed performance improvements.
• We show that a streamlined architecture built on well-understood design principles can match
the performance of the state-of-the-art.
• To move forward, we introduce a predictor card template–complementary to existing generic
model cards (Mitchell et al., 2019)–that can be used to characterize existing and new forecasting
architectures.

The current trends in the field have led to focusing on finding a one-size-fits-all architecture with
state-of-the-art performance in benchmarks. This prompted the adoption of increasingly more
complex architectures that combine many poorly understood components. Our paper, by showing the
limitations of common benchmarking practices, is aimed at stimulating discussion on our current
approach to conducting machine learning for time series forecasting. We believe that this discussion
is an important step for the maturity of the field and to ensure future progress.

2 RELATED WORK AND CONTEXT

The history of neural networks in forecasting applications is long, and has often been characterized
by skepticism (Zhang et al., 1998). However, the forecasting community is reaching consensus
on the effectiveness of deep learning methods in settings where a single neural network can be
trained on (large) collections of related time series (Hewamalage et al., 2021; Benidis et al., 2022).
Models based on this approach have been called global in contrast with local models, which are
instead trained separately on each time series (Montero-Manso and Hyndman, 2021; Januschowski
et al., 2020; Benidis et al., 2022). Global models and hybrid global-local variants thereof have won

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

forecasting competitions (Smyl, 2020) and been adopted by the industry (Salinas et al., 2020; Kunz
et al., 2023). With the increase in popularity of new sequence modeling architectures (Vaswani et al.,
2017; Gu et al., 2022; Gu and Dao, 2023; Orvieto et al., 2023), the machine learning community
has started investigating how to adapt such architectures to the forecasting problem. In particular,
the Informer (Zhou et al., 2021) architecture is among the first of a line of works aiming at tailor-
ing Transformers (Vaswani et al., 2017) to long-range time series forecasting. Together with the
architecture, Zhou et al. (2021) also introduced a popular benchmark where collections of time
series are considered as a single multivariate sequence. Several subsequent works follow, then, the
same approach (Wu et al., 2021; Liu et al., 2022a; Wu et al., 2023; Liu et al., 2022b; Zhou et al.,
2022). Zeng et al. (2023) and Toner and Darlow (2024) show that most of these architectures can be
outperformed in such benchmarks by simple linear models. Nie et al. (2023), then, showed that–in
the same settings–superior results could be achieved by processing each channel independently with
shared parameters. For many of these benchmarks, this essentially corresponds to the global approach;
indeed, a large part of the associated datasets consists of collections of related time series, even
though, as already mentioned, they have often been seen as a single multivariate sequence. Follow-up
works (Liu et al., 2023a; Zhang and Yan, 2023) then reintroduced components to model dependencies
across multiple time series while keeping the core of the model global. Conflating the problem of
forecasting any group of time series into forecasting a single multivariate sequence, as we will see,
can be problematic and lead to unclear designs (Sec. 4.1). Moreover, current popular architectures
stack several components and rely on many hidden implementation choices, which make a direct
comparison of introduced sequence modeling operators challenging.

The need to clarify inconsistencies in benchmarking practices has pushed researchers to focus on
developing new benchmarks and evaluation pipelines for forecasting (Shao et al., 2024; Wang et al.,
2024a; Qiu et al., 2024). Conversely, in our work, we aim to assess whether the performance gains of
the recently proposed method come from the use of specific operators or lie in other implementation
details. Said differently, we aim to assess whether current benchmarking practices are focusing on
what really matters in deep learning for time series forecasting. Similar analysis has been done in
other subfields of machine learning, such as reinforcement learning (Raichuk et al., 2021), and in the
context of graph neural networks (GNNs) (Errica et al., 2019; Dwivedi et al., 2023).

3 PRELIMINARIES

3.1 PROBLEM SETTING

We consider a collection of N time series D = {x1
0:L1

, . . . ,xN
0:LN

}, where xi
0:Li

∈ RLi×dx denotes
the sequence of Li dx-dimensional observations associated with the i-th time series. When present,
exogenous variables are denoted as ui

0:Li
∈ RLi×du . A binary mask, mi

0:Li
∈ {0, 1}Li×dx , may be

introduced to model missing or invalid observations. Time series in the set can come from different
domains and be generated by different stochastic processes. In such a setting, the mask mi

0:Li
can

be used to account for heterogeneous time series by modeling missing channels. If time series are
synchronous, we use capital letters to denote values across the collection, e.g., Xt ∈ RN×dx refers to
the stacked observations at time step t. Time series in the collection might be correlated (in a broad
sense), i.e., uncertainty on future values of each time series might be reduced by taking into account
observations from other time series.

Forecasting groups of time series We consider the problem of multi-step ahead time series
forecasting, i.e., the problem of predicting the next H ≥ 1 observations xi

t:t+H for the i-th time
series, given a window W ≥ 1 of past observations xi

t−W :t from the same time series. As the
stochastic process generating data pi is unknown, the objective is to approximate it with a model pθ
with learnable parameters θ such that

pθ(x
i
t:t+H | xi

t−W :t,u
i
t−W :t,u

i
t:t+H) ≈ pi(xi

t:t+H | xi
<t,u

i
<t,u

i
t:t+H) ∀i = 1, . . . , N (1)

where xi
<t denotes all past observations of the i-th series preceding timestep t. We focus on

the problem of obtaining point forecasts x̂t:t+H of, e.g., the expected value such as x̂i
t:t+H ≈

Ep

[
xi
t:t+H

]
by using a parametric model F(·;θ). Predictions are obtained by fitting parameters

θ of the chosen model family. As we will discuss in Sec. 4.1, we say that a model is global if its
parameters are shared across all the time series. In such a case, the model is trained on the entire set of

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

time series. Conversely, a model is local if its parameters are specific to a single time series. If relying
on local models, forecasting a collection of time series results in fitting a separate model for each
sequence in the set. Choosing between a local and global approach (or a hybrid thereof) depends on
the task at hand, data availability, and model complexity. As mentioned in Sec. 1, due to advantages
in sample efficiency, global models are a particularly appealing choice when relying on deep learning
architectures (Hewamalage et al., 2021; Benidis et al., 2022). Additionally, global models can be
employed inductively, e.g., in a cold start scenario, whereas local models are transductive. We will
expand this discussion in Sec. 4.1.

