Under review as a conference paper at ICLR 2026

WHAT MATTERS IN DEEP LEARNING FOR TIME SERIES
FORECASTING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models have grown increasingly popular in time series applications.
However, the large quantity of newly proposed architectures, together with often
contradictory empirical results, makes it difficult to assess which components
contribute significantly to final performance. We aim to make sense of the current
design space of deep learning architectures for time series forecasting by discussing
the design dimensions and trade-offs that can explain, often unexpected, observed
results. We discuss the necessity of grounding model design on principles for
forecasting groups of time series and how such principles can be applied to current
models. In particular, we assess how concepts such as locality and globality apply
to recent forecasting architectures. We show that accounting for these aspects can
be more relevant for achieving accurate results than adopting specific sequence
modeling layers and that simple, well-designed forecasting architectures can often
match the state of the art. We discuss how overlooked implementation details in
existing architectures (1) fundamentally change the class of the resulting forecasting
method and (2) drastically affect the observed empirical results. Our results call for
rethinking current faulty benchmarking practices and for the need to focus on the
foundational aspects of the forecasting problem when designing neural network
architectures. As a step in this direction, we also propose an auxiliary forecasting
model card, i.e., a template with a set of fields to characterize existing and new
forecasting architectures based on key design choices.

1 INTRODUCTION

Novel sequence modeling architectures are consistently improving the state-of-the-art in many
applications (Gu et al., 2022;|Gu and Dao\ [2023; Beck et al., 2024)), such as text and natural language
processing. However, results in time series forecasting offer a much more uncertain way ahead, with
recent work questioning the effectiveness of modern deep learning approaches (Toner and Darlow],
2024} [Zeng et al., 2023} Tan et al.,|2024). The result is that current research is seemingly stuck in a
loop of positive results being quickly dismissed by new evidence that questions our understanding
of the components that contribute to obtaining accurate forecasts (Shao et al.|[2024). Recent works
propose several architectures, e.g., based on attention (Zhou et al., 2021; Wu et al.,|2021; Nie et al.,
2023; Liu et al) 2023a; [Zhang and Yan, 2023} [Liu et al. [2022a), and assess their performance
against state-of-the-art methods on common benchmarks. Most of these architectures are obtained
by stacking and combining different components and operators and involve many—often hidden—
implementation choices (e.g., parameter sharing and local parameters). However, the impact of such
design choices on the resulting model and its performance is often overlooked. As an example, in
recent works, a collection of synchronous time series is often considered as a single multivariate
signal. This approach can lead to misconceptions and results that are difficult to interpret. Starting
from this consideration, recent architectures stemming from [Nie et al.| (2023) rely on what has
been called—maybe improperly—channel-independence, i.e., on processing each channel of a time
series independently from others while sharing the same parameters. This approach has—somewhat
surprisingly—led to superior results when compared to standard multivariate models. However, when
these channels correspond to different univariate and homogeneous (related) time series (as is often
the case in commonly used benchmarks), “channel-independence” corresponds to adopting the
framework of global models, which is well understood in time series analysis (Benidis et al.| 2022}
Salinas et al., [2020; Januschowski et al., [2020; Montero-Manso and Hyndman, 2021)). While this

Under review as a conference paper at ICLR 2026

might sound simply an issue of naming conventions, it can provide clear explanations for observed
results (Montero-Manso and Hyndman, [2021)) and unlock new designs (Wang et al.l [2019; [Smyl,
2020). For example, there is a large body of literature on methods that account for dependencies
among synchronous time series while keeping (part of) the model global (Cini et al.} 2023} |Sen et al.|
2019). As an additional example, other works have recently observed that applying attention among
channels can improve performance (Liu et al.,[2023a;|Zhang and Yan|2023)). However, if we consider
the different channels as a collection of correlated time series, similar attention operators have been
routinely used in spatiotemporal forecasting models (Ma et al., [2019; |Grigsby et al., [2021}; |Marisca
et al., 2022 |Liu et al., |2023b). Besides missed opportunities and insights, these aspects can also
harm the effectiveness of our benchmarking practices. Indeed, overlooked design choices can, as we
will show, lead to empirical results that are difficult to interpret and that might mislead the designer.
Moreover, as we will discuss throughout the paper, those mentioned are only a selection of the issues
that contribute to the current situation.

In this paper, we scan the design space of modern deep learning architectures for time series
forecasting and assess the impact that associated design choices have on current benchmarking
practices. In particular, we aim at understanding the state of the field by relying on well-understood
principles for forecasting groups of time series. In doing so, we examine recent architectures and
empirical results, highlighting the impact of overlooked aspects that are often considered as mere
implementation details. To frame the discussion, we structure our analysis by considering four
main dimensions: D1.) model configuration—i.c., selecting the model family (e.g., local, global,
or hybrid); D2.) preprocessing and exogenous variables—i.e., selecting exogenous variables and
setting up preprocessing and postprocessing operations; D3.) temporal processing—i.c., accounting
for temporal (i.e., intra-series) dependencies. D4.) spatial processing—i.e., accounting for spatial (i.e.,
inter-series) dependencies. While some of these dimensions are only partially orthogonal (e.g., space
and time contributions can be processed in an integrated way), we believe that analyzing how these
different aspects concur to characterize a model family is the key to understanding recent results. We
argue that, to assess meaningful improvements to the state of the art, any comparison must ensure
that design choices in any of these dimensions do not interfere with the evaluation of the proposed
component. In this context, our contributions are as follows.

* We analyze the current state of deep learning for time series forecasting by relying on principles
to forecast groups of time series to make sense of often contradictory empirical results.

* We empirically assess the impact of overlooked design choices and implementation details
in existing state-of-the-art architectures, and show that they explain a significant portion of the
observed performance improvements.

* We show that a streamlined architecture built on well-understood design principles can match
the performance of the state-of-the-art.

* To move forward, we introduce a predictor card template—complementary to existing generic
model cards (Mitchell et al.l 2019)—that can be used to characterize existing and new forecasting
architectures.

The current trends in the field have led to focusing on finding a one-size-fits-all architecture with
state-of-the-art performance in benchmarks. This prompted the adoption of increasingly more
complex architectures that combine many poorly understood components. Our paper, by showing the
limitations of common benchmarking practices, is aimed at stimulating discussion on our current
approach to conducting machine learning for time series forecasting. We believe that this discussion
is an important step for the maturity of the field and to ensure future progress.

2 RELATED WORK AND CONTEXT

The history of neural networks in forecasting applications is long, and has often been characterized
by skepticism (Zhang et al., [1998)). However, the forecasting community is reaching consensus
on the effectiveness of deep learning methods in settings where a single neural network can be
trained on (large) collections of related time series (Hewamalage et al.|, [2021; Benidis et al., |2022)).
Models based on this approach have been called global in contrast with local models, which are
instead trained separately on each time series (Montero-Manso and Hyndmanl, 2021} Januschowski
et al.,[2020; |Benidis et al., [2022). Global models and hybrid global-local variants thereof have won

Under review as a conference paper at ICLR 2026

forecasting competitions (Smyl, 2020) and been adopted by the industry (Salinas et al.,[2020; [Kunz
et al.}2023)). With the increase in popularity of new sequence modeling architectures (Vaswani et al.}
2017;|Gu et al.} |2022; \Gu and Dao, 2023} |Orvieto et al.,|2023), the machine learning community
has started investigating how to adapt such architectures to the forecasting problem. In particular,
the Informer (Zhou et al., 2021) architecture is among the first of a line of works aiming at tailor-
ing Transformers (Vaswani et al.| 2017) to long-range time series forecasting. Together with the
architecture, Zhou et al.| (2021)) also introduced a popular benchmark where collections of time
series are considered as a single multivariate sequence. Several subsequent works follow, then, the
same approach (Wu et al., 20215 |Liu et al., |2022aj |Wu et al., 2023} |Liu et al., 2022b; Zhou et al.}
2022)). [Zeng et al.|(2023)) and [Toner and Darlow|(2024) show that most of these architectures can be
outperformed in such benchmarks by simple linear models. Nie et al.|(2023)), then, showed that—in
the same settings—superior results could be achieved by processing each channel independently with
shared parameters. For many of these benchmarks, this essentially corresponds to the global approach;
indeed, a large part of the associated datasets consists of collections of related time series, even
though, as already mentioned, they have often been seen as a single multivariate sequence. Follow-up
works (Liu et al.,|2023a; |Zhang and Yan, [2023) then reintroduced components to model dependencies
across multiple time series while keeping the core of the model global. Conflating the problem of
forecasting any group of time series into forecasting a single multivariate sequence, as we will see,
can be problematic and lead to unclear designs (Sec. 4.1). Moreover, current popular architectures
stack several components and rely on many hidden implementation choices, which make a direct
comparison of introduced sequence modeling operators challenging.

The need to clarify inconsistencies in benchmarking practices has pushed researchers to focus on
developing new benchmarks and evaluation pipelines for forecasting (Shao et al.,|2024; |Wang et al.,
2024a; |Qiu et al.,[2024). Conversely, in our work, we aim to assess whether the performance gains of
the recently proposed method come from the use of specific operators or lie in other implementation
details. Said differently, we aim to assess whether current benchmarking practices are focusing on
what really matters in deep learning for time series forecasting. Similar analysis has been done in
other subfields of machine learning, such as reinforcement learning (Raichuk et al.,[2021), and in the
context of graph neural networks (GNNs) (Errica et al., 2019; Dwivedi et al., [2023)).

3 PRELIMINARIES

3.1 PROBLEM SETTING

We consider a collection of N time series D = {x{.;, ,...,x} }, where z},; € R4 denotes
the sequence of L; d,-dimensional observations associated with the ¢-th time series. When present,
exogenous variables are denoted as w),,; € R4 A binary mask, mj, ;€ {0,1}%*% may be
introduced to model missing or invalid observations. Time series in the set can come from different
domains and be generated by different stochastic processes. In such a setting, the mask), 1, can
be used to account for heterogeneous time series by modeling missing channels. If time series are
synchronous, we use capital letters to denote values across the collection, e.g., X; € RN *% refers to
the stacked observations at time step ¢. Time series in the collection might be correlated (in a broad
sense), i.e., uncertainty on future values of each time series might be reduced by taking into account
observations from other time series.

Forecasting groups of time series We consider the problem of multi-step ahead time series
forecasting, i.e., the problem of predicting the next H > 1 observations x; ,, ;; for the i-th time

series, given a window W > 1 of past observations ! _y;,, from the same time series. As the

stochastic process generating data p’ is unknown, the objective is to approximate it with a model pg
with learnable parameters 6 such that

i i i i o (i i i i .
pe(mt:H-H | mt—W:taut—W:taut:t+H) ~p (mt:t—i-H | m<t7u<taut:t+H) Vi=1,....,.N (D
where ', denotes all past observations of the i-th series preceding timestep ¢. We focus on

the problem of obtaining point forecasts Zy..+p of, e.g., the expected value such as Z¢ , T

E, [a:}f X H] by using a parametric model F(-; 8). Predictions are obtained by fitting parameters
0 of the chosen model family. As we will discuss in[Sec. 4.1} we say that a model is global if its
parameters are shared across all the time series. In such a case, the model is trained on the entire set of

Under review as a conference paper at ICLR 2026

time series. Conversely, a model is local if its parameters are specific to a single time series. If relying
on local models, forecasting a collection of time series results in fitting a separate model for each
sequence in the set. Choosing between a local and global approach (or a hybrid thereof) depends on
the task at hand, data availability, and model complexity. As mentioned in due to advantages
in sample efficiency, global models are a particularly appealing choice when relying on deep learning
architectures (Hewamalage et al., 2021} Benidis et al.,|[2022). Additionally, global models can be
employed inductively, e.g., in a cold start scenario, whereas local models are transductive. We will

expand this discussion in[Sec. 4.1]

3.2 BASELINES

Through the paper, we assess the impact of different design choices with respect to a set of recent
state-of-the-art architectures for long-range time series forecasting, which we compare against
simpler, streamlined baselines (see[Sec. 3.2). We consider representative models that have shaped the
development of recent time series forecasting methods and that demonstrate competitive performance
on benchmarks. We include: 1. PatchTST (Nie et al., [2023)), the widely used architecture that—as
already mentioned—introduced “channel independence” and patching-based Transformer layers. In
particular, PatchTST relies on splitting the input into fixed-size patches before applying attention;
2. DLinear (Zeng et al.,[2023), which combines a linear model with a time series decomposition step;
3. TimeMixer (Wang et al [2024b)), which is an multilayer perceptron (MLP)-based architecture
processing the input at different resolutions; 4. Linear, a linear autoregressive model trained with L2
regularization and ordinary least squares (OLS), following [Toner and Darlow|(2024), implemented
in both its global and local variants. We also consider models that incorporate spatial processing:
5. iTransformer (Liu et al.,2023a), which processes the temporal dynamics with a feedforward layer
and then uses standard attention among channels; 6. ModernTCN (Donghao and Xue, |2024) which
employs convolutional layers for spatio-temporal representation; 7. Crossformer (Zhang and Yan,
2023)), which uses patching and spatiotemporal attention operators to model dependencies among
different channels of the input time series. To ensure a fair comparison, we evaluate all the models
in the same benchmarking setup, under unified settings, and with access to the same exogenous
variables. We rely on the available open-source implementations of each approach and adapt them to
our evaluation procedure and standardized inputs. The code for all the experiments, based on the
Torch Spatiotemporal library (Cini and Mariscal 2022), will be open-sourced upon publication. For a
more detailed description of each baseline, we refer the reader to[App. Al

Reference architecture In our experiments, we compare state-of-the-art models against a reference
streamlined architecture specifically designed to assess the impact of different design choices w.r.t.
the target design dimensions. Note that the purpose here is not to propose a new architecture to
challenge the state of the art. Conversely, reference architectures provide baselines, introduced to
facilitate a fair and consistent comparison and to gauge the impact of different design choices more
directly. For the temporal module, we consider several alternatives: a MLP with residual connections,
a temporal convolutional network (TCN) with causal dilated filters (Bai et al.,|2018)), a gated recurrent
neural network (RNN) (Chung et al.l 2014), a stack of Transform layers (Vaswani et al., [2017)),
and pyramidal attention operators akin to the Pyraformer architecture (Liu et al.| [2022a)). In the
tables, we denote these reference models as MLP, TCN, RNN, Transf., Pyraf., respectively. For
the TCN, RNN and attention-based models, we use a 1-D convolutional layer with a large stride as
an additional preprocessing step to implement an operator akin to patching (Nie et al.,[2023)) and
facilitate the processing at the subsequent layers. For the spatial module, we use a simple spatial
attention layer (denoted as sp. attn.). For additional implementation details, please refer to

3.3 BENCHMARKS

As a benchmark, we use four real-world datasets from different domains that are widely used in the
context of long-range time series forecasting (Wang et al.,2024b}; Zhang and Yan, 2023} [Liu et al.|
2023aj | Zeng et al., 2023} Nie et al.,|2023). In particular: Electricity collects hourly electricity usage
for 321 customers (Wu et al., 2021)); Weather includes 21 meteorological variables collected every 10
minutes from Germany (Wu et al.||2021)); Traffic contains hourly road occupancy data collected from
various 862 sensors on San Francisco’s highways (Wu et al.,[2021); Solar contains 10-minute records
of solar power generation from 137 photovoltaic plants (Lai et al.,[2018). We use a 70%/10%/20%

Under review as a conference paper at ICLR 2026

split for the training, validation, and testing, following previous works (Wang et al.}[2024b). Metrics
are reported on scaled data for consistency with published benchmarks. All the numerical results
are averaged over three independent runs. We use a window size of 96 for all experiments, while
in we use a longer window size of 336 (except for Solar). For further details, refer to[App. C|

4 WHAT MATTERS IN DEEP LEARNING FOR TIME SERIES FORECASTING?

In this section, we go through four key design dimensions that characterize forecasting architectures
and have a significant impact on overall performance. For each design dimension, we assess how
different choices have contributed to making the current progress in the field uncertain, leading to
often unexpected empirical results.