3.2 BASELINES

Through the paper, we assess the impact of different design choices with respect to a set of recent
state-of-the-art architectures for long-range time series forecasting, which we compare against
simpler, streamlined baselines (see Sec. 3.2). We consider representative models that have shaped the
development of recent time series forecasting methods and that demonstrate competitive performance
on benchmarks. We include: 1. PatchTST (Nie et al., 2023), the widely used architecture that–as
already mentioned–introduced “channel independence” and patching-based Transformer layers. In
particular, PatchTST relies on splitting the input into fixed-size patches before applying attention;
2. DLinear (Zeng et al., 2023), which combines a linear model with a time series decomposition step;
3. TimeMixer (Wang et al., 2024b), which is an multilayer perceptron (MLP)-based architecture
processing the input at different resolutions; 4. Linear, a linear autoregressive model trained with L2
regularization and ordinary least squares (OLS), following Toner and Darlow (2024), implemented
in both its global and local variants. We also consider models that incorporate spatial processing:
5. iTransformer (Liu et al., 2023a), which processes the temporal dynamics with a feedforward layer
and then uses standard attention among channels; 6. ModernTCN (Donghao and Xue, 2024) which
employs convolutional layers for spatio-temporal representation; 7. Crossformer (Zhang and Yan,
2023), which uses patching and spatiotemporal attention operators to model dependencies among
different channels of the input time series. To ensure a fair comparison, we evaluate all the models
in the same benchmarking setup, under unified settings, and with access to the same exogenous
variables. We rely on the available open-source implementations of each approach and adapt them to
our evaluation procedure and standardized inputs. The code for all the experiments, based on the
Torch Spatiotemporal library (Cini and Marisca, 2022), will be open-sourced upon publication. For a
more detailed description of each baseline, we refer the reader to App. A.

Reference architecture In our experiments, we compare state-of-the-art models against a reference
streamlined architecture specifically designed to assess the impact of different design choices w.r.t.
the target design dimensions. Note that the purpose here is not to propose a new architecture to
challenge the state of the art. Conversely, reference architectures provide baselines, introduced to
facilitate a fair and consistent comparison and to gauge the impact of different design choices more
directly. For the temporal module, we consider several alternatives: a MLP with residual connections,
a temporal convolutional network (TCN) with causal dilated filters (Bai et al., 2018), a gated recurrent
neural network (RNN) (Chung et al., 2014), a stack of Transform layers (Vaswani et al., 2017),
and pyramidal attention operators akin to the Pyraformer architecture (Liu et al., 2022a). In the
tables, we denote these reference models as MLP, TCN, RNN, Transf., Pyraf., respectively. For
the TCN, RNN and attention-based models, we use a 1-D convolutional layer with a large stride as
an additional preprocessing step to implement an operator akin to patching (Nie et al., 2023) and
facilitate the processing at the subsequent layers. For the spatial module, we use a simple spatial
attention layer (denoted as sp. attn.). For additional implementation details, please refer to App. B.

3.3 BENCHMARKS

As a benchmark, we use four real-world datasets from different domains that are widely used in the
context of long-range time series forecasting (Wang et al., 2024b; Zhang and Yan, 2023; Liu et al.,
2023a; Zeng et al., 2023; Nie et al., 2023). In particular: Electricity collects hourly electricity usage
for 321 customers (Wu et al., 2021); Weather includes 21 meteorological variables collected every 10
minutes from Germany (Wu et al., 2021); Traffic contains hourly road occupancy data collected from
various 862 sensors on San Francisco’s highways (Wu et al., 2021); Solar contains 10-minute records
of solar power generation from 137 photovoltaic plants (Lai et al., 2018). We use a 70%/10%/20%

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

split for the training, validation, and testing, following previous works (Wang et al., 2024b). Metrics
are reported on scaled data for consistency with published benchmarks. All the numerical results
are averaged over three independent runs. We use a window size of 96 for all experiments, while
in Tab. 3 we use a longer window size of 336 (except for Solar). For further details, refer to App. C.

4 WHAT MATTERS IN DEEP LEARNING FOR TIME SERIES FORECASTING?

In this section, we go through four key design dimensions that characterize forecasting architectures
and have a significant impact on overall performance. For each design dimension, we assess how
different choices have contributed to making the current progress in the field uncertain, leading to
often unexpected empirical results.

D1. Model configuration This refers to the type of forecasting model being employed. We distin-
guish between local models (each trained on individual time series), global models (trained on
multiple series jointly with the same shared weights), and hybrid approaches that combine elements
of both paradigms.

D2. Preprocessing and exogenous variables This dimension refers to the transformations applied
to the data either before or after being used as input to a predictor, and to the exogenous variables
used as additional inputs to the forecasting architecture.

D3. Temporal processing Temporal processing refers to the operators used to model temporal
dependencies within an architecture.

D4. Spatial processing This dimension involves mechanisms used to model inter-series dependen-
cies when multiple time series are available as inputs.

We do not aim to provide an exhaustive discussion of each dimension, but instead focus on how they
have been addressed in recent research and highlight their impact on performance.

4.1 DESIGN DIMENSION 1: MODEL CONFIGURATION

As previously discussed, the model configuration–global, local, or hybrid –is a fundamental aspect in
model design, since it radically changes the type of model being used. Yet, this aspect is often left
unspecified or dealt with as an implementation detail. However, choosing between a local, global,
or hybrid approach has several implications that should be properly discussed (Montero-Manso and
Hyndman, 2021; Januschowski et al., 2020; Salinas et al., 2020). For instance, it is often common to
model any collection of synchronous time series as a single highly-dimensional multivariate time
series and hence consider models such as

X̂t:t+H = F (Xt−W :t, . . . ;θ) . (2)
However, this approach can scale poorly with the input’s dimensionality. Indeed, in practice, several
recent works, e.g., (Nie et al., 2023; Liu et al., 2023a) have observed that processing disjointly each
channel with the same parameters empirically results in better performance. As already mentioned,
this is equivalent to adopting the well-known global approach, i.e., to processing related time series as

x̂i
t:t+H = F

(
xi
t−W :t, . . . ;θ

)
∀i = 1, . . . , N. (3)

Moreover–although not always explicitly stated–several architectures, e.g., (Wang et al., 2024b;
Zhang and Yan, 2023; Donghao and Xue, 2024), adopt the approach in Eq. 3, but introduce some
time series specific parameters ϕi, resulting in models

x̂i
t:t+H = F

(
xi
t−W :t, . . . ;θ,ϕ

i
)

∀i = 1, . . . , N. (4)
which effectively consist of hybrid global-local models (Smyl, 2020; Cini et al., 2023; Benidis
et al., 2022). The design choices that, in practice, lead to models as in Eq. 4 are often dealt with
as implementation details. For instance, Wang et al. (2024b) uses learnable local parameters in the
normalization module; Salinas et al. (2020)–while relying on an otherwise global model–uses a
different one-hot-encoding vector associated with each processed time series, effectively introducing
a vector of learnable parameters specific to that input sequence. Finally, an opposite trend seen in
other approaches–often relying on simple (linear) models (Zeng et al., 2023)–design models in Eq. 2
by using different parameters for each time series

x̂i
t:t+H = F

(
xi
t−W :t, . . . ;θ

i
)

∀i = 1, . . . , N, (5)
hence yielding to local models.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison (MSE) of models
with local embeddings. Best average re-
sults are in bold.

D Model Hybrid Global

E
le

ct
r. Transf. 0.136±.000 0.151±.000

Crossformer 0.139±.002 0.143±.001

TimeMixer 0.151±.000 0.180±.001

W
ea

th
er Transf. 0.153±.001 0.177±.002

Crossformer 0.155±.003 0.159±.002

TimeMixer 0.164±.002 0.178±.001

Tr
af

fic Transf. 0.417±.009 0.392±.000

Crossformer 0.548±.024 0.507±.003

TimeMixer 0.464±.001 0.463±.001

So
la

r Transf. 0.196±.000 0.205±.001

Crossformer 0.180±.009 0.180±.011

TimeMixer 0.366±.017 0.367±.017

Clearly, models in Equations 2–5 correspond to funda-
mentally different approaches that can result in markedly
different performance. Failing to recognize the impact
of the associated design choices can be problematic for
several reasons. First, the use of shared versus local
parameters may have very different effects depending
on whether the time series are homogeneous (e.g., data
coming from identical sensors at different locations) or
heterogeneous (e.g., measurements of different physi-
cal quantities). Moreover, when dealing with multiple
multivariate time series, a multivariate global model is
often more appropriate than a univariate one that pro-
cesses channels independently. Second, as we will see,
comparing the results of models belonging to different
typologies without stating it explicitly can make it dif-
ficult to interpret performance differences. In Tab. 1, we
assess the performance–in terms of mean square error
(MSE)–of different architectures from the literature on
a set of benchmarks (see Sec. 3.3). As in all our exper-
iments, we focus on the task of long-range time series
forecasting, with a prediction horizon of 96 time steps. In particular, we compare the reference
Transformer and two architectures that include some form of local parameters by assessing their
performance when such components are removed. As one would expect, using local parameters can
drastically change the observed results. Mixing results from the two columns without accounting for
the impact of these design choices would clearly lead to misleading conclusions. Therefore, when,
for example, aiming to identify the most effective sequence modeling operators, experiments should
be designed to factor out the impact of model configuration.

4.2 DESIGN DIMENSION 2: PREPROCESSING AND EXOGENOUS VARIABLES

Table 2: Comparison (MSE) of models
with and without covariates. Best average
results are in bold
D Model w/ exog. w/out exog.

E
le

ct
r. Transf. 0.136±.000 0.155±.001

PatchTST 0.128±.000 0.134±.000

DLinear 0.193±.000 0.195±.000

W
ea

th
er Transf. 0.153±.001 0.161±.000

PatchTST 0.174±.000 0.180±.002

DLinear 0.199±.005 0.196±.001

Tr
af

fic Transf. 0.417±.009 0.479±.006

PatchTST 0.355±.000 0.383±.001

DLinear 0.609±.000 0.648±.000

So
la

r Transf. 0.196±.000 0.206±.003

PatchTST 0.196±.001 0.225±.003

DLinear 0.246±.001 0.285±.001

Exogenous variables and preprocessing (e.g., scaling,
detrending, and methods accounting for seasonality) are
ingredients that can have a significant impact on final
performance. In this section, we discuss how exoge-
nous variables and preprocessing methods have been
included and accounted for inconsistently across pop-
ular baselines and benchmarks. Similar to model con-
figuration, these benchmarking practices further pre-
vent a clear understanding of the reasons behind the
observed performances. This issue is further exacer-
bated by the growing trend of comparing newly pro-
posed architectures directly against published results of
existing methods, without reproducing in this exercise
those results. It follows that differences in preprocess-
ing routines become increasingly difficult to isolate and
account for. To investigate the extent of this problem in
recent benchmarks, we focus specifically on the use of
exogenous variables. For instance, PatchTST, DLinear,
and Crossformer do not use covariates by default, while
TimeMixer and iTransformer do. We then evaluate the
impact of adding the same covariates (calendar features, in this case) to some of these baselines and
report the outcome of this experiment in Tab. 2. Results show the impact of including covariates on
the performance of models such as DLinear and PatchTST, which do not incorporate them in their
original implementations. Their effect is more pronounced on some benchmarks while less evident in
others; this may be due to the amount of additional useful information that can be extracted from
the available exogenous variables in the different scenarios. These results pinpoint another source of
uncertainty in interpreting recent benchmarking results; preprocessing steps should be standardized
across baselines as to ensure that all models have access to the same inputs.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Forecasting results (MSE and MAE) for a horizon of 96 steps for models not including
spatial processing. Best average results are in red, second best are blue.

Model
Electricity Weather Traffic Solar

MSE MAE MSE MAE MSE MAE MSE MAE
Linear Global 0.140 0.237 0.174 0.234 0.410 0.282 0.222 0.291
Linear Local 0.134 0.230 0.144 0.209 0.426 0.298 0.223 0.295

MLP 0.129±.000 0.225±.000 0.148±.001 0.198±.000 0.376±.000 0.253±.001 0.194±.003 0.239±.002

RNN 0.147±.001 0.247±.001 0.149±.001 0.203±.001 0.390±.007 0.275±.002 0.200±.003 0.246±.004

TCN 0.130±.000 0.224±.000 0.148±.000 0.200±.001 0.364±.003 0.253±.002 0.193±.004 0.243±.005

Transf. 0.129±.001 0.222±.001 0.149±.001 0.203±.002 0.362±.003 0.249±.002 0.203±.006 0.245±.002

Pyraf. 0.129±.001 0.224±.001 0.148±.001 0.199±.001 0.365±.002 0.251±.003 0.189±.003 0.236±.004

TimeMixer 0.129±.001 0.224±.000 0.147±.001 0.197±.000 0.373±.002 0.271±.003 0.199±.001 0.245±.000