D1. Model configuration This refers to the type of forecasting model being employed. We distin-
guish between local models (each trained on individual time series), global models (trained on
multiple series jointly with the same shared weights), and hybrid approaches that combine elements
of both paradigms.

D2. Preprocessing and exogenous variables This dimension refers to the transformations applied
to the data either before or after being used as input to a predictor, and to the exogenous variables
used as additional inputs to the forecasting architecture.

D3. Temporal processing Temporal processing refers to the operators used to model temporal
dependencies within an architecture.

D4. Spatial processing This dimension involves mechanisms used to model inter-series dependen-
cies when multiple time series are available as inputs.

We do not aim to provide an exhaustive discussion of each dimension, but instead focus on how they
have been addressed in recent research and highlight their impact on performance.

4.1 DESIGN DIMENSION 1: MODEL CONFIGURATION

As previously discussed, the model configuration—global, local, or hybrid —is a fundamental aspect in
model design, since it radically changes the type of model being used. Yet, this aspect is often left
unspecified or dealt with as an implementation detail. However, choosing between a local, global,
or hybrid approach has several implications that should be properly discussed (Montero-Manso and
Hyndmanl, 2021} Januschowski et al.| 2020; |Salinas et al.}[2020). For instance, it is often common to
model any collection of synchronous time series as a single highly-dimensional multivariate time
series and hence consider models such as

Xiprn = F (Xi—wt,---30). (2)
However, this approach can scale poorly with the input’s dimensionality. Indeed, in practice, several
recent works, e.g., (Nie et al.} 2023} [Liu et al.|[2023a) have observed that processing disjointly each

channel with the same parameters empirically results in better performance. As already mentioned,
this is equivalent to adopting the well-known global approach, i.e., to processing related time series as

Ziyny=7F(T_wy..;0) Vi=1,...,N. A3)
Moreover—although not always explicitly stated—several architectures, e.g., (Wang et al.| [2024b;

Zhang and Yan| [2023} [Donghao and Xue} [2024), adopt the approach in[Eq. 3] but introduce some
time series specific parameters ¢’, resulting in models

Tipig=F (Ti_wu-.:0,0") Vi=1,... N.)
which effectively consist of hybrid global-local models (Smyl, 2020; [Cini et al., [2023; Benidis
et al., 2022). The design choices that, in practice, lead to models as in are often dealt with
as implementation details. For instance, Wang et al.|(2024b) uses learnable local parameters in the
normalization module; |Salinas et al.| (2020)—while relying on an otherwise global model-uses a
different one-hot-encoding vector associated with each processed time series, effectively introducing
a vector of learnable parameters specific to that input sequence. Finally, an opposite trend seen in
other approaches—often relying on simple (linear) models (Zeng et al., [2023)—design models in
by using different parameters for each time series

{B\i:t+H :]:<m1i57W:t7"';0i) VZ: 1)"'7N7 (5)
hence yielding to local models.

Under review as a conference paper at ICLR 2026

Clearly, models in Equations [2H5| correspond to funda- Table 1: Comparison (MSE) of models
mentally different approaches that can result in markedly with local embeddings. Best average re-
different performance. Failing to recognize the impact gults are in bold.

of the associated design choices can be problematic for

several reasons. First, the use of shared versus local D Model Hybrid Global
parameters may have very different effects depending = Transf. 0.136:t.000 0.151+.000
on whether the time series are homogeneous (e.g., data 8 Crossformer 0.139+.002 0.143+.001
coming from identical sensors at different locations) or ™ TimeMixer 0.151+.000 0.180+.001
heterogeqqous (e.g., measurements qf diff.erent physi- 5 Transf. 0.1532001 0.177 =002
cal quantities). Moreover, when dealing with multiple <

N . . . s Crossformer 0.155+.003 0.159-+.002
multivariate time series, a multivariate global model is § i .
often more appropriate than a univariate one that pro- TimeMixer 0.164-.002 0.178=001
cesses channels independently. Second, as we will see, o Transf. 0.417+009 0.392+.000
comparing the results of models belonging to different Z Crossformer 0.548+.024 0.507+.003
typologies without stating it explicitly can make it dif- & TimeMixer 0.464+001 0.463.001
ficult to interpret performance differences. In[Tab. T} we Transt. 0.19620m 02052001
assess the performance—in terms of mean square error & Crossf. 0.180 0.180
(MSE)—of different architectures from the literature on G ~'OSStormer 0.180:.009 U. 18Uz 011

a set of benchmarks (see[Sec. 3.3)). As in all our exper- TimeMixer 0.366-.017 0.367+017
iments, we focus on the task of long-range time series

forecasting, with a prediction horizon of 96 time steps. In particular, we compare the reference
Transformer and two architectures that include some form of local parameters by assessing their
performance when such components are removed. As one would expect, using local parameters can
drastically change the observed results. Mixing results from the two columns without accounting for
the impact of these design choices would clearly lead to misleading conclusions. Therefore, when,
for example, aiming to identify the most effective sequence modeling operators, experiments should
be designed to factor out the impact of model configuration.

4.2 DESIGN DIMENSION 2: PREPROCESSING AND EXOGENOUS VARIABLES

Exogenous variables and preprocessing (e.g., scaling, 10 7. Comparison (MSE) of models
detrending, and methods accounting for seasonality) are ;

ingredients that can have a significant impact on final
performance. In this section, we discuss how exoge-

with and without covariates. Best average
results are in bold

nous variables and preprocessing methods have been D Model w/ exog. w/out exog.
included and accounted for inconsistently across pop- .. Transf. 0.136+.000 0.155+.001
ular baselines and benchmarks. Similar to model con- g PatchTST 0.128+.000 0.134-+ 000
figuration, these benchmarking practices further pre- & .

vent a clear understanding of the reasons behind the — DLincar 0.193:+0m0 0.195-+000
observed performances. This issue is further exacer- 2 1ransf. — 0.153x.001 0.161=000
bated by the growing trend of comparing newly pro- g PatchTST 0.174=.000 0.180+.002
posed architectures directly against published results of & DLinear 0.199+005 0.196+.001
existing methods, without reproducing in this exercise "~ Transf. 0.417t00 0.479 006
.those re§ults. It follqws thaF dlffer.ences in preprocess- &EN PatchTST 0.355-000 0.383- 001
ing routines become increasingly difficult to isolate and & .

account for. To investigate the extent of this problem in DLinear 0.609-.000 0.648- 000
recent benchmarks, we focus specifically on the use of & Transf. 0.196+.000 0.206:x.003
exogenous variables. For instance, PatchTST, DLinear, © PatchTST 0.196+.001 0.225- 003
and Crossformer do not use covariates by default, while DLinear 0.246+001 0.285+.001

TimeMixer and iTransformer do. We then evaluate the
impact of adding the same covariates (calendar features, in this case) to some of these baselines and
report the outcome of this experiment in Results show the impact of including covariates on
the performance of models such as DLinear and PatchTST, which do not incorporate them in their
original implementations. Their effect is more pronounced on some benchmarks while less evident in
others; this may be due to the amount of additional useful information that can be extracted from
the available exogenous variables in the different scenarios. These results pinpoint another source of
uncertainty in interpreting recent benchmarking results; preprocessing steps should be standardized
across baselines as to ensure that all models have access to the same inputs.

Under review as a conference paper at ICLR 2026

Table 3: Forecasting results (MSE and MAE) for a horizon of 96 steps for models not including
spatial processing. Best average results are in red, second best are blue.

Electricity Weather Traffic Solar
MSE MAE MSE MAE MSE MAE MSE MAE
Linear Global | 0.140 0.237 0.174 0.234 0410 0.282 0.222 0.291
Linear Local 0.134 0.230 0.144 0.209 0.426 0.298 0.223 0.295

Model

MLP 0.129+.000 0.225+.000 | 0.148+.001 0.198+.000 | 0.376+.000 0.253+.001 | 0.194+.003 0.2394.002
RNN 0.147+.001 0.247+.001 | 0.149+.001 0.203+.001 | 0.390+.007 0.275+.002 | 0.200+.003 0.246+.004
TCN 0.130+.000 0.224+4.000|0.148+.000 0.200+.001 | 0.364+.003 0.253+.002|0.193+.004 0.243+.005
Transf. 0.129+.001 0.222+.001 | 0.149+.001 0.203+.002 | 0.362+.003 0.249+.002 | 0.203+.006 0.245+.002
Pyraf. 0.129+.001 0.224+.001 | 0.148+.001 0.199+.001 | 0.365+.002 0.251+.003 | 0.189+.003 0.236+.004

TimeMixer 0.129+.001 0.224+.000|0.147+.001 0.197+.000|0.373+.002 0.271+.003|0.199+.001 0.245+.000
PatchTST 0.125+.000 0.218+.000 | 0.148+.001 0.195+.001 | 0.345+.000 0.234-+.000 | 0.197+.001 0.244+ 004
DLinear 0.140+.000 0.237+.000|0.173+.000 0.232+.001 | 0.407+.000 0.283+.000 | 0.246+.001 0.331+.000

4.3 DESIGN DIMENSION 3: TEMPORAL PROCESSING

In this section, we assess whether streamlined models, properly configured as hybrid global-local
models with exogenous inputs and local embeddings, can achieve performance comparable to that
of recent state-of-the-art models. This design dimension, concerning sequence modeling operators,
has been the main focus of recent research. However, this line of work has produced contrasting
results, leading to considerable confusion about which components effectively contribute to per-
formance (Toner and Darlow| 2024; Zeng et al. 2023} Tan et al., |2024). We focus on methods
that only process inputs along the temporal dimension, while approaches that include components
accounting for spatial dependencies are discussed in[Sec. 4.4] For this analysis, we use the different
variants of the reference architecture introduced in and compare them against three popular
and well-established baselines, namely DLinear, PatchTST, and TimeMixer, by using standardized
inputs (including covariates), and hyperparameter tuning. We remark that the goal is not to determine
which architecture performs best, but rather to assess the extent to which different architectures
influence the observed results. As shown in[Tab. 3] no single model consistently outperforms the oth-
ers. Moreover, reference architectures that rely on standard and simple operators obtain competitive
performance against the state of the art across all the considered scenarios. These results challenge
the effectiveness of current benchmarking practices in identifying the components responsible for
performance improvements and in measuring the contribution brought by the different sequence
modeling operators. Additionally, results show that, in many scenarios, choosing a specific sequence
modeling operator is not the critical design choice. Analogous observations are confirmed in[Sec. 4.4}

Note that in all experiments, we process data from the Weather dataset as if it were a collection
of univariate time series, to show the effect of handling it as is commonly done in the literature.
Interestingly, one of the best-performing models on Weather is the local OLS linear model. This is
not too surprising, since Weather is actually a multivariate time series with heterogeneous channels,
and among the models in [Tab. 3] that linear model is the only one that explicitly models each time
series as heterogeneous. Although results do not provide a clear ordering of methods, we did observe
that patching works well across both reference architectures and state-of-the-art baselines, providing
a good approach for enabling the processing of long input windows. Hierarchical attention-based
approaches (such as Pyraformer) also showed to be a viable option. Finally, we report in an
assessment of the computational scalability of the different architectures, in terms of time needed to
process each batch and GPU memory usage. The computational cost is visualized in relation to the
forecasting accuracy. Results show that MLP, TCN, and PatchTST achieve a good trade-off between
MSE performance, GPU memory usage, and training time. We encourage conducting analysis like
this to gain insight into the most suitable models for given benchmarks.

4.4 DESIGN DIMENSION 4: SPATIAL PROCESSING

We call spatial the dimension that spans multiple time series, which may correspond to different
spatial locations when considering physical sensors. This section complements the discussion started
in by considering models that account for inter-series dependencies by relying on different

Under review as a conference paper at ICLR 2026

{Memory Footprint (MB) Memory Footprint (MB)
0.14c0" !
0.150
0.1375 . 3
iTransformer
| 1729MB 50.8ms

0.1350) 0.145 Modern TCN
m R. TCN m 10620MB 145.4ms
0 0.1325 1217MB 29.9ms Il
2 R. Pyraformer 2 0.140 -

0.1.00 ‘SSQMB 41.7ms Ref. sp. pyraformer.

7823MR 06 . Amsg
" 7 Crossformer
R. Transformer TimeMixer = y
0.1275 ‘ 1943MB 36.7ms 2301MB 97.6ms 0.135 3703MB 138'”“‘,
R. RNN
0.1250 .H‘E’)\IH 36.7ms
L PatchTST 0.130
1446MB 34.3ms\0 60 80 100 20 40 60 80 100 120 140 160
Mean Batch Time (ms) Mean Batch Time (ms)

Figure 1: MSE versus mean batch time during training on the Electricity dataset. Circle size indicates
memory consumption.

Table 4: Forecasting results (MSE) for a horizon of 96 steps for models including spatial processing.
Best average results are in red, second best are blue.

Model Electricity Weather Traffic Solar

MLP + sp. attn. | 0.140+.001 0.157+.000 0.435+.006 0.201+.009
Pyraf. + sp. attn. | 0.139+.001 0.157+.002 0.389+.002 0.188+.002

iTransformer 0.148+.000 0.171+.001 0.393+.001 0.208+.003
Crosformer 0.136+.000 0.152+.003 0.527+.002 0.184-+t.008
ModernTCN 0.141+.000 0.154+.001 0.445+.001 0.190+.001

operators. In particular, we compare the reference architecture, where dependencies are modeled with
a standard spatial Transformer, against three state-of-the-art baselines: iTransformer, Crossformer,
and ModernTCN. For the reference architecture, we use an MLP or pyramidal attention for temporal
processing. [Tab. 4]reports the results of the comparison where we reduced the length of the input
window associated with each time series to keep computational costs manageable. Analogously
to simulations show that the simple, streamlined architectures perform comparably to
the state of the art, highlighting once again the limitations of current benchmarking practices.
The results mand. combined with the observa- Table 5: Results (MSE) for iTrans.
tion that spatial dependencies might provide limited benefits former with or without s ttenti

in long-range forecasting, have led us to doubt the effec- pace atiention.
tiveness of spatial attention operators in this context. We Best average results are in bold.
then ran an additional experiment by replacing the spatial iTransformer
attention layer in iTransformer with a simple MLP, effec- Dataset Space att. Feedforward
tively removing all the components modeling spatial de- -

pendencies in the architecture. Results in indeed Licctricity 014800 0.149 .0
show that in this context, removing spatial attention entirely eather — 0.171x.001 0.171+.000
led to better or similar performance in all the considered Traffic 0.393+.001 0.390+.001
datasets. These observations further highlight the need Solar 0.208+.003 0.194-+.001
for more thorough assessments of how each component
contributes to the observed results. Finally, [Fig. 1| reports performance in relation to computa-
tional cost, which in this case is particularly critical as processing data along the spatial dimension
can have a significant impact on computational scalability.