PatchTST 0.125±.000 0.218±.000 0.148±.001 0.195±.001 0.345±.000 0.234±.000 0.197±.001 0.244±.004

DLinear 0.140±.000 0.237±.000 0.173±.000 0.232±.001 0.407±.000 0.283±.000 0.246±.001 0.331±.000

4.3 DESIGN DIMENSION 3: TEMPORAL PROCESSING

In this section, we assess whether streamlined models, properly configured as hybrid global-local
models with exogenous inputs and local embeddings, can achieve performance comparable to that
of recent state-of-the-art models. This design dimension, concerning sequence modeling operators,
has been the main focus of recent research. However, this line of work has produced contrasting
results, leading to considerable confusion about which components effectively contribute to per-
formance (Toner and Darlow, 2024; Zeng et al., 2023; Tan et al., 2024). We focus on methods
that only process inputs along the temporal dimension, while approaches that include components
accounting for spatial dependencies are discussed in Sec. 4.4. For this analysis, we use the different
variants of the reference architecture introduced in Sec. 3.2, and compare them against three popular
and well-established baselines, namely DLinear, PatchTST, and TimeMixer, by using standardized
inputs (including covariates), and hyperparameter tuning. We remark that the goal is not to determine
which architecture performs best, but rather to assess the extent to which different architectures
influence the observed results. As shown in Tab. 3, no single model consistently outperforms the oth-
ers. Moreover, reference architectures that rely on standard and simple operators obtain competitive
performance against the state of the art across all the considered scenarios. These results challenge
the effectiveness of current benchmarking practices in identifying the components responsible for
performance improvements and in measuring the contribution brought by the different sequence
modeling operators. Additionally, results show that, in many scenarios, choosing a specific sequence
modeling operator is not the critical design choice. Analogous observations are confirmed in Sec. 4.4.

Note that in all experiments, we process data from the Weather dataset as if it were a collection
of univariate time series, to show the effect of handling it as is commonly done in the literature.
Interestingly, one of the best-performing models on Weather is the local OLS linear model. This is
not too surprising, since Weather is actually a multivariate time series with heterogeneous channels,
and among the models in Tab. 3, that linear model is the only one that explicitly models each time
series as heterogeneous. Although results do not provide a clear ordering of methods, we did observe
that patching works well across both reference architectures and state-of-the-art baselines, providing
a good approach for enabling the processing of long input windows. Hierarchical attention-based
approaches (such as Pyraformer) also showed to be a viable option. Finally, we report in Fig. 1 an
assessment of the computational scalability of the different architectures, in terms of time needed to
process each batch and GPU memory usage. The computational cost is visualized in relation to the
forecasting accuracy. Results show that MLP, TCN, and PatchTST achieve a good trade-off between
MSE performance, GPU memory usage, and training time. We encourage conducting analysis like
this to gain insight into the most suitable models for given benchmarks.

4.4 DESIGN DIMENSION 4: SPATIAL PROCESSING

We call spatial the dimension that spans multiple time series, which may correspond to different
spatial locations when considering physical sensors. This section complements the discussion started
in Sec. 4.3 by considering models that account for inter-series dependencies by relying on different

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 1: MSE versus mean batch time during training on the Electricity dataset. Circle size indicates
memory consumption.

Table 4: Forecasting results (MSE) for a horizon of 96 steps for models including spatial processing.
Best average results are in red, second best are blue.

Model Electricity Weather Traffic Solar
MLP + sp. attn. 0.140±.001 0.157±.000 0.435±.006 0.201±.009

Pyraf. + sp. attn. 0.139±.001 0.157±.002 0.389±.002 0.188±.002

iTransformer 0.148±.000 0.171±.001 0.393±.001 0.208±.003

Crosformer 0.136±.000 0.152±.003 0.527±.002 0.184±.008

ModernTCN 0.141±.000 0.154±.001 0.445±.001 0.190±.001

operators. In particular, we compare the reference architecture, where dependencies are modeled with
a standard spatial Transformer, against three state-of-the-art baselines: iTransformer, Crossformer,
and ModernTCN. For the reference architecture, we use an MLP or pyramidal attention for temporal
processing. Tab. 4 reports the results of the comparison where we reduced the length of the input
window associated with each time series to keep computational costs manageable. Analogously
to Sec. 4.3, simulations show that the simple, streamlined architectures perform comparably to
the state of the art, highlighting once again the limitations of current benchmarking practices.

Table 5: Results (MSE) for iTrans-
former with or without space attention.
Best average results are in bold.

iTransformer
Dataset Space att. Feedforward
Electricity 0.148±.000 0.149±.001

Weather 0.171±.001 0.171±.000

Traffic 0.393±.001 0.390±.001

Solar 0.208±.003 0.194±.001

The results in Tab. 3 and Tab. 4, combined with the observa-
tion that spatial dependencies might provide limited benefits
in long-range forecasting, have led us to doubt the effec-
tiveness of spatial attention operators in this context. We
then ran an additional experiment by replacing the spatial
attention layer in iTransformer with a simple MLP, effec-
tively removing all the components modeling spatial de-
pendencies in the architecture. Results in Tab. 5 indeed
show that in this context, removing spatial attention entirely
led to better or similar performance in all the considered
datasets. These observations further highlight the need
for more thorough assessments of how each component
contributes to the observed results. Finally, Fig. 1 reports performance in relation to computa-
tional cost, which in this case is particularly critical as processing data along the spatial dimension
can have a significant impact on computational scalability.

5 DISCUSSION

The results in Sec. 4.1–4.4 question whether we have been successful in measuring the advances
of deep learning architectures for time series forecasting and shed light on several faults in current
benchmarking practices. We showed that overlooked design choices can have a significant impact
and that simple, well-designed architectures can match the state of the art on our standard bench-
marks (see Tab. 3 and 4). Our analysis calls for reaching a better understanding of the architecture’s
design space, showing how misconceptions in model specification can trigger misleading conclu-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

sions (as shown, e.g., in Tab. 1). The additional ablation studies (e.g., in Tab. 2 and 5) corroborate
these findings that are further substantiated by plenty of additional empirical results in the appendix of
the paper. However, our objective is not to be dismissive of the progress of the field–which is tangible
in many applications–but rather to ensure that we can move forward by focusing on answering
foundational questions and fostering awareness on the existing flaws in our practices. Revisiting our
benchmarking pipeline will be a crucial step in this direction. A first step in this direction would
be the introduction of benchmarks specifically designed to isolate distinct dimensions, possibly by
relying on synthetic datasets. Moreover, model cards (Mitchell et al., 2019) can be an effective tool,
providing a simple and practical way to summarize a model’s main characteristics and to facilitate
model comparison. Below, we propose a template that can be used in conjunction with existing model
cards to capture relevant aspects of the design dimensions discussed in the paper, and we provide
an example of its use in App. D. We believe that by recalibrating our evaluation tools on reliably
measuring actual progress, the shift toward answering more foundational methodological questions
would happen as a natural consequence.