5 DISCUSSION

The results in 4.4] question whether we have been successful in measuring the advances
of deep learning architectures for time series forecasting and shed light on several faults in current
benchmarking practices. We showed that overlooked design choices can have a significant impact
and that simple, well-designed architectures can match the state of the art on our standard bench-
marks (see and[). Our analysis calls for reaching a better understanding of the architecture’s
design space, showing how misconceptions in model specification can trigger misleading conclu-

Under review as a conference paper at ICLR 2026

sions (as shown, e.g., in[Tab.). The additional ablation studies (e.g., in[Tab. 2|and [5)) corroborate
these findings that are further substantiated by plenty of additional empirical results in the appendix of
the paper. However, our objective is not to be dismissive of the progress of the field—which is tangible
in many applications—but rather to ensure that we can move forward by focusing on answering
foundational questions and fostering awareness on the existing flaws in our practices. Revisiting our
benchmarking pipeline will be a crucial step in this direction. A first step in this direction would
be the introduction of benchmarks specifically designed to isolate distinct dimensions, possibly by
relying on synthetic datasets. Moreover, model cards (Mitchell et al.,[2019) can be an effective tool,
providing a simple and practical way to summarize a model’s main characteristics and to facilitate
model comparison. Below, we propose a template that can be used in conjunction with existing model
cards to capture relevant aspects of the design dimensions discussed in the paper, and we provide
an example of its use in[App. D] We believe that by recalibrating our evaluation tools on reliably
measuring actual progress, the shift toward answering more foundational methodological questions
would happen as a natural consequence.

Forecasting model card

* Window length

¢ Whether the model is transductive or inductive, and can be used in a cold start scenario

* How to mask missing observations and/or if imputation is needed
D1. Model configuration

* Whether the model is global, local, or hybrid

e Ifthe model is hybrid, which parameters are shared across the time series and which are not
D2. Preprocessing and exogenous variables

* The type of scaling or other transformation applied at training and inference time

» Temporal covariates, lagged variables, or other types of exogenous variables are employed
D3. Temporal processing

* Modules and operators used to encode observations along the temporal axis

* Time and space complexity w.r.t. the lenght of the time series being processed

D4. Spatial processing
If spatial dependencies are accounted for:

* Modules used to model spatial dynamics and whether a graph structure is employed

* Time and space complexity w.r.t. the number of the time series being processed

6 CONCLUSION

We investigated the effectiveness of current benchmarks in measuring progress in the field and the
impact of design choices on forecasting performance. We showed, by analyzing points of failure in
our evaluation procedures, that our current practices might produce misleading results. With this
paper, we pinpointed several of the sources of this uncertainty and aimed to foster a discussion to
ensure that the field can move forward and address its current limitations. Indeed, our analysis also
shows that appropriate design choices do have an impact on performance and can explain seemingly
contradictory empirical results. We believe that the results and the analysis presented in this paper
are an important step toward focusing on what matters in deep learning for time series forecasting.

Limitations In this work, we focused on a specific set of dimensions in the design space of
forecasting models that have had a strong impact on the benchmarking results of recent studies.
Clearly, this analysis can be extended to other aspects of the design space. For example, the
discussion can be expanded to include probabilistic forecasting and the choice of metrics to quantify
forecasting accuracy. Additionally, future work could explore similar issues in short-term forecasting
benchmarks.

Under review as a conference paper at ICLR 2026

REFERENCES

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https
//openreview.net/forum?id=uYLFozl1v1AC.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547-107603,
2024.

William Toner and Luke Nicholas Darlow. An analysis of linear time series forecasting models. In
International Conference on Machine Learning, pages 48404—48427. PMLR, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121-11128, 2023.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
1d=DV15UbHCY1.

Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Tao Sun, Guangyin
Jin, Xin Cao, et al. Exploring progress in multivariate time series forecasting: Comprehensive
benchmarking and heterogeneity analysis. IEEE Transactions on Knowledge and Data Engineering,
2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pages 1110611115, 2021.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Yugqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023a.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=vSVLM2j9eiel

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling
and forecasting. In International Conference on Learning Representations, 2022a. URL
https://openreview.net/forum?id=0EXmFzUn51I.

Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang Wang, Danielle
Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella,
Francois-Xavier Aubet, Laurent Callot, and Tim Januschowski. Deep learning for time series
forecasting: Tutorial and literature survey. ACM Comput. Surv., 55(6), dec 2022. ISSN 0360-0300.
doi: 10.1145/3533382. URL https://doi.org/10.1145/3533382.

10

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=DV15UbHCY1
https://openreview.net/forum?id=DV15UbHCY1
https://openreview.net/forum?id=vSVLM2j9eie
https://openreview.net/forum?id=0EXmFzUn5I
https://doi.org/10.1145/3533382

Under review as a conference paper at ICLR 2026

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181-1191, 2020.

Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin Flunkert, Michael Bohlke-
Schneider, and Laurent Callot. Criteria for classifying forecasting methods. International Journal
of Forecasting, 36(1):167-177, 2020.

Pablo Montero-Manso and Rob J Hyndman. Principles and algorithms for forecasting groups of time
series: Locality and globality. International Journal of Forecasting, 37(4):1632-1653, 2021.

Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim Januschowski.
Deep factors for forecasting. In International conference on machine learning, pages 6607-6617.
PMLR, 2019.

Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time
series forecasting. International journal of forecasting, 36(1):75-85, 2020.

Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming local effects in graph-based
spatiotemporal forecasting. Advances in Neural Information Processing Systems, 36:55375-55393,
2023.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing
systems, 32, 2019.

Jiawei Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, Anthony Vetro, and Shih-Fu Chang. Cdsa:
cross-dimensional self-attention for multivariate, geo-tagged time series imputation. arXiv preprint
arXiv:1905.09904, 2019.

Jake Grigsby, Zhe Wang, Nam Nguyen, and Yanjun Qi. Long-range transformers for dynamic
spatiotemporal forecasting. arXiv preprint arXiv:2109.12218, 2021.

Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to Reconstruct Missing Data from Spa-
tiotemporal Graphs with Sparse Observations. In Advances in Neural Information Processing
Systems, 2022.

Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan
Song. Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting. In

Proceedings of the 32nd ACM international conference on information and knowledge management,
pages 4125-4129, 2023b.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting. In
Proceedings of the conference on fairness, accountability, and transparency, pages 220-229, 2019.

Guogiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artificial neural networks::
The state of the art. International journal of forecasting, 14(1):35-62, 1998.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388—-427, 2021.

Manuel Kunz, Stefan Birr, Mones Raslan, Lei Ma, and Tim Januschowski. Deep learning based
forecasting: a case study from the online fashion industry. In Forecasting with artificial intelligence:
theory and applications, pages 279-311. Springer, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pages 26670-26698. PMLR, 2023.