Forecasting model card
• Window length
• Whether the model is transductive or inductive, and can be used in a cold start scenario
• How to mask missing observations and/or if imputation is needed

D1. Model configuration
• Whether the model is global, local, or hybrid
• If the model is hybrid, which parameters are shared across the time series and which are not

D2. Preprocessing and exogenous variables
• The type of scaling or other transformation applied at training and inference time
• Temporal covariates, lagged variables, or other types of exogenous variables are employed

D3. Temporal processing
• Modules and operators used to encode observations along the temporal axis
• Time and space complexity w.r.t. the lenght of the time series being processed

D4. Spatial processing
If spatial dependencies are accounted for:

• Modules used to model spatial dynamics and whether a graph structure is employed
• Time and space complexity w.r.t. the number of the time series being processed

6 CONCLUSION

We investigated the effectiveness of current benchmarks in measuring progress in the field and the
impact of design choices on forecasting performance. We showed, by analyzing points of failure in
our evaluation procedures, that our current practices might produce misleading results. With this
paper, we pinpointed several of the sources of this uncertainty and aimed to foster a discussion to
ensure that the field can move forward and address its current limitations. Indeed, our analysis also
shows that appropriate design choices do have an impact on performance and can explain seemingly
contradictory empirical results. We believe that the results and the analysis presented in this paper
are an important step toward focusing on what matters in deep learning for time series forecasting.

Limitations In this work, we focused on a specific set of dimensions in the design space of
forecasting models that have had a strong impact on the benchmarking results of recent studies.
Clearly, this analysis can be extended to other aspects of the design space. For example, the
discussion can be expanded to include probabilistic forecasting and the choice of metrics to quantify
forecasting accuracy. Additionally, future work could explore similar issues in short-term forecasting
benchmarks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547–107603,
2024.

William Toner and Luke Nicholas Darlow. An analysis of linear time series forecasting models. In
International Conference on Machine Learning, pages 48404–48427. PMLR, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121–11128, 2023.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=DV15UbHCY1.

Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Tao Sun, Guangyin
Jin, Xin Cao, et al. Exploring progress in multivariate time series forecasting: Comprehensive
benchmarking and heterogeneity analysis. IEEE Transactions on Knowledge and Data Engineering,
2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115, 2021.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023a.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=vSVLM2j9eie.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling
and forecasting. In International Conference on Learning Representations, 2022a. URL
https://openreview.net/forum?id=0EXmFzUn5I.

Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang Wang, Danielle
Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella,
François-Xavier Aubet, Laurent Callot, and Tim Januschowski. Deep learning for time series
forecasting: Tutorial and literature survey. ACM Comput. Surv., 55(6), dec 2022. ISSN 0360-0300.
doi: 10.1145/3533382. URL https://doi.org/10.1145/3533382.

10

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=DV15UbHCY1
https://openreview.net/forum?id=DV15UbHCY1
https://openreview.net/forum?id=vSVLM2j9eie
https://openreview.net/forum?id=0EXmFzUn5I
https://doi.org/10.1145/3533382


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin Flunkert, Michael Bohlke-
Schneider, and Laurent Callot. Criteria for classifying forecasting methods. International Journal
of Forecasting, 36(1):167–177, 2020.

Pablo Montero-Manso and Rob J Hyndman. Principles and algorithms for forecasting groups of time
series: Locality and globality. International Journal of Forecasting, 37(4):1632–1653, 2021.

Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim Januschowski.
Deep factors for forecasting. In International conference on machine learning, pages 6607–6617.
PMLR, 2019.

Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time
series forecasting. International journal of forecasting, 36(1):75–85, 2020.

Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming local effects in graph-based
spatiotemporal forecasting. Advances in Neural Information Processing Systems, 36:55375–55393,
2023.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing
systems, 32, 2019.

Jiawei Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, Anthony Vetro, and Shih-Fu Chang. Cdsa:
cross-dimensional self-attention for multivariate, geo-tagged time series imputation. arXiv preprint
arXiv:1905.09904, 2019.

Jake Grigsby, Zhe Wang, Nam Nguyen, and Yanjun Qi. Long-range transformers for dynamic
spatiotemporal forecasting. arXiv preprint arXiv:2109.12218, 2021.

Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to Reconstruct Missing Data from Spa-
tiotemporal Graphs with Sparse Observations. In Advances in Neural Information Processing
Systems, 2022.

Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan
Song. Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting. In
Proceedings of the 32nd ACM international conference on information and knowledge management,
pages 4125–4129, 2023b.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting. In
Proceedings of the conference on fairness, accountability, and transparency, pages 220–229, 2019.

Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artificial neural networks::
The state of the art. International journal of forecasting, 14(1):35–62, 1998.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388–427, 2021.

Manuel Kunz, Stefan Birr, Mones Raslan, Lei Ma, and Tim Januschowski. Deep learning based
forecasting: a case study from the online fashion industry. In Forecasting with artificial intelligence:
theory and applications, pages 279–311. Springer, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pages 26670–26698. PMLR, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in neural information processing systems, 35:
9881–9893, 2022b.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning (ICML 2022), 2022.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. 2024a.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair benchmarking
of time series forecasting methods. CoRR, 2024.

Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, L’eonard Hussenot,
Matthieu Geist, Olivier Pietquin, Marcin Michalski, and Sylvain Gelly. What matters for on-policy
deep actor-critic methods? a large-scale study. In International Conference on Learning Represen-
tations, 2021. URL https://api.semanticscholar.org/CorpusID:233340556.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations (ICLR), 2024b.

Luo Donghao and Wang Xue. ModernTCN: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=vpJMJerXHU.

Andrea Cini and Ivan Marisca. Torch Spatiotemporal, 3 2022. URL https://github.com/
TorchSpatiotemporal/tsl.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pages 95–104, 2018.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=cGDAkQo1C0p.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009. ISBN 1441412697.

12

https://api.semanticscholar.org/CorpusID:233340556
https://openreview.net/forum?id=vpJMJerXHU
https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:
//github.com/PyTorchLightning/pytorch-lightning.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.
URL https://github.com/facebookresearch/hydra.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Matthias Fey, Jinu Sunil, Akihiro Nitta, Rishi Puri, Manan Shah, Blaž Stojanovič, Ramona Bendias,
Barghi Alexandria, Vid Kocijan, Zecheng Zhang, Xinwei He, Jan E. Lenssen, and Jure Leskovec.
PyG 2.0: Scalable learning on real world graphs. In Temporal Graph Learning Workshop @ KDD,
2025.

APPENDIX

A BASELINES

Table 6: Description for the baseline models

Model Model configuration Temporal processing Spatial processing

Dlinear Global Linear layers Not modeled

PatchTST Global Temporal convolution followed by
temporal attention over the patches

Not modeled

TimeMixer Hybrid Feedforward networks applied to
the trend and seasonal components,
downsampled at different scales

Not modeled

Crossformer Hybrid Temporal convolution followed by
attention applied over the patches,
with a hierarchical structure con-
structed with linear layers

Spatial attention applied
among patches of different
time series

iTransformer Global Feedforward layers Spatial attention applied
among different time series

ModernTCN Hybrid Depth-wise convolutions Convolution applied across
time series

Linear global/local Global/local Linear autoregression Not modeled

Below, we provide a brief description of each baseline as employed in our experiments on the
considered benchmarks. Furthermore, we summarize them in Tab. 6 using three fields corresponding
to the design dimensions introduced in Sec. 4, excluding the preprocessing and exogenous variables
dimension, since the considerable differences among the methods make it less informative.

13

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/facebookresearch/hydra


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Dlinear (Zeng et al., 2023) decomposes the input into seasonal and trend components using
a moving average and processes them with linear layers. The hyperparameters determine its
local-global nature. In the table, we report it as global because, in our experiments, it was
used in this configuration. We follow the same convention for PatchTST and TimeMixer.

• PatchTST (Nie et al., 2023) has strongly influenced subsequent works by employing a global
Transformer, in contrast to earlier local multivariate approaches that treated the group of
input time series as a single multivariate series. PatchTST segments the time series and
generates corresponding embeddings using an operation analogous to temporal convolution.
Then, it applies attention over these segments, referred to as patches. It does not model
spatial relations.

• TimeMixer (Wang et al., 2024b) is a fully MLP-based architecture that downsamples the
input at different scales, decomposes it into trend and seasonal components, and employs
feedforward layers to model temporal dependencies.

• Crossformer (Zhang and Yan, 2023) employs an input encoding with segmentation analogous
to that used in PatchTST. The model is a hybrid global-local model, as it includes learnable
position embeddings for each time series in the set. In addition to temporal attention, it
captures spatial dependencies through attention over the spatial dimension using a routing
mechanism. Furthermore, it adopts a hierarchical encoder-decoder structure.

• iTransformer (Liu et al., 2023a) uses a feedforward approach to encode temporal dynamics
and spatial attention to model spatial dependencies. This method has been described as
applying attention to the inverted dimension, i.e., the spatial dimension. The model is global.

• ModernTCN (Donghao and Xue, 2024) uses depth-wise convolutions to encode temporal
information, with an encoding similar to that performed in PatchTST, and then applies
point-wise convolutions to process the feature and spatial dimensions separately.

• Linear Toner and Darlow (2024) is linear autoregressive models trained with L2 regulariza-
tion and OLS. The local variant employs different weights for each series, while the global
variant employs the same weights for all the series in the set.

B REFERENCE ARCHITECTURE STRUCTURE

The reference architecture, as schematized in Fig. 2, consists of a preprocessing module, followed by
the processing of the temporal and spatial dynamics, and finally a postprocessing module. Its modular
structure facilitates understanding of the architecture and promotes fair comparisons, as it allows
each module to be changed individually. In our experiments, we kept most modules fixed, modifying
only the temporal and spatial modules for the experiments reported in Tables 3 and 13, respectively,
and occasionally the feature encoding module. Here, we provide a more detailed description than the
one given in Sec. 3.2.

Preprocessing module The preprocessing module begins with RevInv (Kim et al., 2022) normaliza-
tion. The feature encoding module then processes the input and covariates through non-linear layers
and returns their sum. Alternatively, it can perform temporal convolution to generate an encoding
similar to that in (Nie et al., 2023). Finally, local embeddings are concatenated with the resulting
encoding.

Processing module The processing module consists of temporal processing followed by spatial
processing. In a more general architecture, these components could be interleaved. However, for
simplicity, they are treated separately in our implementation of the reference architecture.

Postprocessing module The postprocessing module consists of a linear decoder that maps the
hidden representations to predictions for the horizon. Finally, the predictions are de-normalized using
the RevInv module.

C EMPIRICAL SETUP AND ADDITIONAL EXPERIMENTAL RESULTS

Our code is implemented in Python (Van Rossum and Drake, 2009), with the use of the follow-
ing libraries: PyTorch (Paszke et al., 2019); PyTorch Geometric (Fey and Lenssen, 2019); Torch

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 2: Block diagram of the reference architecture

Spatiotemporal (Cini and Marisca, 2022); Scikit-learn (Pedregosa et al., 2011); PyTorch Light-
ning (Falcon and The PyTorch Lightning team, 2019); Hydra (Yadan, 2019); Numpy (Harris et al.,
2020). Below, we provide further details on the experiments conducted in Sec. 4 and report complete
tables for both the MSE and mean absolute error (MAE) test metrics. Moreover, we provide additional
information on the datasets in Tab. 7.

Table 7: Information on the datasets.

Dataset Time series Steps Frequency Domain
Weather 21 52695 10min Weather

Solar-Energy 137 52559 10min Energy

ECL 321 26303 Hourly Electricity

Traffic 862 17543 Hourly Transportation

Hyperparameter tuning For each experiment, we set a fixed batch size for each dataset. The
hidden size is tuned between 32 and 256 for all datasets, with the addition of 16 for the Weather
dataset. In Tab. 3, 12, 13, we used hyperparameters corresponding to the best configuration found
during tuning. For Tab. 10, 11, Fig. 3, and 4, we used the same hyperparameters obtained from the
tuning performed for Tab. 3, 13. Instead, in Tab. 8 and 9, we used fixed hyperparameters, identical
for both sides of the comparison, without any tuning. The window size was set to 336 in Tab. 3, 10,
and Fig. 3, except for the Solar dataset, for which it was set to 96. For the other tables, the window
size was set to 96. The horizon is always set to 96, except in Tab. 10 and 11, where performance was
evaluated across increasing horizons.