11

Under review as a conference paper at ICLR 2026

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in neural information processing systems, 35:
9881-9893, 2022b.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning (ICML 2022), 2022.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. 2024a.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair benchmarking
of time series forecasting methods. CoRR, 2024.

Anton Raichuk, Piotr Staficzyk, Manu Orsini, Sertan Girgin, Raphaé¢l Marinier, L’eonard Hussenot,
Matthieu Geist, Olivier Pietquin, Marcin Michalski, and Sylvain Gelly. What matters for on-policy
deep actor-critic methods? a large-scale study. In International Conference on Learning Represen-
tations, 2021. URL https://api.semanticscholar.orqg/CorpusID:233340556.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1-48, 2023.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations (ICLR), 2024b.

Luo Donghao and Wang Xue. ModernTCN: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=vpJMJerXHU.

Andrea Cini and Ivan Marisca. Torch Spatiotemporal, 3 2022. URL https://github.com/
TorchSpatiotemporal/tsl.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pages 95-104, 2018.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?1d=cGDAkQol1lCOp.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009. ISBN 1441412697.

12

https://api.semanticscholar.org/CorpusID:233340556
https://openreview.net/forum?id=vpJMJerXHU
https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024-8035.
Curran Associates, Inc., 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12:2825-2830, 2011.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:
//github.com/PyTorchLightning/pytorch—-1lightningl

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.
URL https://github.com/facebookresearch/hydral

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357-362, 2020.

Matthias Fey, Jinu Sunil, Akihiro Nitta, Rishi Puri, Manan Shah, Blaz Stojanovi¢, Ramona Bendias,
Barghi Alexandria, Vid Kocijan, Zecheng Zhang, Xinwei He, Jan E. Lenssen, and Jure Leskovec.
PyG 2.0: Scalable learning on real world graphs. In Temporal Graph Learning Workshop @ KDD,
2025.

APPENDIX
A BASELINES

Table 6: Description for the baseline models

Model Model configuration Temporal processing Spatial processing
Dlinear Global Linear layers Not modeled
PatchTST Global Temporal convolution followed by = Not modeled

temporal attention over the patches

TimeMixer Hybrid Feedforward networks applied to Not modeled
the trend and seasonal components,
downsampled at different scales

Crossformer Hybrid Temporal convolution followed by Spatial attention applied
attention applied over the patches, among patches of different
with a hierarchical structure con- time series
structed with linear layers

iTransformer Global Feedforward layers Spatial attention applied
among different time series

ModernTCN Hybrid Depth-wise convolutions Convolution applied across
time series

Linear global/local Global/local Linear autoregression Not modeled

Below, we provide a brief description of each baseline as employed in our experiments on the
considered benchmarks. Furthermore, we summarize them in [Tab. 6|using three fields corresponding
to the design dimensions introduced in[Sec. 4] excluding the preprocessing and exogenous variables
dimension, since the considerable differences among the methods make it less informative.

13

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/facebookresearch/hydra

Under review as a conference paper at ICLR 2026

* Dlinear (Zeng et al.|[2023) decomposes the input into seasonal and trend components using
a moving average and processes them with linear layers. The hyperparameters determine its
local-global nature. In the table, we report it as global because, in our experiments, it was
used in this configuration. We follow the same convention for PatchTST and TimeMixer.

* PatchTST (Nie et al., 2023) has strongly influenced subsequent works by employing a global
Transformer, in contrast to earlier local multivariate approaches that treated the group of
input time series as a single multivariate series. PatchTST segments the time series and
generates corresponding embeddings using an operation analogous to temporal convolution.
Then, it applies attention over these segments, referred to as patches. It does not model
spatial relations.

» TimeMixer (Wang et al., [2024b) is a fully MLP-based architecture that downsamples the
input at different scales, decomposes it into trend and seasonal components, and employs
feedforward layers to model temporal dependencies.

* Crossformer (Zhang and Yan,|2023) employs an input encoding with segmentation analogous
to that used in PatchTST. The model is a hybrid global-local model, as it includes learnable
position embeddings for each time series in the set. In addition to temporal attention, it
captures spatial dependencies through attention over the spatial dimension using a routing
mechanism. Furthermore, it adopts a hierarchical encoder-decoder structure.

* iTransformer (Liu et al.| [2023a) uses a feedforward approach to encode temporal dynamics
and spatial attention to model spatial dependencies. This method has been described as
applying attention to the inverted dimension, i.e., the spatial dimension. The model is global.

* ModernTCN (Donghao and Xuel 2024) uses depth-wise convolutions to encode temporal
information, with an encoding similar to that performed in PatchTST, and then applies
point-wise convolutions to process the feature and spatial dimensions separately.

* Linear Toner and Darlow|(2024) is linear autoregressive models trained with L2 regulariza-
tion and OLS. The local variant employs different weights for each series, while the global
variant employs the same weights for all the series in the set.

B REFERENCE ARCHITECTURE STRUCTURE

The reference architecture, as schematized in[Fig. 2] consists of a preprocessing module, followed by
the processing of the temporal and spatial dynamics, and finally a postprocessing module. Its modular
structure facilitates understanding of the architecture and promotes fair comparisons, as it allows
each module to be changed individually. In our experiments, we kept most modules fixed, modifying
only the temporal and spatial modules for the experiments reported in Tables [3]and [T3] respectively,
and occasionally the feature encoding module. Here, we provide a more detailed description than the

one given in

Preprocessing module The preprocessing module begins with RevInv (Kim et al.|[2022)) normaliza-
tion. The feature encoding module then processes the input and covariates through non-linear layers
and returns their sum. Alternatively, it can perform temporal convolution to generate an encoding
similar to that in (Nie et al., [2023). Finally, local embeddings are concatenated with the resulting
encoding.

Processing module The processing module consists of temporal processing followed by spatial
processing. In a more general architecture, these components could be interleaved. However, for
simplicity, they are treated separately in our implementation of the reference architecture.

Postprocessing module The postprocessing module consists of a linear decoder that maps the

hidden representations to predictions for the horizon. Finally, the predictions are de-normalized using
the RevInv module.

C EMPIRICAL SETUP AND ADDITIONAL EXPERIMENTAL RESULTS

Our code is implemented in Python (Van Rossum and Drake, [2009), with the use of the follow-
ing libraries: PyTorch (Paszke et al., 2019); PyTorch Geometric (Fey and Lenssen) |2019); Torch

14

Under review as a conference paper at ICLR 2026

f('5)
fpre(':) fproc('a) fpast(‘;)

Temporal Spatial Xout Features
processing processing decoding

J

De-
normalization

encoding

i X
R Normalization —, | catUres ﬂet

i
’— Xit+H

Figure 2: Block diagram of the reference architecture

Spatiotemporal (Cini and Marisca, 2022); Scikit-learn (Pedregosa et al., [2011); PyTorch Light-
ning (Falcon and The PyTorch Lightning team| [2019); Hydra (Yadan, [2019); Numpy (Harris et al.|
2020). Below, we provide further details on the experiments conducted in[Sec. 4 and report complete
tables for both the MSE and mean absolute error (MAE) test metrics. Moreover, we provide additional
information on the datasets in[Tab. 7

Table 7: Information on the datasets.