Empirical setup for D1: model configuration In Tab. 8, the global TimeMixer model is obtained
by removing the learnable parameters from the normalization module, while the global versions
of both Crossformer and the reference architecture (Transf.) are obtained by excluding their local
embeddings.

Empirical setup for D2: preprocessing and exogenous variables In Tab. 9, covariates were
removed from the reference architecture (Transf.), while they were added to PatchTST and Dlinear.

Empirical setup for D3: temporal processing In Tab. 3, we report the MSE and MAE performance
of the reference architecture for various temporal processing modules, evaluated against baselines
that do not include spatial processing operators. Tab. 10 presents the computational efficiency of the
models for increasing horizons on the Electricity dataset. We employed the PyTorch Profiler (Paszke
et al., 2019) to monitor GPU performance during training, specifically collecting the total CUDA
execution time. Additionally, GPU memory usage was obtained using the PyG (Fey et al., 2025)
function get_gpu_memory_from_nvidia_smi. To ensure a consistent evaluation, all measurements
related to model performance (Tab. 10 and 11) were conducted on the same machine running Oracle
Linux Server 8.8, equipped with an Intel Xeon E5-2650 v3 CPU @ 2.30 GHz 20 (2 x 10) cores,
128 GB of system RAM, and an NVIDIA A100-PCIe GPU with 40 GB of HBM2 memory. Finally,
we summarize these results in Fig. 3 which illustrate the trade-off between model performance and
computational efficiency in terms of training batch time and GPU memory usage, on the Electricity
dataset for a forecasting horizon of 96.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Comparison (MSE and MAE) of models with and without local parameters. Best average
results are in bold.

D Model hybrid global

MSE MAE MSE MAE

E
le

ct
r. Transf. 0.136±.000 0.231±.000 0.151±.000 0.242±.000

Crossformer 0.139±.002 0.234±.003 0.143±.001 0.236±.002
TimeMixer 0.151±.000 0.248±.001 0.180±.001 0.268±.001

W
ea

th
er Transf. 0.153±.001 0.198±.000 0.177±.002 0.215±.001

Crossformer 0.155±.003 0.227±.003 0.159±.002 0.215±.002
TimeMixer 0.164±.002 0.208±.001 0.178±.001 0.216±.001

Tr
af

fic Transf. 0.417±.009 0.278±.005 0.392±.000 0.260±.001
Crossformer 0.548±.024 0.278±.011 0.507±.003 0.258±.003
TimeMixer 0.464±.001 0.328±.003 0.463±.001 0.327±.003

So
la

r Transf. 0.196±.000 0.243±.001 0.205±.001 0.247±.002
Crossformer 0.180±.009 0.235±.012 0.180±.011 0.234±.012
TimeMixer 0.366±.017 0.396±.013 0.367±.017 0.396±.013

Table 9: Comparison (MSE and MAE) of models with and without covariates. Best average results
are in bold.

D Model w/ exog. w/o exog.

MSE MAE MSE MAE

E
le

ct
r. Transf. 0.136±.000 0.231±.000 0.155±.001 0.247±.000

PatchTST 0.128±.000 0.222±.000 0.134±.000 0.228±.001
DLinear 0.193±.000 0.277±.000 0.195±.000 0.277±.000

W
ea

th
er Transf. 0.153±.001 0.198±.000 0.161±.000 0.208±.001

PatchTST 0.174±.000 0.213±.001 0.180±.002 0.221±.002
DLinear 0.199±.005 0.258±.008 0.196±.001 0.248±.002

Tr
af

fic Transf. 0.417±.009 0.278±.005 0.479±.006 0.289±.001
PatchTST 0.355±.000 0.244±.000 0.383±.001 0.261±.001
DLinear 0.609±.000 0.391±.000 0.648±.000 0.395±.000

So
la

r Transf. 0.196±.000 0.243±.001 0.206±.003 0.249±.004
PatchTST 0.196±.001 0.246±.004 0.225±.003 0.268±.003
DLinear 0.246±.001 0.331±.000 0.285±.001 0.372±.001

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Performance and resource utilization of the models selected in 3 on the Electricity dataset.
Best performance is shown in bold, second best is underlined.

Model Horizon Batch Time
(ms)

Batches
per Second

GPU Mem.
(MB)

CUDA Time
(ms)

MLP

96 27.6±1.4 36.3±1.2 628.0 20.3
192 27.6±1.4 36.3±1.2 628.0 27.1
336 27.6±1.4 36.3±1.2 653.2 26.3
720 27.6±1.4 36.3±1.2 705.6 31.8

RNN

96 36.7±0.9 28.2±0.6 3635.2 235.6
192 37.3±2.9 27.8±1.8 3643.5 243.0
336 37.3±2.9 27.8±1.8 3854.3 246.7
720 37.3±2.9 27.8±1.8 3860.6 258.5

TCN

96 29.9±1.4 33.5±1.1 1217.3 62.0
192 29.9±1.4 33.5±1.1 1217.3 82.0
336 29.9±1.4 33.5±1.1 1219.4 85.1
720 29.9±1.4 33.5±1.1 1240.4 87.8

Transf.

96 36.7±1.3 27.3±0.7 1942.9 119.3
192 36.7±1.3 27.3±0.7 1961.7 144.0
336 36.7±1.3 27.3±0.7 1959.7 148.1
720 36.7±1.3 27.3±0.7 1976.4 164.7

Pyraf.

96 41.7±0.8 24.0±0.4 2559.4 189.9
192 41.7±0.8 24.0±0.4 2561.5 191.9
336 41.7±0.8 24.0±0.4 2563.6 192.8
720 41.7±0.8 24.0±0.4 2567.8 198.7

DLinear

96 18.9±1.1 52.9±1.7 615.5 10.7
192 18.9±1.1 52.9±1.7 615.5 17.2
336 18.9±1.1 52.9±1.7 638.5 19.1
720 18.9±1.1 52.9±1.7 699.4 22.5

PatchTST

96 34.3±0.5 29.1±0.4 1445.9 74.9
192 34.3±0.5 29.1±0.4 1443.8 94.6
336 34.3±0.5 29.1±0.4 1443.8 93.6
720 34.3±0.5 29.1±0.4 1462.7 107.7

TimeMixer

96 97.6±93.5 10.9±0.7 2301.5 410.4
192 97.6±93.5 10.9±0.7 2303.6 405.1
336 97.6±93.5 10.9±0.7 2311.9 375.9
720 97.6±93.5 10.9±0.7 2450.3 478.8

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Performance and resource utilization of the models selected in 13 on the Electricity dataset.
Best performance is shown in bold, second best is underlined.