Dataset | Time series | Steps | Frequency | Domain
Weather \ 21 | 52695 | 10min | Weather
Solar-Energy | 137 | 52559 | 10min | Energy
ECL \ 321 | 26303 | Hourly | Electricity
Traffic \ 862 | 17543 | Hourly | Transportation

Hyperparameter tuning For each experiment, we set a fixed batch size for each dataset. The
hidden size is tuned between 32 and 256 for all datasets, with the addition of 16 for the Weather
dataset. In[Tab. 3] we used hyperparameters corresponding to the best configuration found
during tuning. For|Tab. 10} [TT} and] we used the same hyperparameters obtained from the
tuning performed for[Tab. 3| [I3] Instead, in and 0] we used fixed hyperparameters, identical
for both sides of the comparison, without any tuning. The window size was set to 336 in[Tab. 3]
and except for the Solar dataset, for which it was set to 96. For the other tables, the window
size was set to 96. The horizon is always set to 96, except in[Tab. 10]and [T} where performance was
evaluated across increasing horizons.

Empirical setup for D1: model configuration In[Tab. § the global TimeMixer model is obtained
by removing the learnable parameters from the normalization module, while the global versions
of both Crossformer and the reference architecture (Transf.) are obtained by excluding their local
embeddings.

Empirical setup for D2: preprocessing and exogenous variables In|Tab. 9| covariates were
removed from the reference architecture (Transf.), while they were added to PatchTST and Dlinear.

Empirical setup for D3: temporal processing In[Tab. 3| we report the MSE and MAE performance
of the reference architecture for various temporal processing modules, evaluated against baselines
that do not include spatial processing operators. presents the computational efficiency of the
models for increasing horizons on the Electricity dataset. We employed the PyTorch Profiler (Paszke
et al.| 2019) to monitor GPU performance during training, specifically collecting the total CUDA
execution time. Additionally, GPU memory usage was obtained using the PyG (Fey et al., [2025)
function get_gpu_memory_from_nvidia_smi. To ensure a consistent evaluation, all measurements
related to model performance and [T T)) were conducted on the same machine running Oracle
Linux Server 8.8, equipped with an Intel Xeon E5-2650 v3 CPU @ 2.30 GHz 20 (2 x 10) cores,
128 GB of system RAM, and an NVIDIA A100-PCIe GPU with 40 GB of HBM2 memory. Finally,
we summarize these results in[Fig. 3| which illustrate the trade-off between model performance and
computational efficiency in terms of training batch time and GPU memory usage, on the Electricity
dataset for a forecasting horizon of 96.

15

Under review as a conference paper at ICLR 2026

Table 8: Comparison (MSE and MAE) of models with and without local parameters. Best average
results are in bold.

D Model hybrid \ global
MSE MAE ‘ MSE MAE

5 Transf. 0.136+.000 0.231+.000 | 0.1514+.000 0.2424+.000
8 Crossformer 0.1394.002 0.2344.003 | 0.1434.001 0.2364.002
= TimeMixer 0.151£.000 0.248+.001 | 0.180+.001 0.268+.001
5 Transf. 0.153+.001 0.198+.000 | 0.1774+.002 0.215+.001
s Crossformer 0.155+.003 0.227+.003 | 0.159+£.002 0.2154.002
B TimeMixer 0.164+.002 0.208+.001 | 0.178+.001 0.2164.001
2 Transf. 0.4174+.009 0.2784+.005 | 0.3924+.000 0.260-+.001
% Crossformer 0.548+.024 0.278+.011 | 0.507+.003 0.258+.003
F TimeMixer 0.464+.001 0.3284.003 | 0.463+.001 0.327-+.003
5 Transf. 0.196+.000 0.243+.001 | 0.2054+.001 0.247+.002
o Crossformer 0.1804+.009 0.235+.012 | 0.180+.011 0.234+.012
“? TimeMixer 0.366:£.017 0.396+.013 | 0.367+.017 0.396+.013

Table 9: Comparison (MSE and MAE) of models with and without covariates. Best average results
are in bold.

D Model w/ exog. \ w/o exog.
MSE MAE ‘ MSE MAE

= Transf. 0.136.000 0.231+.000 | 0.155+.001 0.2474+.000
8 PatchTST 0.1284+.000 0.222+.000 | 0.134+.000 0.2284.001
= DLinear 0.193+.000 0.2774.000 | 0.195+£.000 0.2774.000
;E Transf. 0.153+.001 0.198+.000 | 0.161£.000 0.2084+.001
S PatchTST 0.174+.000 0.213+.001 | 0.180+.002 0.2214.002
Z DLinear 0.199+£.005 0.2584+.008 | 0.196+.001 0.248+.002
2 Transf. 0.4174+.009 0.278+.005 | 0.4794.006 0.289+.001
E PatchTST 0.355+.000 0.244+.000 | 0.383+£.001 0.261+.001
& DLinear 0.609+.000 0.391+.000 | 0.648+.000 0.3954.000
5 Transf. 0.196+.000 0.243+.001 | 0.206+.003 0.249+.004
E PatchTST 0.196+.001 0.246+.004 | 0.2254+.003 0.268+.003

DLinear 0.246+.001 0.331+.000 | 0.285+.001 0.372+.001

16

Under review as a conference paper at ICLR 2026

Table 10: Performance and resource utilization of the models selected in on the Electricity dataset.
Best performance is shown in bold, second best is underlined.

Batch Time Batches GPU Mem. CUDA Time

Model Horizon (ms) per Second (MB) (ms)
96 276414 363412 628.0 20.3

MLP 192 276414 363+12 628.0 27.1
336 276£14 363+12 653.2 26.3

720 276414 363+12 705.6 31.8

96 36.740.9 28.2+0.6 3635.2 235.6

RNN 192 373429 278+1.8 3643.5 243.0
336 373429 278+1.8 3854.3 246.7

720 373429 27.8+1.8 3860.6 258.5

96 209414 33.5+1.1 1217.3 62.0

TCN 192 299+1.4 33.5+1.1 1217.3 82.0
336 299414 33.5+1.1 1219.4 85.1

720 299414 33.5+1.1 1240.4 87.8

96 36.7+1.3 273407 1942.9 119.3

Transt 192 36.7+1.3 273407 1961.7 144.0
: 336 36.7+1.3 273407 1959.7 148.1

720 36.7+1.3 273407 1976.4 164.7

96 417408 24.04+0.4 2559.4 189.9

Puraf 192 417408 24.040.4 2561.5 191.9
yrat. 336 417408 24.040.4 2563.6 192.8
720 417408 24.040.4 2567.8 198.7

96 18.9+1.1 52.9+1.7 615.5 10.7

DL 192 18.9+1.1 52.9+1.7 615.5 17.2
near 336 189+1.1 52.9+1.7 638.5 19.1
720 18.9+1.1 52.9+1.7 699.4 2.5

96 343405 29.1+0.4 1445.9 74.9

patchTsT 192 343405 29.1+0.4 1443.8 94.6
ate 336 343405 29.1+0.4 1443.8 93.6
720 343405 29.1+0.4 1462.7 107.7

96 97.6+93.5 10.940.7 2301.5 410.4

TimeMixer 192 97.64+93.5 10.940.7 2303.6 405.1
336 97.6493.5 10.940.7 2311.9 375.9

720 97.6+93.5 10.940.7 2450.3 478.8

17

Under review as a conference paper at ICLR 2026

Table 11: Performance and resource utilization of the models selected in|13[on the Electricity dataset.
Best performance is shown in bold, second best is underlined.