Model Horizon Batch Time
(ms)

Batches
per Second

GPU Mem.
(MB)

CUDA Time
(ms)

MLP + sp. att.

96 40.2±1.0 24.9±0.5 1162.8 96.9
192 40.6±1.3 24.7±0.6 1236.2 123.8
336 40.6±1.3 24.7±0.6 1215.2 155.4
720 40.6±1.3 24.7±0.6 1357.8 185.8

Pyraf. + sp. att.

96 96.4±0.4 10.4±0.0 7822.9 783.6
192 96.4±0.4 10.4±0.0 7908.8 787.3
336 96.4±0.4 10.4±0.0 7837.5 808.8
720 96.4±0.4 10.4±0.0 7940.3 861.9

iTransformer

96 50.8±1.3 19.7±0.4 1729.0 217.4
192 50.7±1.1 19.7±0.4 1630.4 227.9
336 50.7±1.1 19.7±0.4 1712.2 252.9
720 50.7±1.1 19.7±0.4 1871.6 317.8

Crossformer

96 138.0±1.0 7.2±0.1 5702.8 912.8
192 161.9±28.1 6.4±1.0 9412.4 1532.0
336 161.9±28.1 6.4±1.0 16032.6 2516.0
720 161.9±28.1 6.4±1.0 39527.4 5589.0

Modern TCN

96 145.4±1.1 6.9±0.0 10620.3 1967.0
192 147.4±8.8 6.8±0.3 10620.3 1971.0
336 147.4±8.8 6.8±0.3 10662.2 2005.0
720 147.4±8.8 6.8±0.3 10857.2 2036.0

Figure 3: MAE and MSE performance versus mean batch time during training for models not
including spatial processing, for a batch size of 512. Circle size indicates memory consumption.

Empirical setup for D4: spatial processing In Tab. 13, we compare the reference architecture
with baselines that include spatial processing. The reference architecture is employed with either
an MLP or a pyramidal attention module for temporal processing, followed by a spatial attention
module. The temporal modules were chosen for their advantageous trade-off between performance
and computational efficiency (see Fig. 3 and Tab. 10). In Tab. 12, the iTransformer version without
attention was obtained by replacing the spatial attention with a simple feedforward layer. Similarly
to Fig. 3, Fig. 4 shows the trade-off between model performance and computational efficiency on
the Electricity dataset for a forecasting horizon of 96. Since spatial processing often increases
computational cost and reduces memory efficiency, we restrict the input window size to 96, equal to
the forecasting horizon in Tab. 13, 11, 12 and Fig. 4.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 4: MAE and MSE performance versus mean batch time during training for models including
spatial processing, for a batch size of 32. Circle size indicates memory consumption.

Table 12: Results (MSE and MAE) for iTransformer with or without space attention. Best average
results are in bold.

Dataset
Space att. Feedforward

MSE MAE MSE MAE

Electricity 0.148±.000 0.241±.000 0.149±.001 0.237±.001
Weather 0.171±.001 0.210±.001 0.171±.000 0.210±.001
Traffic 0.393±.001 0.266±.001 0.390±.001 0.258±.000
Solar 0.208±.003 0.240±.006 0.194±.001 0.230±.002

D MODEL CARDS

In Tab. 14, we report an example of the usage of the newly introduced model cards for PatchTST.

E LARGE LANGUAGE MODELS

We acknowledge the use of Large Language Models to assist in polishing the manuscript by making
minor edits to single sentences.

F CODE OF ETHICS

The work presented in this paper is about basic machine learning research, and all experiments are
conducted on standard, publicly available datasets. The authors have read and adhere to the ICLR
Code of Ethics and do not foresee any direct ethical concerns or potential for misuse.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: Forecasting results (MSE and MAE) for a horizon of 96 steps for models including spatial
processing. Best mean results are in red, second best are blue.

Model
Electricity Weather Traffic Solar

MSE MAE MSE MAE MSE MAE MSE MAE

MLP + sp. attn. 0.140±.001 0.238±.001 0.157±.000 0.202±.001 0.435±.006 0.275±.001 0.201±.009 0.246±.003
Pyraf. + sp. attn. 0.139±.001 0.236±.001 0.157±.002 0.204±.001 0.389±.002 0.267±.001 0.188±.002 0.235±.003

iTransformer 0.148±.000 0.241±.000 0.171±.001 0.210±.001 0.393±.001 0.266±.001 0.208±.003 0.240±.006
Crosformer 0.136±.000 0.232±.001 0.152±.003 0.222±.004 0.527±.002 0.270±.003 0.184±.008 0.227±.006
ModernTCN 0.141±.000 0.237±.001 0.154±.001 0.200±.001 0.445±.001 0.287±.001 0.190±.001 0.222±.002

Table 14: Example of model cards for PatchTST on the Electricity dataset

Basics
• Window length: fixed lookback window of 336
• Transductive or inductive (cold start): inductive
• Masking: not applied/needed

D1. Model configuration
• Global/local/hybrid: global model
• Hybrid parameters (non-shared): not applicable

D2. Preprocessing and exogenous variables
• Scaling: standard normalization (z-score) applied per series and in-batch RevInv normaliza-

tion.
• Covariates/exogenous variables: not used

D3. Temporal processing
• Temporal modules: convolutional encoding followed by patching-based Transformer encoder

layers
• Complexity scaling with steps: the time and space complexity scales quadratically with the

number of patches (self-attention)
D4. Spatial processing

• Spatial modules: not applicable
• Complexity scaling with nodes: not applicable

20


	Introduction
	Related work and context
	Preliminaries
	Problem setting
	Baselines
	Benchmarks

	What Matters in Deep Learning for Time Series Forecasting?
	Design dimension 1: Model configuration
	Design dimension 2: Preprocessing and exogenous variables
	Design dimension 3: Temporal processing
	Design dimension 4: Spatial processing

	Discussion
	Conclusion
	Baselines
	Reference architecture structure
	Empirical setup and additional experimental results
	Model cards
	Large Language Models
	Code of Ethics