Batch Time Batches GPU Mem. CUDA Time

Model Horizon (ms) per Second (MB) (ms)

96 40.2+1.0 24.9+0.5 1162.8 96.9

MLP + it 192 40.6+1.3 24.7+0.6 1236.2 123.8

sp- At 336 40.6:1.3 24.7+0.6 1215.2 155.4

720 40.6+1.3 24.7+0.6 1357.8 185.8

96 96.4+0.4 10.4+0.0 7822.9 783.6

Puraf. + sp. ait 192 96.4+0.4 10.4+0.0 7908.8 787.3
yrat. +5p. all. - 336 96.4+0.4 10.4+0.0 7837.5 808.8

720 96.4+0.4 10.4+0.0 7940.3 861.9

96 50.8+1.3 19.7+0.4 1729.0 217.4

iTransformer 192 50.7+1.1 19.7+0.4 1630.4 2279

336 50.7+1.1 19.7+0.4 1712.2 2529

720 50.7+1.1 19.7+0.4 1871.6 317.8

96 138.0+1.0 7.240.1 5702.8 912.8
Crossformer 192 161.9+28.1 6.4+1.0 9412.4 1532.0
336 161.9+28.1 6.4+1.0 16032.6 2516.0
720 161.9+28.1 6.4+1.0 39527.4 5589.0
96 145.4+1.1 6.94+0.0 10620.3 1967.0
Modern TCN 192 147.4+8.8 6.8+0.3 10620.3 1971.0
336 147.4+8.8 6.8+0.3 10662.2 2005.0
720 147.4+8.8 6.8+0.3 10857.2 2036.0

{Memory Footprint (MB) | {Memory Footprint (MB);
i i 0.1400 : :
0.23
0.1375
0.230 0.1350
% $0.1325 l:l‘rliili(:‘\:mm
= R. Pyraformer =

2559MB 41.7ms R. Pyraformer
0225 ime 0.1.00 2559MB 41.7ms
R. TCN | / R. Transformer - ';‘:“‘ "‘“"
1217MB 29.9ms 1943MB 36.7ms ~ 2301MB 97.6ms R. Transformer TimeMixer

0.1275 1943MB 36.7ms
0.220 N 5.7ms 2301MB 97.6ms
3635MB 36.7ms R. RNN
’ T 0.1250 3635MB 36.7ms
PatchTST !) I PatchTST . |])
1446MB 34.3ms.0 60 80 100 1446MB 34.3ms'.Q 60 80 100
Mean Batch Time (ms) Mean Batch Time (ms)

Figure 3: MAE and MSE performance versus mean batch time during training for models not
including spatial processing, for a batch size of 512. Circle size indicates memory consumption.

Empirical setup for D4: spatial processing In[Tab. 13} we compare the reference architecture
with baselines that include spatial processing. The reference architecture is employed with either
an MLP or a pyramidal attention module for temporal processing, followed by a spatial attention
module. The temporal modules were chosen for their advantageous trade-off between performance
and computational efficiency (see[Fig. 3]and[Tab. 10). In[Tab. 12} the iTransformer version without
attention was obtained by replacing the spatial attention with a simple feedforward layer. Similarly
to shows the trade-off between model performance and computational efficiency on
the Electricity dataset for a forecasting horizon of 96. Since spatial processing often increases
computational cost and reduces memory efficiency, we restrict the input window size to 96, equal to

the forecasting horizon in [TT} [T2]and

18

Under review as a conference paper at ICLR 2026

0.244 { Memory Footprint (MB) | { Memory Footprint (MB) |
0.242 ! 0.150
iTransformer : 1 iTransformer
0.240 1729MB 50.8ms 1729MB 50.8ms i W@
0.238 Modern TCN 0.145 Modern TCN
m 10620MB 145.4ms m 10620MB 145.4ms
g 0.236 Ref. sp. pyraformer %’
7823MB 96.4ms 0.140 - ‘
ef. sp. pyraformer
0234 CaOBBformer (71{ > '{\IIII: 96 . Ams
= i “rossformer
0.232 5703MB 138.0ms 0135 5703MB 13&(1.9
0.230
0.228 0.1301— 1 . y | . ; .
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Mean Batch Time (ms) Mean Batch Time (ms)

Figure 4: MAE and MSE performance versus mean batch time during training for models including
spatial processing, for a batch size of 32. Circle size indicates memory consumption.

Table 12: Results (MSE and MAE) for iTransformer with or without space attention. Best average
results are in bold.

Dataset ‘ Space att. ‘ Feedforward

| MSE MAE | MSE MAE

Electricity | 0.148+.000 0.241£.000 | 0.149£.001 0.237+.001
Weather 0.171+£.001 0.210£.001 | 0.171£+.000 0.210+.001
Traffic 0.393+.001 0.266+.001 | 0.390+.001 0.258=+.000
Solar 0.208+£.003 0.240+.006 | 0.194+.001 0.230-+.002

D MODEL CARDS

In we report an example of the usage of the newly introduced model cards for PatchTST.

E LARGE LANGUAGE MODELS

We acknowledge the use of Large Language Models to assist in polishing the manuscript by making
minor edits to single sentences.

F CoDE OF ETHICS

The work presented in this paper is about basic machine learning research, and all experiments are
conducted on standard, publicly available datasets. The authors have read and adhere to the ICLR
Code of Ethics and do not foresee any direct ethical concerns or potential for misuse.

19

Under review as a conference paper at ICLR 2026

Table 13: Forecasting results (MSE and MAE) for a horizon of 96 steps for models including spatial
processing. Best mean results are in red, second best are blue.

Model

‘ Electricity ‘ Weather ‘ Traffic ‘ Solar
| MSE MAE | MSE MAE | MSE MAE | MSE MAE

MLP + sp. attn. 0.140£.001 0.238+.001 | 0.157£.000 0.202+.001 | 0.435£.006 0.2754+.001 | 0.201£.009 0.246+.003
Pyraf. +sp. attn. | 0.139+£.001 0.2364+.001 | 0.157+.002 0.204%.001 | 0.3894+.002 0.267+.001 | 0.188+.002 0.235+.003

iTransformer 0.1484.000 0.2414.000 | 0.171£.001 0.210£.001 | 0.393£.001 0.266+.001 | 0.2084+.003 0.2404.006
Crosformer 0.136+.000 0.2324+.001 | 0.152+.003 0.222+.004 | 0.527£.002 0.270£.003 | 0.1844+.008 0.2274.006
ModernTCN 0.1414+.000 0.2374.001 | 0.154+.001 0.200+.001 | 0.445+.001 0.287+.001 | 0.190+.001 0.2224.002

Table 14: Example of model cards for PatchTST on the Electricity dataset

Basics
e Window length: fixed lookback window of 336
e Transductive or inductive (cold start). inductive
* Masking: not applied/needed
D1. Model configuration
* Global/local/hybrid: global model
* Hybrid parameters (non-shared): not applicable
D2. Preprocessing and exogenous variables

e Scaling: standard normalization (z-score) applied per series and in-batch RevInv normaliza-
tion.

e Covariates/exogenous variables: not used
D3. Temporal processing

o Temporal modules: convolutional encoding followed by patching-based Transformer encoder
layers

* Complexity scaling with steps: the time and space complexity scales quadratically with the
number of patches (self-attention)

D4. Spatial processing
* Spatial modules: not applicable

» Complexity scaling with nodes: not applicable

20

	Introduction
	Related work and context
	Preliminaries
	Problem setting
	Baselines
	Benchmarks

	What Matters in Deep Learning for Time Series Forecasting?
	Design dimension 1: Model configuration
	Design dimension 2: Preprocessing and exogenous variables
	Design dimension 3: Temporal processing
	Design dimension 4: Spatial processing

	Discussion
	Conclusion
	Baselines
	Reference architecture structure
	Empirical setup and additional experimental results
	Model cards
	Large Language Models
	Code of Ethics

